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PREFACE TO THE THIRD EDITION

- The present edition is brought up to incorporate the useful suggestions
ers and teachers for the benefit of students. Keeping

from a number of read
on Papers, a number of Very

in view the present style of University Questi
Short, Short and Long questions are given at the end of each chapter. The
manuscript has been thoroughly revised and corrected to remove the errors
which crept into earlier editions. We hope the present improved edition

would serve the students in a better way. However, the comments and sug-
gestions from readers for further improvement of the book will be gratefully
acknowledged.
R.K.PURI

V.K.BABBAR
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PREFACE TO THE FIRST EDITION

A number of Indian universities have revised their curricula at the
undergraduate level and have included various topics which earlier formed
a part of the postgraduate curricula. Ever since the new syllabi were intro-
duced, there had been a dearth of good books which strictly follow the revised
syllabi. A number of standard texts are available on Solid State Physics but
these are of advanced level. The present book is written specifically to meet
the requirements ‘of the undergraduate students and is in accordance with the
common prescribed syllabi of most of the Indian universities.

The general approach and aim of this book 1s to provide a compre-
hensive introduction to the subject of Solid State Physics to the undergraduate
students in a coherent, simple and lucid manner. The coverage of basic topics
is concise, brief and self-explanatory. The topics such as Lasers, Magnetic
Resonances, and the Mossbauer Effect are excluded as their advanced treat-
ment is generally covered at the postgraduate level. The text is divided into
ten chapters and each chapter is followed by a set of solved examples which
acquaint the students with the application of the various principles and
formulae used in the text and give them a feeling of the magnitude of the
physical quantities involved therein. The SI units are followed throughout the
book and their conversions to other practical units are appropriately intro-
duced. Some of the conversion factors are also listed in appendix I. A
summary of each chapter is given for a quick review of the topics. Each
chapter is concluded with a set of questions and unsolved problems to help
the students to comprehend these topics. A list of usefui references is given

for the indepth study of the subject. 3
We hope thai ie undergraduate students will find this book useful as

well as concise for the subject of Solid State Physics. The comments and
feedback from the students as well as teachers about this book will be

gratefully appreciated.
We thank our friends and families, particularly our spouses, for their

inspiration and encouragement. We also thank th i alit
e ) . e publishers for quality
printing and timely publication of this book. P

R.K. PURI
ps BAR
New Dolid v.K. BAB
June 2, 1996
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CHAPTER - 1

CRYSTAL STRUCTURE

1.1 INTRODUCTION

Matter, consisting of one or more elements or their chemical com-
pounds, exists in nature in the solid, liquid and gaseous states. As the atoms
or molecules in solids are attached to one another with strong forces of
attraction, the solids maintain a definite volume and. shape. The solid state
physics is the branch of physics dealing with physical properties of solids,
particularly crystals, including the behaviour of electrons in these solids. The
solids may be broadly classified as crystalline and non-crystalline depending
upon the arrangement of atoms or molecules.

The crystalline state of solids is characterized by regular or periodic
arrangement of atoms or molecules. Most of the solids are crystalline in
nature. This is due to the reason that the energy released during the formation
of an ordered structure is more than that released during the formation of
a disordered structure. Thus crystalline state is a low energy state and is,
therefore, preferred by most of the solids. The crystalline solids may be sub-
divided into single crystals and polycrystalline solids. In single crystals, the
periodicity of atoms extends throughout the material as the case of diamond,
quartz, mica, etc. A polycrystalline material is an aggregate of a number of
small crystallites with random orientations separated by well-defined bound-
aries. The small crystallites are known as grains and the boundaries as grain
boundaries. It may be noted that although the periodicity of individual
crystallites is interrupted at grain boundaries, yet the polycrystalline form
of a material may be more stable compared with its single crystal form. Most
of the metals and ceramics exhibit polycrystalline structure.

"The non-crystalline or amorphous solids are characterized by- the
completely random arrangement of atoms or molecules. The periodicity, if
- at all.present, extends up to a distance of a few atomic diameters only. In
other words, these solids exhibit short range order. Such type of_n:a_:g_e_rla_ls
are formed when the atoms do not get sufficient time to. undergo a periodic
arrangement. Glass is an example of amorphous materials. Most of the
Plastics and rubbers are also amorphous. -

The science which deals with the study of geometrical forms and
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physical properties of crystalline solids is called crystallograpp,,

e
of crystallography is necessary o undera':tand the str-ong;ﬁrr elatiop bt‘.til,::y
the structure of a material and its physical properties. The pre.sem o ﬂptn
deals with some of the basic concepts Of_ crystallography Which are fu;?
damental to the study of solid state physics. :

1.2 CRYSTAL LATTICE AND TRANSLATION VECTORg

Before describing the arrangement of dioms ina crystal, it g
convenient to describe the arrangement of imaginary points in SPace whj,
has a definite relationship with the atqms of the crystal. This set of imagin '
points forms a framework on which the actual crysta.l strl.Jcture is baseq, Such
an arrangement of infinite number of imaginary points in three-dimensional
space with each point having identical surroundings is known as pojny lattice
or space lattice.

The term ‘identical surroundings’ means that the lattice has{the same
appearance when viewed from a point r in the lattice as it has when viewed
from any other point r' with respect to some arbitrary origin. This is possible
only if the lattice contains a small group of points, called pattern unit, which

repeats itself in all directions by means of a translation operation T given
by -

T=na+nb+ n.c (1.1)

where n, n, and n, are arbitrary integers and the vectors a, b and ¢ are called
the fundamental translation vectors, Thus, we have

-r'=r+T=r+nla+r;2b+n3c (1.2)

In a perfect lattice, Eq.' (1.2) holds good, i.e., point r' can be obtained
- . - from r by the application of the

operation (1.1). However, in an
imperfect lattice, it is not possible
to find a, b and ¢ such that an
arbitrary choice of n,, n, and n,
makes r' identical to r. The trans-
lation vectors a, b and c are also:
called the crystal axes or basis

vectors and shall be described lat-
" oer.

Consider, for simplicity, 2

part of a two-dimensional lattict‘: as

imilti shown'in Fig 1.1. The translatio”

L A s

Pr_'”;:l 'a rwoz-’di;lemional lattice. n}l{n.ber of ways. T"E’U sth pOSSrc
bilities are shown in this fig¥
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Crystal Structure 3

| where two sets a,b anda,b, of translanon vectors are drawn. Considering
first the translation vectors a and b,, the point R' can be obtained from R
using the translation operation given by

T = Oa, + 1b,
which contains integral coefficients. Thus R’ is related to R by the equation
R'=R+T=R+0a+ 1b,

Such translation vectors which produce a translation operation containing
integral coefficients are called primitive translation vectors. Referring to the
second set of translation vectors a, and b,, the point R' can be obtained from
R by using the equation
1 1
R R + Eaz + —b
which contains non-integral coefficients of a, and b, Such translation

vectors for which the translation operation contains non-integral coefficients
are called non-primitive translation vectors. Either type of translation vec-

tors may be used to describe the structure of a crystal inspite of the fact that
the non-pnmltlvc translation vectors involving non-integral coefficients are
not in-accordance with the periodicity of the -crystal. Usually, a set of

orthogonal and the shortest pOSalblB translation vectors is preferred for
describing a lattice.

1.3 UNIT CELL

The parallelograms formed by the translation vectors (Fig. 1.1) may
be regarded as building blocks for constructing the complete lattice and are
known as unit cells of the lattice. For a three-dimensional lattice, the unit cells
are of the form of a parallelopiped. An application of the translation operation
(1.1) for some values of n , n, and n, takes the unit cell to another region which
is exactly similar to the initial region..On repeatedly applying the same
operation with all possible values of n,, n, and n,, one can reproduce the
complete la‘tice. Thus a unit cell may be defined as the smallest unit of the
lattice which, on continuous repitition, generates the complete lattice. Both
primitive and non-primitive translation vectors may be used to construct a unit
cell. Accordingly, a unit cell is named as a primitive unit cell or a non-primitive
unit cell. In Fig. 1.2, the parallelogram ABCD represents a two-dimensional
primitive cell, whereas the parallelograms EFGH and KLMN represent non-
primitive cells. Primitive unit cell is the smallest volume cell. All the lattice

phaed Ll
pmnts belonging to a nmmve lie at its corners. Therefore, the effective
number of lattice imitive unit cell is one. é non-primitive cell

May have the Jattice points at the corners as well as at other locations both
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A B
N v

NP

Fig. 1.2. Primitive (P) and non-primiiive (NP) unit cells of a two-dimensional fattice. 3

“igside and on the surface of the cell and, therefore, the effective number of
lattice pointsTin a non-primitive cell is greater than one. A primitive cell can
also be constructed using the following procedure :

(1) Connect a given lattice point
to all the nearby lattice points.

(i1) Draw normals at the mid-

points of lines connecting the lattice
points. :

The smallest volume enclosed by
the normals is the required primitive
cell. Such a cell is called Wigner-Seitz
cell and is shown in Fig. 1.3. The vol-
ume of a primitive cell having a, b and
¢ as the fundamental translation vectors
or crystallographic axes is given by

V= la.bxc|

Since there exists a number of
Ways of choosing a unit cell, the choice
of a conventional unit cell is a matter of
COn.Vcnicnce. Ideally, the primitive cell
‘having the smallest volume should b¢
chosen as the conventional unit. cell

Fig. 1.3. Constgyction of
Wigner-Seitz primitive cell.

B |
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* Crystal Striucture 5

R ) sorfletimes aNON-primitive cell is selected as theyc;oni/entlonf.l_ unié-
ause jt POssesses hj

gher symmetry than a primitive cell.
.1'4 BASIS : |

~ The SPace lattice g
Which are SO arrangeq i, sp
The crystg; Structure is ajya

Us in order tq oObtain a ¢
be placegl On each lattice p
of atoms s called,

been defined as an array of imaginary points
ace that each point has idenlical_svrtoundings.
ys describéd in terms of atoms rather than points.
rystal structure, an atom or a group of atoms must
oint in a regular fashion. Such an atom or a group
the basis and acts as a building unit or a structyral unit
for the complete crystal

structure. Thus a lattice combined with a basis
generates the crysta

L structure, Mathematically, it is expressed as

Space lattice + Basis —> Crystal structure
Thus, whereas a 1

attice is a mathematical concept, the crystal structure is a
physical concept.

The generation of 2 crystal

structure from a two-dimensional lattice
and a basis is illustrated in Fig.

1.4. The basis consists of two atoms,
represented by O and ®, having orientation as shown in Fig. 1.4. The crystal
structure is obtained by placing the basis on each lattice point such that the
centre of the basis coincides with the lattice point. .

LY

O O O o0 o
- . . . . L ] L] [ ] L ] e
: ' O O O o0 o
. . . [ ] L ] e L ] [ ] -
‘ O 0
. . . > @) —> 2 OI Oo O. ]
' * 0.0 0 o™p
. o't [ ] [ ] [ ] [ ] [ ]
'O 0 0 O o
. . . [ ] [ ] [ ] [ ] [ ]

(Lattice) (Basis) ( Crystal structure )

Fig. 1.4. Generation of crystal structure from lattice and basis.

The number of atoms in a basis may-vary fff’m ame. 19 se;reral thou-

d-" whereas the number of space lattIC?S-POSSFble is only fourteen as

 desceitiod later section. Thus a large number of crystal structur!as may

descnt')t.‘,d mfzl . l'.':ust fourteen space lattices simply because of the different

:);pgstzl: cl;ias:: nz;\-!':;lilable. If the basis consists. of a.singlle ?Of:n:;:));ﬁ:

monoatomic crystal structure is obtained. Copper is an examp BQ“? d i bi
face-centred cubic structures. Examples of comple:f Pases are found in

ological materials.
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sYMMETRY OPERATIONS | |

A symmetry operation is that which transforms the crystals g ; i
ie., acrystal remains invariant under,a. symmet_ry Opt?ratlon, These one ,
a'tions are translation, rotation, reﬂectzon and u?w-ersmn. The translatior\
operation applies to lattices only while all the remaining operations 54 lhein
combinations apply t0 all obiec'ts and aff’ CO_HBCUV?ly known as Oin:
symmetry operations. The inversion operation 18 aPPllca!Dle only to e
dimensional crystals. These OPW}UOns are briefly described below:

(i) Translations

The translation symmetry follows from the orderly arrangemep
a lattice. It means that a lattice point r, under lattice translation vquf
operation T, gives another point r' which is exactly identical to y, e t
- r'=r+T

1.5

where T is defined by Eq. (1.1).

(i) Rotations

A lattice is said to possess the rotation symmetry if its rotatigp by an
angle @ about an axis (or a point in a two-dimensional lattice) transform, the

lattice to itself. Also, since the lattice always remains invariant by a T'otation
of 2z, the angle 2 must be an integral multiple of g, i.e.,

ng =2n _
or 0=2n/n (1.3)
The factor n takes integral values and js -
knov'vn as multiplicity of rotation axis. The
| possible values of n which are.compatible
/ - with the requirement of translation symme-

try are 1, 2, 3, 4 and 6 only. Thus, for ex-

~  ample, for nequal to 6, § is 60° which means
iy | that the lattice repeats itself with a minimum
rotation of 60°. Such a rotation is illustrated

InFig.1.5. Regular hexagon is an example of
such a lattice. A rotation corresponding to

Fig. 1.5. Six-fold rotation about :he V?lue O.f n is called n-fold rotation. A~
the point O in two dimensions, r\:;;?;mensmnal square lattice has 4-fold
- : N Symmetry. It may be noted that a
;g::tlrzltlafizl: il:iit(:;romay o pass through a lattice point. The fact that 5-
onli 1°3. 3. 4'and mpatible with translation symmetry operation and that
» % 2 % and 6 - fold rotations are permissible is proved as follows

Cons‘lder a:‘row of lattice points A, B, C and D as shown in Fig. 1.6.

Scanned by CamScanner



Crystal Structure

7
Let T be the lattice translation vec-

, :
B I ©" tor and let the lattice have n - fold
II rotational Symmetry with rotation
i I 8 axes passing through the lattice
_;: . . _4_D_ points perpendicular to the plane of

Paper. Rotations by an angle g =

27t/n about points B and C in the
clockwise and anticlockwise direc-
tions respectlvely yield points B'
and C' which must be identical to
st also be lattice points and should
ence B' C' must be some integral

Fig. 1.6. Geometry used to prove that
only 1, 2, 3, 4 and 6 - fold rotation axes
are permissible.

B and C. Thus the points B' and C' mu

follow lattice translation symmetry. H
multiple of BC, i.e.,

B'C' = m(BC)
or 2Tcose+T=mT
or cos=(m-1)/2 (1.4)

wherc m is an integer. Since |cose |< 1, the allowed values of m are 3, 2,
1, 0 and —1. These correspond to the allowed values of g as 0° or 360°, 60°,
90°, 120° and 180° respectively. Hence from Eq. (1.3), the permissible values
of n are 1, 6, 4, 3 and 2. Thus we conclude that 5-fold rotation is not
permissible because it is not compatible with lattice translation symmetry.
Similarly, other rotations, such as 7-fold rotation, are also not permissible.

Figure 1.7 gives a convincing demonstration of non-existence of 5-
fold rotation axis. As shown in the figure, the pentagons placed side by side
do not cover the complete space. This is because no sets of vectors exist
which satisfy translation symmetry
operation throughout and hence this ar-
rangement of pentagons cannot be
regarded as a lattice. The array 1tse,1f
however, has a 5-fold symmetry about.

the point A. Line of

‘/' reflection
symmetry

Fig. 1.7. Demonstration of non-
existence of a five-fold rotation axis
in a lattice.

Fig. 1.8. Reflection symmelry of a
notched wheel about a line.
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Crystal Structure
jative to a lattice pomt has an identical point located at
;:mc lattice point. In other words, it means that the lattice possess

—r relative 10 the
es a centre

of inversion denoted by 1.

It may be noted that, apart from these symmetry operations, a three-'
dimensional lattice in particular may have additional symmetry operations .
formed by the combinations of the above-mentioned operations. Qne such’
example is rotation-inversion operation. These operations further increase
the number of symmetry elements. These symmetry elements are further-
employed {o determine the type of lattices possible in two and three- dlmen-

- sional spaces. 5
1.6 POINT GROUPS AND SPACE GROUPS

We have seen that there are mainly_four types of symmetry operations,
i.e., translation, rotation, reflection and inversion. The last three operations
are point operations and their combinations give certain symmetry elements
which collectively determine the symmetry of space around a point. The
group of such symmetry operations at a point is called a point group.

In two-dimensional space, rotation and reflection are the only point
operations. As described earlier, their combinations yield 10 different point
groups designated as 1, 1lm, 2, 2mm, 3, 3m, 4, 4mm, 6, and 6mm which are
shown in Fig. 1.9. In three-dimensional space, however, the situation is
complicated due to the presence of additional point operations such as
inversion. There are a total of 32 point groups in a three-dimensional lattice.

The crystals are classified on the basis of their symmetry which is
compared with the symmetry of different point groups. Also, the lattices
consistent with the point group operations are limited. Such lattices are known
as Bravais lattices. These lattices may further be grouped into distinct crystal

systems. |
The point symmetry of crystal structure as a whole is determined by
the point symmetry of the lattice as well as of the basis. Thus in order to
determine the point symmetry of a crystal structure, it should be noted that
(/) a unit cell might show point symmetry at morc than one loca-
tions inside it, and
(i) the symmetry elements comprising combined point and trans- .
- lation operations might be existing at these, locations.
The group of all the symmetry elements of a crystal structure is called
space group. It determines the symmetry of a crystal structure as a whole.
There are 17 and 230 distinct space groups possible in two and three dimen-

sions respectively.
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(iii) Reflections : :

A lattice is said to possess reflection symmetry if there €Xists

1

(or a line in two dimensions) in the lattice which divides it ingq two idep]_ane

halves which are mirror images of each other. Such a plape
represented by m. The reflection symmetry of a notched whee] g illustr) iy |
in Fig. 1.8. Considering the combinations of _reﬂections with alloweq e
tions, ‘we note that each allowed rotation axis can be associateq wi[hr A
possibilities : one is rotation with reflection _and the other rotatiop withtwo i
reflection. Since there are five allowed rotation axes, the possib]e numl(:ut t
of such combinations is 10. These are designated as o

ny
(or ling il

1, 1m, 2, 2mm, 3, 3m, 4, 4mm, 6, 6mm '

where the numerals represent the type of rotation axis, the first Teprege
a plane (or line) parallel to the rotation axis and the second m refers ¢ anOt;llls
plane (or line) perpendicular to the rotation axis. These tep groups e;

0

symmetry operations are shown in Fig. 1.9,

1 ' “1m p)

iglg Ten fWOd.. 1 i 4 pS and
1; « 1,7, L lmensu)ﬂal pomtg ou, ISt
' . CO"SIS"H ]
) i g of rotat on
reﬂecuon -\’ym:mepy operations tllusrrated using natci{ed W’: I
éels.

._ applicable to three-dimensional
es that each point located at r
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Crystal Structure
relative to @ lattice pomt has an identical point located at -1
same lattice point. In other words, it means that the lattice posse

of inversion denoted by 1.
It may be noted that, apart from these symmetry opcratlons, a three-'

dimensional lattice in particular may have additional symmetry operations .
formed by the combinations of the above-mentioned operations. One such
example is rotation-inversion operation. These operations furlher increase
the number of symmetry elements. These symmetry elements are further -
employed to determine the type of lattices possible in two and lhree~d1men-

- sional spaces. ._ . >
1.6 POINT GROUPS AND SPACE GROUPS

We have seen that there are mainly.four types of symmetry operations,
i.e., translation, rotation, reflection and inversion. The last three operations
are point operations and their combinations give certain symmetry elements
which collectively determine the symmetry of space around a point. The

~ group of such symmetry operations at a point is called a point group.

In two-dimensional space, rotaﬁon and reflection are the only point
operations. As described earlier, their combinations yield 10 different point
groups designated as 1, 1m, 2, 2mm, 3, 3m, 4, 4mm, 6, and 6mm which are
shown in Fig. 1.9. In three-dimensional space, ho_wever, the situation is
complicated due to the presence of additional point operations such as
inversion. There are a total of 32 point groups in a three-dimensional lattice.

The crystals are classified on' the basis of their symmetry which is
compared with the symmetry of different point groups. Also, the lattices
consistent with the point group operations are limited. Such lattices are known
as Bravais lattices. These lattices may furthcr be grouped into distinct crystal

/3

systems.
The point symmetry of crystal structure as a whole is determmed by

the point symmetry of the lattice as well as of the basis. Thus in order to
determine the point symmetry of a crystal structure, it should be noted that -

() a unit cell might show point syrmnctry at more than one loca-
tions inside it, and
(i) the symmetry elements comprising combined point and trans-
lation operations might be existing at these; locations.
The group of all the symmetry elements of a crystal structure is called

space group. It determines the symmetry of a crystal structure as a whole. |
There are 17 and 230 distinct space groups possible i in two and three dimen-

sions respectively.
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1.7 TYPES OF LATTICES

As described earlier, the number of point groups in two and three
dimensions are 10 and 32 respectively. These point groups form the basis for
construction of different types of lattices. Only those lattices are permissible
which are consistent with the point group operations. Such lattices are called
Bravais lattices. It is beyond the scope of this book to describe the details
of formation of various Bravais lattices from the possible point group oper-
ations. It can be stated that 10 and 32 point groups in two and three dimensions
produce only 5 and 14 distinct Bravais lattices respectively. These Bravais
lattices further become parts of 4 and 7 distinct crystal systems respectively

and are separately described below.

%)

(c) Rectangular |

(a ) Oblique (b ) Rectangular

a#b,y=90° primitive - centred
a#b,y=90° a#b,y=90° -
._)
- -
'y, — 5
Y , —_190°
I : i y=120° /
= ' b 4
b | /
, | /
e By
(d) Square . ' (e) Hexagonal. .
a=b,y=90° - a=b,y=120°

Fig. 1.10. Bravais lattices in two dimensions,

(i) Two-Dimensional Lattices
~~~The four crystal systems of two-dimensional space are oblique, rect-
angular, square and hexagonal. The rectangular crystal system has two B;'a\rajs
lattices, namely, rectangular primitive and rectangular centred, p, all, the
are five Bravais lattices which are listed in Table 1.] along with the ,c . re
sponding point groups. These lattices are shown in Fig. 1.10. e

i,
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TABLE 1.1." Crystal syétems and Bravais lattices in two dimensions

‘S. Crystal Characteristic Bravais Conventional Unit cell
No.| system point group lattice unit cell characterjstics
symmetry
1 Oblique 1,2 Oblique Parallelogram a#b,y#90°
2, Rectangular 1m, 2mm 1. Rectangular . Rectangle a#b,y=9C°
primitive
2. Rectangular
centred
Square 4, 4mm Square Square a=b,y=90°
Hexagonal 3, 3m, 6, 6mm Hexagonal 60° Rhombus a=b,y=120°
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(ii) Three-Dimensional Lattices
_All the seven crystal systems of threé-dimensional Space and
corrqqunding Bravais lattices are listed in Table 1.2 in the decreasing order
of symmetry. The crystallographic axes a, b-and ¢ drawn from ope of the
lattice points determine the size and shape of a unit cell. The angies o, B ang
7y represent the angles between the vectors b and ¢, ¢ and a, and g apg b
- respectively. The lengths a, b and ¢ and angles o, B and y are collectively
kn_own as lattice parameters or lattice constants of a unit cell. Thege Bravajs
lattices are also shown in Fig. 1.11 in the form of their conventional unit cells,
The symbols P,_‘_F and I represent simple or primitive, face-centred, and body.
centred cells respectively. A base or end-centred cell is that which has lattice
points at corners and at one of the pairs of opposite faces. It is designateq

by the letter A, B or C. The designation A refers to the cell in which the faces
defined by b and ¢ axes contain the lattice po

d by b , ints, and so on. The symbol R
1s specifically used for rhombohedral lattice. '
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al . 7
o a L] . a ™
a a |, : N
Y ‘ - 2 a
. .

Simple cubic ( P) Body — centred cubic (1) Face ~ centred cubic (F)

C

BA~N> a
3~ 2

Simple tetragonal ( P ) Body - centred tetragonal (1)

s ) c . c i .C - ¥
a -
b b b . “b
a
T iy 8 L i a -
- Simple Body — centred End - centred | Face - centred

orthorhombic ( P') orthorhombic (1) orthorhombic (C) ~ orthorhombic ( F)

. Y=120° .
Simple hexagonal (P )

End - centred Simple triclinic (P )
monoclinic ( P) _

Simple monoclinic ( P )
| Fig.1.11. The Bravais lattices in three dimensions
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\’_\ ABLE 1.5, Crystal systems and Bravais lattices in three dimensions
S. | Crystal Lattice ) -
No. System Bravais lattice Common Lattice Examples
———— | Parameters abbreviation | - symbol
1 Cubi < ; :
ubic a=p=, Simple sc P Cu, Ag, Fe,
a=B=y=90 Body-centred bee I Na, NaCl,
Face-centred fcc F CsCl
2 Tetragonal/ a=bwxc Simple st P B-Sn,
a=f=y=90 Body-centred | bet 1 TiO,
3 Orthorhombic | g = p = c Simple ) P Ga,
a=fB=y=90° Body-centred bco I Fe,C
' : End-centred eco C (cementite)
Face-centred fco F
Rhombohedral [ ¢ = b = ¢ Simple - P As, Sb, Bi
or Trigonal a=p =7 = 90° @ (or R)
. Hexagonal a=b#c .Simple 7 k | Me zn Cd,
: a=p = 90°, : NiAs
vy = 120° ] CaS0,. 2H,0
S P aS0.,.
Monoclinic a#b#c gl%llg:ntred c (eF sy
a=y=90= B S'n -1 P K.CLO,
: . s . imple i
7 Triclinic Z: !b?’ : : =902

e AT

RS S
RE————T S
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TABLE 1.2. Crystal systems aht_i Bravais lattices in three dimensions

S. C T v
No. Syrs 31’ Zi?l] | Lattice Bravais lattice | Common Lattice Examples
parameters : abbreviation |- symbol
1 Cubic a=b= c Simple sC P Cu, Ag, Fe,
o= =y =090 | Body-centred bee I Na, NaCl,
Face-centred fcc F CsCl
2 Tetragonal a=b#c Simple st P B-Sn,
/ | a=p=y=90° | Body<centred | bet I TiO,
3 Orthorhombic [ a#b#c Simple 80 P Ga,
o =B =y =90 | Body-centred beo I Fe,C
| End-centred €co C (cementite)
’ ‘ Face-centred -| fco F
4 Rhombohedral | a=b=c Simple - P As, Sb, Bi
or Trigonal a=B=y=290° . (or R)
Hexagonal a=b#c .Simple - P Mg, Zn, Cd,
a =B =90, NiAs
y = 120° '
Monoclinic azb#c Simple - P CaSO,. 2H,0
a=y=90°=#p End-centred - C (gypsum)
' ; = Cr,O
7 Triclinic azb#c Simple P - Ko
: o #* !3 =Y F 90°
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\ The hexagonal crystal system has only one B
cell may be either of cubical or of hexagonal type. The cu
(outlined by thick lines) has lattice points only at the corners.The
cell has lattice points at the corners as well as at the centres of the two
hexagonal faces. One hexagonal cell is formed by joining together three

cubical type cells.

A lattice point lying at the corner of a cell is shared by eight such cells
and the one lying at the face centre position is shared by two cells. Therefore,
the contribution of a lattice point lying at the corner towards a particular cell
is 1/8 and that of a point lying at the face centre is ¥. The following equation
is used to calculate the effective number of lattice points, N, belonging to a
particular cell : | o ‘
N=N+NJ2+N/8 . o .. - - (1.5)
| ~ where N, represents the number of
lattice points present completely
inside the cell, and N, and N repre-

~ sent the lattice points occupying face
centre and corner positions of the

~ cell respectively. Using this rela-
tion, the effective number of lattice
points in a simple cubic, body-

" centred cubic and face-centred cu-

bic lattices comes out to be 1,2 and
4 respectively. -

ravais lattice and its unit
bical type cell
hexagonal

Fig. 1.12. Two fc_zce-centfed tetragonal

lattices placed side by side result inan The list of Bravais lattices
end-centred tetragonal lattice shown by given in Table 1.2 appears to be
dotted lines. ' incomplete. The orthorhombic sys-

tem contains four Bravais lattices whereas the cubic and tetragonal systems -
contain only three and two lattices respectively. It can be shown that the
lattices which are absent in certain crystal systems do not result in new types
of arrangements and so need not be considered separately. Figure 1.12 shows
two face-centred tetragonal lattices placed side by side. This arrangement of
points, shown by dotted lines, produces body-centred tetragonal lattice which

already exists in the Bravais list.
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NS AND PLANES

e ~TION
pDIREC _
ATTICE I Sl
N npfalin inalawee ® dLﬁ.m'Td by assigming certain Indiceg
The direci® S e through the ongin. its "'!dlc'cs are dm"“ﬂined :
this line. If the lie P g oul the projections of the veeto
' e r

d finding ! P )
. o crystallographic axes. Ley p
E u'lESe

4 w also represent the coordingg,
S

. - n- Y. u. van
‘ . ~oordi then simplified to geta set of the SMalleg,

of that point- Wed in square _brackets represen ™
) cers which “‘amplc- (0 determine the indices of the dimclion

. an & we may take either a point P (%, 14 )
f these points yields the indices of the
ices of any other direction Parally

appropriate position, the pey,

nates arc

in a cubic €T} :
me < line; either ©
[111]. The same are the ind
Shifti origin to an
se by shifung the ong > B,
to oQ bec-cmbe "~ ade 10 pasS through the points O.P and‘ Q. The origip :
g car::h 2 way that the orientation of the axes remains unchange
i su 3 e e :
sh;fted n}n :s perpendicular (0 2 certain axis, its index corresponding :
irectuon e & Sy
:.xis is zero as it does not form any projection on the axis. ‘\ d‘l:ELl}OP
projections 0f the negative sides of the axes possess negative indic
are written by putting bars over the indices.
- 1 1 1 - 2 4.Tht’.ind.“\ Rie
Consider the direcuon AB as shown in Fig 1.1 ices . inis

G [100] F
E
C -
’ B | [201]
N c
a — Fe{H (1,0,%2)
S
A - D
Fig. 1.13. Determination of /
indices of a direction. >3l [100] A(1.0,0)
direction can be obtained by shift- L

ing the origin to the point A. The
projections of AB on the axes then
become -1, 1, and 0 and hence the

-indices of .Lhe line AB are [110]. The indices of a few more directions are
illustrated in Fig. 1.14. The cube edges are represented by the indices of the

type (100, [010), [T00], etc. These constitute a family of cube edges des-
ignated as <100> which includes all the directions of this type. Similarly, 3

Fig. 1.14. Indices of some directions
in a cubic lattice.
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Cryszal Structure 17
zoz Cizzonzls is represented by <110> and that of body diagonals
’ 11>. Tnc number of members 1n the tamihes of cube eages, facc
i~,;; mzls znd body dizgonals is 6, 12 and 8 respectively.

The zogle § between the two crystallographic directions [hkI) and
[FKET] 15 given by

Py

.%' h"
-\

(5 M

RA"+ kK + 11
PR PV g gt 122

The scheme 10 represent the orientation of nlanes in a lattice was first
introduced by Miller, 2 British crystallographer. The indices of planes are,
Serefore, known as the Miller indices. The steps involved to determine the
Miller indices of 2 plane are as follows -

{3) Find the intercepts of the plane on the crystallographic axes.
(11) Tzke reciprocals of these intercepts.

(1) Simplify 10 remove fractions, if any, and enclose the numbers

obtzined into parentheses.

In sizp (1), the intercepts are tzken in terms of the lengths of funda-
mentzl vectors choosing one of the lattice points as the origin. If a plane is
parzllel o 2 cenzir axis, its intercept with that axis is taken as infinity. In
si£p (1i) the reciprocals are taken in order to avoid the occurrence of inﬁmty
in {he Miller indices.

As zn example, consider a plane ABC (Fig. 1.15) having intercepts 1,
2 znd 1 with the crystzllographic axes a, -
b znd ¢ respectively of a cubic lattice.

The Miller indices of this plane are

(1.6)

0
\

&
I

- . . . e

determined as follows :

(i) Imtercepts e (57 | d

(ii) Reciprocals : L,%1

(;ii) Simplification : 2, 1,2
Hence the Miller indices of the plane Fis
ABC zre (212) ; the numbers within the
rarentheses are writien without com- o/ 2 \D i
rmzs. The Miller indices of 2 plane, in c
gemerzl, are written as (hH). | £

G

It may be noted that znother plane
DEF which is parallel 1o the plane ABC  Fig 1.15. Miller indices of parallel
and lies completely inside the lattice,  planes and the planes passing
has intercepts 172, 1 and 1/2 with the throngh the origin.
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Arcton e maime Mille indicen an the plane Agse oy,

(I

aves At heiee v ) . L ! We
alu b (it ihe [l “ll.\l |l||illt'-'l e IR Miller indices I'he Illhlu; IJI-]-
R ALIRLLL i

et e convenient deal with an i Hes completely inside (e it jep
(ER L o

1A plane inervepts an axin on llu-l m.'u.lt“v; "ni.-hl'., i b iy puy
he \\\u\‘\l“ﬂ\\h“}‘. pumber of the Miller lllt!ll ( f;, [ 'Illlli'.lf,l‘.lﬂ.'; ol 4 Plaane
pasalig Mo the mi}gin cannol be determine ""’ m.u'. I In. :.m.‘lln i J‘-"W:, e
take a\;\.\\lm plane parallel 1o this plane and ‘h.“,.'””"" s M"“‘"’ “""lf.t::-,, The
e are the indices of the given |slnl|u-‘ A!lq-l ||ulllv::|y..w’¢: hl{lfl the OHigin fro,
the plane 0 some other suitable l'ullu'.t‘ I"I'"“ W:'|'I“""“|l«”'15"ll’. tl'u: t'mr:mmir,,,
of the axes and then find (he Miller indices, For example, the indice;

a I}fj Ve

v of ”’l{:
plane OCGA in Fig, 115 become (010) if the origin is f-:hil'lcd 10 the pein,
I The importance of orientation of the axes can be realized with refereng,
o Fig. 1127 The indices of the shaded plane are of the type (100, Wher
1»“.11‘\\! 1o the aves of the face-centred tetragonal cell, whereas these become
of the type (110) when referred to the axes of the simple tetragong cell
indicated by dotted lines.

A family of planes of a particular type is represented by enclosip g the
Miller indices of any one of the planes of that family into braces. Thus | 100)

represents a family of planes which has the planes (100), (010), (001), (Top),

(010) and (00 1) as its members. These six planes represent the faces of the
cube. Similarly, the families of diagonal planes and close-packed planes are
represented by {110} and {111}, and contain 6 and 8 members respectively..
Some of these planes are illustrated in Fig. 1.16.

L

3

M

.

s

=

:

.

.

:

:

B
/ 1 —

o« ren
AR

(111)

Fig. 1.16 '
ig. 1.16 Tu{ol fi}an:zllel planes belonging 1, each one of the families
01, (111} and (110} in g cubic lattice,

L9 INTERPLANAR SPACING

Consider _ g
a set of pﬂl"Cl pllﬂCl with lndiCCl (Ml) Tuke n(iuin on i
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lattice point of one such plane and draw crystallographic axes a, b and c.
Now consider another similar plane adjacent to this plane. Since the second
plane also has the Miller indices (hkl), the lengths of the intercepts on a,
b and ¢ are a/h, b/k and ¢/l respectively. If we draw a normal from the origin
to the second plane, the length of the normal represents the interplanar
distance d. From Fig. 1.17, it follows that

b
d=0P= = cosa = — cos[i:Ecos‘y (1.7)
h k [
e where a, B and y-rcprcscnt the angles
(hkl) between the normal and the axes a, b

and ¢ respectively and cos o, cos  and
cosy represent the direction cosines of
the normal to-the plane (hkl). The Eq.

A
Y d £ »n (1.7) indicates that the direction cosines
-

02 of the normal are proportional to h/a,

(

bk kb and Uc.

If n be the unit vector of the
ah normal to the plane, then a cosa, b cosp

Fig. 1.17. An (hki) plane at a distance a0d ¢ cOsy may be written as n.a, fi.b

d from another similar parallel plane and n.c respectively and Egs. (1.7)
passing through the origin. become

d = h.a/h = bk = h.cll (1.8)

Thus the value of d can be determined if n is known. In an orthogonal lattice,
where a, b and ¢ point along x, y and z directions respectively, the equation
of the plane (hkl) with intercepts a/h, b/k and c/l on the axes is

f(x y, 2) = hxla + kylb + lc = 1

For a surface f (x, y, z) = constant, Vf represents the vector normal to it.

Vf  (hla)i + (k/b)j + (U c)k
IVF| ~ (k% 1a® + kP16 + 121 )2

-~
n-=

Hence from Egs. (1.8), we obtain
ha |1+ KIB] + (1K) (arh)i
ko (h%1a + KRB 4 B2

d=

1
d=
W2 1a* + K16 + P12

l (1.9)
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Crystal Structure 19
lattice point of one such plane and draw crystallographic axes a, b and c.
Now consider another similar plane adjacent to this plane. Since the second
plane also has the Miller indices (hk/), the lengths of the intercepts on a,
‘b and ¢ are a/h, b/k and ¢/l respectively. If we draw a normal from the origin
to the second plane, the length of the normal represents the interplanar
distance d. From Fig, 1.17, it follows that

b
d=0P=2= cosat = — cosp = = cosy (1.7)
h & !
et where o, B and y represent the angles
(hkl) between the normal and the axes a, b

and c respectively and cos a, cos B and
cosy represent the direction cosines of
the normal to-the plane (hkl). The Egq.

i
Y d B+ n (1.7) indicates that the direction cosines
0 of the normal are proportional to h/a,
: b kb and Ue.
If n be the unit vector of the
ah normal to the plane, then a cosa, b cosP

Fig. 1.17. An (hkl) plane at a distance and ¢ cosy may be written as ﬁ -, n.b
d from another similar parallel plane and n.c respectively and Egs. (1.7)
passing through the origin. become

d = h.a/h = fblk = d./l (1.8)

Thus the value of 4 can be determined if n is known. In an orthogonal lattice,
where a, b and ¢ point along x, y and z directions respectively, the equation
of the plane (hkl) with intercepts a/h, b/k and ¢/l on the axes is

f(x, ¥, 2) = hxa + kylb + lzg/c = 1
For a surface f (x, y, z) = constant, Vf represents the vector normal to it.

Vi (hla)i + (k/b)j + 1/ o)k
VA T w2ra + 16+ P
Hence from Egs. (1.8), we obtain

[(h/a)n + (kIB)] + (1O)K](alh)i

n W2 1a® + K216 + P12

n=

1
Ot
= (W 1a* + K 1b + 1y 2
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Th; uation is valid for orthogonal lattices only. For non-orthogong|
is ; .
tices t:::Lch an expression may not be obtained easily; one may need g fing

i by some other method and then use Eq. (1.8) to determine d. For a cyp;,
lattice, a, b and c are equal and we get

a

d= ;22 (1.10)

(h2+k +1 )
It may also be noted that for a cubic lattice, the direction [AKI] is perpep.
(licular to the plane (hkl).

1.10 SIMPLE CRYSTAL STRUCTURES

We shall now describe some of the basic crystal structures which are

.-either monoatomic or contain simple basis. These include close-packeq

srruct:ures like hexagonal close-packed or face-centred cubic structures ang

loose-packed structures like body-centred cubic or simple cubic structures.

Besides these, the structures of diamond, zinc blende and sodium chloride
are also described.

1.10.1. Close-Packed Structures

Closc-packed structures are mostly found in monoatomic crystals
having non-directional bonding, such as metallic bonding. In these structures,
the coordination number of each atom is 12, i.e., each atom is surrounded by

‘twelve similar and equal sized neighbours. Out of these twelve neighbours, six
lie in one plane, three in an adjacent parallel plane above this plane and three
in a similar plane below it. There are two types of close-packed structures :

(i) Hexagonal close-packed (hcp) structure
(ii) Face-centred cubic (fcc) structure
These structures are described as follows -

-packed structures,
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| (i) ‘Hexagonal Close-Packed
. Structure .
Conventional ) o
unit cell Consider a layer of similar

atoms with each atom surrounded

by six atoms in one planec as shown

in Fig. 1.18. Another similar layer

Brimiive B can be placed on top of layer A
cell such that the atoms of layer B oc-
/ cupy the alternate valleys formed
by the atoms of layer A. If a third

similar layer is placed on top of the
B-layer in such a way that the at-
oms of B-layer exactly overlap the
atoms of A-layer and this type of
stacking is repeated successively,

the following layered arrangement

M ?: 21) " is obtained :

Fig. 1.19. Conventional and primitive cells ....ABABAB....

of hexagonal close-packed structure. This type of stacking is called
hep stacking and the structure is known-ashexagonal close-packed structure.
The name corresponds to the shape of the, conventional unit cell which is
hexagonal and is shown in Fig. 1.19. There aretwelve atoms located at the
corners, two at the centres of the basal planes, and three completely inside
the hexagon forming a part of the B-layer. The effective number of atoms
in a unit cell is o

Basis

12(1/6) +2 (1/12) +3 =6

The interatomic distance for the atoms within a layer is a. The distance
between the two adjacent layers is ¢/2, ¢ being the height of the unit cell. For
an ideal hcp structure, ¢ = 1.633a. "

o It may be noted that although the structure is hcp, the space lattice

is simple hexagonal with basis consisting of two atoms placed in such a way

. that if one atom lies at the origin, the other atom lies at the point (2/3,

' 1/_3, 1/2). The shaded portion in Fig. 1.19 represents the primitive cell of

this structure. It contains 2 atoms instead of one which is due to the presence

of the basts=Also, the volume of the primitive cell is exactly one-third of
the volume of the hexagonal cell. |

by i The packing frcfction, £, is defined as the ratio of the volume occupied
Y the atoms present in a unit cell to the total volume of the unit cell. It is

4150 referred to as the packi
packing factor or packing effici -+ cell.
From the primitive cell, we find 8 efficiency of the v}
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- a(asin60°)¢

where  is the atomic radius. Usip,
c=1633aand a = 2r, we ge;

N 4 =074
N_  Thus,inan ideal hcp structure, 745,
of the total volume is occupied by
atoms. Metals like Mg, Zn, Cd, T3
etc. exhibit this type of structurs.

(ii) Face-Centred Cubic Structure

W

In this structure, the stack.
ing of first two layers A and B is
similar to that of hcp structure. The
difference arises in the third layer
which, in the present case, does not

Fig. 1.20. Conventional unit cell of  overlap the first layer. The atoms

Jfee structure along with the stacking of the third layer occupy the posi-

sequence .... ABCABC .... tions of those valleys of the A-

layer which are not occupied by

the B-layer atoms. The third layer is designated by the letter C. The fourth

layer exactly overlaps the first layer and the sequence is repeated. Thus fcc
structure is represented by the following stacking sequence :

.... ABCABCABC ...

The conventional unit cell is face-centred cubic and is shown in Fig.
1.20. It is a non-primitive cell having effective number of atoms equal to
8 (1/8) + 6 (1/2) or 4. The atoms touch one another along the face diagonals.

The length of the cube edge, a, and the atomic radius, r, are related to each
other as

4f=‘/£a.

The packing fraction, f, is given by

f‘_' 4(413)1tr3

=0.74
JE

Thus the packing fraction
of hep structure which is ex
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1.10.2. Loose-Packed Structures

A loose-packed structure is that in which the coordination number of
an atom is less than 12 or the packing fraction is less than 0.74. Among the
various possible loose-packed structures, the most common and the simplest
are the body-centred cubic (bcc) and the simple cubic (sc) structures. These
structures are described as follows :

(i) Body-Centred Cubic Structure (bcc)

The conventional unit cell of bcc structure is non-primitive and is
shown in Fig. 1.21. It has cubical shape with atoms located at the corners
and the body centre. Thus the effective number of atoms per unit cell is
8 (1/8) + 1 = 2. The coordination number of each atom is 8. The atoms touch
one another along the body diagonal. Thus a is related to r as

4r =13 a.
The packing fraction is given by
204/3)nr

a3

The examples of materials exhibiting bcc structure are Na, K, Mo, W, etc.
P ; vella A

I I

I
I

L/)——j .,./)___7'

"—a_‘—"l

= 0.68

Fig. 1.21. Conventional unit cell » Fig. 1.22. Unit cell of
of bec structure. sc structure.

(ii) Simple Cubic Structure (sc)

The conventional unit cell of sc structure is the same as its primitive
cell and is shown in Fig. 1.22. The atoms are located at the corners only
and touch one another along the cube edges. Thus in sc structures, we have

a=2r
The coordination number of each atom is 6. The packing fraction is given
by ‘

_1(4/3)nr’

a3

Only polonium exhibits this type of structure at room temperature.

= 0.52
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.11 STRUCTURE OFlDIAMOND

Diamond exhibits both cubic and hexagonal-type structures The
diamond cubic (dc) structure is more common ar?d is df:§cribed here. The
space lattice of the diamond cubic structure .IS fcc with basis consisting of twg
carbon atoms, one located at the lattice point and. the ol.her at a distance of
one quarter of the body diagonal from .thc latuc&? pqml along the body
diagonal. The unit cell of the dc struclurclls shown in Fig. 1.23. The carbop
atoms placed along the body diagonals, in fact, occupy the alternate tetra-
hedral void positions in the fcc arrangement of carbon atoms. This opens y
the otherwise close-packed fec arrangement which _glgc;reases the Packing
efficiency considerably. The packing efficiency of the dE'mructqre is only
34% as compared to 74% for the fcc structure. The coordination number of
each carbon atom is 4 and the nearest neighbour distance is equal to V3a/d
where a is the lattice parameter.

The dc structure may also be viewed as an interpenetration of twg fec
sublattices with their origins at (0, 0, 0) and (1/4, 1/4, 1/4). A plan view of
the positions of all the carbon atoms in the unit cell is shown in Fig. 1.24.
The fractional heights of the carbon atoms relative to the base of the unit e
are given in the circles drawn at the atomic positions. Two numbers in the
same circle indicate two carbon atoms at the same position located one aboye

the other. Other materials exhibiting this type of structure are Si, Ge, SiC,
GaAs, gray tin, etc.

W4

- -

e —t —

Q: C atom occupying fcc position

Q: Qlatom occupying tetrahedral
sita :

Fig. 1.23. The unit cell of dc structure.
The lattice is fcc with carbon atoms located
at fec positions and at alternate
tetrahedral sites.

112 ZINC BLENDE (ZnS) STRUCTURE

The zinc blende structure is similar to the dc structure except that the
two fec lattices in it are occupied by different elements. The structure is
similar to the one shown in Fig. 1.23 where the dark circles now represent one

type of atoms, say Zn, and the light circles represent the other type of atoms,
ie.,S.

Fig. 1.24. Plan view of atomic
positions in dc unit cell. Numbers
in the circles indicate fractional
heights of the carbon atoms.
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X )

(100)

lFi'g 1.26. Monoatomic sc, bec and fec structures along with their (100), (110
. and (111) type planes respectively.

Example 1.2. Draw (101) and (111) planes in a cubic unit cell. Determine
the Miller indices of the directions which are common to both the planes.
Solution. Intercepts of the plane (101) with the axes
= 1/1, 1/0 and 1/1
=1, and 1
Intercepts of the plane (111) with the axes =1,1and 1
Taking the point O as origin and the lines OA, OB and OC as the

(101) axes a, b and c respectively, the plane with
/// intercepts 1, co and 1 is the plane ADGC and that
1
)

2l 7
///////////// ?/ with intercepts 1, 1 aad 1 is plane ABC as shown
i-:’!l// in Fig. 1.27. Therefore, the line common to both
2 the planes is the line AC. It corresponds to two
2N directions, i.e., AC and CA.

G 111 Projections of the direction AC on the
4 ) axes = -1, 0 and |
Fig. 1.27. Planes (101) and Projections of the direction CA on the

(111) in a cubic lattice, 2*¢$=1, 0 and -1
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Packing fraction = .Y°lumc of ions present in the unit ceJj
Volume of the unit ce]
4(4/3)nr ~+ +4(4/3)1'|:r

aB

_ 167 | (0.98)° + (1.81)°
3 (5.58)°
= 0.663 or 66.3%

Density = Mass of the unit cell
Volume of the unit cell

4(22:99+35.45) x 1.66 x 1027

. ke m-3
(5.58x 10'“’)3 T

=2234 kg m3 or 2.23 g cm?

SUMMARY

1. The solids may be broadly classified as crystallme and non-
crystalline (or amorphous). The crystalline solids may be further-sub- d1V1ded
into single crystals and polycrystalline’ materials. -

L

2. Crystallography is the study of formation, structure and propertieé
.. of crystals.

3. A crystal structure results from the combination of a space lattice
and a basis. A space lattice is a regular.arrangement of infinite number of
imaginary points in three-dimensional space. A basis is a structural unit
comprising a single atom or a group of atoms which js placed on each lattice
point in a regular fashion to generate the crystal structure. g

4. A unit cell is a small group of points which acts as a building block
for the entire lattice. It may be primitive or non-primitive. A primitive cell
is the smallest volume unit c€ll and contains only one lattice point per cell.
A non-primitive cell contains more than one lattice pomts per cell. The,
conventional unit cell has the highest possible symmetry and the jowest
possible volume. It may be primitiveé or non-primitive. i

5. The effective number of lattice points belonging to a unit cell is
,N=N, + N /2 + N_18 '

where N, N and N, denote the number of lattice points present inside, at
the face ccntrcs, and at the corners of the cell respectively.

]
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6. A crystal remains invariant under the application of various sym-
metry operations like translation, rotation, reflection, inversion etc. Some
rofational operations, such as 5-fold and 7-fold rotations, are not permissible
as these are not compatible with lattice translation symmetry.

7. A point group is the combination of certain symmetry operations
like rotation, reflection and inversion. It determines the symmetry of space
around a point. The number of point-groups in three-dimensional space is
32. These point groups produce only 14 Bravais lattICBS

8. The set of all the symmetry elements of a crysfdl structure is called
the space group. The number of distinct space groups possible’in three
dlmensmns is 230.

9. The Miller indices of a crystallographic plane and a direction are
denoted by (hkl) and [hkl] respectively where h, k and [ are integers. The
parallel planes and the parallel directions have the same indices.

10. The angle between two directions [hkI] and [A'k'l] is given by

hh'+ Kk + 1"
(h2+k2 +’2 )1/2 (h.z k:l lr2 )U2 =

cosO =

11. The interplanar dlstance for the parallel (hkl) planes for an
orthorhombic lattice is

d = (Wa® + kb2 + Pl
where a, b and c are the lengths of the axes.

12. A close-packed structure is that in which each atom has twelve
identical nearest neighbours. A close-packed structure may be either fcc or
hcp with the following sequence of layers :-

hep : ... ABABABAB ......
YO 5 R TIOE ABCABCABC......
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lattices pos
of structures from
The end-centred arthorhomﬁr .
end-centred tetragonak is not. Give r

The primitive cell of fee lattice is rthoriie hedral, Wh

I1.

|12
.. rhombohedral lattice included separately in the B
13, State the points of similarity and difference of the monoatomi
monoatomic bec, and CsCl structures?
14. Calculate the volume of the primitive cell and the number of nearest

neighbours for an fec lattice.

Obtain an expression for the packing fraction for /icp structure.

Show that the ¢/a ratio for an ideal hcp lattice is /8/3 -
king fraction for fec, bee and sc structures.

W . e

Determine the values of pac.
Assuming one of the basis atoms lying at the origin, find the coordi-

nates of the other atoms for an hcp structure.
Explain, without calculation, vjhy fee and hep structures have the
same packing factor.

Show that for a cubic lattice, the lattice constant, a, is given by
nM

N p

a=

where the symbols have their usual meanings.

. What type of lattice and basis do the following structures have :

~ (i) Sodium chloride (ii) Diamond cubic ?

2. Dian}ond is the hardest substance known in spite of the fact that the
- packing fraction and the coordination number of carbon atom in the

- dc structure are quite low. Explain.

.-_ There are four" ?iacant tetrahedral sites in a unit cell of the dc structure.

‘Can four additional carbon atoms occupy these sites? Give reasons

How many crystal directions constitute the famil -
' . y of body di
of a unit cube ? Draw all such directions. y diagonals
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LONG QUESTIONS

What are symmetry operations? Describe the Principal symmetry op.
erations applicable to a three-dimensional lattice. Shc?w that the five.
fold rotational axis is not permissible in case of lattices.

‘What are point group and space group? Give their number for tW_0~and
three-dimensional lattices. List all the point groups of a two- dimen:
sional lattice.

Determine the interplanar spacing between the two parallel planes
with Miller indices (k, k, [) in a cubic crystal of side a.

4. Which is the most densely packed structure amongst the various cubic

structures? Determine the packing fraction and porosity of this struc-
ture. Can the porosity be reduced by some means? What type of solids

generally exhibit this type of structure and why?

s Draw a plan view of sodium chloride structure. In how many ways can
this structure be interpreted?
6. Draw a plan view of hcp unit cell and give coordinates of all the atoms,

Are all the atoms located at equivalent sites? Discuss implications of
your answer.

7. ~ Draw the folioiwing:
(1) [1 1 1],[1 2 1] and [0 TZ] directions in cubic and tetragonﬁl?'

lattices. : : - L
S N Rl denmn
(#) (111), (112)and (210) planes in cubic and orthorhombic lat-
tices. . N E
4 | PROBLEMS
~1. Find the Miller indices for planes with each of the following sets of
intercepts: : S i '
(©) 3a, 3b, 2c; - (&) a,2b, (iil) Sa, - 6b, c:
() a, b2, c; vi) a, b,—; . ) a2, b,

where a, b and c are lattice parameters.

((223), (210), (65 30). (121), (111), 210))

Draw‘a (1 -1-0)‘ plane in a cubic unit cell. Show all the <11 > directions
that lie on this plane and give the Miller indices of each direction.

([, [1eT], [TT1) ana [TT1] )
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4.

10.

11.

12.
13,

14.

33

A plane makes intercepts of 1, 2 and 3 A on the crystallographic axes
of an orthorhombic crystal witha : b:c=3:2: 1. Determine the Miller
indices of this plane. (931)

Determine the number of the nearest neighbours and the closest dis-
tance of approach in terms of lattice parameter for monoatomic sc, bcc
and fcc structures. (6, a; 8, a\3/2; 12, alN2)
Calculate the linear density (number of atoms per unit length) along
cube edge, face diagonal and body diagonal of an Jfec unit cell of side
length a. [1/a, \2/a, 1/(aV3)]
Nickel (fcc) has the lattice parameter of 3.52 A. Calculate the atomic
planar density (number of atoms per unit area) on (100), (110) and
(111) planes. Is it possible to pack the atoms more closely than in (111)
plane ? (1.61x10", 1.14x10'%, 1.86x10'° atoms m2; No)
Calculate the angles which [111] direction of a cubic lattice makes
with [100] and [110] directions. L (54%4', 35°15")
Show (111) and (222) planes in a cubic unit cell of side a. Compute
the distances of these planes from a parallel plane passing through the
origin. (a3, al(2\3)]
Calculate the distances between the adjacent parallel planes of the
type (100), (110) and (111) in an fec lattice of lattice constant @. Check
the validity of the statement ‘“The most close-packed planes are the
most widely spaced.”’ [ a2, a/(2\2) and a/(‘\f"l)]
Copper (fcc) has density of 8960 kg m3. Calculate the unit cell
dimension and the radius of Cu atom, given the atomic mass of Cu as
63.54 amu. (3.61A,1.28 A)
Prove that c/a ratlo for an ideal hep structure is 1.633.

Zinc (hcp) has lattice parameters a and c as 2.66 A and 4.95 A respec-
tively. Calculate the packing fraction and density of zinc, given the
atomic radius and the atomic mass of Zn as 1.31 A and 65.37 amu
respectively. (62%, 7155 kg m™)

Calculate the distance between two atoms of a basis of the diamond
structure, if the lattice constant of the structure is 5 A. (2.17 A)
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RACTION AND

: agnetic radiations, also undergo the Phenop,
X-;?f);s;;?::lgazll’f:;f;:eﬁ for visible liglft. Howe.:ver, unlike ViSible
enon of di rannot be diffracted by ordinary optlcal' grating because of thej;
e x-rayiv(;velcngths. In 1912, a German physicist Max Von Lave gy,
very cdSht?lg use of a single crystal to produce diffraction _Of X-Tays. Since q
tg;:tawms in a single crystal are regularly arranged with 1nteratonl1ic Spacing
of the order of a few angstroms, a crystal C:an-aCt as a thfeﬁ-dlmensiona[
natural grating for x-rays. Friedrich and Kn.lpp.lng later successtrully dem-
onstrated the diffraction of x-rays from a thin single cr)fstal of zmc.blende
(ZnS). The diffraction pattern obtained on a photographic ‘ﬁlm consisted of
a series of dark spots arranged in - definite order. Such a pattern is calleg
the Laue's pattern and reflects the sy imetry of the crystal. Apart from this,
the phenomenon of x-ray diffraction has become an invaluable too] tg
determine the structures of single crystals and polycrystalline materials, It
is also extensively used to ucw.aaitine e wavelength of x-rays.

2.2 X-RAY DIFFRACTION

When an atomic electron is irradiated by a beam of monochromatic
x-rays, it starts vibrating with a frequency equal to that of the incident beam.
Since an accelerating charge emits radiations, the vibrating electrons present
inside a crystal become sources of secondary radiations having the same
frequency as the incident x-rays. These secondary x-rays spread out in all
possible directions. The phenomenon may also be regarded as scattering of
x-rays by atomic'electrons. If the wavelength of incident radiations is quise
large compared with the atomic dimensions, all the radiations emitted by
electrons shall be in phase with one another. The incident x-rays, however,

have the same order of wavelengt l ——T - ne+ hence
1ave 1ie same order of wavelength as that of the atomic dimensions; henc

the radiations emitted by electrons are, in general, out of phase with one

ﬂer. These radlatlon§ may, t?lerefore, undergo constructive or destruc-
tve interference producing maxima or minima in certain directions.
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Consider a one-dimensional row of similar atoms having interatomic
spacing equal to a. Let a wave front of x-rays of wavelength A be incident

| on the row of atoms such that the wave crests are parallel to the row. The

atoms emit secondary wavelets which travel in all possible directions. As
shown in Fig. 2.1, the reinforcement of secondary wavelets takes place not
only in a direction perpendicular to the row of atoms but also in. other
directions. These directions correspond to different orders of x-ray diffrac-
tion. The zeroth, first and second order diffraction directions are shown in
Fig. 2.1. It may be noted that reinforcement takes place in some particular
directions only, whereas in other directions the wave fronts interfere destruc-

tively and the intensity is minimum. Such reinforcements produce Laue's
pattern.

Second Zeroth - First
order - order order
I

7

x I Incident wave

Fig. 2.1. Reinforcement of scattered waves resulting in
| diffracted beams of different orders.
In actual crystals, the problem is more complicated because of the
presence of three-dimensional arrangement of atoms. The conditions for
a crystal to diffract x-rays can be determined by usmg exther Bragg's

treatment or Von Laue's treatment. P

2.2.1 The Bragg's Treatment : Bragg's Law

In 1912, W.H. Bragg and W.L. Bragg put forward a -model which
generates the conditions for diffraction in a very simple way. They pmmed
that a crystal may be divided into various sets of parallel planes. The
directions of diffraction lines can then be accounted for if x-rays are
considered to be reflected by such a set of parallel atomic planes followed
by the constructive interference of the resulting reflected rays. Thus the
problem of diffraction of x-rays by the atoms was converted into the problem
of reflection of x-rays by the parallel atomic planes. Hence the words
‘diffraction' and 'reflection' are mutually interchangeable in Bragg's treat-
ment. Based on these considerations, Braggs derived a simple mathematical
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relationship which serves 2s a condition for the Bragg reflection to occur. Ty
condition is known as the Bragg's law.

C O—O0—0C0—"0—=0 O

- Fig. 2.2. Bragg’s reflection of x-rays from the atomic planes.

To obtain the Bragg's law, consider a set of parallel atomic planes witk
interplanar spacing d and having Miller indices (hkl). Let a parallel beam of
x-rays of wavelength A be incident on these parallel planes at a glancing angle
6 such that the rays lie in the plane of the paper. Consider ‘wo such rays 1
and 2 which strike the first two planes and get partially reflected at the same
angle @ in accordance with the Bragg's treatment as shown in Fig. 2.2. The
diffraction is the consequence of constructive interference of these reflected
rays. Let PL and PM be the perpendiculars drawn from the point P on the
incident and reflected portions of ray 2 respectively. The path difference
between rays 1 and 2 is, therefore, given by (LQ + QM). Since LQ=QM

= d sinB, we get
Path difference = 2d sin®

For constructive interference of rays 1 and 2, the path difference must
be an integral multiple of wavelength A, i.e.,

2d sin@ = n\ ' (2.1)

where n is an integer. This equation is called the Bragg's law. The diffraction

takes place for those values of d, 8, A- and n which satisfy the Bragg's

condition. In Eq. (2.1), n represents the order of reflection. For n = 0, we
get the zeroth order reflection which occurs for 0 equal to zero, i.e., in the
direction of the incident beam and hence it caniot be observed experimen-
tally. For the given values of d and A, the higher order reflections appear
for larger values of 6. The diffraction lines appearing for n = 1, 2 and 3
are called first, second and third order diffraction lines respectively and so
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on. The intensity of the reflected lines decreases with increase in the value
of n or 6. The highest possible order is determined by the condition that
sin O cannot exceed unity. Also, since sinf < 1, A must be < d for Bragg
reflection to occur. Taking d ~ 1070 m, we obtain A < 107 m or 1A,
X-rays having wavelength in this range are, therefore, preferred for analysis
of crystal structures. '

2.2.2 The Von Laue Treatment : Laue's Equations

Von Laue treated the phenomenon of diffraction in a more general way
by considering the scattering of x-rays from individual atoms in the crystal
followed bty their recombinatior. to obtain the directions of diffraction max-
ima. It will be shown below that diffraction maxima appear in some specific
directions which obey certain conditions known as the Laue's equations. It
also proves the validity of Bragg's treatment and the Bragg's law can be

derived from the Laue's equations.

Incident
beam

> B
Fig. 2.3. Scattering of i—rays from twb identical scattering centres
separated by a distance T.

Consider the scattering of an incident beam from two identical scat-
tering centres A and B placed at a distance r from each other in a crystal as
shown in Fig. 2.3. Let n, and fi, be the unit vectors in the directions of the
ams respectively and let the angle between n, and

ulars to the directions of the incident
the path difference between the rays

incident and scattered be
i, be 26. Draw BM and AL perpendic
and scattered beams respectively. Then
scattered from A and B is given by
Path difference = AM - BL = r.f, - .0, = T (A, - Ay = t.N
As will be seen later, the vector N happens to be a normal
e. It is a plane which may be assumed to be reflecting
n of the scattered ray following the ordinary

the planes which forms the basis of Bragg's

where N = ﬁl - ﬁz‘
to the reflecting plan
the iacident ray into the directio
laws of reflection. This is one of
treatment. From Fig. 2.4, we find
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INI = 2 sin® _ bE

-~ LI, A
Reflecting :\--\\ =n;- n,
plane - n, ey

Fig. 2.4. Geometricql relationship of incideny ) el

lane ang the norma|,

B.In a three-dimensional Crystal,
crystallographic axes an

5 . ,
£V (H-N) = 2nth' = 2rpp

2m . ’
PN (b.N) = 27k’ = 2nk 2.3)

2n
e (.N) =27l = 2n1 -

where h', k' and I' represent any three inte
it is assumed that atoms A and B are the
magnitudes a, b and c represent the interat

tive crystallographic directions. The inte
only by a common factor n which may be equal to or greater than unity. Thus
“the integers h, k and ! cannot have a common factor other than unity and
resemble the Miller indices of a plane which happens to be the reflecting

plane. Let a, B and y be the angles between the scattering normal N and the
crystallographic axes a, b and ¢ respectively. Then,

a.N = aN cosa = 2 a sin® cosa, and so on. -
Therefore, Egs. (2.3) become

gers. While obtaining Egs. (2.3),
nearest neighbours and, so, the
omic distances along their respec-

gers.h', k' and I' and h, k, | differ
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a.N = 2a sinf cos & = B'A = nhA

. b.N = 2b sin® cos B = KA = nkA
r' N = 2 sin@ cos ¥ = I'A = nlk
‘ ns and represent the conditions
system, o, P and y also

2.4)

Equations (2.4) are known as Laue's equations
for diffraction to occur. In an orthogonal coordinate

satisfy the condition

cos2o, + cos?p + cos?y = 1 (2.5)

sent the direction cosines of the scattering

where cos a, cos p and cos y repre .
r which

normal. The Eqgs. (2.4) and (2.5) yield the values of a, B, y and O fo
diffraction takes place provided h, k, I and n are known.Thus, for a given
reflecting plane, Egs. (2.4) serve to determine unique values of © and N which
define a scattering direction.

From Egs. (2.4), we also find that, for fixed 6, the direction cosines
cos @, cos P and cos y of the scattering normal are proportional to h/a,
k/b and l/c. Also, as described in Sec. 1.9, the dire~tion cosines of the normal
to any arbitrary plane (hkl) are proportional to h/a, k/b and l/c. This leads
to the conclusion that the scattering normal N is the same as the normal
to the plane (hkl) and hence the arbitrary plane (hkl) happens to be the
reflecting plane. '

To obtain the Bragg's law, consider the expressions for interplanar
spacing for the (hkl) planes as given by Eq. (1.7), ie.,

b
d=%cosa=;cosﬂ=%cosy
In combination with Egs. (2.4), these yield
2d sin 6 = nA

which is the Bragg's law. Here n.represents the order of reflection and, as
described above, is the greatest common factor among the integers k', k' and

"I in Eqgs. (2.4). Thus one may have the planes (hkl) and consider different
orders of reflection from these; alternatively, one may have the planes (nh
nk nl) or (Wk'l') and always consider the first order reflection. The latter
practice is normally adopted during the process of structure determination by

~ x-ray diffraction. It is obvious that the nth order reflection from the planes
(hkl) would overlap with the first order reflection from the planes (nh nk nl)
or (h'k’l'). Thus, putting n equal to 1, one can get rid of the factor n in the -
Pragg's equation provided the reflections from all the planes, real or imag-
inary, having Miller indices with or without a common factor be considered.
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The phenomeno
structure of solids as well as for t

oDS

RACTION METH |
¢ x-ray diffraction s employed to determine the
e he study of x-ray spectroscopy. The

: ' iven by Eq. (2.1).
underlying principle in both the cases 15 Lhe Braggs la:;vi a:‘la] El pf:) ssi{JlEqatomi)c
Considering only the first order reflections from

' itten as
planes, real or fictitious, the Bragg's law may be writte 26
2d sin 0 = A (2.6)
e for those values of d, 0 and A which satisfy

the above equation. For structural analysis, X-Tays of known wavslcngth_ a;‘;
employed and the angles for which reflections take place er.e etermin
experimentally. The d values corresponding t0 these reflections are then
obtained from Eq. (2.6). Using this information, one can proceeel to detel:-
mine the size of the unit cell and the distribution of atoms within the unit
cell. In the x-ray spectroscopy, X-rays are incident on a particular cleavage
surface of a single crystal so that the interplanar spacing d is known. The
angle for which reflections take place are determined experimentally. The
wavelength A of the incident x-rays is then obtained from Eq. (2.6).

The reflections take plac

It may be noted that the x-rays used for diffraction purposes should
have wavelength which is the most appropriate for producing diffraction
effects. Since sin® should be less than unity, Eq. (2.6) yields ' '

A<2d
Normally, ’ ;
d~3 A 3
A<6A

Longer wavelength x-rays are unable to resolve the details of the structure
on the atorTnc scale whereas shorter wavelength x-rays are diffracted through
angles which are too small to be measured experimentally.

In x-ray diffraction studies, the probability that the atomic planes with

right orientations are exposed to x-rays is incre :
following methods: y ased by adopting one of the

a

(1) fs‘::(‘:lgil:;fyslel is held stationary and a beam of white radiations
A varies D?tr'lf: o~ glancing angle 6, i.e., 0 is fixed while

. r
et wavelengths present in the white radiations

select the a = .
s reﬂec““g planes out of the numerous

presentin the crystal g,
t ' ol & )
This techni hat the Bragg's condition is satisfied.

Ique is called the Laue's technique

o . e c H M
(i)  Asinglecrystalis held ip the Path 0 monochromatic radiations

—
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and is rotated about an axis, i.e., A is fixed while 8 varies.

Different sets of parallel atomic planes are exposed to incident

radiations for different values of 0 and reflections take place

from those atomic planes for which d and 0 satisfy the Bragg's
~ law. This method is known as the rotating crystal method.

(iii) The sample in the powdered form is placed ir the path of
monochromatic x-rays, i.e., A is fixed while both 8 and d vary.
Thus a number of small crystallites with different orientations
are exposed to x-rays. The reflections take place for those values
of d, 0 and A which saiisfy the Bragg's law. This method is called
the powder method.

2.2.1 The Laue's Method

An experimental arrangement used to produce Laue's patterns is
shown in Fig. 2.5. It consists of a flat plate camera which contains @ collimator
with a fine hole to obtain a very fine beam of x-rays. The sample is placed
on a goniometer which can be rotated to change the orientatign of the single

.crystal. Two flat photographic films are used, one for réceiving the transmit-
ted diffracted beam and the other for receiving the reflected diffracted beam
for back reflection experiments. Such experiments are performed particularly
when there is excessive absorption of x-rays in the crystal.

beam

Film for back Film for forward
reflection reflection
l—/'—— \-—-—""'——_—_ .............
!H‘-;'EE "
O Lg% o
X - ray VT ,{\ P

Collimator with

a pin hole \
Single crystal Goniometer
speciman

Fig. 2.5. A flat plate camera used in Laue’s diffraction method.

Initially, a single crystal specimen having dimensions of the order of
Imm x Imm x 1mm is held stationary in the path of white x-rays having
wavelengths ranging from 0.2 to 2 A. Since the crystal contains a number
of sets of parallel atomic planes with different interplanar spacings, diffrac-
tion is possible for certain values of A and d which satisfy the Bragg's
condition. Thus diffraction spots are produced on the photographic films as
shown in Fig. 2.5. The crystal can be rotated with the help of goniometer to
change its orientation with respect to the incident beam. By doing so, the
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diffraction condition may be satisfied for a new set of atomic Planesang,
a different type of pattern may be obtained on the photographic fj] -
symmetry of the crystal is, however, reflected in each pattern.

The Laue's method is mostly used to determine the crystal Symmetry
For example, if a crystal having four-fold axial symmetry is oriented so lha;
its axis is parallel to the beam, the resulting Laue's pattern also exhibits the
four-fold symmetry. The symmetry of the pattern helps to determine the shap,
of the unit cell. It is, however, not practicable to determine the structure of
the crystal by this method. It is because a number of wavelengths may be
reflected from a single plane in different orders and may superpose at a sing]e
point resulting in the loss of a number of reflections. The symmetry of the
Laue's pattern also helps to orient the crystals for various solid state experiments,
Another application of the Laue's method is the determination of imperfec-
tions or strains in the crystal. An imperfect or strained crystal has atomic
planes which are not exactly plane but are slightly curved. Thus instead of
sharp diffraction spots one.gets streaks in the Laue's pattern. This type of
streaking on Laue's photographs is called asterism.

2.3.2 Rotating Crystal Method
Photographic =1

_Colllmator © film

/

p— b

/FQ Undeviated 2 1=—1
X - rays -
: (b)

| / il | e 1=1
Single’ J 1=0
crystal ‘

N\~ Rotator :

(a) (c)

Fig. 2.6. (a) Appdratus for rotating crystal method
(b) Cones of scattered x-rays corresponding to reflections from (hkl) planes.
(c) Layer lines produced after flattening the photographic film.

In this method, a monochromatic beam of x-rays is incident on a single
crystal mounted on a rotating spindle such that one of its crystallographic aJ.(CS
coincides with the axis of rotation which is kept perpendicular to ti.e directiof
of the incident beam. The single crystal having dimensions of the order of
Imm is positioned at the centre of a cylindrical holder concentric with the
rotating spindle as shown in Fig. 2.6. A photographic film is attached at the
inner circular surface of the cylinder.

X -rays—» ——

M, Th,

ciad
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_ The diffraction takes place from those planes which satisfy the Bragg's
law for a particular angle of rotation. The planes parallel to the axis of rotation
diffract the incident rays in a horizontal plane. However, reflections cannot
be observed for those planes which always contain the incident beam. The
planes inclined to the rotation axis produce reflections above or below the
horizontal plane depending upon the angle of inclination. The horizontal lines
produced by diffraction spots on the photographic film are called layer lines.
If the crystal is positioned such that its c-axis coincides with the axis of
rotation, all the planes with Miller indices of the type (hk0) will produce the
central layer line. Likewise, the planes having Miller indices of the type (hk1)

and (hkl) will produce the layer lines above and below the central line
respectively, and so on. These layer lines are shown in Fig. 2.6¢c. The vertical
spacing between the layer lines depends on the distance between the lattice
points along the c-axis. Hence the distance ¢ can be measured from the
photographic film. Similarly, one can determine the translation vectors a and
b on mounting the crystal along a and b axes respectively. Thus the dimen-
sions of the unit cell can be easily determined.

2.3.3 Powder Method

This is the most widely used diffraction method to determine the
structure of crystalline solids. The sample used is in the form of a fine powder
containing a large number of tiny crystallites with random orientations. It is
prepared by crushing the commonly available polycrystalline material, thus
eliminating the tedious process of growing the single crystals.

The experimental arrangement used to produce diffraction is shown
in Fig. 2.7. It consists of a cylindrical camera, called the Debye-Scherrer
camera, whose length is small as compared to the diameter. The finely
powdered sample is filled in a thin capillary tube or is simply pasted on a
wire by means of a binder and mounted at the centre of the camera. The
capillary tube or wire and the binder should be of a non-diffracting material.
A collimated beam of monochromatic x-rays is produced by passing the
x-rays through a filter and a collimator. The x-rays enter the camera through
the collimator and strike the powdered sample. Since the specimen contains
a larg> number of small crystallites (~10'2 in 1mm? of powder sample) with
rancom orientations, almost all the possible 6 and d values are available. The
diffraction takes place for those values of d and © which satisfy the Bragg's
condition, i.e., 2d sin@ = nA, A being a constant in this case. Also, since for
a particular value of the angle of incidence 6, numerous orientations of a
particular set of planes are possible, the diffracted rays corresponding to fixed
values of 0 and d lie on the surface of a cone with its apex at the sample and
the semivertical angle equal to 2. Different cones are observed for different
sets of d and 0 for a particular value of n, and also for different combinations

Scanned by CamScanner



Solid §,

& Transmitted
beam
—— ——— |5
R B
X —ray :
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Reflected
X —ray

Incident
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(b)
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(c)
Fig. 2.7. (a) Front view of the Debye-Scherrer Camera
(b) A cone produced by reflection of Xx-rays from idenric;:ll
G p(t.mcs having different orientations.
ened photographic film after developing and indexing of diffraction lines.
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of 8 and n for a particular value of d. The transmitted x-rays move out of
the camera through an exit hole located diametrically opposite to the entrance
hole. A photographic film is attached to the inner side of the curved surface
of the camera. Each cone of the reflected beam leaves two impressions on
the film which are in the form of arcs on either side of the exit hole with their
centres coinciding with the hole. Similarly, cones produced by back-reflected
x-rays produce arcs on either side of the entrance hole. If the sample consists
of coarse grains rather than fine particles, a épolty diffraction pattern may be
obtained. This is because a sufficient number of crystallites with all possible |
orientations may not be available in a coarse-grained sample. In such a case,
the sample has to be rotated to obtain almost continuous diffraction arcs. The
film is exposed for a long time (~ a few hours) in order to obtain reflected
lines of sufficiently high intensity. Itis then removed from the camera and
developed. The arcs produced by reflected rays appear dark on the developed

film. The angle 6 corresponding to a particular pair of arcs is related to the
distance S between the arcs as

40 (radians) = S/R 2.7

where R is the radius of the camera. If 0 is measured in degrees, the above
equation is modified as

40 (degroes) = 372968

(2.8)

The calculations can be made simpler by taking the radius of the camera in
multiples of 57.296. For example, taking R = 57.296 mm, we get
0 (degrees) = S (mm)/4 (2.9)

Thus one-fourth of the distance between the corresponding arcs of a particular
pair in mm is a measure of the angle 0 in degrees. Knowing all the possible
0's and considering only the first order reflections from all the possible planes,
Eq. (2.6) is used to calculate the interplanar spacing for various sets of parallel
planes which contribute to these reflections. Thus, we have :

d=A/ (2 sinB)
These d values are used to determine the space lattice of the crystal structure.

In modern x-ray diffractometers, the photographic film is replaced by
a radiation detector, such as ionization chamber or scintillation detector,
which records the positions and relative intensities of the various reflected
lines as a function of the angle 26. The detector i§ mounted on a goniometer
and is capable of rotation about thf sample at different speeds. The whole
system is computerised. The availability of a lot of software makes the system
versatile.
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janes (n0}) and their lengths are taken to be 1/d,,, where dyy is the interplanar
for the planes (hOl). For example, since the planes (200) have half
the interplanar spacing as compared o the plane (100), the reciprocal lattice
oint (200) is twice as far away as point (100) from the origin. If normals
(0 all the (hkl) planes are drawn, a three-dimensional reciprocal lattice is

obtained.

spacing

Fig. 2.9. Two-dimensional reciprocal lattice to a monoclinic lattice.
The b-axis is perpendicular t0 the plane of the paper.

2.4.1 Reciprocal Lattice Vectors
A reciprocal lattice vector, Oyyp is defined as a vector having mag-

nitude equal to the reciprocal of the interplanar spacing 4,,, and direction
coinciding with. normal to the (hkl) planes. Thus, we have

1 R -
—n 1 (2.10)

G =
hkl d o

“where n is the unit vector normal to the (hkl) planes. In fact, a vector drawn
from the origin to any point in the reciprocal lattice is a reciprocal lattice
vector.

Like a direct lattice, a reciprocal lattice also has a unit cell which is
of the form of a parallelopiped. The unit cell is formed by the shortest
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s to the planes (1C0),

procal lattice vectors designateq
as oo Oy and Oggy Which represent the fundamental reciprocal lattice
vectors.

Leta, b and ¢ be the primitive transla

as shown in Fig. 2.8. The base of the u
¢ and its height is equal to d

tion vectors of the direct lattica
nit cell is formed by the vectors b and
100+ The volume of the cell is

V = (area) d,00
1 area  |b x |
or g o= —
d00 v 1%

In vector form, it is written as

b X ¢
Vv (2.11)

1 .
—n =
d\oo

where 1 is the unit vector normal to (100) planes.
From Eq. (2.10), we get

|
C100=—>—n (2.12)
dj00
Denoting the fundamental reciprocal vectors C100' Co10 2nd Gy, by a*,
b* and c* respectively, Eqgs. (2.11) and (2.12) yield

. a bxc -
V.5 OieF a.bxc
Similarly,
cxa
b* =gy, = S (2.13)
and
axbh
¥ = Oggy = a.bxe

where a.bxc = b.exa = c.axb is the volume of the direct cell. Thus the

reciprocal translation vectors bear a simple relationship to the crystal trans-
lation vectors as '

a* is normal to b and ¢
b* is normal to ¢ and a (2.14)
c* is normal to a and b
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In vector notation, it means
a*b=0 a*c=0
b*c=0 b*a =0 2.15)
' c*a=0 c*b=0

Taking scalar product of a*, b* and c* with a, b and ¢ respectively
and using Eqgs. (2.13), we find

a*a=1, b*b=1, c*tc=1 (2.16)

It appears from Eqgs. (2.16) that a*, b* and c* are parallel to a, b and
crespectively. However, this is not always true. In non-cubic crystal systems,

such as monoclinic crystal system, as shown in Fig. 2.8, a* and a point in

different directions, i.e., along OA’, and OA respectively. Thus all that is.

meant by Eqs. (2.16) is that the length of a* is the reciprocal of a cos®, where
O is the angle between a* and a. -

In some texts on Solid State Physics, the primitive translation vectors

a,.b and c of a direct lattice are related to the primitive translation vectors
a*, b* and c* of the reciprocal lattice as :
a*.a =b*b =c*c=2n (2:17)

with Eqgs. (2.15) still being valid. These equations can be satisfied by choosing
the reciprocal lattice vectors as

a* =2n hxe., .. ]
a.bxe
b* = 21 — (2.18)
a.bxe
axb
* 2
) T a.bxc _|

It is now obvious that every crystal structure is associated with two
important lattices — the direct lattice and the reciprocal lattice. The two
lattices are related to each other by Egs. (2.13). The fundamental translation
vectors of the crysial lattice and the reciprocal Tattice have dimensions of
[length] and [length]”! respectively. This is why th