Total Pages - 2

UG/3rd Sem/CHEM(H)/Pr/19

2019

B.Sc.

3rd Semester Examination

CHEMISTRY (Honours)

Paper - C 5-P

(Practical)

Full Marks: 20

Time: 3 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

- 1. Perform one experiment from the list of experiments allotted through a single draw lottery. 15×1=15
 - (a) Determine partition coefficient for the distribution of I₂ between water and the supplied organic solvent (perform the experiment in one set)
 - (b) Determine the exact concentration of supplied solution (approx $\frac{N}{10}$) of a dibasic acid by titrating the solution conductometrically against standard NaOH solution.

[Turn Over]

- (c) Determine the exact concentration of supplied solution (approx $\frac{N}{10}$) of a strong monobasic acid by titrating the solution conductometrically against standard NaOH solution.
- (d) Determine the exact concentration of supplied solution approx $\frac{N}{10}$) of a weak monobasic acid by titrating the solution conductometrically against standard NaOH solution.
- (e) Determine the rate constant of saponification reaction conductometrically.
- (f) Determine the ionization constant of a weak monoprotic acid using Ostwald dilution law.
- (g) Prepare 3% and 6% solution from supplied 9% solution of A and determined their η with respect to water. Hence, plot η vs. concentration w.r. to water.

(In each experiment, marks are distributed among the following: Theory, Representation of data in tabular form, calculation, graph plotting (if necessary) and Result)

2. Laboratory Note Book.

2

3. Viva-voce.

3

UG/3rd Sem/CHEM(H)/Pr/19

2019

B.Sc.

3rd Semester Examination CHEMISTRY (Honours)

Paper - C5P

Instruction to the Examiners

Examiners are requested to -

- Set at least five experiment in the centre and dispense one experiment to each examinee through a single draw lottery.
- Prepare and supply requisite volume of the following solution with proper lebel.

Experiment	Solution to be supplied
1. <i>a</i>	Saturated solution of I ₂ in CCl ₄ and pure CCl ₄ as organic solvent.
1. <i>b</i>	$\sim \frac{N}{2}$ NaOH soln and $\sim \frac{N}{10}$ oxalic acid as unknown solution.
1.c	$\sim \frac{N}{2}$ NaOH solution and $\frac{N}{10}$ HCl solution as unknown.
1. <i>d</i>	$\sim \frac{N}{2} NaOH$ solution and $\frac{N}{10} CH_3 COOH$ as unknown solution.
1.e	$\sim \frac{N}{10}$ NaOH Solution
1. <i>f.</i>	$-\frac{N}{10}$ Acetic acid solution
1. g	9% sugar solution -

- Provide the value of density of water, coefficient of viscosity of water, density of supplied ester and cell constant of conductometer.
- 4. Digital balance must be supplied.
- 5. Calibrate the conductometer.
- Allow examinees to do their experiment only after completion of theory write up. Put signature at the end of theory written by the candidate.
- 7. Check and sign important data.

8. Awarding Marks:

- (a) Theory 03
- (b) Representation of data in tabular form and calculation 07
- (c) Graph plotting 03 (Except expt. 1a)
- (d) Result 02 (for experiments with graph)
 - 05 (for experiment without graph)

***Marks on result should be awarded on the basis of results that examiners will get from their experiments.

If the result of the examiners and that reported by a candidate differ by x%, then award marks as per following table

x	Experiment 1.a	Experiment 1.b to 1.g
$0\% \le x \le 5\%$	5	2
$5\% < x \le 8\%$	3	11/2
8% < <i>x</i> ≤10%	2	1
$10\% < x \le 11\%$	1	1/2
x>11%	0	0

[Turn Over]

> For experiment 1. h ---

Straight line passing through four points	- 0	2
Straight line passing through three points	- 11	1/2
Straight line passing through two points	- 1	/2
Straight line passing through one point	2 4 6	0