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Preface

It is exactly 50 years since the first laser was realized. Lasers emit coherent electro-
magnetic radiation, and ever since their invention, they have assumed tremendous
importance in the fields of science, engineering, and technology because of their
impact in both basic research as well as in various technological applications. Lasers
are ubiquitous and can be found in consumer goods such as music players, laser
printers, scanners for product identification, in industries like metal cutting, welding,
hole drilling, marking, in medical applications in surgery, and in scientific applica-
tions like in spectroscopy, interferometry, and testing of foundations of quantum
mechanics. The scientific and technological advances have enabled lasers span-
ning time scales from continuous operation up to as short as a hundred attoseconds,
wavelengths spanning almost the entire electromagnetic spectrum up to the X-ray
region, power levels into the terawatt region, and sizes ranging from tiny few tens of
nanometers to lasers having a length of 270 km. The range of available power, pulse
widths, and wavelengths is extremely wide and one can almost always find a laser
that can fit into a desired application be it material processing, medical application,
or in scientific or engineering discipline. Laser being the fundamental source with
such a range of properties and such wide applications, a course on the fundamentals
and applications of lasers to both scientists and engineers has become imperative.

The present book attempts to provide a coherent presentation of the basic physics
behind the working of the laser along with some of their most important applications
and has grown out of the lectures given by the authors to senior undergraduate and
graduate students at the Indian Institute of Technology Delhi.

In the first part of the book, after covering basic optics and basic quantum
mechanics, the book goes on to discuss the basic physics behind laser operation,
some important laser types, and the special properties of laser beams. Fiber lasers
and semiconductor lasers which are two of the most important laser types today are
discussed in greater detail and so is the parametric oscillator which uses optical non-
linearity for optical amplification and oscillation and is one of the most important
tunable lasers. The coverage is from first principles so that the book can also be used
for self study. The tutorial coverage of fiber lasers given in the book is unique and
should serve as a very good introduction to the subject of fiber amplifiers and lasers.
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viii Preface

Toward the end of the first part of the book we discuss quantization of electromag-
netic field and develop the concept of photons, which forms the basic foundation of
the field of quantum optics.

The second part of the book discusses some of the most important applications
of lasers in spatial frequency filtering, holography, laser-induced fusion, light wave
communications, and in science and industry. Although there are many more appli-
cations that are not included in the book, we feel that we have covered some of the
most important applications.

We believe that the reader should have some sense of perspective of the history of
the development of the laser. One obvious way to go about would be to introduce the
reader to some of the original papers; unfortunately these papers are usually not easy
to read and involve considerable mathematical complexity. We felt that the Nobel
lectures of Charles H Townes, Nicolai G Basov, and A M Prokhorov would convey
the development of the subject in a manner that could not possibly be matched and
therefore in the third part of the book we reproduce these Nobel Lectures. We have
also reproduced the Nobel lecture of Theodor W Hansch who in 2005 was jointly
awarded the Nobel Prize for developing an optical “frequency comb synthesizer,”
which makes it possible, for the first time, to measure with extreme precision the
number of light oscillations per second. The frequency comb techniques described
in the lecture are also offering powerful new tools for ultrafast physics.

Numerical examples are scattered throughout the book for helping the student
to have a better appreciation of the concepts and the problems at the end of each
chapter should provide the student with gaining a better understanding of the basics
and help in applying the concepts to practical situations. Some of the problems
are expected to help the reader to get a feel for numbers, some of them will use
the basic concepts developed in the chapter to enhance the understanding and a
few of the problems should be challenging to the student to bring out new features
or applications leading perhaps to further reading in case the reader is interested.
This book could serve as a text in a course at a senior undergraduate or a first-year
graduate course on lasers and their applications for students majoring in various
disciplines such as Physics, Chemistry, and Electrical Engineering.

The first edition of this book (entitled LASERS: Theory & Applications)
appeared in 1981. The basic structure of the present book remains the same
except that we have added many more topics like Erbium Doped Fiber Lasers and
Amplifier, Optical Parametric Oscillators, etc. In addition we now have a new chap-
ter on Semiconductor Lasers. A number of problems have now been included in the
book which should be very useful in further understanding the concepts of lasers.
We have also added the Nobel Lecture of Theodor Hansch. Nevertheless, the reader
may find some of the references dated because they have been taken from the first
edition.

We hope that the book will be of use to scientists and engineers who plan to study
or teach the basic physics behind the operation of lasers along with their important
applications.

New Delhi, India K. Thyagarajan
Ajoy Ghatak



Acknowledgments

At IIT Delhi we have quite a few courses related to Photonics and this book
has evolved from the lectures delivered in various courses ranging from Basics
of Lasers to Quantum Electronics, and our interaction with students and faculty
have contributed a great deal in putting the book in this form. Our special thanks to
Professor M R Shenoy (at IIT Delhi) for going through very carefully the chapter
on Semiconductor Lasers and making valuable suggestions and to Mr. Brahmanand
Upadhyaya (at RRCAT, Indore) for going through the chapter on Fiber Lasers and
for his valuable suggestions. We are grateful to our colleagues Professor B D Gupta,
Professor Ajit Kumar, Professor Arun Kumar, Professor Bishnu Pal, Professor
Anurag Sharma, Professor Enakshi Sharma, and Dr. Ravi Varshney for continuous
collaboration and discussions. Our thanks to Dr. S. V. Lawande (of Bhabha Atomic
Research Center in Mumbai) for writing the section on laser isotope separation.

We are indebted to various publishers and authors for their permission to use
various figures appearing in the book; in particular, we are grateful to American
Institute of Physics, American Association of Physics Teachers, Institute of Physics,
UK, Optical Society of America, SPIE, Oxford University Press, IEEE, Laser Focus
World and Eblana Photonics for their permissions. Our sincere thanks to Elsevier
Publishing Company for permitting us to reproduce the Nobel lectures. We are
grateful to Dr. A.G. Chynoweth, Professor Claire Max, Professor Gurbax Singh,
Dr. H Kogelnik, Dr. T.A. Leonard, Dr. D. F. Nelson, Dr. R.A. Phillips, Dr. R.W.
Terhune, Dr. L.A. Weaver, Ferranti Ltd., and the United States Information service
in New Delhi for providing some of the photographs appearing in the book.

One of the authors (AG) is grateful to Department of Science and Technology,
Government of India, for providing financial support.

Finally, we owe a lot to our families – particularly to Raji and Gopa – for allowing
us to spend long hours in preparing this difficult manuscript and for their support all
along.

K. Thyagarajan
Ajoy Ghatak

ix





Contents

Part I Fundamentals of Lasers

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Basic Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 The Wave Equation . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Linearly Polarized Waves . . . . . . . . . . . . . . . . . . . 13
2.4 Circularly and Elliptically Polarized Waves . . . . . . . . . . 15
2.5 The Diffraction Integral . . . . . . . . . . . . . . . . . . . . 17
2.6 Diffraction of a Gaussian Beam . . . . . . . . . . . . . . . . 19
2.7 Intensity Distribution at the Back Focal Plane of a Lens . . . 23
2.8 Two-Beam Interference . . . . . . . . . . . . . . . . . . . . 24
2.9 Multiple Reflections from a Plane Parallel Film . . . . . . . . 25
2.10 Modes of the Fabry–Perot Cavity . . . . . . . . . . . . . . . 29
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Elements of Quantum Mechanics . . . . . . . . . . . . . . . . . . 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 The One-Dimensional Schrödinger Equation . . . . . . . . . 33
3.3 The Three-Dimensional Schrödinger Equation . . . . . . . . 42
3.4 Physical Interpretation of � and Its Normalization . . . . . . 44

3.4.1 Density of States . . . . . . . . . . . . . . . . . . . 46
3.5 Expectation Values of Dynamical Quantities . . . . . . . . . 47
3.6 The Commutator . . . . . . . . . . . . . . . . . . . . . . . . 49
3.7 Orthogonality of Wave Functions . . . . . . . . . . . . . . . 50
3.8 Spherically Symmetric Potentials . . . . . . . . . . . . . . . 51
3.9 The Two-Body Problem . . . . . . . . . . . . . . . . . . . . 53

3.9.1 The Hydrogen-Like Atom Problem . . . . . . . . . 54
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

xi



xii Contents

4 Einstein Coefficients and Light Amplification . . . . . . . . . . . 63
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 The Einstein Coefficients . . . . . . . . . . . . . . . . . . . 63

4.2.1 Absorption and Emission Cross Sections . . . . . . 68
4.3 Light Amplification . . . . . . . . . . . . . . . . . . . . . . 69
4.4 The Threshold Condition . . . . . . . . . . . . . . . . . . . 72
4.5 Line Broadening Mechanisms . . . . . . . . . . . . . . . . . 74

4.5.1 Natural Broadening . . . . . . . . . . . . . . . . . . 75
4.5.2 Collision Broadening . . . . . . . . . . . . . . . . . 77
4.5.3 Doppler Broadening . . . . . . . . . . . . . . . . . 79

4.6 Saturation Behavior of Homogeneously
and Inhomogeneously Broadened Transitions . . . . . . . . . 81

4.7 Quantum Theory for the Evaluation of the Transition
Rates and Einstein Coefficients . . . . . . . . . . . . . . . . 84
4.7.1 Interaction with Radiation Having a Broad Spectrum 87
4.7.2 Interaction of a Near-Monochromatic Wave

with an Atom Having a Broad Frequency Response . 91
4.8 More Accurate Solution for the Two-Level System . . . . . . 91
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Laser Rate Equations . . . . . . . . . . . . . . . . . . . . . . . . 97
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2 The Two-Level System . . . . . . . . . . . . . . . . . . . . 98
5.3 The Three-Level Laser System . . . . . . . . . . . . . . . . 101
5.4 The Four-Level Laser System . . . . . . . . . . . . . . . . . 105
5.5 Variation of Laser Power Around Threshold . . . . . . . . . 110
5.6 Optimum Output Coupling . . . . . . . . . . . . . . . . . . 117
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 Semiclassical Theory of the Laser . . . . . . . . . . . . . . . . . 121
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.2 Cavity Modes . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3 Polarization of the Cavity Medium . . . . . . . . . . . . . . 128

6.3.1 First-Order Theory . . . . . . . . . . . . . . . . . . 131
6.3.2 Higher Order Theory . . . . . . . . . . . . . . . . . 136

7 Optical Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.2 Modes of a Rectangular Cavity and the Open Planar Resonator 144
7.3 Spherical Mirror Resonators . . . . . . . . . . . . . . . . . . 151
7.4 The Quality Factor . . . . . . . . . . . . . . . . . . . . . . . 153
7.5 The Ultimate Linewidth of a Laser . . . . . . . . . . . . . . 155
7.6 Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . 157

7.6.1 Transverse Mode Selection . . . . . . . . . . . . . . 158
7.6.2 Longitudinal Mode Selection . . . . . . . . . . . . . 159



Contents xiii

7.7 Pulsed Operation of Lasers . . . . . . . . . . . . . . . . . . 164
7.7.1 Q-Switching . . . . . . . . . . . . . . . . . . . . . 164
7.7.2 Techniques for Q-Switching . . . . . . . . . . . . . 171
7.7.3 Mode Locking . . . . . . . . . . . . . . . . . . . . 173

7.8 Modes of Confocal Resonator System . . . . . . . . . . . . . 182
7.9 Modes of a General Spherical Resonator . . . . . . . . . . . 190
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

8 Vector Spaces and Linear Operators: Dirac Notation . . . . . . 201
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 201
8.2 The Bra and Ket Notation . . . . . . . . . . . . . . . . . . . 201
8.3 Linear Operators . . . . . . . . . . . . . . . . . . . . . . . . 202
8.4 The Eigenvalue Equation . . . . . . . . . . . . . . . . . . . 204
8.5 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . 205
8.6 The Harmonic Oscillator Problem . . . . . . . . . . . . . . . 206

8.6.1 The Number Operator . . . . . . . . . . . . . . . . 211
8.6.2 The Uncertainty Product . . . . . . . . . . . . . . . 211
8.6.3 The Coherent States . . . . . . . . . . . . . . . . . 212

8.7 Time Development of States . . . . . . . . . . . . . . . . . . 215
8.8 The Density Operator . . . . . . . . . . . . . . . . . . . . . 216
8.9 The Schrödinger and Heisenberg Pictures . . . . . . . . . . . 219
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

9 Quantum Theory of Interaction of Radiation Field with Matter . 225
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 225
9.2 Quantization of the Electromagnetic Field . . . . . . . . . . 225
9.3 The Eigenkets of the Hamiltonian . . . . . . . . . . . . . . . 234
9.4 The Coherent States . . . . . . . . . . . . . . . . . . . . . . 239
9.5 Squeezed States of Light . . . . . . . . . . . . . . . . . . . . 242
9.6 Transition Rates . . . . . . . . . . . . . . . . . . . . . . . . 246
9.7 The Phase Operator . . . . . . . . . . . . . . . . . . . . . . 251
9.8 Photons Incident on a Beam Splitter . . . . . . . . . . . . . . 254

9.8.1 Single-Photon Incident on a Beam Splitter . . . . . . 255
9.8.2 Moving Mirror in One Arm . . . . . . . . . . . . . 258

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

10 Properties of Lasers . . . . . . . . . . . . . . . . . . . . . . . . . 263
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 263
10.2 Laser Beam Characteristics . . . . . . . . . . . . . . . . . . 263
10.3 Coherence Properties of Laser Light . . . . . . . . . . . . . 269

10.3.1 Temporal Coherence . . . . . . . . . . . . . . . . . 269
10.3.2 Spatial Coherence . . . . . . . . . . . . . . . . . . 271

11 Some Laser Systems . . . . . . . . . . . . . . . . . . . . . . . . . 277
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 277



xiv Contents

11.2 Ruby Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . 277
11.3 Neodymium-Based Lasers . . . . . . . . . . . . . . . . . . . 280

11.3.1 Nd:YAG Laser . . . . . . . . . . . . . . . . . . . . 281
11.3.2 Nd:Glass Laser . . . . . . . . . . . . . . . . . . . . 282

11.4 Titanium Sapphire Laser . . . . . . . . . . . . . . . . . . . . 283
11.5 The He–Ne Laser . . . . . . . . . . . . . . . . . . . . . . . 283
11.6 The Argon Ion Laser . . . . . . . . . . . . . . . . . . . . . . 285
11.7 The CO2 Laser . . . . . . . . . . . . . . . . . . . . . . . . . 286
11.8 Dye Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

12 Doped Fiber Amplifiers and Lasers . . . . . . . . . . . . . . . . 291
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 291
12.2 The Fiber Laser . . . . . . . . . . . . . . . . . . . . . . . . 291
12.3 Basic Equations for Amplification in Erbium-Doped Fiber . . 295

12.3.1 Gaussian Approximation . . . . . . . . . . . . . . . 300
12.3.2 Gaussian Envelope Approximation . . . . . . . . . . 301
12.3.3 Solutions Under Steady State . . . . . . . . . . . . . 302

12.4 Fiber Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . 304
12.4.1 Minimum Required Doped Fiber Length . . . . . . 305
12.4.2 Threshold . . . . . . . . . . . . . . . . . . . . . . . 306
12.4.3 Laser Output Power . . . . . . . . . . . . . . . . . 307
12.4.4 Slope Efficiency . . . . . . . . . . . . . . . . . . . 311

12.5 Erbium-Doped Fiber Amplifier . . . . . . . . . . . . . . . . 311
12.5.1 Transparency Power . . . . . . . . . . . . . . . . . 313

12.6 Mode Locking in Fiber Lasers . . . . . . . . . . . . . . . . . 314
12.6.1 Non-linear Polarization Rotation . . . . . . . . . . . 315
12.6.2 Mode Locking Using Non-linear Polarization Rotation 317
12.6.3 Semiconductor Saturable Absorbers . . . . . . . . . 319

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

13 Semiconductor Lasers . . . . . . . . . . . . . . . . . . . . . . . . 323
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 323
13.2 Some Basics of Semiconductors . . . . . . . . . . . . . . . . 323

13.2.1 E Versus k . . . . . . . . . . . . . . . . . . . . . . 324
13.3 Optical Gain in Semiconductors . . . . . . . . . . . . . . . . 327

13.3.1 Density of States . . . . . . . . . . . . . . . . . . . 327
13.3.2 Probability of Occupancy of States . . . . . . . . . . 328
13.3.3 Interaction with Light . . . . . . . . . . . . . . . . 329
13.3.4 Joint Density of States . . . . . . . . . . . . . . . . 331
13.3.5 Absorption and Emission Rates . . . . . . . . . . . 333
13.3.6 Light Amplification . . . . . . . . . . . . . . . . . . 334

13.4 Gain Coefficient . . . . . . . . . . . . . . . . . . . . . . . . 336
13.4.1 Electron–Hole Population and Quasi-Fermi Levels . 340
13.4.2 Gain in a Forward-Biased p–n Junction . . . . . . . 343



Contents xv

13.4.3 Laser Oscillation . . . . . . . . . . . . . . . . . . . 345
13.4.4 Heterostructure Lasers . . . . . . . . . . . . . . . . 346

13.5 Quantum Well Lasers . . . . . . . . . . . . . . . . . . . . . 349
13.5.1 Joint Density of States . . . . . . . . . . . . . . . . 353

13.6 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
13.7 Laser Diode Characteristics . . . . . . . . . . . . . . . . . . 357
13.8 Vertical Cavity Surface-Emitting Lasers (VCSELs) . . . . . . 360
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

14 Optical Parametric Oscillators . . . . . . . . . . . . . . . . . . . 363
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 363
14.2 Optical Non-linearity . . . . . . . . . . . . . . . . . . . . . 363
14.3 Parametric Amplification . . . . . . . . . . . . . . . . . . . 369
14.4 Singly Resonant Oscillator . . . . . . . . . . . . . . . . . . 373
14.5 Doubly Resonant Oscillator . . . . . . . . . . . . . . . . . . 375
14.6 Frequency Tuning . . . . . . . . . . . . . . . . . . . . . . . 378
14.7 Phase Matching . . . . . . . . . . . . . . . . . . . . . . . . 378
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

Part II Some Important Applications of Lasers

15 Spatial Frequency Filtering and Holography . . . . . . . . . . . 389
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 389
15.2 Spatial Frequency Filtering . . . . . . . . . . . . . . . . . . 389
15.3 Holography . . . . . . . . . . . . . . . . . . . . . . . . . . 395
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

16 Laser-Induced Fusion . . . . . . . . . . . . . . . . . . . . . . . . 403
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 403
16.2 The Fusion Process . . . . . . . . . . . . . . . . . . . . . . 403
16.3 The Laser Energy Requirements . . . . . . . . . . . . . . . . 405
16.4 The Laser-Induced Fusion Reactor . . . . . . . . . . . . . . 408

17 Light Wave Communications . . . . . . . . . . . . . . . . . . . . 417
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 417
17.2 Carrier Wave Communication . . . . . . . . . . . . . . . . . 417

17.2.1 Analog Modulation . . . . . . . . . . . . . . . . . . 418
17.2.2 Digital Modulation . . . . . . . . . . . . . . . . . . 421

17.3 Optical Fibers in Communication . . . . . . . . . . . . . . . 426
17.4 The Optical Fiber . . . . . . . . . . . . . . . . . . . . . . . 427
17.5 Why Glass Fibers? . . . . . . . . . . . . . . . . . . . . . . . 428
17.6 Attenuation of Optical Fibers . . . . . . . . . . . . . . . . . 429
17.7 Numerical Aperture of the Fiber . . . . . . . . . . . . . . . . 432
17.8 Multimode and Single-Mode Fibers . . . . . . . . . . . . . . 433
17.9 Single-Mode Fiber . . . . . . . . . . . . . . . . . . . . . . . 434

17.9.1 Spot Size of the Fundamental Mode . . . . . . . . . 435



xvi Contents

17.10 Pulse Dispersion in Optical Fibers . . . . . . . . . . . . . . . 436
17.10.1 Dispersion in Multimode Fibers . . . . . . . . . . . 436
17.10.2 Material Dispersion . . . . . . . . . . . . . . . . . . 438
17.10.3 Dispersion and Bit Rate . . . . . . . . . . . . . . . 438
17.10.4 Dispersion in Single-Mode Fibers . . . . . . . . . . 439
17.10.5 Dispersion and Maximum Bit Rate in

Single-Mode Fibers . . . . . . . . . . . . . . . . . . 441
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

18 Lasers in Science . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 445
18.2 Second-Harmonic Generation . . . . . . . . . . . . . . . . . 445
18.3 Stimulated Raman Emission . . . . . . . . . . . . . . . . . . 450
18.4 Intensity-Dependent Refractive Index . . . . . . . . . . . . . 456
18.5 Lasers in Chemistry . . . . . . . . . . . . . . . . . . . . . . 458
18.6 Lasers and Ether Drift . . . . . . . . . . . . . . . . . . . . . 459
18.7 Lasers and Gravitational Waves . . . . . . . . . . . . . . . . 460
18.8 Rotation of the Earth . . . . . . . . . . . . . . . . . . . . . . 461
18.9 Photon Statistics . . . . . . . . . . . . . . . . . . . . . . . . 463
18.10 Lasers in Isotope Separation . . . . . . . . . . . . . . . . . . 465

18.10.1 Separation Using Radiation Pressure . . . . . . . . . 466
18.10.2 Separation by Selective Photoionization

or Photodissociation . . . . . . . . . . . . . . . . . 467
18.10.3 Photochemical Separation . . . . . . . . . . . . . . 468

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

19 Lasers in Industry . . . . . . . . . . . . . . . . . . . . . . . . . . 471
19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 471
19.2 Applications in Material Processing . . . . . . . . . . . . . . 473

19.2.1 Laser Welding . . . . . . . . . . . . . . . . . . . . 473
19.2.2 Hole Drilling . . . . . . . . . . . . . . . . . . . . . 475
19.2.3 Laser Cutting . . . . . . . . . . . . . . . . . . . . . 476
19.2.4 Other Applications . . . . . . . . . . . . . . . . . . 479

19.3 Laser Tracking . . . . . . . . . . . . . . . . . . . . . . . . . 479
19.4 Lidar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
19.5 Lasers in Medicine . . . . . . . . . . . . . . . . . . . . . . . 485
19.6 Precision Length Measurement . . . . . . . . . . . . . . . . 486
19.7 Laser Interferometry and Speckle Metrology . . . . . . . . . 487

19.7.1 Homodyne and Heterodyne Interferometry . . . . . 488
19.7.2 Holographic Interferometry . . . . . . . . . . . . . 491
19.7.3 Laser Interferometry Lithography . . . . . . . . . . 493
19.7.4 Speckle Metrology . . . . . . . . . . . . . . . . . . 494

19.8 Velocity Measurement . . . . . . . . . . . . . . . . . . . . . 501
19.8.1 Lasers in Information Storage . . . . . . . . . . . . 502
19.8.2 Bar Code Scanner . . . . . . . . . . . . . . . . . . 505

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506



Contents xvii

The Nobel Lectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
Production of coherent radiation by atoms and molecules . . . . . . 511
Charles H. Townes
Quantum electronics . . . . . . . . . . . . . . . . . . . . . . . . . 541
A.M. Prochorov
Semiconductor lasers . . . . . . . . . . . . . . . . . . . . . . . . . 549
Nikolai G. Basov
Passion for Precision . . . . . . . . . . . . . . . . . . . . . . . . . 567
Theodor W. Hänsch

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
A. Solution for the Harmonic Oscillator Equation . . . . . . . . . . 593
B. The Solution of the Radial Part of the Schrödinger Equation . . 597
C. The Fourier Transform . . . . . . . . . . . . . . . . . . . . . . 603
D. Planck’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
E. The Density of States . . . . . . . . . . . . . . . . . . . . . . . 617
F. Fourier Transforming Property of a Lens . . . . . . . . . . . . . 621
G. The Natural Lineshape Function . . . . . . . . . . . . . . . . . 625
H. Nonlinear polarization in optical fibers . . . . . . . . . . . . . . 629

References and Suggested Reading . . . . . . . . . . . . . . . . . . . . . 633

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639





Milestones in the Development of Lasers
and Their Applications

1917: A Einstein postulated stimulated emission and laid the foundation for the
invention of the laser by re-deriving Planck’s law

1924: R Tolman observed that “molecules in the upper quantum state may return to
the lower quantum state in such a way to reinforce the primary beam by “negative
absorption”

1928: R W Landenberg confirmed the existence of stimulated emission and negative
absorption through experiments conducted on gases.

1940: V A Fabrikant suggests method for producing population inversion in his PhD
thesis and observed that “if the number of molecules in the excited state could be
made larger than that of molecules in the fundamental state, radiation amplification
could occur”.

1947: W E Lamb and R C Retherford found apparent stimulated emission in
hydrogen spectra.

1950: Alfred Kastler suggests a method of “optical pumping” for orientation of
paramagnetic atoms or nuclei in the ground state. This was an important step on the
way to the development of lasers for which Kastler received the 1966 Nobel Prize
in Physics.

1951: E M Purcell and R V Pound: In an experiment using nuclear magnetic reso-
nance, Purcell and Pound introduce the concept of negative temperature, to describe
the inverted populations of states usually necessary for maser and laser action.

1954: J P Gordon, H J Zeiger and C H Townes and demonstrate first MASER oper-
ating as a very high resolution microwave spectrometer, a microwave amplifier or a
very stable oscillator.

1956: N Bloembergen first proposed a three level solid state MASER

1958: A Schawlow and C H Townes, extend the concept of MASER to the infrared
and optical region introducing the concept of the laser.

xix



xx Milestones in the Development of Lasers and Their Applications

1959: Gordon Gould introduces the term LASER

1960: T H Maiman realizes the first working laser: Ruby laser

1960: P P Sorokin and M J Stevenson Four level solid state laser (uranium doped
calcium fluoride)

1960: A Javan W Bennet and D Herriott invent the He-Ne laser

1961: E Snitzer: First fiber laser.

1961: P Franken; observes optical second harmonic generation

1962: E Snitzer: First Nd:Glass laser

1962: R. Hall creates the first GaAs semiconductor laser

1962: R W Hellwarth invents Q-switching

1963: Mode locking achieved

1963: Z Alferov and H Kromer: Proposal of heterostructure diode lasers

1964: C K N Patel invents the CO2 laser

1964: W Bridges: Realizes the first Argon ion laser

1964: Nobel Prize to C H Townes, N G Basov and A M Prochorov “for fundamen-
tal work in the field of quantum electronics, which has led to the construction of
oscillators and amplifiers based on the maser-laser principle”

1964: J E Geusic, H M Marcos, L G Van Uiteit, B Thomas and L Johnson: First
working Nd:YAG laser

1965: CD player

1966: C K Kao and G Hockam proposed using optical fibers for communication.
Kao was awarded the Nobel Prize in 2009 for this work.

1966: P Sorokin and J Lankard: First organic dye laser

1966: Nobel Prize to A Kastler “for the discovery and development of optical
methods for studying Hertzian resonances in atoms”

1970: Z Alferov and I Hayashi and M Panish: CW room temperature semiconductor
laser

1970: Corning Glass Work scientists prepare the first batch of optical fiber, hundreds
of yards long and are able to communicate over it with crystal clear clarity

1971: Nobel Prize: D Gabor “for his invention and development of the holographic
method”

1975: Barcode scanner

1975: Commercial CW semiconductor lasers



Milestones in the Development of Lasers and Their Applications xxi

1976: Free electron laser

1977: Live fiber optic telephone traffic: General Telephone & Electronics send first
live telephone traffic through fiber optics, 6 Mbit/s in Long Beach CA.

1979: Vertical cavity surface emitting laser VCSEL

1981: Nobel Prize to N Bloembergen and A L Schawlow “for their contribution to
the development of laser spectroscopy”

1982: Ti:Sapphire laser

1983: Redefinition of the meter based on the speed of light

1985: Steven Chu, Claude Cohen-Tannoudji, and William D. Phillips develop
methods to cool and trap atoms with laser light. Their research is helps to study fun-
damental phenomena and measure important physical quantities with unprecedented
precision. They are awarded the Nobel Prize in Physics in 1997.

1987: Laser eye surgery

1987: R.J. Mears, L. Reekie, I.M. Jauncey, and D.N. Payne: Demonstration of
Erbium doped fiber amplifiers

1988: Transatlantic fiber cable

1988: Double clad fiber laser

1994: J Faist, F Capasso, D L. Sivco, C Sirtori, A L. Hutchinson, and A Y. Cho:
Invention of quantum cascade lasers

1996: S Nakamura: First GaN laser

1997: Nobel Prize to S Chu, C Cohen Tannoudji and W D Philips “for development
of methods to cool and trap atoms with laser light”

1997: W Ketterle: First demonstration of atom laser

1997: T Hansch proposes an octave-spanning self-referenced universal optical
frequency comb synthesizer

1999: J Ranka, R Windeler and A Stentz demonstrate use of internally structured
fiber for supercontinuum generation

2000: J Hall, S Cundiff J Ye and T Hansch: Demonstrate optical frequency comb
and report first absolute optical frequency measurement

2000: Nobel Prize to Z I Alferov and H Kroemer “for developing semiconductor
heterostructures used in high-speed- and opto-electronics”

2001: Nobel Prize to E Cornell, W Ketterle and C E Wieman “for the achieve-
ment of Bose-Einstein condensation in dilute gases of alkali atoms, and for early
fundamental studies of the properties of the condensates”



xxii Milestones in the Development of Lasers and Their Applications

2005: H Rong, R Jones, A Liu, O Cohen, D Hak, A Fang and M Paniccia: First
continuous wave Raman silicon laser

2005: Nobel Prize to R J Glauber “for his contribution to the quantum theory of
optical coherence” and to J L Hall and T H Hansch “for their contributions to the
development of laser-based precision spectroscopy, including the optical frequency
comb technique”

2009: Nobel Prize to C K Kao “for groundbreaking achievements concerning the
transmission of light in fibers for optical communication”

Ref: Many of the data given here has been taken from the URL for Laserfest:
http://www.laserfest.org/lasers/history/timeline.cfm
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Fundamentals of Lasers





Chapter 1
Introduction

An atomic system is characterized by discrete energy states, and usually the atoms
exist in the lowest energy state, which is normally referred to as the ground state.
An atom in a lower energy state may be excited to a higher energy state through a
variety of processes. One of the important processes of excitation is through colli-
sions with other particles. The excitation can also occur through the absorption of
electromagnetic radiation of proper frequencies; such a process is known as stim-
ulated absorption or simply as absorption. On the other hand, when the atom is in
the excited state, it can make a transition to a lower energy state through the emis-
sion of electromagnetic radiation; however, in contrast to the absorption process, the
emission process can occur in two different ways.

(i) The first is referred to as spontaneous emission in which an atom in the excited
state emits radiation even in the absence of any incident radiation. It is thus not
stimulated by any incident signal but occurs spontaneously. Further, the rate of
spontaneous emissions is proportional to the number of atoms in the excited
state.

(ii) The second is referred to as stimulated emission, in which an incident signal
of appropriate frequency triggers an atom in an excited state to emit radiation.
The rate of stimulated emission (or absorption) depends both on the intensity
of the external field and also on the number of atoms in the upper state. The
net stimulated transition rate (stimulated absorption and stimulated emission)
depends on the difference in the number of atoms in the excited and the lower
states, unlike the case of spontaneous emission, which depends only on the
population of the excited state.

The fact that there should be two kinds of emissions – namely spontaneous and
stimulated – was first predicted by Einstein (1917). The consideration which led
to this prediction was the description of thermodynamic equilibrium between atoms
and the radiation field. Einstein (1917) showed that both spontaneous and stimulated
emissions are necessary to obtain Planck’s radiation law; this is discussed in Section
4.2. The quantum mechanical theory of spontaneous and stimulated emission is
discussed in Section 9.6.

3K. Thyagarajan, A. Ghatak, Lasers, Graduate Texts in Physics,
DOI 10.1007/978-1-4419-6442-7_1, C© Springer Science+Business Media, LLC 2010
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The phenomenon of stimulated emission was first used by Townes in 1954 in
the construction of a microwave amplifier device called the maser,1 which is an
acronym for microwave amplification by stimulated emission of radiation (Gordon
et al. 1955). At about the same time a similar device was also proposed by Prochorov
and Basov. The maser principle was later extended to the optical frequencies by
Schawlow and Townes (1958), which led to the device now known as the laser.
In fact “laser” is an acronym for light amplification by stimulated emission of
radiation. The first successful operation of a laser device was demonstrated by
Maiman in 1960 using ruby crystal (see Section 11.2). Within a few months of oper-
ation of the device, Javan and his associates constructed the first gas laser, namely,
the He–Ne laser (see Section 11.5). Since then, laser action has been obtained in
a large variety of materials including liquids, ionized gases, dyes, semiconductors.
(see Chapters 11–13).

The three main components of any laser device are the active medium, the pump-
ing source, and the optical resonator. The active medium consists of a collection
of atoms, molecules, or ions (in solid, liquid, or gaseous form), which acts as an
amplifier for light waves. For amplification, the medium has to be kept in a state of
population inversion, i.e., in a state in which the number of atoms in the upper energy
level is greater than the number of atoms in the lower energy level. The pumping
mechanism provides for obtaining such a state of population inversion between a
pair of energy levels of the atomic system. When the active medium is placed inside
an optical resonator, the system acts as an oscillator.

After developing the necessary basic principles in optics in Chapter 2 and basic
quantum mechanics in Chapter 3, in Chapter 4 we give the original argument of
Einstein regarding the presence of both spontaneous and stimulated emissions and
obtain expressions for the rate of absorption and emission using a semiclassical
theory. We also consider the interaction of an atom with electromagnetic radiation
over a band of frequencies and obtain the gain (or loss) coefficient as the beam
propagates through the active medium.

Under normal circumstances, there is always a larger number of atoms in the
lower energy state as compared to the excited energy state, and an electromagnetic
wave passing through such a collection of atoms would get attenuated rather than
amplified. Thus, in order to have amplification, one must have population inversion.
In Chapter 5, we discuss the two-level, three-level, and four-level systems and obtain
conditions to achieve population inversion between two states of the system. It is
shown that it is not possible to achieve steady-state population inversion in a two-
level system. Also in order to obtain a population inversion, the transition rates of
the various levels in three-level or four-level systems must satisfy certain conditions.
We also obtain the pumping powers required for obtaining population inversion in
three- and four-level systems and show that it is in general much easier to obtain
inversion in a four-level system as compared to a three-level system. In Chapter 6

1A nice account of the maser device is given in the Nobel lecture of Townes, which is reproduced
in Part III of this book.
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Fig. 1.1 A plane parallel
resonator consisting of a pair
of plane mirrors facing each
other. The active medium is
placed inside the cavity. One
of the mirrors is made
partially transmitting to
couple out the laser beam

we give the semiclassical theory of laser operation and show that the amplification
process due to stimulated transitions is phase coherent – i.e., an electromagnetic
wave passing through an inverted medium gets amplified and the phase of the wave
is changed by a constant amount; the gain depends on the amount of inversion.

A medium with population inversion is capable of amplification, but if the
medium is to act as an oscillator, a part of the output energy must be fed back
into the system.2 Such a feedback is brought about by placing the active medium
between a pair of mirrors facing each other (see Fig. 1.1); the pair of mirrors forms
what is referred to as an optical resonator. The sides of the cavity are, in general,
open and hence such resonators are also referred to as open resonators. In Chapter 7
we give a detailed account of optical resonators and obtain the oscillation frequen-
cies of the modes of the resonator. The different field patterns of the various modes
are also obtained. We also discuss techniques to achieve single transverse mode and
single longitudinal mode oscillation of the laser. In many applications one requires
pulsed operation of the laser. There are primarily two main techniques used for oper-
ating a laser in a pulsed fashion; these are Q-switching and mode locking. Chapter 7
discusses these two techniques and it is shown that using mode locking techniques
it is indeed possible to achieve ultrashort pulses in the sub picosecond time scale.

Because of the open nature of the resonators, all modes of the resonator are lossy
due to the diffraction spillover of energy from the mirrors. In addition to this basic
loss, the scattering in the laser medium, the absorption at the mirrors, and the loss
due to output coupling of the mirrors also lead to losses. In an actual laser, the modes
that keep oscillating are those for which the gain provided by the laser medium com-
pensates for the losses. When the laser is oscillating in steady state, the losses are
exactly compensated by the gain. Since the gain provided by the medium depends
on the amount of population inversion, there is a critical value of population inver-
sion beyond which the particular mode would oscillate in the laser. If the population

2 Since some of the energy is coupled back to the system, it is said to act as an oscillator. Indeed,
in the early stages of the development of the laser, there was a move to change its name to loser,
which is an acronym for light oscillation by stimulated emission of radiation. Since it would have
been difficult to obtain research grants on losers, it was decided to retain the name laser.
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inversion is less than this value, the mode cannot oscillate. The critical value of
population inversion is also called the threshold population inversion. In Chapters 4
and 6 we obtain explicit expressions for the threshold population inversion in terms
of the parameters of the laser medium and the resonator.

The quantum mechanical theory of spontaneous and stimulated emission is dis-
cussed in Chapter 9; the necessary quantum mechanics is given in Chapter 8.
Chapter 9 also discusses the important states of light, namely coherent states and
squeezed states. The emission from a laser is in the form of a coherent state while
squeezed states are non-classical states of light and find wide applications. We also
discuss the properties of a beam splitter from a quantum mechanical perspective and
show some interesting features of the quantum aspects of light.

The onset of oscillations in a laser cavity can be understood as follows. Through
some pumping mechanism one creates a state of population inversion in the laser
medium placed inside the resonator system. Thus the medium is prepared to be in
a state in which it is capable of coherent amplification over a specified band of fre-
quencies. The spontaneous emission occurring inside the resonator cavity excites the
various modes of the cavity. For a given population inversion, each mode is charac-
terized by a certain amplification coefficient due to the gain and a certain attenuation
coefficient due to the losses in the cavity. The modes for which the losses in the cav-
ity exceed the gain will die out. On the other hand, the modes whose gain is higher
than the losses get amplified by drawing energy from the laser medium. The ampli-
tude of the mode keeps on increasing till non-linear saturation depletes the upper
level population to a value when the gain equals the losses and the mode oscillates in
steady state. In Chapter 5 we study the change in the energy in a mode as a function
of the rate of pumping and show that as the pumping rate passes through the thresh-
old value, the energy contained in a mode rises very steeply and the steady-state
energy in a mode above threshold is orders of magnitude greater than the energy
in the same mode below threshold. Since the laser medium provides gain over a
band of frequencies, it may happen that many modes have a gain higher than the
loss, and in such a case the laser oscillates in a multi-mode fashion. In Chapter 7 we
also briefly discuss various techniques for selecting a single-mode oscillation of the
cavity.

The light emitted by ordinary sources of light, like the incandescent lamp, is
spread over all directions and is usually over a large range of wavelengths. In con-
trast, the light from a laser could be highly monochromatic and highly directional.
Because of the presence of the optical cavity, only certain frequencies can oscil-
late in the cavity. In addition, when the laser is oscillating in steady state the losses
are exactly compensated by the gain provided by the medium and the wave com-
ing out of the laser can be represented as a nearly continuous wave. The ultimate
monochromaticity is determined by the spontaneous emissions occurring inside the
cavity because the radiation coming out of the spontaneous emissions is incoher-
ent. The notion of coherence is discussed in Chapter 10 and the expression for the
ultimate monochromaticity of the emitted radiation is discussed in Chapter 7. In
practice, the monochromaticity is limited due to external factors like temperature
fluctuations and mechanical oscillations of the optical cavity. The light coming out
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of the laser which is oscillating in a single mode is also composed of a well-defined
wave front. This comes about because of the effects of propagation and diffrac-
tion inside the resonator cavity. This property is also discussed in greater detail in
Chapter 10.

In Chapter 11 we briefly discuss some of the important types of lasers. Chapter 12
discusses the very important area of fiber lasers which are now finding widespread
applications in many industries. Chapter 13 discusses one of the most important and
most widely used lasers, namely semiconductor lasers. In fact semiconductor lasers
have revolutionized the consumer application of lasers; they can be found in super
markets, in music systems, in printers, etc.

Most lasers work on the principle of population inversion. It is also possible
to achieve optical amplification using non-linear optical effects. In Chapter 14 we
discuss the concept of parametric amplification using crystals. Since parametric
amplifiers do not depend on energy levels of the medium, it is possible to use this
process to realize coherent sources over a very broad range of wavelengths. Thus
optical parametric oscillators (OPO) are one of the most versatile tunable lasers
available in the commercial market.

In Chapter 15–Chapter 19 we discuss some of the important applications of lasers
which have come about because of the special properties of lasers. These include
spatial frequency filtering and holography, laser-induced fusion, and light wave
communications. We also discuss some of the very important applications of lasers
in industries and also how lasers are playing a very important role in science. Finally
in Part III of the book we reprint the Nobel lectures of Townes, Prochorov, Basov,
and Hansch. Townes, Prochorov, and Basov were awarded the 1964 Nobel Prize
for physics for their invention of the laser devices. The Nobel lectures of Townes
and Prochorov discuss the basic principles of the maser and the laser whereas
the Nobel lecture of Basov gives a detailed account of semiconductor lasers. The
Nobel lecture of Hansch discusses the very important field of optical clocks. Such
clocks are expected to replace atomic clocks in the near future due to their extreme
accuracy.

Today lasers span sizes from a few tens of nanometer size to hun-
dreds of kilometers long. The tiniest lasers demonstrated today have a size
of only about 44 nm and is referred to as a SPASER which stands for
Surface Plasmon Amplification by Stimulated Emission of Radiation (Ref: Purdue
University. “New Nanolaser Key To Future Optical Computers And Technologies.”
ScienceDaily 17 August 2009; 23 January 2010 <http://www.sciencedaily.com
/releases/2009/08/090816171003.htm>. The laser emits a wavelength of 530 nm
which is much larger than the size of the laser! The longest laser today is the Raman
fiber laser (based on stimulated Raman scattering) and has a length of 270 km!
(Turitsyn et al. 2009). Such ultralong lasers are expected to find applications in areas
such as non-linear science, theory of disordered systems, and wave turbulence. Since
loss is a major concern in optical fiber communication systems, such an ultralong
laser offers possibilities of having an effectively high-bandwidth lossless fiber optic
transmission link.
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Lasers can provide us with sources having extreme properties in terms of energy,
pulse width, wavelength, etc., and thus help in research in understanding the basic
concept of space and matter. Research and development continues unabated to
develop lasers with shorter wavelengths, shorter pulses, higher energies etc.

Linac Coherent Light Source is the world’s first hard X-ray free-electron laser,
located at the SLAC National Accelerator Laboratory in California. Recently the
laser produced its first hard X-ray laser pulses of unprecedented energy and ultra-
short duration with wavelengths shorter than the size of molecules. Such lasers
are expected to enable frontier research into studies on chemical processes and to
perhaps understanding ultimately the processes leading to life.

Attosecond (as) is a duration lasting 10–18 s, a thousand times shorter than a fem-
tosecond and a million times shorter than a nanosecond. In fact the orbital period of
an electron in the ground state of the hydrogen atom is just 152 as. The shortest laser
pulses that have been produced are only 80 as long. Attosecond science is still in its
infancy and with further development attosecond science should help us understand
various molecular processes, electron transition between energy levels, etc.

The world’s most powerful laser was recently unveiled in the National Ignition
Facility (NIF) at the Lawrence Livermore National Laboratory in California. The
NIF has 192 separate laser beams all converging simultaneously on a single target,
the size of a pencil eraser. The laser delivers 1.1 MJ of energy into the target; such
a high concentration of energy can generate temperatures of more than 100 million
degrees and pressures more than 100 billion times earth’s atmospheric pressure.
These conditions are similar to those in the stars and the cores of giant planets.

The extreme laser infrastructure being designed and realized in France is
expected to generate peak powers of more than a petawatt (1015 W) with pulse
widths lasting a few tens of attoseconds. The expectations are to be able to gener-
ate exawatt (1018) lasers. This is expected to make it possible to study phenomena
occurring near black holes, to change the refractive index of vacuum, etc. (Gerstner
2007).



Chapter 2
Basic Optics

2.1 Introduction

In this chapter we will discuss the basic concepts associated with polarization,
diffraction, and interference of a light wave. The concepts developed in this chap-
ter will be used in the rest of the book. For more details on these basic concepts,
the reader may refer to Born and Wolf (1999), Jenkins and White (1981), Ghatak
(2009), Ghatak and Thyagarajan (1989), and Tolansky (1955).

2.2 The Wave Equation

All electromagnetic phenomena can be said to follow from Maxwell’s equa-
tions. For a charge-free homogeneous, isotropic dielectric, Maxwell’s equations
simplify to

∇.E = 0 (2.1)

∇.H = 0 (2.2)

∇ × E = −μ
∂H
∂t

(2.3)

and

∇ × H = ε
∂E
∂t

(2.4)

where ε and μ represent the dielectric permittivity and the magnetic permeability of
the medium and E and H represent the electric field and magnetic field, respectively.
For most dielectrics, the magnetic permeability of the medium is almost equal to that
of vacuum, i.e.,

μ = μ0 = 4π × 10−7 N C−2 s2

If we take the curl of Eq. (2.3), we would obtain

curl (curl E) = −μ
∂

∂t
∇ × H = −εμ

∂2E
∂t2

(2.5)

9K. Thyagarajan, A. Ghatak, Lasers, Graduate Texts in Physics,
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where we have used Eq. (2.4). Now, the operator ∇2E is defined by the following
equation:

∇2E ≡ grad (div E) − curl (curl E) (2.6)

Using Cartesian coordinates, one can easily show that

(
∇2E

)
x

= ∂2Ex

∂x2
+ ∂2Ex

∂y2
+ ∂2Ex

∂z2
= div (grad Ex)

i.e., a Cartesian component of ∇2E is the div grad of the Cartesian component.1

Thus, using

∇ × ∇ × E = ∇(∇.E) − ∇2 E

we obtain

∇ (∇.E) − ∇2 E = −εμ
∂2E
∂t2

(2.7)

or

∇2 E = εμ
∂2E
∂t2

(2.8)

where we have used the equation ∇.E = 0 [see Eq. (2.1)]. Equation (2.8) is known
as the three-dimensional wave equation and each Cartesian component of E satisfies
the scalar wave equation:

∇2ψ = εμ
∂2ψ

∂t2
(2.9)

In a similar manner, one can derive the wave equation satisfied by H

∇2 H = εμ
∂2H
∂t2

(2.10)

For plane waves (propagating in the direction of k), the electric and magnetic fields
can be written in the form

E = E0 exp[i(ωt − k.r)] (2.11)

and

H = H0 exp[i(ωt − k.r)] (2.12)

1However, (E)r �= div grad Er
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where E0 and H0 are space- and time-independent vectors; but may, in general, be
complex. If we substitute Eq. (2.11) in Eq. (2.8), we would readily get

ω2

k2
= 1

εμ
where

k2 = k2
x + k2

y + k2
z

Thus the velocity of propagation (v) of the wave is given by

v = ω

k
= 1√

εμ
(2.13)

In free space

ε = ε0 = 8.8542×10−12 C2 N−1m−2 and μ = μ0 = 4π×10−7N C−2 s2 (2.14)

so that

v = c = 1√
ε0μ0

= 1√
8.8542 × 10−12 × 4π × 10−7

= 2.99794 × 108m s−1
(2.15)

which is the velocity of light in free space. In a dielectric characterized by the
dielectric permittivity ε, the velocity of propagation (v) of the wave will be

v = c

n
(2.16)

where

n =
√

ε

ε0
(2.17)

is known as the refractive index of the medium. Now, if we substitute the plane wave
solution [Eq. (2.11)] in the equation ∇.E = 0, we would obtain

i[kx E0x + ky E0y + kz E0z] exp[i(ωt − k.r)] = 0

implying

k.E = 0 (2.18)

Similarly the equation ∇.H = 0 would give us

k.H = 0 (2.19)

Equations (2.18) and (2.19) tell us that E and H are at right angles to k; thus the
waves are transverse in nature. Further, if we substitute the plane wave solutions
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[Eqs. (2.11) and (2.12)] in Eqs. (2.3) and (2.4), we would obtain

H = k × E
ωμ

and E = H × k
ω ε

(2.20)

Thus E, H, and k are all at right angles to each other. Either of the above equations
will give

E0 = ηH0 (2.21)

where η is known as the intrinsic impedance of the medium given by

η = k

ω ε
= ωμ

k
=

√
μ

ε
= η0

√
ε0

ε
(2.22)

and

η0 =
√
μ0

ε0
≈ 377 	

is known as the impedance of free space. In writing Eq. (2.22) we have assumed
μ = μ0 = 4π × 10−7 N C−2 s2. The (time-averaged) energy density associated
with a propagating electromagnetic wave is given by

<u> = 1

2
ε E2

0 (2.23)

In the SI system, the units of u will be J m−3. In the above equation, E0 represents
the amplitude of the electric field. The intensity I of the beam (which represents the
energy crossing an unit area per unit time) will be given by

I = <u> v

where v represents the velocity of the wave. Thus

I = 1

2
ε v E2

0 = 1

2

√
ε

μ0
E2

0 (2.24)

Example 2.1 Consider a 5 mW He–Ne laser beam having a beam diameter of 4 mm propagating in air.
Thus

I = 5 × 10−3

π
(
2 × 10−3

)2
≈ 400 J m−2s−1

Since

I = 1

2
ε0 c E2

0 ⇒ E0 =
√

2I

ε0 c
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we get

E0 =
√

2 × 400(
8.854 × 10−12

) × (
3 × 108

) ≈ 550 V m−1

2.3 Linearly Polarized Waves

As shown above, associated with a plane electromagnetic wave there is an electric
field E and a magnetic field H which are at right angles to each other. For a linearly
polarized plane electromagnetic wave propagating in the x-direction (in a uniform
isotropic medium), the electric and magnetic fields can be written in the form (see
Fig. 2.1)

Ey = E0 cos (ωt − kx), Ez = 0, Ex = 0 (2.25)

and

Hx = 0, Hy = 0, Hz = H0 cos(ωt − kx) (2.26)

Since the longitudinal components Ex and Hx are zero, the wave is said to be a
transverse wave. Also, since the electric field oscillates in the y-direction, Eqs. (2.25)
and (2.26) describe what is usually referred to as a y-polarized wave. The direction
of propagation is along the vector (E × H) which in this case is along the x-axis.

z

Linearly Polarized Light

x

y

E

H

Fig. 2.1 A y-polarized
electromagnetic wave
propagating in the x-direction
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z

Linearly polarized
light

Eye

P1

z

P1

P2

Eye

Linearly
polarized

Linearly
polarized

Unpolarized

P1

P2

Eyez

Linearly
polarized

Unpolarized

No light
passes through

Unpolarized
light

Fig. 2.2 If an ordinary light
beam is allowed to fall on a
Polaroid, then the emerging
beam will be linearly
polarized along the pass axis
of the Polaroid. If we place
another Polaroid P2, then the
intensity of the transmitted
light will depend on the
relative orientation of P2 with
respect to P1
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For a z-polarized plane wave (propagating in the +x-direction), the corresponding
fields would be given by

Ex = 0, Ey = 0, Ez = E0 cos(ωt − kx), (2.27)

and

Hx = 0, Hy = −H0 cos(ωt − kx) , Hz = 0 (2.28)

An ordinary light beam, like the one coming from a sodium lamp or from the sun,
is unpolarized (or randomly polarized), because its electric vector (on a plane trans-
verse to the direction of propagation) keeps changing its direction in a random
manner as shown in Fig. 2.2. If we allow the unpolarized beam to fall on a piece
of Polaroid sheet then the beam emerging from the Polaroid will be linearly polar-
ized. In Fig. 2.2 the lines shown on the Polaroid represent what is referred to as
the “pass axis” of the Polaroid, i.e., the Polaroid absorbs the electric field perpen-
dicular to its pass axis. Polaroid sheets are extensively used for producing linearly
polarized light beams. As an interesting corollary, we may note that if a second
Polaroid (whose pass axis is at right angles to the pass axis of the first Polaroid) is
placed immediately after the first Polaroid, then no light will come through it; the
Polaroids are said to be in a “crossed position” (see Fig. 2.2c).

2.4 Circularly and Elliptically Polarized Waves

We can superpose two plane waves of equal amplitudes, one polarized in the y-
direction and the other polarized in the z-direction, with a phase difference of π /2
between them:

E1 = E0 ŷ cos (ωt − kx),

E2 = E0 ẑ cos
(
ωt − kx + π

2

)
, (2.29)

The resultant electric field is given by

E = E0 ŷ cos(ωt − kx) − E0 ẑ sin(ωt − kx) (2.30)

which describes a left circularly polarized (usually abbreviated as LCP) wave. At
any particular value of x, the tip of the E-vector, with increasing time t, can easily
be shown to rotate on the circumference of a circle like a left-handed screw. For
example, at x= 0 the y and z components of the electric vector are given by

Ey = E0 cos ωt, Ez = −E0 sinωt (2.31)

thus the tip of the electric vector rotates on a circle in the anti-clockwise direction
(see Fig. 2.3) and therefore it is said to represent an LCP beam. When propagating
in air or in any isotropic medium, the state of polarization (SOP) is maintained,
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x

e( f )

o(s)

z

 y

Calcite
QWP

LCP

45°

x = 0

Fig. 2.3 A linearly polarized
beam making an angle 45◦
with the z-axis gets converted
to an LCP after propagating
through a calcite Quarter
Wave Plate (usually
abbreviated as QWP); the
optic axis in the QWP is
along the z-direction as
shown by lines parallel to the
z-axis

i.e., a linearly polarized beam will remain linearly polarized; similarly, right circu-
larly polarized (usually abbreviated as RCP) beam will remain RCP. In general, the
superposition of two beams with arbitrary amplitudes and phase

Ey = E0 cos (ωt − kx) and Ez = E1 cos(ωt − kx + φ) (2.32)

will represent an elliptically polarized beam.
How to obtain a circularly polarized beam? If a linearly polarized beam is passed

through a properly oriented quarter wave plate we obtain a circularly polarized beam
(see, e.g., Ghatak and Thyagarajan 1989). Crystals such as calcite and quartz are
called anisotropic crystals and are characterized by two refractive indices, namely
ordinary refractive index no and extraordinary refractive index ne. Inside a crystal-
like calcite, there is a preferred direction (known as the optic axis of the crystal);
we will assume the crystal to be cut in a way so that the optic axis is parallel to one
of the surfaces. In Fig. 2.3 we have assumed the z-axis to be along the optic axis.
If the incident beam is y-polarized the beam will propagate as (what is known as)
an ordinary wave with velocity (c/no). On the other hand, if the incident beam is
z-polarized the beam will propagate as (what is known as) an extraordinary wave
with velocity (c/ne). For any other state of polarization of the incident beam, both
the extraordinary and the ordinary components will be present. For a crystal-like
calcite ne < no and the e-wave will travel faster than the o-wave; this is shown
by putting s (slow) and f (fast) inside the parenthesis in Fig. 2.3. Let the electric
vector (of amplitude E0) associated with the incident-polarized beam make an angle
φ with the z-axis; in Fig. 2.3, φ has been shown to be equal to 45◦. Such a beam
can be assumed to be a superposition of two linearly polarized beams (vibrating
in phase), polarized along the y- and z-directions with amplitudes E0 sin φ and E0
cos φ, respectively. The y component (whose amplitude is E0 sin φ) passes through
as an ordinary beam propagating with velocity c/no and the z component (whose
amplitude is E0 cos φ) passes through as an extraordinary beam propagating with
velocity c/ne; thus

Ey = E0 sinφ cos (ωt − kox) = E0 sinφ cos

(
ωt − 2π

λ0
nox

)
(2.33)
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and

Ez = E0 cos φ cos (ωt − kex) = E0 cos φ cos

(
ωt − 2π

λ0
nex

)
(2.34)

where λ0 is the free-space wavelength given by

λ0 = 2πc

ω
(2.35)

Since ne �= no, the two beams will propagate with different velocities and, as such,
when they come out of the crystal, they will not be in phase. Consequently, the emer-
gent beam (which will be a superposition of these two beams) will be, in general,
elliptically polarized. If the thickness of the crystal (denoted by d) is such that the
phase difference produced is π /2, i.e.,

2π

λ0
d (no − ne) = π

2
(2.36)

we have what is known as a quarter wave plate. Obviously, the thickness d of the
quarter wave plate will depend on λ0. For calcite, at λ0= 5893 Å (at 18◦C)

no = 1.65836, ne = 1.48641

and for this wavelength the thickness of the quarter wave plate will be given by

d = 5893 × 10−8

4 × 0.17195
cm ≈ 0.000857 mm

If we put two identical quarter wave plates one after the other we will have what is
known as a half-wave plate and the phase difference introduced will be π . Such a
plate is used to change the orientation of an input linearly polarized wave.

2.5 The Diffraction Integral

In order to consider the propagation of an electromagnetic wave in an infinitely
extended (isotropic) medium, we start with the scalar wave equation [see
Eq. (2.9)]:

∇2ψ = εμ0
∂2ψ

∂t2
(2.37)

We assume the time dependence of the form eiωt and write

ψ = U(x, y, z) eiωt (2.38)
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to obtain

∇2U + k2 U = 0 (2.39)

where

k = ω
√
εμ0 = ω

v
(2.40)

and U represents one of the Cartesian components of the electric field. The solution
of Eq. (2.39) can be written as

U (x, y, z) =
+∞∫

−∞

+∞∫

−∞
F
(
kx, ky

)
e−i(kxx+kyy+kzz) dkxdky (2.41)

where

kz = ±
√

k2 − k2
x − k2

y (2.42)

For waves making small angles with the z-axis we may write

kz =
√

k2 − k2
x − k2

y ≈ k

[
1 − k2

x + k2
y

2 k2

]

Thus

U (x, y, z) = e−ikz
∫∫

F
(
kx, ky

)
exp

[
−i

(
kxx + kyy − k2

x + k2
y

2 k
z

)]
dkxdky

(2.43)
and the field distribution on the plane z= 0 will be given by

U (x, y, z = 0) =
∫∫

F
(
kx, ky

)
e−i(kxx+kyy) dkxdky (2.44)

Thus U (x, y, z = 0) is the Fourier transform of F
(
kx, ky

)
. The inverse transform

will give us

F
(
kx, ky

) = 1

(2π)2

∫∫
U(x′, y′, 0) ei(kx x′+ky y′) dx′dy′ (2.45)

Substituting the above expression for F
(
kx, ky

)
in Eq. (2.43), we get

U (x, y, z) = e−ikz

4π2

∫∫
U(x′, y′, 0) I1I2 dx′dy′
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where

I1 =
∫ +∞

−∞
exp

[
ikx

(
x′ − x

)]
exp

[
ik2

x

2 k
z

]
dkx

=
√

i4π2

λz
exp

[
− ik

(
x′ − x

)2

2z

] (2.46)

and we have used the following integral

∫ +∞

−∞
e−α x2+βx dx =

√
π

α
exp

[
β2

4α

]
(2.47)

Similarly

I2 =
∫ +∞

−∞
exp

[
iky

(
y′ − y

)]
exp

[
ik2

y

2k
z

]
dky

=
√

i4π2

λz
exp

[
− ik

(
y′ − y

)2

2z

] (2.48)

Thus

u (x, y, z) = i

λz
e−ikz

∫∫
u
(
x′, y′, 0

)
exp

[
− ik

2z

{(
x − x′)2 + (

y − y′)2
}]

dx′dy′

(2.49)
The above equation (known as the diffraction integral) represents the diffraction
pattern in the Fresnel approximation. If we know the field u(x,y) on a plane referred
to as z= 0, then Eq. (2.49) helps us to calculate the field generated in any plane z.
The field changes as it propagates due to diffraction effects.

2.6 Diffraction of a Gaussian Beam

A beam coming out of a laser can be well approximated by a Gaussian distribution
of electric field amplitude. We consider a Gaussian beam propagating along the
z-direction whose amplitude distribution on the plane z= 0 is given by

u(x, y, 0) = A exp

[
−x2 + y2

w2
0

]
(2.50)

implying that the phase front is plane at z= 0. From the above equation it follows
that at a distance w0 from the z-axis, the amplitude falls by a factor 1/e (i.e., the
intensity reduces by a factor 1/e2). This quantity w0 is called the spot size of the
beam. If we substitute Eq. (2.50) in Eq. (2.49) and use Eq. (2.47) to carry out
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the integration, we would obtain

u (x, y, z) ≈ A

(1 − i γ )
exp

[
−x2 + y2

w2 (z)

]
e−i� (2.51)

where

γ = λ z

π w2
0

(2.52)

w (z) = w0

√
1 + γ 2 = w0

√
1 + λ2 z2

π2 w4
0

(2.53)

� = k z + k

2 R (z)

(
x2 + y2

)
(2.54)

R(z) ≡ z

(
1 + 1

γ 2

)
= z

[
1 + π2 w4

0

λ2 z2

]
(2.55)

Thus the intensity distribution varies with z according to the following equation:

I (x, y, z) = I0

1 + γ 2
exp

[
−2

(
x2 + y2

)

w2(z)

]
(2.56)

which shows that the transverse intensity distribution remains Gaussian with the
beamwidth increasing with z which essentially implies diffraction divergence. As
can be seen from Eq. (2.53), for small values of z, the width increases quadratically
with z but for values of z >>> w0

2/λ, we obtain

w (z) ≈ w0
λ z

πw2
0

= λ z

πw0
(2.57)

which shows that the width increases linearly with z. This is the Fraunhofer region
of diffraction. We define the diffraction angle as

tan θ = w(z)

z
≈ λ

π w0
(2.58)

showing that the rate of increase in the width is proportional to the wavelength
and inversely proportional to the initial width of the beam. In order to get some
numerical values we assume λ= 0.5 μm. Then, for w0= 1 mm

2θ ≈ 0.018◦ and w ≈ 1.59 mm at z = 10 m

Similarly, for w0= 0.25 mm,

2θ ≈ 0.073◦ and w ≈ 6.37 mm at z = 10 m
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z = R

z
O

Fig. 2.4 A spherical wave
diverging from the point O.
The dashed curve represents
a section of the spherical
wavefront at a distance R
from the source

Notice that θ increases with decrease in w0 (smaller the size of the aperture, greater
the diffraction). Further, for a given value of w0, the diffraction effects decrease with
λ. From Eq. (2.51) one can readily show that

+∞∫

−∞

+∞∫

−∞
I(x, y, z) dxdy = π w2

0

2
I0

which is independent of z. This is to be expected, as the total energy crossing the
entire x–y plane will not change with z.

Now, for a spherical wave diverging from the origin, the field distribution is
given by

u ∼ 1

r
e−i k r (2.59)

On the plane z= R (see Fig. 2.4)

r =
[
x2 + y2 + R2

]1/2

= R

[
1 + x2 + y2

R2

]1/2

≈ R + x2 + y2

2 R

(2.60)

where we have assumed |x| , |y| << R. Thus on the plane z= R, the phase distribution
(corresponding to a diverging spherical wave of radius R) would be given by

e−ikr ≈ e−ikR e− ik
2 R

(
x2+y2

)
(2.61)

From the above equation it follows that a phase variation of the type

exp

[
−i

k

2R

(
x2 + y2

)]
(2.62)
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Fig. 2.5 Diffraction divergence of a Gaussian beam whose phase front is plane at z= 0. The dashed
curves represent the phase fronts

(on the x–y plane) represents a diverging spherical wave of radius R. If we com-
pare the above expression with Eqs. (2.59) and (2.60) we see that as the Gaussian
beam propagates, the phase front curvature changes and we obtain the following
approximate expression for the radius of curvature of the phase front at any value z:

R (z) ≈ z

(
1 + π2 w4

0

λ2 z2

)
(2.63)

Thus as the beam propagates, the phase front which was plane at z= 0 becomes
curved. In Fig. 2.5 we have shown a Gaussian beam resonating between two iden-
tical spherical mirrors of radius R; the plane z= 0, where the phase front is plane
and the beam has the minimum spot size, is referred to as the waist of the Gaussian
beam. For the beam to resonate, the phase front must have a radius of curvature
equal to R on the mirrors. For this to happen we must have

R ≈ d

2

(
1 + 4π2 w4

0

λ2 d2

)
(2.64)

where d is the distance between the two mirrors. We will discuss more details about
the optical resonators in Chapter 7.
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It should be mentioned that although in the derivation of Eq. (2.51) we
have assumed z to be large, Eq. (2.51) does give the correct field distribution
even at z=0.

2.7 Intensity Distribution at the Back Focal Plane of a Lens

If a truncated plane wave of diameter 2a propagating along the z-axis is incident on
a converging lens of focal length f (see Fig. 2.6a), the intensity distribution on the
back focal plane is given by (see, e.g., Born and Wolf (1999))

I = I0

[
2J1(v)

v

]2

(2.65)

where

v = 2πa

λf
r, (2.66)

P

P ′

D

f

P

F

P ′

(a) (b)

Fig. 2.6 (a) Plane wave falling on a converging lens gets focused at the focus of the lens. (b) The
Airy pattern formed at the focus of the lens

I0 is the intensity at the axial point F and r is the distance from the point F on the
focal plane. Equation (2.65) describes the well-known Airy pattern (see Fig. 2.6b).
The intensity is zero at the zeroes of the Bessel function J1(v) and J1(v) = 0 when
v= 3.832, 7.016, 10.174,. . ..

About 84% of the light energy is contained within the first dark ring and about
7% of light energy is contained in the annular region between the first two dark
rings, etc., the first two dark rings occurring at

v = 3.832 and 7.016
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2.8 Two-Beam Interference

Whenever two waves superpose, one obtains what is known as the interference pat-
tern. In this section, we will consider the interference pattern produced by waves
emanating from two point sources. As is well known, a stationary interference
pattern is observed when the two interfering waves maintain a constant phase dif-
ference. For light waves, due to the very process of emission, one cannot observe a
stationary interference pattern between the waves emanating from two independent
sources, although interference does take place. Thus one tries to derive the interfer-
ing waves from a single wave so that a definite phase relationship is maintained all
through.

–50 50

–50
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0

0

d = 0.005 mm  (β ≈ 5 mm)
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 (

m
m

)

D

d
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Q

x
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P2

x
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(a) (b)

Fig. 2.7 (a) Waves emanating from two point sources interfere to produce interference fringes
shown in Fig. 2.7 (b)

Let S1 and S2 represent two coherent point sources emitting waves of wavelength
λ (see Fig. 2.7a). We wish to determine the interference pattern on the photographic
plate P1; the interference pattern on the photographic plate P2 is discussed in
Problem 2.11. The intensity distribution is given by

I = 4I0 cos2 δ/2 (2.67)

where I0 is the intensity produced by either of the waves independently and

δ = 2π

λ
� (2.68)

where
� = S1Q − S2Q (2.69)

represents the path difference between the two interfering waves. Thus, when
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δ = 2nπ ⇒ � = S1Q − S2Q = nλ, n = 0, 1, 2, . . . .. (Bright Fringe) (2.70)

we will have a bright fringe, and when

δ = (2n + 1)π ⇒ � = S1Q − S2Q = (n + 1

2
)λ, n = 0, 1, 2, . . . .. (Dark Fringe)

(2.71)
we will have a dark fringe. Using simple geometry one can show that the locus of
the points (on the plane P1) such that S1Q ∼ S2Q= � is a hyperbola, given by

(d2 − �2)x2 − �2y2 = �2
[

D2 + 1

4

(
d2 − �2

)]
(2.72)

Now,
� = 0 ⇒ x = 0

which represents the central bright fringe. Equation (2.72) can be written in the form
(see, e.g., Ghatak (2009))

x =
√

�2

d2 − �2

[
y2 + D2 + 1

4

(
d2 − �2

)]1/2

(2.73)

For values of y such that
y2 << D2 (2.74)

the loci are straight lines parallel to the y-axis and one obtains straight line fringes
as shown in Fig.2.7b. The corresponding fringe width would be

β = λD

d
(2.75)

Thus for D= 50 cm, d= 0.05 cm, and λ= 6000 Å, we get β= 0.06 cm.

2.9 Multiple Reflections from a Plane Parallel Film

We next consider the incidence of a plane wave on a plate of thickness h (and of
refractive index n2) surrounded by a medium of refractive index n1 as shown in
Fig. 2.8; [the Fabry–Perot interferometer consists of two partially reflecting mirrors
(separated by a fixed distance h) placed in air so that n1= n2= 1].

Let A0 be the (complex) amplitude of the incident wave. The wave will undergo
multiple reflections at the two interfaces as shown in Fig. 2.8a. Let r1 and t1 repre-
sent the amplitude reflection and transmission coefficients when the wave is incident
from n1 toward n2 and let r2 and t2 represent the corresponding coefficients when the
wave is incident from n2 toward n1. Thus the amplitude of the successive reflected
waves will be

A0 r1 , A0 t1 r2 t2 ei δ , A0 t1 r3
2 e2 i δ , . . . ..
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Fig. 2.8 Reflection and
transmission of a beam of
amplitude A0 incident at a
angle θ i on a film of refractive
index n2 and thickness h

where

δ = 2π

λ0
� = 4π n2 h cos θ2

λ0
(2.76)

represents the phase difference (between two successive waves emanating from the
plate) due to the additional path traversed by the beam in the film, and in Eq. (2.76),
θ2 is the angle of refraction inside the film (of refractive index n2), h the film thick-
ness, and λ0 is the free-space wavelength. Thus the resultant (complex) amplitude
of the reflected wave will be

Ar = A0

[
r1 + t1 t2 r2 ei δ

(
1 + r2

2 ei δ + r4
2 e2 i δ + . . . .

)]

= A0

[
r1 + t1 t2 r2 ei δ

1 − r2
2 ei δ

]
(2.77)

Now, if the reflectors are lossless, the reflectivity and the transmittivity at each
interface are given by

R = r2
1 = r2

2

τ = t1 t2 = 1 − R

[We are reserving the symbol T for the transmittivity of the Fabry–Perot etalon].
Thus

Ar

A0
= r1

[
1 − (1 − R) ei δ

1 − R ei δ

]
(2.78)

where we have used the fact that r2= – r1. Thus the reflectivity of the Fabry–Perot
etalon is given by
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P =
∣∣∣∣
Ar

A0

∣∣∣∣
2

= R .

∣∣∣∣
1 − ei δ

1 − R ei δ

∣∣∣∣
2

= R
(1 − cos δ)2 + sin2δ

(1 − R cos δ)2 + R2 sin2δ

= 4 R sin2 δ
2

(1 − R)2 + 4 R sin2 δ
2

or

P = F sin2 δ
2

1 + F sin2 δ
2

(2.79)

where

F = 4 R

(1 − R)2
(2.80)

is called the coefficient of Finesse. One can immediately see that when R << 1, F is
small and the reflectivity is proportional to sin2 δ/2. The same intensity distribution
is obtained in the two-beam interference pattern; we may mention here that we have
obtained sin2 δ/2 instead of cos2 δ/2 because of the additional phase change of π in
one of the reflected beams.

Similarly, the amplitude of the successive transmitted waves will be

A0 t1 t2 , A0 t1 t2 r2
2 ei δ , A0 t1 t2 r4

2 e2 i δ , . . .

where, without any loss of generality, we have assumed the first transmitted wave
to have zero phase. Thus the resultant amplitude of the transmitted wave will be
given by

At = A0 t1 t2
[
1 + r2

2 ei δ + r4
2 e2 i δ + . . . .

]

= A0
t1 t2

1 − r2
2 ei δ

= A0
1 − R

1 − R ei δ

Thus the transmittivity T of the film is given by

T =
∣∣∣∣

At

A0

∣∣∣∣
2

= (1 − R)2

(1 − R cos δ)2 + R2 sin2 δ

or

T = 1

1 + F sin2 δ
2

(2.81)
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It is immediately seen that the reflectivity and the transmittivity of the Fabry–Perot
etalon add up to unity. Further,

T = 1

when

δ = 2 m π , m = 1, 2, 3, . . . . (2.82)

In Fig. 2.9 we have plotted the transmittivity as a function of δ for different values
of F. In order to get an estimate of the width of the transmission resources, let

T = 1

2
for δ = 2 mπ ± �δ

2

Thus

F sin2 �δ

4
= 1 (2.83)

The quantity �δ represents the FWHM (full width at half maximum). In almost all
cases, �δ <<< 1 and therefore, to a very good approximation, it is given by

�δ ≈ 4√
F

= 2 (1 − R)√
R

(2.84)

Thus the transmission resonances become sharper as the value of F increases (see
Fig. 2.9).

0.5

1

2m π 

F = 2

F = 400

F = 10

Δδ

(2 m + 2) π
δ

T
Fig. 2.9 The transmittivity
of a Fabry–Perot etalon as a
function of d for different
values of F; the value of m is
usually large. The
transmission resonances
become sharper as we
increase the value of F. The
FWHM (Full Width at Half
Maximum) is denoted by �δ
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2.10 Modes of the Fabry–Perot Cavity

We consider a polychromatic beam incident normally (θ2= 0) on a Fabry–Perot cav-
ity with air between the reflecting plates (n2= 1) – see Fig. 2.8. Equations (2.76) and
(2.82) tell us that transmission resonance will occur whenever the incident frequency
satisfies the following equation:

ν = νm = m
c

2 h
(2.85)

where m is an integer. The above equation represents the different (longitudinal)
modes of the (Fabry–Perot) cavity. For h= 10 cm, the frequency spacing of two
adjacent modes would be given by

δ ν = c

2 h
= 1500 MHz

For an incident beam having a central frequency of

ν = ν0 = 6 × 1014 Hz

and a spectral width2 of 7000 MHz the output beam will have frequencies

ν0, ν0 ± δν and ν0 ± 2 δν

as shown in Fig. 2.10. One can readily calculate that the five lines correspond to

ν ν
h7000 MHz

1500 MHz

Fig. 2.10 A beam having a spectral width of about 7000 MHz (around ν0 = 6 × 10
14

Hz) is
incident normally on a Fabry–Perot etalon with h= 10 cm and n2= 1. The output has five narrow
spectral lines

2For ν0 = 6 × 1014 Hz, λ0= 5000 Å and a spectral width of 7000 MHz would imply
∣∣∣�λ0

λ0

∣∣∣ =
�ν
ν0

= 7× 109

6× 1014 ≈ 1.2× 10−5 giving �λ0 ≈ 0.06 Å. Thus a frequency spectral width of 7000 MHz

(around ν0 = 6 × 1014 Hz) implies a wavelength spread of only 0.06 Å.
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Fig. 2.11 Typical output
spectrum of a Fabry–Perot
multi longitudinal mode
(MLM) laser diode; the
wavelength spacing between
two modes is about 1.25 nm

m = 399998, 399999, 400000, 400001, and 400002

Figure 2.11 shows a typical output of a multilongitudinal (MLM) laser
diode.

Problems

Problem 2.1 The electric field components of a plane electromagnetic wave are

Ex = −3E0 sin(ωt − kz); Ey = E0 sin(ωt − kz)

Plot the resultant field at various values of time and show that it describes a linearly polarized wave.

Solution The beam will be linearly polarized

y

x
z

Problem 2.2 The electric field components of a plane electromagnetic wave are

Ex = E0 sin(ωt + kz); Ey = E0 cos(ωt + kz)

Show that it describes a left circularly polarized wave.



Problems 31

Solution Propagation along the + z-direction (coming out of the page). At z = 0

Ex = E0 sinωt; Ey = E0 cosωt

⇒ E2
x + E2

y = E2
0 ⇒ Circularly polarized

y

x

t = 0

π=
2ω

t

Since propagation is along the +z-axis, i.e., coming out of the page, we have an LCP wave.

Problem 2.3 The electric field components of a plane electromagnetic wave are

Ex = −2E0 cos(ωt + kz); Ey = E0 sin(ωt + kz)

Show that it describes a right elliptically polarized wave.

Problem 2.4 In Fig. 2.3 if we replace the quarter wave plate by a (calcite) half-wave plate, what will be
the state of polarization of the output beam?

Problem 2.5 For calcite, at λ0 = 5893 Å (at 18◦C) no= 1.65836, ne = 1.48641. The thickness of the
corresponding QWP is 0.000857 mm (see Section 2.4). If in Fig. 2.3 the wavelength of the incident
linearly polarized beam is changed to 6328 Å determine the state of polarization of the output beam.

Problem 2.6 A left circularly polarized beam is incident on a calcite half-wave plate. Show that the
emergent beam will be right circularly polarized.

Problem 2.7 A 3 mW laser beam (λ0 ≈ 6328 Å) is incident on the eye. On the retina, it forms a circular
spot of radius of about 20 μm. Calculate approximately the intensity on the retina.

Solution Area of the focused spot A = π
(

20 × 10−6
)2 ≈ 1.3 × 10−9 m2. On the retina, the intensity

will be approximately given by

I ≈ P

A
≈ 3 × 10−3 W

1.3 × 10−9 m2
≈ 2.3 × 106 W/m2

Problem 2.8 Consider a Gaussian beam propagating along the z-direction whose phase front is plane at
z = 0 [see Eq. (2.50)]. The spot size of the beam at z = 0, w0 is 0.3 mm. Calculate (a) the spot size and
(b) the radius of curvature of the phase front at z = 60 cm. Assume λ0 ≈ 6328 Å.

[Ans : (a) w (z = 60 cm) ≈ 0.84 mm (b) R (z = 60 cm) ≈ 93.3 cm].
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Problem 2.9 In continuation of the previous problem, show that for a simple resonator consisting of a
plane mirror and a spherical mirror (of radius of curvature 93.3 cm) separated by 60 cm, the spot size of
the beam at the plane mirror would be 0.3 mm.

Problem 2.10 Consider a He–Ne laser beam (with λ0 ≈ 6328 Å) incident on a circular aperture of radius
0.02 cm. Calculate the radii of the first two dark rings of the Airy pattern produced at the focal plane of
a convex lens of focal length 20 cm.

Solution The radius of the first dark ring would be [see Eq. (2.66)]

r1 ≈ 3.832 × 6.328 × 10−5 × 20

2π × 0.02
≈ 0.039 cm

Similarly, the radius of the second dark ring is

r2 ≈ 7.016 × 6.328 × 10−5 × 20

2π × 0.02
≈ 0.071 cm

Problem 2.11 Consider two coherent point sources S1 and S2 emitting waves of wavelength λ (see Fig.
2.7a). Show that the interference pattern on a plane normal to the line joining S1 and S2 will consist of
concentric circular fringes.

Problem 2.12 Consider a light beam of all frequencies lying between ν = ν0 = 5.0 ×1014 Hz to ν =
5.00002 × 1014 Hz incident normally on a Fabry–Perot interferometer (see Fig. 2.10) with R = 0.95,
n0 = 1, and d = 25 cm. Calculate the frequencies (in the above frequency range) and the corresponding
mode number which will correspond to transmission resonances.

Solution Transmission resonances occur at
ν = νm = m c

2d = m 3×1010

2×25 = (6 × 108 m) Hz

For ν = ν0 = 5 × 1014 Hz; m = 5×1014

6×108 = 833333.3

Since m is not an integer the frequency ν0 does not correspond to a mode.

For m = 833334, ν = 5.000004 × 1014 Hz = ν0 + 400 MHz

For m = 833335, ν = 5.000010 × 1014 Hz = ν0 + 1000 MHz

For m = 833336, ν = 5.000016 × 1014 Hz = ν0 + 1600 MHz

Finally, for m = 833337, ν= 5.000022 × 1014Hz = ν0 + 2200 MHz which is beyond the given range.



Chapter 3
Elements of Quantum Mechanics

3.1 Introduction

In this chapter we discuss very briefly the basic principles of quantum mechan-
ics which are used in later chapters. At places, the chapter will appear a bit
disconnected; this is inevitable because the subject of quantum mechanics is so
vast that it is impossible to present the basic concepts in a coherent fashion in
one tiny chapter! Nevertheless, whatever we discuss we will try to do from first
principles.

We first give a heuristic derivation of the Schrödinger equation which is followed
by its solutions corresponding to some important potential energy functions. We
have solved the particle in a box problem and also the harmonic oscillator problem.
For the hydrogen atom problem, we just present the results. We have also dis-
cussed the physical interpretation of the wave function and the uncertainty principle.
Several other “solvable” problems are briefly discussed at the end of the chapter.

3.2 The One-Dimensional Schrödinger Equation

There are many experimental results which show that atomic objects (like electrons,
protons, neutrons, α particles) exhibit both wave and particle properties. Indeed the
wavelength λ is related to the momentum p through the de Broglie relation

λ = h

p
(3.1)

where h
(≈ 6.627 × 10−34J s

)
represents Planck’s constant. Thus, we may write

p = �k (3.2)

where � = h
/

2π and

k = 2π

λ
(3.3)

33K. Thyagarajan, A. Ghatak, Lasers, Graduate Texts in Physics,
DOI 10.1007/978-1-4419-6442-7_3, C© Springer Science+Business Media, LLC 2010
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represents the wavenumber. Further, as established by Einstein’s explanation of the
photoelectric effect, the energy E of the particle is related to the frequency ω by the
following equation:

E = �ω (3.4)

The simplest type of a wave is a one-dimensional plane wave described by the
wave function

�(x, t) = A exp [i (kx − ωt)] (3.5)

where A is the amplitude of the wave and the propagation is assumed to be in the +x
direction. If we now use Eqs. (3.2) and (3.4), we would obtain

� = exp

[
i

�
(px − Et)

]
(3.6)

Elementary differentiation will give us

i�
∂�

∂t
= E� (3.7)

− i�
∂�

∂x
= p� (3.8)

which suggests that, at least for a free particle, the energy and momentum can be
represented by differential operators given by

E → i�
∂

∂t
, p → −i�

∂

∂x
(3.9)

Further, if we again differentiate Eq. (3.8), we would obtain

− �
2

2m

∂2�

∂x2
= p2

2m
� (3.10)

For a free particle, the energy and momentum are related by the equation

E = p2

2m
(3.11)

Thus the right-hand sides of Eqs. (3.7) and (3.10) are equal and we obtain

i�
∂�

∂t
= − �

2

2m

∂2�

∂x2
(3.12)

which is the one-dimensional Schrödinger equation for a free particle. If we use
the operator representations of E and p [see Eq. (3.9)], we may write the above
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equation as

E� = p2

2m
� (3.13)

We next consider the particle to be in a force field characterized by the potential
energy V (x); thus, classically, the total energy of the system is given by

E = p2

2m
+ V (x) (3.14)

If we now assume p and E to be represented by the differential operators, the
equation

E� =
[

p2

2m
+ V (x)

]
� (3.15)

would assume the form

i�
∂�

∂t
=

[
− �

2

2m

∂2

∂x2
+ V (x)

]
� (3.16)

which represents the one-dimensional time-dependent Schrödinger equation. The
above equation can be written in the form

i�
∂�

∂t
= H� (3.17)

where

H = p2

2m
+ V(x) = − �

2

2m

∂2

∂x2
+ V(x) (3.18)

is an operator and represents the Hamiltonian of the system. Equations (3.16)
and (3.17) represent the one-dimensional time-dependent Schrödinger equation.
The above is a very heuristic derivation of the Schrödinger equation and lacks
rigor. Strictly speaking Schrödinger equation cannot be derived. To quote Richard
Feynman

Where did we get that equation from ? Nowhere. It is not possible to derive it from anything
you know. It came out of the mind of Schrödinger.

Although we have obtained Eq. (3.16) starting from an expression for a plane wave,
the Schrödinger equation as described by Eq. (3.16) is more general in the sense that
ψ (r, t) called the wave function contains all information that is knowable about
the system. As will be discussed in Section 3.4, ψ∗(r, t)ψ(r, t)dτ represents the
probability of finding the particle in a volume element dτ . Note also that observables
such as momentum energy are represented by operators [see Eq. (3.9)].
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When the Hamiltonian, H, is independent of time1, Eq. (3.16) can be solved by
using the method of separation of variables:

�(x, t) = ψ(x) T (t) (3.19)

Substituting in Eq. (3.16) and dividing by �, we obtain

i�
1

T (t)

dT

dt
= 1

ψ

[
− �

2

2m

d2ψ

dx2
+ V(x)ψ

]
= E (3.20)

where E is a constant (and now a number). Thus

dT

dt
+ i

�
ET (t) = 0

giving

T (t) ∼ exp

(
− i

�
Et

)
(3.21)

Further, Eq. (3.20) gives us

− �
2

2m

d2ψ

dx2
+ Vψ = Eψ (3.22)

or

Hψ = Eψ (3.23)

which is essentially an eigenvalue equation. For ψ to be “well behaved,” the quan-
tity E takes some particular values (see, e.g., Examples 3.1 and 3.2), these are
known as the energy eigenvalues and the corresponding forms of ψ are known as
eigenfunctions; by “well-behaved” we imply functions which are single valued and
square-integrable (i.e.,

∫ |ψ |2dτ should exist).
In Section 3.4 we will interpret the wave function ψ as the probability amplitude;

therefore ψ should be single valued and |ψ (x)|2dx has to be finite for finite values
of dx. Thus

lim
dx→0

|ψ |2 dx = 0

In practice this is satisfied by demanding that ψ be finite everywhere. We also
have the following theorems:

1Whenever we are considering bound states of a system (like those of the hydrogen atom or that of
the harmonic oscillator) the Hamiltonian is independent of time; however, for problems such as the
interaction of an atom with radiation field, the Hamiltonian is not independent of time (see, e.g.,
Section 4.7).
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Theorem 1 The derivative of the wave function dψ /dx is always continuous as long
as the potential energy V(x) is finite, whether or not it is continuous2.

Proof We integrate the Schrödinger equation [Eq. (3.22)] from x– ε to x+ε to obtain

x+ε∫

x−ε

d2ψ

dx2
dx = −2m

�2

x+ε∫

x−ε

[E − V(x)]ψ(x)dx

or

ψ ′(x + ε) − ψ ′(x − ε) = −2m

�2

x+ε∫

x−ε

[E − V(x)]ψ(x)dx

Since V(x) is assumed to be finite (it could, however, be discontinuous), the RHS
tends to zero as ε→0. Thus ψ ′ is continuous at any value of x. It is obvious that
ψ has to be necessarily continuous everywhere. Alternatively one may argue that if
dψ /dx is discontinuous then d2ψ /dx2 must become infinite; this will be inconsistent
with Eq. (3.22) as long as V(x) does not become infinite.

Theorem 2 If the potential energy function V(x) is infinite anywhere, the proper
boundary condition is obtained by assuming V(x) to be finite at that point and car-
rying out a limiting process making V(x) tend to infinity. Such a limiting process
makes the wave function vanish at a point where V(x)=∞.

Example 3.1 Particle in a one-dimensional infinitely deep potential well

We will determine the energy levels and the corresponding eigenfunctions of a particle of mass μ in a
one-dimensional infinitely deep potential well characterized by the following potential energy variation
(see Fig. 3.1):

+ ∞ + ∞

0 a
Fig. 3.1 Particle in a
one-dimensional box

2It may be mentioned that in many texts the continuity of ψ and dψ /dx are taken to be axioms.
This is not correct because it follows from the fact that ψ (x) satisfies a second-order differential
equation [see Eq. (3.22)]. Indeed, when V(x) becomes infinite, dψ /dx is not continuous.
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V(x) = 0 for 0 < x < a

= ∞ for x < 0 and for x> a
(3.24)

For 0 < x < a, the one-dimensional Schrödinger equation becomes

d2ψ

dx2
+ k2ψ(x) = 0 (3.25)

where

k2 = 2μE

�2
(3.26)

The general solution of Eq. (3.25) is

ψ (x) = A sin kx + B cos kx (3.27)

Since the boundary condition at a surface at which there is an infinite potential step is that ψ is zero (see
Theorem 2), we must have

ψ (x = 0) = ψ (x = a) = 0 (3.28)

Using the boundary condition given by the above equation, we get

ψ (x = 0) = B = 0 (3.29)

and
ψ (x = a) = A sin ka = 0

Thus, either A = 0 or
ka = nπ , n = 1, 2, . . . (3.30)

The condition A= 0 leads to the trivial solution of ψ vanishing everywhere; the same is the case for n=0.
If we now use Eq. (3.26), the allowed energy values are therefore given by

En = n2π2
�

2

2μa2
, n = 1, 2, 3, . . . (3.31)

The corresponding eigenfunctions are

ψn =
√

2
a sin

( nπ
a x

)
0<x<a

= 0 x< 0 and x> a

}
(3.32)

where the factor
√

2/a is such that the wave functions form an orthonormal set

a∫

0

ψ∗
m(x)ψn(x)dx = δmn (3.33)

and δkn = 1 if k = n

= 0 if k �= n
(3.34)

is known as the Kronecker delta function. It may be noted that whereas ψn(x) is continuous everywhere,
dψn(x)/dx is discontinuous at x= 0 and at x=a. This is because of V(x) becoming infinite at x= 0 and at
x=a (see Theorem 1). Figure 3.2 gives a plot of the first three eigenfunctions and one can see that the
eigenfunctions are either symmetric or antisymmetric about the line x = a/2; this follows from the fact
that V(x) is symmetric about x = a/2 (see Problem 3.2).
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ψ1(x)

ψ2(x)

ψ3(x)
+ ∞ + ∞Fig. 3.2 The energy

eigenvalues and
eigenfunctions for a particle
in an infinitely deep potential
well. Notice that the
eigenfunctions are either
symmetric or antisymmetric
about x = a/2

The following points are also to be noted

(i) E cannot be negative because if we assume E to be negative then the boundary conditions at x=0
and x=a cannot be simultaneously satisfied.

(ii) The eigenvalues form a discrete set.

(iii) The eigenfunctions given by Eq. (3.32) form a complete set, i.e., an arbitrary (well-behaved)
function f(x) (in the domain 0 < x < a) can be expanded in terms of the eigenfunctions of H:

f (x) =
∑

n
cnψn(x) =

√
2

a

∞∑

n=1,2,...

cn sin
( nπ

a
x
)

(3.35)

where cn are constants which can be determined by multiplying both sides of the above equation
by ψm

∗(x) and integrating from 0 to a to obtain

a∫

0

ψ∗
m(x)f (x)dx =

∑
n

cn

a∫

0

ψ∗
m(x)ψn(x)dx =

∑
n

cnδmn = cm (3.36)

where we have used the orthonormality condition given by Eq. (3.33).

(iv) The most general solution of the time-dependent Schrödinger equation

i�
∂�

∂ t
= H � = − �

2

2μ

∂2�

∂ x2
+ V(x)�(x, t) (3.37)

with V(x) given by Eq. (3.24) will be

�(x, t) =
∞∑

n=1,2,...

cnψn(x)e−iEnt/� =
∞∑

n=1,2,...

cnψn(x)e−in2τ (3.38)

where
τ = t

t0
; t0 = 2μL2

π2�
(3.39)

Substituting for ψn(x) and En we get

�(x, t) =
∞∑

n=1,2,...

cn

(√
2

a
sin

nπx

a

)
exp

[
−i

n2π2
�

2μa2
t

]
(3.40)
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Since
�(x, 0) =

∑
n

cnψn(x) (3.41)

the coefficients cn can be determined from the initial form of the wave function:

cn =
a∫

0

ψ∗
n (x)�(x, 0)dx (3.42)

Thus, the recipe for determining �(x, t) is as follows:

If we know �(x, 0) we can determine cn from Eq. (3.42), we substitute these values in Eq. (3.38),
and sum the series to obtain �(x, t).

(v) We assume �(x, 0) to be normalized:

a∫

0

|� (x, 0)|2 dx = 1 (3.43)

This would imply

1 =
a∫

0

∑
n

c∗
nψ

∗
n (x)

∑
m

cmψm(x)dx =
∑

n

∑
n

c∗
n cm

a∫

0

ψ∗
n (x)ψm(x) dx

=
∑

n

∑
m

c∗
n cmδmn =

∑
n

|cn|2
(3.44)

where we have used the orthonormality condition given by Eq. (3.33). Further,

a∫

0

|� (x, t)|2dx =
∑

n

∑
m

c∗
ncmei(En−Em)t

/
�

a∫

0

ψ∗
n (x)ψm (x) dx

=
∑

n

∑
m

c∗
ncmei(En−Em)t

/
�δmn =

∑
n

|cn|2 = 1

Thus, if the wave function is normalized at t=0, then it will remain normalized at all times.
Further, we can interpret Eq. (3.44) by saying that |cn|2 represents the probability of finding the
system in the nth eigenstate which remains the same at all times. Thus there are no transitions.
Indeed, whenever the potential energy function is time-independent, we obtain what are known
as stationary states and there is no transition between states.

(vi) As a simple example, let us assume that the particle is described by the following wave function
(at t=0):

�(x, 0) =
√

1

6
ψ1(x) + i√

2
ψ2(x) +

√
1

3
ψ4(x)

Notice that ∑
n

|cn|2 = 1

so that the wave function is normalized. Thus, if we carry out a measurement of energy, the
probabilities of obtaining the values E1, E2, and E4 would be 1/6, 1/2, and 1/3, respectively.
How will such a state evolve with time? Well, we just multiply each term by the appropriate
time-dependent factor to obtain �(x, t) [see Eq. (3.38)].
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�(x, t) =
√

1

6
ψ1(x)e−it/t0 + i√

2
ψ2(x)e−4it/t0 +

√
1

3
ψ3(x)e−16it/t0 (3.45)

where t0 is given by Eq. (3.39). Obviously

a∫

0

|�(x, t)|2dx = 1 (3.46)

for all values of t. The quantity
P(x, t) = |�(x, t) |2 (3.47)

would represent the time evolution of the probability distribution function. However, at all values
of time, the probability of finding the system in a particular state remains the same. Further, the
average value of the energy is given by

〈E〉 = 1

6
E1 + 1

2
E2 + 1

3
E4

=
[

1

6
+ 2 + 16

3

]
π2

�
2

2μa2
= 15

2

π2
�

2

2μa2
(3.48)

Thus, if one carries out a large number of measurements (of energy) on identically prepared
systems characterized by the same wave function as given by Eq. (3.45), then the average value
of the energy would be given by Eq. (3.48).

(vii) What happens to the wave function if E �= En, i.e., if E is not one of the eigenvalues? For such a
case the boundary conditions cannot be satisfied and therefore it cannot be an allowed value of
energy. For example, if

E = 0.81π2
�

2

2μa2

then the wave function cannot be zero for both x=0 and x=a.

Example 3.2 The linear harmonic oscillator

We next consider the linear harmonic oscillator problem where the potential energy function is given by

V(x) = 1

2
μ ω2 x2 (3.49)

and the Schrödinger equation [Eq. (3.22)] can be written in the form

d2ψ

dξ2
+

[
� − ξ2

]
ψ = 0 (3.50)

where ξ = α x and we have chosen

α =
√
μω

�
(3.51)

so that

� = 2E

�ω
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For the wave function not to blow up at x=± ∞ (which represents the boundary condition), � must be
equal to an odd integer (see Appendix A), i.e.,

� = 2E

�ω
= (2m + 1) ; m = 0, 1, 2, 3, . . . . (3.52)

The above equation would give us the following expression for the discrete energy eigenvalues:

E = Em =
(

m + 1

2

)
�ω, m = 0, 1, 2, 3, . . . . (3.53)

The corresponding normalized wave functions are the Hermite–Gauss functions (see Appendix A):

ψm(ξ ) = NmHm(ξ ) exp

(
− 1

2
ξ2

)
, m = 0, 1, 2, 3, . . . . (3.54)

where

Nm =
(

α

π1/22mm!
)1/2

(3.55)

represents the normalization constant. The first few Hermite polynomials are

H0 (ξ) = 1, H1 (ξ) = 2ξ

H2 (ξ) = 4ξ2 − 2, H3 (ξ) = 8ξ3 − 12ξ , . . . (3.56)

The wave functions form a complete set of orthonormal functions:

+∞∫

−∞
ψ∗

k ψndx = δkn (3.57)

The most general solution of the time-dependent Schrödinger equation [Eq. (3.16) with V(x) given by
Eq. (3.49)] will be

�(x, t) =
∞∑

n=0,1,2,...

cnψn(x)e−iEnt/�

=
∞∑

n=0,1,2,...

cnψn(x)e
−i

(
n+ 1

2

)
ωt

(3.58)

The values of cn will be determined by the initial state of the oscillator.

3.3 The Three-Dimensional Schrödinger Equation

The three-dimensional generalization of the Schrödinger equation is quite straight-
forward; instead of Eq. (3.29), we have

E → i�
∂

∂t

px → −i�
∂

∂x
, py → −i�

∂

∂y
, pz → −i�

∂

∂z
(3.59)
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Thus the equation [cf. Eq. (3.13)]

E� =
[

1

2m

(
p2

x + p2
y + p2

z

)
+ V (r)

]
� (3.60)

assumes the form

i�
∂�

∂t
= H� (3.61)

where

H = p2

2m
+ V (r) = − �

2

2m
∇2 + V (r) (3.62)

is an operator and represents the Hamiltonian of the system. Equations (3.61) and
(3.62) represent the three-dimensional Schrödinger equation. Once again, when the
Hamiltonian, H, is independent of time, Eq. (3.61) can be solved by using the
method of separation of variables:

� (r, t) = ψ (r) T (t) (3.63)

Substituting in Eq. (3.61) and dividing by �, we obtain

i�
1

T (t)

dT

dt
= 1

ψ

[
− �

2

2m
∇2ψ + V (r) ψ

]
= E (3.64)

where E is a constant (and now a number). The solution of the time-dependent part
is again given by Eq. (3.21). Equation (3.64) gives us

− �
2

2m
∇2ψ + Vψ = Eψ (3.65)

or

Hψ = Eψ (3.66)

which, once again, is essentially an eigenvalue equation. The solution

�n (r, t) = ψn (r) exp (−iEnt / �) (3.67)

is said to describe a stationary state; here the subscript n refers to a particular
eigenvalue En. Thus

Hψn = Enψn (3.68)
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3.4 Physical Interpretation of � and Its Normalization

We rewrite the Schrödinger equation

i�
∂� (r, t)

∂t
= − �

2

2m
∇2� + V (r)� (3.69)

along with its complex conjugate

− i�
∂�∗ (r, t)

∂t
= − �

2

2m
∇2�∗ + V (r)�∗ (3.70)

If we multiply Eq. (3.69) by �∗ and Eq. (3.70) by � and subtract, we obtain

i�

(
�∗ ∂�

∂t
+ �

∂�∗

∂t

)
= − �

2

2m

(
�∗∇2� − �∇2�∗) (3.71)

Remembering that ∇2 = ∂2 / ∂x2+∂2 / ∂y2+∂2 / ∂z2, we may rewrite the above
equation in the form

∂

∂t

(
�∗�

) + i�

2m

[
∂

∂x

(
�
∂�∗

∂x
− �∗ ∂�

∂x

)

+ ∂

∂y

(
�
∂�∗

∂y
− �∗ ∂�

∂y

)
+ ∂

∂z

(
�
∂�∗

∂z
− �∗ ∂�

∂z

)]
= 0

or
∂ρ

∂t
+ ∇ · J = 0 (3.72)

where

ρ = �∗� (3.73)

∇ · J = ∂Jx

∂x
+ ∂Jy

∂y
+ ∂Jz

∂z
(3.74)

Jx = i�

2m

(
�
∂�∗

∂x
− �∗ ∂�

∂x

)
(3.75)

and similar expressions for Jy and Jz. Equation (3.72) is the equation of continuity
in fluid dynamics and can be physically interpreted by considering a moving gas
with ρ representing the number of particles per unit volume and J representing the
current density. Thus, if we normalize � such that

+∞∫

−∞

+∞∫

−∞

+∞∫

−∞
�∗�dτ = 1 (3.76)
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For all states for which
∫
�∗�dτ exists, this normalization is always possible

because if � is a solution of Eq. (3.69) then any multiple of � is also a solution and
we may always choose the multiplicative constant such that Eq. (3.76) is satisfied.
We may associate

ρ = �∗� (3.77)

with position probability density and J with probability current density. This implies
that �∗�dτ represents the probability of finding the particle in the volume element
dτ . Further, for an infinitely extended plane wave

� = exp

[
i

�
(p · r − Et)

]
(3.78)

the current density J can be easily calculated to give

J = p
m

= v (3.79)

which is just the current for a beam of particles of unit density3 (�∗� = 1) and
velocity v.

Example 3.3 Particle in a three-dimensional box

For a free particle of mass μ inside a cubical box of side L, the Schrödinger equation is given by

∇2ψ + 2μE

�2
ψ = 0

⎧⎨
⎩

0 < x < L
0 < y < L
0 < z < L

(3.80)

with the boundary condition that ψ should vanish everywhere on the surface of the cube. We use the
method of separation of variables and write ψ=X(x) Y(y) Z(z) to obtain

1

X

d2X

dx2
+ 1

Y

d2Y

dy2
+ 1

Z

d2Z

dz2
= − 2μE

�2
(3.81)

The first term is a function of x alone, the second term of y alone, etc., so that each term has to be set
equal to a constant. We write

1

X

d2X

dx2
= −k2

x (3.82)

and similar equations for Y(y) and Z(z) with

k2
x + k2

y + k2
z = 2μE

�2
(3.83)

We have set each term equal to a negative constant; otherwise the boundary conditions cannot be satisfied.
The solution of Eq. (3.82) is

3It may be noted that the plane wave is not normalizable; this is due to the fact that an infinitely
extended plane wave corresponds to a constant probability density everywhere.
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X(x) = A sin kxx + B cos kxx

and since ψ has to vanish on all points on the surface x=0 we must have B=0. Further, for ψ to vanish
on all points on the surface x=L, we must have

sin kxL = 0

or
kx = nxπ

L
with nx = 1, 2, . . . (3.84)

(cf. Example 3.1). Similarly, we would obtain

ky = nyπ

L
, ny = 1, 2, 3, . . .

and
kz = nzπ

L
, nz = 1, 2, 3, . . .

Thus using Eq. (3.83) we get the following expression for energy eigenvalues

E = π2
�

2

2μL2
(n2

x + n2
y + n2

z ), nx, ny, nz = 1, 2, 3, . . . (3.85)

The corresponding normalized wave functions are

ψ(x, y, z) =
(

8

L3

)1/2
sin

( nxπ

L
x
)

sin
(nyπ

L
y
)

sin
(nzπ

L
z
)

(3.86)

3.4.1 Density of States

If g(E) dE represents the number of states whose energy lies between E and E+dE
then g(E) is known as the density of states and it represents a very important quantity
in the theory of solids. In order to calculate g(E) we first calculate N(E) which
represents the total number of states whose energies are less than E. Obviously

N(E) =
E∫

0

g(E)dE (3.87)

and therefore

g(E) = dN(E)

dE
(3.88)

Now,

n2
x + n2

y + n2
z = 2μL2E

π2�2
= R2(say) (3.89)

Thus N(E) will be the number of sets of integers whose sum of square is less than
R2. In the nx, ny, and nz space each point corresponds to a unit volume and if we
draw a sphere of radius R then the volume of the positive octant will approximately
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represent4 N(E); we have to take the positive octant because nx, ny, and nz take
positive values. Thus

N(E) = 2 × 1

8
× 4π

3
R3 = (2μ)3/2 L3

3π2�3
E3/2 (3.90)

where an additional factor of 2 has been introduced as a state can be occupied by
two electrons. Using Eq. (3.88) we get

g(E) = (2μ)3/2 V

2π2�3
E1/2 (3.91)

where V(=L3) represents the volume of the box. Often it is more convenient to
express the density of states in momentum space. Now for a free non-relativistic
particle

E = p2

2μ
(3.92)

Thus the equation
g(p)dp = g(E)dE (3.93)

would readily give

g(p) = V

π2�3
p2 (3.94)

3.5 Expectation Values of Dynamical Quantities

The interpretation of |�|2 in terms of the position probability density allows
us to calculate the expectation value of measurable quantities. For example, the
expectation value of the x coordinate is given by

〈x〉 =
∫∫∫

x�∗�dτ∫∫∫
�∗�dτ

=
∫∫∫

�∗ (r, t) x� (r, t) dτ (3.95)

where the integration is over the entire space and in the last step we have assumed
the wave function to be normalized. Similarly, we may write for 〈y〉 and 〈z〉 and also
for the expectation value of the potential energy V

〈V〉 =
∫∫∫

�∗ (r, t)V (r)� (r, t) dτ (3.96)

4If the reader finds it difficult to understand he may first try to make the corresponding two-
dimensional calculations in which one is interested in finding the number of sets of integers such
that nx

2+ny
2 < R2. If one takes a graph paper then each corner corresponds to a set of integers and

each point can be associated with a unit area. Thus the number of sets of integers would be πR2/4
where the factor 1/4 is because of the fact that we are interested only in the positive quadrant.
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In order to obtain an expression for the expectation values of quantities like energy
and momentum, we multiply the Schrödinger equation [Eq. (3.61)] by �∗ and
integrate it to obtain

∫
�∗i�

∂�

∂t
dτ =

∫
�∗

(
− �

2

2m
∇2

)
�dτ +

∫
�∗V�dτ (3.97)

From now on the single integral sign will be assumed to represent the three-
dimensional integral over the entire space. The last term is simply 〈V〉; further,
since

〈E〉 =
〈

p2

2m

〉
+ 〈V〉 (3.98)

we may write

〈E〉 =
∫

�∗
(

i�
∂�

∂t

)
dτ (3.99)

〈
p2

x

〉
=

∫
�∗

(
−�

2 ∂
2�

∂x2

)
dτ (3.100)

and similar expressions for
〈
p2

y

〉
and

〈
p2

z

〉
. Equations (3.99) and (3.100) suggest that

the expectation value of any dynamical quantity O is obtained by operating it on �,
premultiplying it by �∗, and then integrating:

〈O〉 =
∫

�∗O� dτ (3.101)

In particular

〈px〉 =
∫

�∗
(

−i�
∂�

∂x

)
dτ (3.102)

For the harmonic oscillator wave functions (see Example 3.2) if we use the various
properties of the Hermite–Gauss functions, we get

〈x〉 =
∫

�∗
n x�n dx = 0 (3.103)

〈
x2

〉
=

∫
�∗

n x2�n dx = �

mω

(
n + 1

2

)
(3.104)

〈px〉 =
∫

�∗
n

(
−i�

∂�n

∂x

)
dx = 0 (3.105)

〈
p2

x

〉
=

∫
�∗

n

(
−�

2 ∂
2�n

∂x2

)
dx = mω�

(
n + 1

2

)
(3.106)
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We define the uncertainties in the values of position and momentum through the
following standard definitions

�x =
√〈

(x − 〈x〉)2〉 =
√〈

x2
〉 − 〈x〉2 (3.107)

and

�p =
√〈

(p − 〈p〉)2〉 =
√〈

p2
〉 − 〈p〉2 (3.108)

Using the harmonic oscillator wave functions one can show that

�x�px =
(

n + 1

2

)
� (3.109)

which relates the uncertainties in position and momentum. The minimum uncer-
tainty product occurs for the ground state (n = 0)

3.6 The Commutator

The commutator of two operators α and β is defined by the following equation:

[α,β] = αβ − βα = − [β,α] (3.110)

Now, the commutator of x and px operating on an arbitrary function � is
given by

[
x, px

]
� = (xpx − pxx) � = −i�

[
x
∂�

∂x
− ∂

∂x
(x�)

]
= i��

Since � is arbitrary, we obtain

[
x, px

] = xpx − pxx = i� (3.111)

Similarly

[
y, py

] = [
z, pz

] = i�

However,

[
x, py

] = [
y, pz

] = · · · = 0

[
x, y

] = [
y, z

] = · · · = 0
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and

[
px, py

] = [
py, pz

] = · · · = 0 (3.112)

3.7 Orthogonality of Wave Functions

We shall first prove that all values of En [see Eq. (3.68)] are real and that if En �= Ek,
then the corresponding wave functions are necessarily orthogonal, i.e.,

∫
ψ∗

k ψn dτ = 0 for n �= k (3.113)

We start with the Schrödinger equation for the two states:

− �
2

2m
∇2ψn + V (r) ψn = Enψn (3.114)

− �
2

2m
∇2ψk + V (r) ψk = Ekψk (3.115)

We multiply Eq. (3.114) by ψ∗
k and the complex conjugate of Eq. (3.115) by ψn and

subtract:

− �
2

2m

(
ψ∗

k ∇2ψn − ψn∇2ψ∗
k

)
= (

En − E∗
k

)
ψ∗

k ψn (3.116)

or

− �
2

2m

∫
∇· (ψ∗

k ∇ψn − ψn∇ψ∗
k

)
dτ = (

En − E∗
k

) ∫
ψ∗

k ψndτ (3.117)

Now according to the divergence theorem∫

V
∇ · F dτ =

∫

s
F · dS

where S is the surface bounding the volume V. Thus, the integral on the left-hand
side of Eq. (3.117) can be transformed to a surface integral which would vanish
if the volume integral is over the entire space; this is because the wave functions
vanish at the surface which is at infinity. Thus

(
En − E∗

k

) ∫
ψ∗

k ψn dτ = 0 (3.118)

For n=k, we must have

En = E∗
n (3.119)

proving that all eigenvalues must be real, and for En �= Ek Eq. (3.113) follows.
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If En = Ek (n �= k) so thatψk andψn are two linearly independent wave functions
belonging to the same energy value, then ψk and ψn are not necessarily orthogonal.
An energy level E is said to be degenerate when two or more linearly independent
eigenfunctions correspond to it. However, it can easily be shown that any linear
combination of the degenerate eigenfunctions (like C1ψk + C2ψn) is also a possible
eigenfunction belonging to the same eigenvalue:

Hψk = Ekψk (3.120)

Hψn = Ekψn (3.121)

where H = − (
�

2 / 2m
) ∇2 + V (r) [see Eq. (3.114)]. If we multiply Eq. (3.120) by

C1 and Eq. (3.121) by C2, where C1 and C2 are any complex numbers and then add
we obtain

Hφ = Ekφ (3.122)

where φ = C1ψk + C2ψn. Equation (3.122) tells us that φ is also an eigenfunction
belonging to the same eigenvalue. Since C1 and C2 are arbitrary, it is always possible
to construct linearly independent wave functions (belonging to this level) which
are mutually orthogonal. Further, one can always multiply an eigenfunction by a
suitable constant such that ∫

ψ∗
k ψn dτ = δkn (3.123)

where δkn is known as the Kronecker delta function defined through Eq. (3.34)
It may be pointed out that the linear harmonic oscillator states [Eq.3.53)] are

nondegenerate; however, for the hydrogen atom problem, the state characterized by
the quantum number n is n2-fold degenerate.

3.8 Spherically Symmetric Potentials

One of the most important problems in quantum mechanics is that of the motion of
a particle in a potential which depends only on the magnitude of the distance from
a fixed point:

V(r) = V(r) (3.124)

Such a potential is referred to as a spherically symmetric potential. Now, in spherical
polar coordinates

∇2ψ = 1

r2

∂

∂ r

(
r2 ∂ψ

∂ r

)
+ 1

r2

[
1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂ θ

)
+ 1

sin2 θ

∂2ψ

∂ φ2

]

= 1

r2

∂

∂ r

(
r2 ∂ψ

∂ r

)
− L2ψ

�2r2

(3.125)
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where

L2 = −�
2
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂ φ2

]
(3.126)

is the operator representation of the square of the angular momentum. Thus the
three-dimensional Schrödinger equation

∇2ψ + 2μ

�2
[E − V(r)]ψ(r, θ ,φ) = 0 (3.127)

can be written in the form

1

r2

∂

∂ r

(
r2 ∂ψ

∂ r

)
+ 2μ

�2
[E − V(r)]ψ(r, θ ,φ) = L2ψ

�2r2
(3.128)

In order to solve the above equation we use the method of separation of variables
and write

ψ(r, θ ,φ) = R(r)Y(θ ,φ) (3.129)

Substituting in Eq. (3.128) we get

Y(θ ,φ)

r2

d

dr

(
r2 dR

dr

)
+ 2μ

�2
[E − V(r)] R(r) Y(θ ,φ) = R(r)

�2r2
L2Y(θ ,φ)

Dividing by R(r)Y(θ ,φ)/r2, we obtain

1

R(r)

d

dr

(
r2 dR

dr

)
+ 2μ r2

�2
[E − V(r)] = 1

�2

1

Y(θ ,φ)
L2Y(θ ,φ) = λ (3.130)

where we have set the terms equal to a constant λ because the left-hand side of the
above equation depends only on r while the other term depends only on θ and φ.
The above equation gives us the eigenvalue equation

L2Y(θ ,φ) = λ�
2 Y(θ ,φ) (3.131)

The eigenvalues of L2 are l(l+1) �
2, i.e., well-behaved solutions are obtained when

λ = l(l + 1) , l = 0, 1, 2, . . . (3.132)

The corresponding eigenfunctions being the spherical harmonics

Ylm(θ ,φ) , m = −l, −l + 1, . . . , l − 1, l (3.133)
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Thus Eq. (3.130) can be written in the form

1

r2

d

dr

(
r2 dR

dr

)
+ 2μ

�2

[
E − V(r) − l(l + 1)�2

2μr2

]
R(r) = 0 (3.134)

which is known as the radial part of the Schrödinger equation.

3.9 The Two-Body Problem

In this section we will discuss the energy eigenvalues and the corresponding eigen-
functions for the hydrogen-like atom for which the potential energy variation is
given by

V(r) = − Z q2

4πε0 r
(3.135)

where

Z = 1 for the H-atom problem,
Z = 2 for the singly ionized He-atom problem (He+),
Z = 3 for the doubly ionized Li-atom problem (Li++)

where

r = |r1 − r2| (3.136)

represents the magnitude of the distance between the two particles, i.e., between the
electron and the nucleus. In writing Eq. (3.135) we have used the SI system of units
so that

q ≈ 1.6 × 10−19 C

ε0 ≈ 8.854 × 10−12 MKS units

and V(r) is measured in Joules. In this book we will be almost always using the SI
system of units; however, since CGS units are used in many books, we give below
the corresponding expression for V(r) in CGS units:

V(r) = −e2

r
(3.137)

where e ≈ 4.8 × 10−10 esu represents the electronic charge in CGS units and V(r) is
measured in ergs. We may note that the Coulomb potential described by Eq. (3.135)
depends only on |r1-r2|, i.e., on the magnitude of the distance between the two
particles. Indeed, for a two-body problem, whenever the potential energy depends
only on the magnitude of the distance between the two particles, the problem can
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always be reduced to a one-body problem (describing the internal motion of the
atom) along with a uniform translational motion of the centre of mass. Thus the
internal motion of the atom is described by the wave function ψ(r) and satisfies the
equation

∇2ψ(r) + 2μ

�2
[E − V(r)]ψ(r) = 0 (3.138)

where

r = r1 − r2 (3.139)

represents the relative coordinate and

μ = memN

me + mN
(3.140)

represents the reduced mass with me and mN represent the mass of the electron and
that of the nucleus, respectively. The total energy of the atom is given by

Etotal = E + Ecm (3.141)

where

Ecm = �
2P2

2M
; [M = m1 + m2] (3.142)

represents the uniform translational energy of the center of mass. The different spec-
troscopic lines emitted by an atom correspond to the transition between different
states obtained by solving Eq. (3.138).

3.9.1 The Hydrogen-Like Atom Problem

The radial part of the wave function satisfies the following equation:

1

r2

d

dr

[
r2 dR

dr

]
+ 2μ

�2

[
E + Zq2

4πε0r
− l(l + 1)�2

2μr2

]
R(r) = 0 (3.143)

For R(r) to be well behaved at r=0 and also as r → ∞, we would obtain the
following discrete energy eigenvalues of the problem see Appendix B:

En = −|E1|
n2

(3.144)

where

n = 1, 2, 3, . . .

represents the total quantum number and

|E1| = 1

2
μZ2α2 c2 (3.145)



3.9 The Two-Body Problem 55

represents the magnitude of the ground state energy. Further,

α = q2

4πε0�c
≈ 1

137.036
(3.146)

represents the fine structure constant and c(≈ 2.998 × 108 m/s) represents the speed
of light in free space. For the hydrogen atom

mN = mp ≈ 1.6726 × 10−27 kg

giving

μH ≈ 9.1045 × 10−31 kg

where we have taken me ≈ 9.1094 × 10−31 kg. On the other hand, for the
deuterium atom

mN = mD ≈ 3.3436 × 10−27 kg

giving

μD ≈ 9.1070 × 10−31 kg

Now, for the n = n1 → n = n2 transition, the wavelength of the emitted radiation
is given by

λ = hc

En1 − En2

(3.147)

or

λ = 2 h

μZ2α2c2

[
1

n2
2

− 1

n2
1

]−1

(3.148)

When n2=1, 2, and 3 we have what is known as Lyman series, the Balmer series,
and the Paschen series, respectively. For the n=3 → n=2 transition, the wavelength
of the emitted radiation comes out to be

6565.2 Å and 6563.4 Å

for hydrogen and deuterium, respectively. The corresponding wavelength for the
n=4 → n=2 transition is

4863.1 Å and 4861.7 Å

Such a small difference in the wavelength was first observed by Urey in 1932 which
led to the discovery of deuterium.
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In spectroscopy the energy levels are usually written in wavenumber units which
are obtained by dividing by hc:

Tn = En

hc
= −Z2

n2
R (3.149)

where

R = 2π2μ

ch3

(
q2

4πε0

)2

= μ cα2

2 h
(3.150)

is known as the Rydberg constant. Values of the Rydberg constant for different
hydrogen like atoms are given below:

R = 109677.58 cm−1 (for the hydrogen atom)

109707.56 cm−1 (for the deuterium atom)

109722.40 cm−1 (for the He+-atom)

109728.90 cm−1 (for the Li++ -atom)

The slight difference in the values is because of the difference in the values of the
reduced mass μ.

The normalized radial part of the wave function is given by see Appendix B:

Rnl(ρ) = N e−ρ/2 ρl
1F1(−nr, 2 l + 2, ρ) (3.151)

where nr is known as the radial quantum number and for the 1F1 function to be a
polynomial, nr can take only the following values:

nr = 0, 1, 2, 3, . . . ..

The total quantum number is given by

n = l + 1 + nr

Thus

n = 1, 2, 3, . . .with l = 0, 1, 2, . . . n − 1

The normalization constant is given by

N = γ 3/2

(2 l + 1)!
{

(n + l)!
2n(n − l − 1)!

}1/2

(3.152)

In the above equation

ρ = γ r; γ = 2Z

na0

a0 = �
2

μ (q2/4πε0)

⎫⎪⎪⎬
⎪⎪⎭

(3.153)



3.9 The Two-Body Problem 57

where a0 is the Bohr radius. Further

1F1(a, c, ρ) = 1 + a

c
ρ + a(a + 1)

c (c + 1)

ρ2

2! + · · · (3.154)

represents the confluent hypergeometric function. For given values of n and l, a
would be a negative integer or zero and the above function would be a polynomial.
For example, for n=2, l=0, we will have nr=1:

N = γ 3/2
[

2!
4 × 1

]1/2

= 1√
2

(
Z

a0

)3/2

and
1F1 (−1, 2, ρ) = 1 − ρ

2
Thus

R2 0 (r) = 1√
2

(
Z

a0

)3/2 (
1 − 1

2
ξ

)
e−ξ/2 (3.155)

where

ξ = r

a0
(3.156)

Similarly, one can calculate other wave functions. We give below the first few Rnl(r)

R1 0 (r) = 2

(
Z

a0

)3/2

e−ξ (3.157)

R21 (r) = 1

2
√

6

(
Z

a0

)3/2

ξ e−ξ/2 (3.158)

R30 (r) = 2

3
√

3

(
Z

a0

)3/2 (
1 − 2

3
ξ + 2

27
ξ2

)
e−ξ/3 (3.159a)

R31 (r) = 8

27
√

6

(
Z

a0

)3/2 (
ξ − 1

6
ξ2

)
e−ξ/3 (3.159b)

R32 (r) = 4

81
√

30

(
Z

a0

)3/2

ξ2 e−ξ/3 (3.160)

The wave functions are normalized so that
∞∫

0

|Rnl (r)|2 r2 dr = 1 (3.161)

The complete wave function is given by

ψnlm (r, θ ,φ) = Rnl (r) Ylm (θ ,φ) (3.162)

where Ylm(θ ,φ) are the spherical harmonics tabulated below.
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Looking at Eq. (3.162) we see that the energy depends on the total quantum
number n. Since for each value of n we have values of l ranging from 0 to n–1 and
for each value of l, the m values range from –l to +l there are

n−1∑
l=0

(2 l + 1) = n2

states ψnlm belonging to a particular energy. The degeneracy with respect to m is
due to spherical symmetry of the potential energy function. But the l-degeneracy
is peculiar to the Coulomb field and is, in general, removed for non-Coulomb
potentials.

Further,
Y0,0 = (4π)−1/2 (3.163)

Y1,1 = −
(

3

8π

)1/2

sin θeiφ (3.164)

Y1,0 =
(

3

4π

)1/2

cos θ (3.165)

Y1,−1 =
(

3

8π

)1/2

sin θe−iφ (3.166)

Y2,2 =
(

15

32π

)1/2

sin2 θe2iφ (3.167)

Y2,1 = −
(

15

8π

)1/2

sin θ cos θeiφ (3.168)

Y2,0 =
(

5

16π

)1/2 (
3 cos2 θ − 1

)
(3.169)

Y2,−1 =
(

15

8π

)1/2

sin θ cos θe−iφ (3.170)

Y2,−2 =
(

15

32π

)1/2

sin2 θe−2iφ (3.171)

and so on. The ground state eigenfunction is ψ1,0,0 (n = 1, l = 0, m = 0), the
first excited state (n = 2) is fourfold degenerate ψ2,0,0,ψ2,1,−1,ψ2,1,0, and ψ2,1,1.
Similarly n = 3 state is ninefold degenerate. In general, the states character-
ized by the quantum number n are n2-fold degenerate. The wave functions are
orthonormal, i.e.,∫∫∫

ψ∗
nlmψn′l′m′r2 dr sin θ dθ dφ = δnn′ δll′δmm′ (3.172)

It may be a worthwhile exercise for the reader to see that the above wave functions
satisfy Eq. (3.172) with E given by Eq. (3.144).
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Problems

Problem 3.1 Consider a potential energy function given by the following equation (see Fig. 3.3)

V(x) = ∞ x<0

= 0 0<x<a

= V0 x>a

(3.173)

Assume ψ and dψ
dx to be continuous at x=a and that the wave function vanishes at x=0 and as

x → +∞.
(a) Using the above boundary conditions, solve the one-dimensional Schrödinger equation to obtain

the following transcendental equations which would determine the discrete values of energy:

− ξ cot ξ =
√
α2 − ξ2 (3.174)

where

ξ =
√

2μEa2

�2
and α =

√
2μV0a2

�2
(3.175)

(b) Assuming α = 3π
2μV0a2

�2
= 9π2

show that there will be three bound states (see Fig. 3.3) with

ξ = 2.83595, 5.64146, and 8.33877

V (x)

h2 / 2μ a2

a

V0

∞Fig. 3.3 The first three
eigenvalues and
eigenfunctions of an isolated

well for α=3π ; α =
√

2mV0a2

�2

Problem 3.2 Consider a symmetric potential energy function so that V(– x) = V(x). Show that the solu-
tions are either symmetric or antisymmetric functions of x, i.e., either ψ(– x) = + ψ (x) or ψ (– x)
= – ψ(x)

[Hint: In Eq. (3.22), make the transformation x → –x and assuming V (– x) = V(x) show that
ψ(– x) satisfies the same equation as ψ(x); hence, we must have ψ (– x)=λψ(x). Make the transformation
x → –x again to prove λ = ± 1]
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Problem 3.3 Consider a potential energy function given by the following equation

V(x) =
{

0; |x|< d
2

V0; |x|> d
2

(3.176)

Since the potential energy variation is symmetric about x=0, the solutions are either symmetric or
antisymmetric functions of x. (see Problem 3.2). For E < V0 solve the Schrödinger equation (in the

two regions). Assuming ψ and dψ
dx continuous at x=± d/2 and that the wave function must vanish as

x → ± ∞ obtain the following transcendental equations which would determine the discrete values of
energy

ξ tan ξ =
√
α2 − ξ2 for symmetric states (3.177)

− ξ cot ξ =
√
α2 − ξ2 for antisymmetric states (3.178)

where

ξ =
√

2μE d2

4�2
and α =

√
2μV0 d2

4�2
(3.179)

For a given value of α, the solutions of Eqs. (3.177) and (3.178) will give the bound states for the
potential well problem given by Eq. (3.176). Obviously, for α < π /2 we will have only bound state. For
given values of V0, μ and d, as � → 0, the value of α will become large and we will have a continuum
of states implying that all energy levels are possible. Thus in the limit of � → 0, we have the results of
classical mechanics.

Problem 3.4 Using the results of the previous problem, obtain the energy eigenvalues for a single well
corresponding to the following values of various parameters: μ = me , V0 = 20 eV; d = 5 Å

[Ans: E1 ≈ 1.088 eV; E2 ≈ 4.314 eV, E3 ≈ 9.527 eV, E4 ≈ 16.253 eV]

Problem 3.5 Consider the three-dimensional harmonic oscillator

V = 1

2
μ
(
ω2

1x2 + ω2
2y2 + ω2

3z2
)

(3.180)

Use the method of separation of variables to solve the Schrödinger equation (in Cartesian coordinates)
and show that the energy eigenvalues are given by

E =
(

n1 + 1

2

)
�ω1 +

(
n2 + 1

2

)
�ω2 +

(
n3 + 1

2

)
�ω3 (3.181)

n1, n2, n3 = 0, 1, 2, . . .. The corresponding wave functions are products of the Hermite–Gauss
functions.

Problem 3.6 Calculate the wavenumbers corresponding to the Hα (n = 3 → n = 2) and the Hβ (n = 4
→ n = 2) lines of the Balmer series for the hydrogen atom. What will be the corresponding wavelengths

[Ans: ≈ 6563 Å and 4861 Å]

Problem 3.7 Calculate the wavelengths for the n = 4 → n = 3 transition in the He+ atom

[Ans: ≈ 4686 Å]
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Problem 3.8 Calculate the wavelengths corresponding to the n = 2 → n = 1; n = 3 → n = 1; n = 4 →
n = 1, and n = 5 → n = 1 transitions of the Lyman series of the hydrogen atom

[Ans: ≈ 1216 Å, 1026 Å, 973 Å, 950 Å]

Problem 3.9 Using the expressions for spherical harmonics, write all wave functions corresponding to
the n = 2 and n = 3 states of the hydrogen atom. Show that they are fourfold and ninefold degenerate.
(Actually, if we take into account the spin states, they are 8-fold and 18-fold degenerate)

Problem 3.10 Show that
∞∫
0

R10 (r) R20 (r) r2 dr = 0





Chapter 4
Einstein Coefficients and Light Amplification

4.1 Introduction

In this chapter we discuss interaction of radiation and atoms and obtain the
relationship between absorption and emission processes. We show that for light
amplification a state of population inversion should be created in the atomic system.
We also obtain an expression for the gain coefficient of the system. This is followed
by a discussion of two-level, three-level, and four-level systems using the rate equa-
tion approach. Finally a discussion of various mechanisms leading to broadening of
spectral lines is discussed.

4.2 The Einstein Coefficients

We consider two levels of an atomic system as shown in Fig. 4.1 and let N1 and
N2 be the number of atoms per unit volume present in the energy levels E1 and E2,
respectively. The atomic system can interact with electromagnetic radiation in three
distinct ways:

(a) An atom in the lower energy level E1 can absorb the incident radiation at a fre-
quency ω = (E2 − E1) / � and be excited to E2; this excitation process requires
the presence of radiation. The rate at which absorption takes place from level 1
to level 2 will be proportional to the number of atoms present in the level E1 and
also to the energy density of the radiation at the frequency ω = (E2 − E1) / �.
Thus if u(ω)dω represents the radiation energy per unit volume between ω and
ω + dω then we may write the number of atoms undergoing absorptions per unit
time per unit volume from level 1 to level 2 as

�12 = B12u(ω)N1 (4.1)

where B12 is a constant of proportionality and depends on the energy levels
E1 and E2. Notice here that u(ω) has the units of energy density per frequency
interval.

63K. Thyagarajan, A. Ghatak, Lasers, Graduate Texts in Physics,
DOI 10.1007/978-1-4419-6442-7_4, C© Springer Science+Business Media, LLC 2010
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E1

E2

N1

N2
Fig. 4.1 Two states of an
atom with energies E1 and E2
with corresponding
population densities of N1
and N2, respectively

(b) For the reverse process, namely the deexcitation of the atom from E2 to E1,
Einstein postulated that an atom can make a transition from E2 to E1 through
two distinct processes, namely stimulated emission and spontaneous emis-
sion. In the case of stimulated emission, the radiation which is incident on
the atom stimulates it to emit radiation and the rate of transition to the lower
energy level is proportional to the energy density of radiation at the frequency
ω. Thus, the number of stimulated emissions per unit time per unit volume
will be

�21 = B21u(ω)N2 (4.2)

where B21 is the coefficient of proportionality and depends on the energy
levels.

(c) An atom which is in the upper energy level E2 can also make a sponta-
neous emission; this rate will be proportional to N2 only and thus we have
for the number atoms making spontaneous emissions per unit time per unit
volume

U21 = A21N2 (4.3)

At thermal equilibrium between the atomic system and the radiation field, the
number of upward transitions must be equal to the number of downward transitions.
Hence, at thermal equilibrium

N1B12u(ω) = N2A21 + N2B21u(ω)

or

u(ω) = A21

(N1/N2)B12 − B21
(4.4)

Using Boltzmann’s law, the ratio of the equilibrium populations of levels 1 and 2 at
temperature T is

N1

N2
= e(E2−E1)/kBT = e�ω/kBT (4.5)

where kB(= 1.38 × 10−23J/K) is the Boltzmann’s constant. Hence

u(ω) = A21

B12e�ω/kBT − B21
(4.6)
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Now according to Planck’s law, the radiation energy density per unit frequency
interval is given by (see Appendix F)

u(ω) = �ω3n3
0

π2c3

1

e�ω/kBT − 1
(4.7)

where c is the velocity of light in free space and n0 is the refractive index of the
medium.

Comparing Eqs. (4.6) and (4.7), we obtain

B12 = B21 = B (4.8)

and

A21

B21
= �ω3n3

0

π2c3
(4.9)

Thus the stimulated emission rate per atom is the same as the absorption rate per
atom and the ratio of spontaneous to stimulated emission coefficients is given
by Eq. (4.9). The coefficients A and B are referred to as the Einstein A and B
coefficients.

At thermal equilibrium, the ratio of the number of spontaneous to stimulated
emissions is given by

R = A21N2

B21N2u(ω)
= e�ω/kBT − 1 (4.10)

Thus at thermal equilibrium at a temperature T, for frequencies, ω >> kBT/�,
the number of spontaneous emissions far exceeds the number of stimulated
emissions.

Example 4.1 Let us consider an optical source at T = 1000 K. At this temperature

kBT

�
= 1.38 × 10−23(J/K) × 103(K)

1.054 × 10−34(Js)
≈ 1.3 × 1014 s−1

Thus for ω >> 1.3 × 1014 s−1, the radiation would be mostly due to spontaneous emission. For λ ∼=
500 nm, ω ≈ 3.8 × 1015 s−1 and

R ≈ e29.2 ≈ 5.0 × 1012

Thus at optical frequencies the emission from a hot body is predominantly due to spontaneous transitions
and hence the light from usual light sources is incoherent.

We shall now obtain the relationship between the Einstein A coefficient and the
spontaneous lifetime of level 2. Let us assume that an atom in level 2 can make
a spontaneous transition only to level 1. Then since the number of atoms making
spontaneous transitions per unit time per unit volume is A21N2, we may write the
rate of change of population of level 2 with time due to spontaneous emission as

dN2

dt
= −A21N2 (4.11)
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the solution of which is

N2(t) = N2(0)e−A21t (4.12)

Thus the population of level 2 reduces by 1/e in a time tsp = 1/A21 which is called
the spontaneous lifetime associated with the transition 2→1.

Example 4.2 In the 2P → 1S transition in the hydrogen atom, the lifetime of the 2P state for spontaneous
emission is given by

tsp = 1

A21
≈ 1.6 × 10−9s

Thus A21 ≈ 6 × 108s−1

The frequency of the transition is given by

ω ≈ 1.55 × 1016s−1 (�ω ≈ 10.2 eV)

Thus
B21 = π2c3

�ω3n3
0

A21 ≈ 4.1 × 1020 m3/Js2

where we have assumed n0≈ 1. (Note the unit for B21.)

Now, if one observes the spectrum of the radiation due to the spontaneous
emission from a collection of atoms, one finds that the radiation is not strictly
monochromatic but is spread over a certain frequency range. Similarly, if one mea-
sures the absorption by a collection of atoms as a function of frequency, one again
finds that the atoms are capable of absorbing not just a single frequency but radi-
ation over a band of frequencies. This implies that energy levels have widths and
the atoms can interact with radiation over a range of frequencies but the strength of
interaction is a function of frequency (see Fig. 4.2). This function that describes the
frequency dependence is called the lineshape function and is represented by g(ω).
The function is usually normalized according to

∫
g(ω)dω = 1 (4.13)

Explicit expressions for g(ω) will be obtained in Section 4.5.

ΔE

ω

g(ω)

(a) (b)

Fig. 4.2 (a) Because of the finite lifetime of a state each state has a certain width so that the
atom can absorb or emit radiation over a range of frequencies. The corresponding lineshape is
shown in (b)
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From the above we may say that out of the total N2 and N1 atoms per unit volume,
only N2 g(ω)dω and N1 g(ω)dω atoms per unit volume will be capable of interacting
with radiation of frequency lying between ω and ω + dω. Hence the total number of
stimulated emissions per unit time per unit volume will now be given by

�21 =
∫

B21u(ω)N2g(ω)dω

= N2
π2c3

�n3
0tsp

∫
u(ω)g(ω)

ω3
dω

(4.14)

where we have used Eq. (4.9) and A21 = 1/tsp.
We now consider two specific cases.

(1) If the atoms are interacting with radiation whose spectrum is very broad com-
pared to that of g(ω) (see Fig. 4.3a), then one may assume that over the region of
integration where g(ω) is appreciable u(ω)/ω3 is essentially constant and thus
may be taken out of the integral in Eq. (4.14). Using the normalization integral,
Eq. (4.14) becomes

�21 = N2
π2c3

�ω3n3
0tsp

u(ω) (4.15)

where ω now represents the transition frequency. Equation (4.15) is consistent
with Eq. (4.2) if we use Eq. (4.9) for B21. Thus Eq. (4.15) represents the rate of
stimulated emission per unit volume when the atom interacts with broadband
radiation.

(2) We now consider the other extreme case in which the atom is interacting with
near-monochromatic radiation. If the frequency of the incident radiation is ω′,
then the u(ω) curve will be extremely sharply peaked at ω = ω′ as compared to
g(ω) (see Fig. 4.3b) and thus g(ω)/ω3 can be taken out of the integral to obtain

ω

u(ω)

g(ω)

ω

g(ω)

u(ω)

(a) (b)

Fig. 4.3 (a) Atoms characterized by the lineshape function g(ω) interacting with broadband
radiation. (b) Atoms interacting with near-monochromatic radiation
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�21 = N2
π2c3

�ω′3n3
0tsp

g(ω′)
∫

u(ω)dω

= N2
π2c3

�ω′3n3
0tsp

g(ω′)u

(4.16)

where

u =
∫

u(ω)dω (4.17)

is the energy density of the incident near-monochromatic radiation. It may be
noted that u has dimensions of energy per unit volume unlike u(ω) which has
the dimensions of energy per unit volume per unit frequency interval. Thus
when the atom described by a lineshape function g(ω) interacts with near-
monochromatic radiation at frequency ω′, the stimulated emission rate per unit
volume is given by Eq. (4.16).

In a similar manner, the number of stimulated absorptions per unit time per unit
volume will be

�12 = N1
π2c3

�ω′3n3
0tsp

g(ω′)u (4.18)

4.2.1 Absorption and Emission Cross Sections

The rates of absorption and stimulated emission can also be characterized in terms
of the parameters referred to as absorption and emission cross sections. To do this,
we first notice that the energy density u and the intensity I of the propagating
electromagnetic wave are related through the following equation (see Section 2.2):

u = I

c
/

n0
= n0I

c
(4.19)

The number of photons crossing a unit area per unit time also referred to as the
photon flux φ is related to the intensity I through the following equation:

φ = I

�ω
(4.20)

Thus Eq. (4.18) can be written as

�12 = N1
π2c2

ω2n2
0tsp

g(ω)φ

= σaN1φ

(4.21)

where σ a represents the absorption cross section (with dimensions of area) for this
transition and is given by
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σa = π2c2

ω2n2
0tsp

g(ω) (4.22)

Similarly we can define the emission cross section σ e through the rate �21. Since
�12 and �21 are equal, the absorption and emission cross sections are equal.

Note that the absorption and emission cross sections are functions of frequency
and are related to the line broadening function g(ω) and the lifetime tsp.

The peak emission cross sections for some of the important laser transitions are
given in Table 4.1.

Table 4.1 Table giving transition cross section for some important laser lines

Laser transition Wavelength (nm) Cross section (m2) Lifetime (μs)

He–Ne laser 632.8 5.8 × 10–17 30 × 10–3

Argon ion 514.5 2.5 × 10–17 6 × 10–3

Nd:YAG 1064 2.8 × 10–23 230

Example 4.3 Consider the transition in neon atom at the wavelength of 1150 nm. This transition is
Doppler broadened with a linewidth of 900 MHz and the upper state spontaneous lifetime is 100 ns.
Using Eq. (4.22) we can calculate the peak absorption cross section. If we assume g(ω0) ∼ 1/�ω, we
obtain σa ∼ 5.8 × 10−16 m2

4.3 Light Amplification

We next consider a collection of atoms and let a near-monochromatic radiation of
energy density u at frequency ω′ pass through it. We shall now obtain the rate of
change of intensity of the radiation as it passes through the medium.

Let us consider two planes P1 and P2 of area S situated at z and z + dz, z being the
direction of propagation of the radiation (see Fig. 4.4). If I(z) and I(z+dz) represent
the intensity of the radiation at z and z + dz, respectively, then the net amount of
energy entering the volume Sdz between P1 and P2 will be

[I(z) − I(z + dz)]S = [I(z) − I(z) − dI

dz
dz]S

= −dI

dz
Sdz

(4.23)

Iν( ) Iν( +d )

S
Fig. 4.4 Propagation of
radiation at frequency ω′
through a medium leading to
a change of intensity with
propagation



70 4 Einstein Coefficients and Light Amplification

This must be equal to the net energy absorbed by the atoms in the volume Sdz. The
energy absorbed by the atoms in going from level 1 to level 2 will be �12Sdz�ω′
where �ω′ is the energy absorbed when an atom goes from level 1 to level 2.
Similarly the energy released through stimulated emissions from level 2 to level 1
will be �21Sdz�ω′. We shall neglect the energy arising from spontaneous emission
since it appears over a broad frequency range and is also emitted in all directions.
Thus the fraction of the spontaneous emission which would be at the radiation fre-
quency ω′ and which would be traveling along the z-direction will be very small.
Thus the net energy absorbed per unit time in the volume Sdz will be

(�12 − �21)�ω′Sdz = π2c3

�ω′3n3
0

1

tsp
ug(ω′)(N1 − N2)�ω′Sdz

= π2c3

ω′2n3
0tsp

ug(ω′)(N1 − N2)Sdz

(4.24)

Now, the energy density u and the intensity of radiation I are related through
Eq. (4.19). Thus using Eqs. (4.23) and (4.24) we obtain

dI

dz
= −αI (4.25)

where

α = π2c2

ω2n2
0tsp

g(ω)(N1 − N2) = −γ (4.26)

and we have removed the prime on ω with the understanding that ω represents the
frequency of the incident radiation. Hence if N1 > N2, α is positive (and γ is nega-
tive) and the intensity decreases with z leading to an attenuation of the beam. On the
other hand, if N2 > N1 then α is negative (and γ is positive) the beam is amplified
with z. Figure 4.5 shows typical plots of α(ω) versus ω for N1 > N2 and N2 > N1.
Obviously the frequency dependence of α will be almost the same as that of the
lineshape function g(ω). The condition N2 > N1 is called population inversion and it
is under this condition that one can obtain optical amplification.

In Eq. (4.26) if (N1 – N2) is independent of I, then we have from Eq. (4.25)

I(z) = I(0)e−αz (4.27)

i.e., an exponential attenuation when N1 > N2 and an exponential amplification when
N2 > N1. We should mention that such an exponential decrease or increase of inten-
sity is obtained for low intensities; for large intensities saturation sets in and (N1 –
N2) is no longer independent of I (see Chapter 5).

Example 4.3 We consider a ruby laser (see Chapter 11) with the following characteristics:

n0 = 1.76, tsp = 3 × 10−3s, λ0 = 6943Å

g(ω0) ≈ 1/�ω ≈ 1.1 × 10−12s
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α (ω)

N1 < N2

N1 > N2

ω

Fig. 4.5 A typical variation
of α(ω) with w for an
amplifying medium
corresponding to N2 > N1
(lower curve) and for an
attenuating medium with
N2 < N1 (upper curve)

where we have assumed that for the normalized lineshape function1

g(ω0) ≈ 1

�ω
(4.28)

where �ω represents the full width at half maximum of the lineshape function and ω0 represents the
frequency at the centre of the line. At thermal equilibrium at 300 K,

N2

N1
= e−hv/kBT ≈ 10−30 ≈ 0

A typical chromium ion density in a ruby laser is about 1.6 × 1019 cm–3 and since at 300 K most atoms
are in the ground level, the absorption coefficient at the centre of the line would be

α = 1.4 × 10−19(N1 − N2) ≈ 1.4 × 10−19 × 1.6 × 1019

≈ 2.2 cm−1

If a population inversion density of 5 × 1016 cm–3 is generated (which represents a typical value) then
the gain coefficient will be

−α ≈ 1.4 × 10−19 × 5 × 1016

≈ 7 × 10−3 cm−1

Example 4.4 As another example we consider the Nd:YAG laser (see Chapter 11) for which

n0 = 1.82, tsp = 0.23 × 10−3s, λ0 = 1.06 μm

�v = �ω

2π
≈ 1

2πg(ω0)
≈ 1.95 × 1011 Hz

If we want a gain of 1 m–1, the inversion required can be calculated from Eq. (4.26) as

(N2 − N1) = 4v2n2
0tspα

c2 g(ω)

≈ 3.3 × 1015 cm−3

1We will show in Section 4.5 that g(ω0)�ω equals (2/π ) and (4 ln 2/π )1/2 for Lorentzian and
Gaussian lineshape functions, respectively.
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4.4 The Threshold Condition

In the last section we saw that in order that a medium be capable of amplifying
incident radiation, one must create a state of population inversion in the medium.
Such a medium will behave as an amplifier for those frequencies which fall within
its linewidth. In order to generate radiation, this amplifying medium is placed in an
optical resonator which consists of a pair of mirrors facing each other much like in a
Fabry–Perot etalon (see Fig. 4.6). Radiation which bounces back and forth between
the mirrors is amplified by the amplifying medium and also suffers losses due to
the finite reflectivity of the mirrors and other scattering and diffraction losses. If
the oscillations have to be sustained in the cavity then the losses must be exactly
compensated by the gain. Thus a minimum population inversion density is required
to overcome the losses and this is called the threshold population inversion.

Gain coefficient γ
Attenuation coefficient α

I0

dR1 R2

R2 I0 e
2(γ−α l)d R2 I0 e

(γ−α l)d

I0 e
(γ−α l)d

R2 R1 I0 e
2(γ−α l)d

Fig. 4.6 A typical optical
resonator consisting of a pair
of mirrors facing each other.
The active medium is placed
inside the cavity

In order to obtain an expression for the threshold population inversion, let d rep-
resent the length of the resonator and let R1 and R2 represent the reflectivities of the
mirrors (see Fig. 4.6). Let α1 represent the average loss per unit length due to all loss
mechanisms (other than the finite reflectivity) such as scattering loss and diffraction
loss due to finite mirror sizes. Let us consider a radiation with intensity I0 leaving
mirror M1. As it propagates through the medium and reaches the second mirror, it
is amplified by eγ d and also suffers a loss of e−αld; for an amplifying medium γ

is positive and eγ d > 1. The intensity of the reflected beam at the second mirror
will be I0R2e(γ−αl)d. A second passage through the resonator and a reflection at the
first mirror leads to an intensity for the radiation after one complete round trip of
I0R1R2e2(γ−αl)d. Hence for laser oscillation to begin

R1R2e2(γ−αl)d ≥ 1 (4.29)

the equality sign giving the threshold value for α (i.e., for population inversion).
Indeed, when the laser is oscillating in a steady state with a continuous wave oscil-
lation, then the equality sign in Eq. (4.29) must be satisfied. If the inversion is
increased then the LHS becomes greater than unity; this implies that the round trip
gain is greater than the round trip loss. This would result in an increasing intensity
inside the laser till saturation effects take over, which would result in a decrease
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in the inversion (we shall explicitly show saturation effects in Chapter 5). Thus the
gain is brought back to its value at threshold.

Equation (4.29) can be written as

γ ≥ α1 − 1

2d
ln R1R2 (4.30)

This RHS of Eq. (4.30) depends on the passive cavity parameters only. This can
be related to the passive cavity lifetime tc which is the time in which energy in
the cavity reduces by a factor 1/e. In the absence of amplification by the medium,
the intensity at a point reduces by a factor R1R2e−2α1d = e−(2α1d−ln R1R2) in a
time corresponding to one round-trip time. One round-trip time corresponds to
t = 2d(c/n0) = 2dn0/c. Hence if the intensity reduces as e−t/tc , then in a time
t = 2dn0/c, the factor by which the intensity will be reduced is e−2dn0/ctc . Thus

e−(2α1d−ln R1R2) = e−2dn0/ctc

or
1

tc
= c

2dn0
(2α1d − ln R1R2) (4.31)

Using Eqs. (4.26) and (4.31), Eq. (4.30) becomes

(N2 − N1) ≥ 4v2n3
0

c3

tsp

tc

1

g(ω)
(4.32)

Corresponding to the equality sign, we have the threshold population inversion
density required for the oscillation of the laser.

According to Eq. (4.32), in order to have a low threshold value of the population
inversion, the following conditions must hold:

(a) The value of tc should be large, i.e., the cavity losses must be small.
(b) Since g(ω) is normalized according to Eq. (4.13) the peak value of g(ω) will

be inversely proportional to the width �ω of the g(ω) function [see Eq. (4.28)].
Thus smaller widths give larger values of g(ω) which implies lower threshold
values of (N2 − N1). Also since the largest g(ω) appears at the line centre, the
resonator mode which lies closest to the line centre will reach threshold first
and begin to oscillate.

(c) Smaller values of tsp (i.e., strongly allowed transitions) also lead to smaller
values of threshold inversion. At the same time for smaller relaxation times
(tsp), larger pumping power will be required to maintain a given population
inversion. In general, population inversion is more easily obtained on transitions
which have longer relaxation times.

(d) The value of g(ω) at the centre of the line is inversely proportional to �ω

which, for example, in the case of Doppler broadening is proportional to ω (see
Section 4.5). Thus the threshold population inversion increases approximately
in proportion to ω3. Thus it is much easier to obtain laser action at infrared
wavelengths than in the ultraviolet region.
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Example 4.5 We first consider a ruby laser2 which has the following typical parameters:

λ0 = 6943Å, tsp ≈ 3 × 10−3s, n0 = 1.76, d = 5 cm

R1 = R2 = 0.9, α1 ≈ 0

g(ω0) = 1

�ω
= 1

2π�v
≈ 1.1 × 10−12s

Thus for the above values
tc ≈ 2.8 × 10−9s

and
(N2 − N1)th ≈ 1.5 × 1017 cm−3

Typical Cr+3 ion densities are about 1.6×1019 cm–3. Thus the fractional excess population is very small.
The above population inversion corresponds to a gain of about 0.02 cm−1 or to 0.09 dB/cm.

Example 4.6 As another example, we consider a He–Ne laser with the following typical characteristics:

λ0 = 6328Å, tsp = 10−7 s, n0 ≈ 1, d = 20 cm

R1 = R2 = 0.98, α1 ≈ 0

�v ≈ 109Hz

g(ω0) ≈ 1

2π�v
≈ 0.16 × 10−9s

for the above values
tc ≈ 3.3 × 10−8s

and
(N2 − N1)th ≈ 6.24 × 108 cm−3

4.5 Line Broadening Mechanisms

As we mentioned in Section 4.2 the radiation coming out of a collection of atoms
making transitions between two energy levels is never perfectly monochromatic.
This line broadening is described in terms of the lineshape function g(ω) that was
introduced in Section 4.2. In this section, we shall discuss some important line
broadening mechanisms and obtain the corresponding g(ω). A study of line broad-
ening is extremely important since it determines the operation characteristics of
the laser such as the threshold population inversion and the number of oscillating
modes.

The various broadening mechanisms can be broadly classified as homogeneous
or inhomogeneous broadening. In the case of homogenous broadening (like natural
or collision broadening) the mechanisms act to broaden the response of each atom in
an identical fashion, and for such a case the probability of absorption or emission of
radiation of a certain frequency is the same for all atoms in the collection. Thus there

2Ruby laser active medium consists of Cr+3-doped ion Al2O3 and is an example of a three level
laser. More details regarding the ruby laser are given in Section 10.2.
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is nothing which distinguishes one group of atoms from another in the collection. In
the case of inhomogeneous broadening, different groups of atoms are distinguished
by different frequency responses. Thus, for example, in Doppler broadening groups
of atoms having different velocity components are distinguishable and they have
different spectral responses. Similarly broadening caused by local inhomogeneities
of a crystal lattice acts to shift the central frequency of the response of individual
atoms by different amounts, thereby leading to inhomogeneous broadening. In the
following, we shall discuss natural, collision, and Doppler broadening.

4.5.1 Natural Broadening

We have seen earlier that an excited atom can emit its energy in the form of sponta-
neous emission. In order to investigate the spectral distribution of this spontaneous
radiation, we recall that the rate of decrease of the number of atoms in level 2 due
to transitions from level 2 to level 1 is [see Eq. (4.11)]

dN2

dt
= −A21N2 (4.33)

For every transition an energy �ω0 = E2−E1 is released. Thus the energy emitted
per unit time per unit volume will be

W(t) =
∣∣∣∣
dN2

dt

∣∣∣∣ �ω0

= N20A21�ω0e−A21t
(4.34)

where we have used Eqs. (4.33) and (4.12). Since Eq. (4.34) describes the variation
of the intensity of the spontaneously emitted radiation, we may write the electric
field associated with the spontaneous radiation as

E(t) = E0 eiω0te−t/2tsp (4.35)

where tsp = 1/A21 and we have used the fact that intensity is proportional to
the square of the electric field. Thus the electric field associated with spontaneous
emission decreases exponentially.

In order to calculate the spectrum associated with the wave described by the
Eq. (4.35), we first take the Fourier transform:

Ẽ(ω) =
∫ ∞

−∞
E(t) e−iωtdt

= E0

∫ ∞

0
exp

[
i (ω0 − ω) t − t/2tsp

]
dt

= E0
1

1
2tsp

+ i(ω − ω0)

(4.36)



76 4 Einstein Coefficients and Light Amplification

where t= 0 is the time at which the atoms start emitting radiation. The power spec-
trum associated with the radiation will be proportional to |E0(ω)|2. Hence we may
write the lineshape function associated with the spontaneously emitted radiation as

g(ω) = K
1

(ω − ω0)2 + 1/4t2sp

where K is a constant of proportionality which is determined such that g(ω) satisfies
the normalization condition given by Eq. (4.13). Substituting for g(ω) in Eq. (4.13)
and integrating, one can show that

K = 1

2π tsp

Thus the normalized lineshape function is

g(ω) = 2tsp

π

1

1 + 4(ω − ω0)2t2sp
(4.37)

The above functional form is referred to as a Lorentzian and is plotted in Fig. 4.7.
The full width at half maximum (FWHM) of the Lorentzian is

�ωN = 1

tsp
(4.38)

Thus, Eq. (4.37) can also be written as

g(ω) = 2

π�ωN

1

1 + 4(ω − ω0)2/ (�ωN)
2

(4.39)

A more precise derivation of Eq. (4.39) is given in Appendix G.

Example 4.7 The spontaneous lifetime of the sodium level leading to a D1 line (λ = 589.1nm) is 16 ns.
Thus the natural linewidth (FWHM) will be

�vN = 1

2π tsp
≈ 10 MHz (4.40)

which corresponds to �λ ≈ 0.001 nm.

Gaussian

Lorentzian

ω

Fig. 4.7 The Lorentzian and
Gaussian lineshape functions
having the same FWHM
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4.5.2 Collision Broadening

In a gas, random collisions occur between the atoms. In such a collision process, the
energy levels of the atoms change when the atoms are very close due to their mutual
interaction. Let us consider an atom which is emitting radiation and which collides
with another atom. When the colliding atoms are far apart, their energy levels are
unperturbed and the radiation emitted is purely sinusoidal (if we neglect the decay
in the amplitude due to spontaneous emission). As the atoms come close together
their energy levels are perturbed and thus the frequency of emission changes during
the collision time. After the collision the emission frequency returns to its original
value.

If τc represents the time between collisions and �τc the collision time then one
can obtain order of magnitude expressions as follows:

�τc ≈ interatomic distance

average thermal velocity

≈ 1
◦
A

500 m/s
≈ 2 × 10−13s

τc ≈ mean free path

average thermal velocity
≈ 5 × 10−4 m

500 m/s

≈ 10−6s

Thus the collision time is very small compared to the time between collisions and
hence the collision may be taken to be almost instantaneous. Since the collision time
�τc is random, the phase of the wave after the collision is arbitrary with respect
to the phase before the collision. Thus each collision may be assumed to lead to
random phase changes as shown in Fig. 4.8. The wave shown in Fig. 4.8 is no longer
monochromatic and this broadening is referred to as collision broadening.

In order to obtain the lineshape function for collision broadening, we note that
the field associated with the wave shown in Fig. 4.8 can be represented by

t

Fig. 4.8 The wave coming
out of an atom undergoing
random collisions at which
there are abrupt phase
changes
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E(t) = E0 ei(ω0t+φ) (4.41)

where the phase φ remains constant for t0 ≤ t ≤ t0 + τc and at each collision the
phase φ changes randomly.

Since the wave is sinusoidal between two collisions, the spectrum of such a wave
will be given by

Ẽ(ω) = 1

2π

∫ t0+τc

t0
E0 ei(ω0t+φ) e−iωtdt

= 1

2π
E0 ei[(ω0−ω)t0+φ] ei(ω0−ω)τc − 1

i(ω0 − ω)

(4.42)

The power spectrum of such a wave will be

I(ω)∞ ∣∣Ẽ(ω)
∣∣2 =

(
E0

π

)2 sin2 [
(ω − ω0)τc/2

]

(ω − ω0)2
(4.43)

Now, at any instant, the radiation coming out of the atomic collection would be
from atoms with different values of τc. In order to obtain the power spectrum we
must multiply I(ω) by the probability P(τc)dτc that the atom suffers a collision in
the time interval between τc and τc + dτc and integrate over τ c from 0 to ∞. It can
be shown from kinetic theory that (see, e.g., Gopal (1974))

P(τc)dτc =
(

1

τ0

)
e−τc/τ0 dτc (4.44)

where τ0 represents the mean time between two collisions. Notice that

∫ ∞

0
P(τc)dτc = 1,

∫ ∞

0
τcP(τc)dτc = τ0 (4.45)

Hence the lineshape function for collision broadening will be

g(ω) ∝
∫ ∞

0
I(ω) P(τc)dτc

=
(

E0

π

)2 1

2

1

(ω − ω0)2 + 1/τ 2
0

which is again a Lorentzian. The normalized lineshape function will thus be

g(ω)dω = τ0

π

1

1 + (ω − ω0)2τ 2
0

dω (4.46)

and the FWHM will be
�ωc = 2/τ0 (4.47)

Thus a mean collision time of ∼ 10−6 s corresponds to a �v of about 0.3 MHz.
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The mean time between collisions depends on the mean free path and the aver-
age speed of the atoms in the gas which in turn would depend on the pressure and
temperature of the gas as well as the mass of the atom. An approximate expression
for the average collision time is

τ0 = 1

8π

(
2

3

)1/2 (MkBT)1/2

pa2

where M is the atomic mass, a is the radius of the atom (assumed to be a hard
sphere), and p is the pressure of the gas.

Example 4.8 In a He–Ne laser the pressure of gas is typically 0.5 torr. (Torr is a unit of pressure
and 1 Torr = 1 mm of Hg). If we assume a ∼ 0.1 nm, T = 300 K, M = 20 × 1.67 × 10–27 kg , we
obtain τ0 ∼ 580 ns.

Problem 4.1 In the presence of both natural and collision broadening, in addition to the sudden phase
changes at every collision, there will also be an exponential decay of the field as represented by Eq.
(4.35). Show that in such a case, the FWHM is given by

�ω = 1

tsp
+ 2

t0
(4.48)

4.5.3 Doppler Broadening

In a gas, atoms move randomly and when a moving atom interacts with electromag-
netic radiation, the apparent frequency of the wave is different form that seen from a
stationary atom; this is called the Doppler effect and the broadening caused by this
is termed Doppler broadening.

In order to obtain g(ω) for Doppler broadening, we consider radiation of fre-
quency ω passing through a collection of atoms which have a resonant frequency
ω0 and which move randomly (we neglect natural and collision broadening in this
discussion). In order that an atom may interact with the incident radiation, it is nec-
essary that the apparent frequency seen by the atom in its frame of reference be
ω0. If the radiation is assumed to propagate along the z-direction, then the apparent
frequency seen by the atom having a z-component of velocity vz will be

ω̃ = ω(1 − vz

c
) (4.49)

Hence for a strong interaction, the frequency of the incident radiation must be such
that ω̃ = ω0. Thus

ω = ω0(1 − vz

c
)−1 ≈ ω0(1 + vz

c
) (4.50)

where we have assumed vz << c. Thus the effect of the motion is to change the
resonant frequency of the atom.
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In order to obtain the g(ω) due to Doppler broadening, we note that the proba-
bility that an atom has a z component of velocity lying between vz and vz + dvz is
given by the Maxwell distribution

P(vz) dvz =
(

M

2πkBT

) 1
2

exp

(
− Mv2

z

2kBT

)
dvz (4.51)

where M is the mass of the atom and T the absolute temperature of the gas. Hence
the probability g(ω)dω that the transition frequency lies between ω and ω + dω is
equal to the probability that the z component of the velocity of the atom lies between
vz and vz + dvz where

vz = (ω − ω0)

ω0
c

Thus

g(ω)dω = c

ω0

(
M

2πkBT

) 1
2

exp

[
− Mc2

2kBT

(ω − ω0)2

ω2
0

]
dω (4.52)

which corresponds to a Gaussian distribution. The lineshape function is peaked at
ω0, and the FWHM is given by

�ωD = 2ω0

(
2kBT

Mc2
ln 2

) 1
2

(4.53)

In terms of �ωD Eq. (4.52) can be written as

g(ω)d(ω) = 2

�ωD

(
ln 2

π

) 1
2

exp

[
−4 ln 2

(ω − ω0)2

(�ωD)2

]
dω (4.54)

Figure 4.7 shows a comparative plot of a Lorentzian and a Gaussian line having the
same FWHM. It can be seen that the peak value of the Gaussian is more and that the
Lorentzian has a much longer tail. As an example, for the D1 line of sodium λ ∼=
589.1 nm at T = 500 K, �vD = 1.7 × 109 Hz which corresponds to �λD ≈ 0.02Å.
For neon atoms corresponding to λ = 6328Å (the red line of the He–Ne laser) at
300 K, we have �vD ≈ 1600 MHz where we have used MNe ≈ 20×1.67×10−27 kg.
For the vibrational transition of the carbon dioxide molecule leading to the 10.6 μm
radiation, at T = 300 K, we have

�vD ≈ 5.6 × 107Hz ⇒ �λD ≈ 0.19Å

where we have used MCO2 ≈ 44 × 1.67 × 10−27kg
In all the above discussions we have considered a single broadening mechanisms

at a time. In general, all broadening mechanisms will be present simultaneously and
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the resultant lineshape function has to be evaluated by performing a convolution of
the different lineshape functions.

Problem 4.2 Obtain the lineshape function in the presence of both natural and Doppler broadening

Solution From Maxwell’s velocity distribution, the fraction of atoms with their center frequency lying
between ω′ and ω′ + dω′ is given by

f (ω′)dω′ =
(

M

2πkBT

) 1
2 c

ω0
exp

[
− Mc2

2kBT

(ω′ − ω0)2

ω2
0

]
dω′ (4.55)

These atoms are characterized by a naturally broadened lineshape function described by

h(ω − ω′) = 2tsp

π

1

1 + (ω − ω′)24t2sp
(4.56)

Thus the resultant lineshape function will be given by

g(ω) =
∫

f (ω′)h(ω − ω′)dω′ (4.57)

which is nothing but the convolution of f (ω) with h(ω)

Example 4.9 Neodymium doped in YAG and in glass are two very important lasers. The host YAG is
crystalline while glass is amorphous. Thus the broadening in YAG host is expected to be much smaller
than in glass host. In fact the linewidth at 300 K for Nd:YAG is about 120 GHz while that for Nd:glass is
about 5400 GHz.

4.6 Saturation Behavior of Homogeneously
and Inhomogeneously Broadened Transitions

In Section 4.5 we discussed the various line broadening mechanisms belong-
ing to both homogeneous and inhomogeneous broadenings. In this section, we
briefly discuss the difference in saturation behavior between the two kinds of
broadenings.

Let us first consider a homogeneously broadened laser medium placed inside a
resonator and let us assume that there is a resonator mode coinciding exactly with
the center of the line. Initially as the pumping rate is below threshold, the gain in the
resonator is less than the losses and the laser does not oscillate. As the pumping rate
is increased, first to reach threshold is the mode at the center as it has the minimum
threshold. We have seen earlier that when the laser is oscillating in steady state,
the gain is exactly equal to the loss at the oscillating frequency. Thus at steady
state even when the pumping power is increased beyond threshold, the gain at the
oscillating frequency does not increase beyond the threshold value; this is because of
the fact that the losses remain constant. In fact, increasing the pumping power will
be accompanied by an increase in the power in the mode which in turn would be
accompanied by a stronger saturation of the laser transition, thus reducing the gain
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at the oscillation frequency again to the value at threshold. It may be mentioned that
the gain could exceed the threshold value on a transient basis but not under steady
state operation.

Now in a homogenously broadened transition all the atoms have identical line-
shapes peaked at the same frequency. Thus all atoms interact with the same
oscillating mode and the increase in pumping power cannot increase the gain at
other frequencies and thus the laser will oscillate only in a single longitudinal mode
(see Fig. 4.9). This observation has been verified experimentally on some homo-
geneously broadened transitions such as Nd:YAG laser. The fact that a laser with
homogeneously broadened transition can oscillate in many modes is due to spatial
hole burning. This can be understood from the fact that each mode is a standing
wave pattern between the resonator mirrors. Thus there are regions of high popu-
lation inversion (at the nodes of the field where the field amplitude is very small)
and regions of saturated population inversion (at the antinodes of the field where the
field has maximum value). If one considers another mode which has (at least over
some portions) antinodes at the nodes corresponding to the central oscillating mode,
then this mode can draw energy from the atoms and, if the loss can be compensated
by gain, this mode can also oscillate.

In contrast to the case of homogeneous broadening, if the laser medium is inho-
mogeneouly broadened then a given mode at a central frequency can interact with
only a group of atoms whose response curve contains the mode frequency (see
Fig. 4.10). Thus if the pumping is increased beyond threshold, the gain at the
oscillating frequency remains fixed but the gain at other frequencies can go on
increasing (see Fig. 4.10). Thus, in an inhomogeneously broadened line one can
have multimode oscillation and as one can see from Fig. 4.10. Each oscillating mode
“burns holes in the frequency space” of the gain profile. These general conclusions
regarding homogeneously and inhomogeneoulsy broadened lines have been verified
experimentally.

ω

Gain curve
Oscillating

mode

Loss line

Fig. 4.9 In a homogeneously
broadened transition, gain can
compensate loss at only one
oscillating mode leading to
single longitudinal mode
operation
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Gain curve

ω

Oscillating
modes

Loss line

Fig. 4.10 As the pumping is
increased beyond threshold,
under steady-state operation
the gain at the various
oscillating frequencies cannot
increase beyond the threshold
value but the gain at other
frequencies may be much
above the threshold value.
The various frequencies are
said to burn holes in the gain
curve

Various techniques for single longitudinal mode oscillation of inhomogeneously
broadened lasers are discussed in Chapter 7.

Let us now consider an inhomogeneously broadened laser medium and let us
assume that only a single mode exists within the entire gain profile. Let us also
assume to begin with that the frequency of the mode does not coincide with the line
center and that we slowly change the frequency of the mode so that it passes through
the center of the profile to the other side of the peak in the gain profile. In order to
determine the variation of the power output as the frequency is scanned through the
line center, we observe that a mode of the laser is actually made up of two traveling
waves traveling along opposite directions along the resonator axis. Thus when the
mode frequency does not coincide with the line center, the wave travelling from left
to right in the resonator will interact with those atoms whose z-directed velocities
are near to [see Eq. (4.49)]:

vz = ω − ω21

ω21
c (4.58)

while the wave moving from right to left would interact with those atoms whose
z-directed velocity would be

vz = −ω − ω21

ω21
c (4.59)

Thus there are two groups of atoms with equal and opposite z-directed velocities
which are strongly interacting with the mode. As the frequency of the mode is tuned
to the center these groups of atoms change with the frequency, and at the line center,
the mode can interact only with the groups of atoms having a zero value of z-directed
velocity. Thus the power output must decrease slightly when the mode frequency is
tuned through the line center. In fact, this has been observed experimentally and is
referred to as the Lamb dip – the presence of a Lamb dip in a He–Ne laser was
shown by McFarlane, Bennet, and Lamb (1963).
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4.7 Quantum Theory for the Evaluation of the Transition Rates
and Einstein Coefficients

For the calculation of transition rates we consider the atom to be in the presence of
an oscillating electric field given by

E(t) = ê E0 cosωt (4.60)

which is switched on at t = 0; ê represents the unit vector along the direction of the
electric field. The frequency ω is assumed to be very close to the resonant frequency[
(E2 − E1) /�

]
corresponding to the transition from state 1 to 2 (see Fig. 4.1). We

will show that the presence of the higher excited states can be neglected because of
the corresponding transition frequencies are far away from ω. In the presence of the
electric field, the time-dependent Schrödinger equation becomes

i�
∂�

∂t
= (

H0 + H′)� (4.61)

where

H′ = −eE.r = −eE0(ê.r) cosωt (4.62)

represents the interaction energy of the electron with the electric field and H0 (which
is independent of time) represents the Hamiltonian of the atom; e (< 0) represents
the charge of the electron.3 Since H0 is independent of time, the solution of the
Schrödinger equation

i�
∂�

∂t
= H0� (4.63)

is of the form

� =
∑

ψn(r)e−iEnt/� (4.64)

where ψn(r) and En are the eigenfunctions and eigenvalues of H0:

H0ψn(r) = Enψn(r) (4.65)

The functions ψn(r) are known as the atomic wave functions and satisfy the
orthonormality condition

∫
ψ∗

n (r)ψm(r)dτ = δmn =
{

0 if n �= m

1 if n = m
(4.66)

3We are considering here a single electron atom with r representing the position of the electron
with respect to the nucleus. Thus the electric dipole moment of the atom is given by p = e r
because the direction of the dipole moment is from negative to the positive charge. The interaction
energy of a dipole placed in an electric field E is − �p.E is which leads to Eq. (4.62).
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The solution of Eq. (4.63) can be written as a linear combination of the atomic wave
functions:

�(r, t) =
∑

n

Cn(t)ψn(r)e−iωnt (4.67)

where

ωn = En

�
(4.68)

and the coefficients are now time dependent to account for transitions among the var-
ious energy levels due to the perturbation. Substituting from Eq. (4.67) in Eq. (4.63)
we obtain

i�
∑

n

(
dCn

dt
− iωnCn

)
e−iωntψn(r) =

∑
n

EnCn(t)ψn(r)e−iωnt

− eE0
(
ê.r

)∑
n

Cn(t)ψn(r)e−iωnt cosωt

where we have used Eq. (4.65). It is immediately seen that the second term on
the left-hand side exactly cancels with the first term on the right-hand side. If we
multiply by ψ∗

m and integrate we would get

i�
dCm

dt
= 1

2
E0

∑
n

DmnCn(t)
(

ei(ωmn+ω)t + ei(ωmn−ω)t
)

(4.69)

where use has been made of the orthogonality relation [Eq. (4.66)] and

ωmn = ωm − ωn = Em − En

�
(4.70)

Dmn = ê.Pmn (4.71)

Pmn = −e
∫

ψ∗
m(r)rψn(r)dτ = |e|

∫
ψ∗

m(r)rψn(r)dτ (4.72)

We wish to solve Eq. (4.69) subject to the boundary condition

Ck(t = 0) = 1

Cn(t = 0) = 0 for n �= k
(4.73)

i.e., at t = 0, the atom is assumed to be in the state characterized by the wave
function ψk. Equation (4.69) represents an infinite set of coupled equations, and
as a first approximation, one may replace Cn(t) by Cn(0) on the right-hand side of
Eq. (4.69). Thus

i�
dCm

dt
= 1

2
E0Dmk

(
ei(ωmk+ω)t + ei(ωmk−ω)t

)
(4.74)
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Integrating, one obtains

Cm(t) − Cm(0) ≈ −E0

2�
Dmk

[
ei(ωmk+ω)t − 1

(ωmk + ω)
+ ei(ωmk−ω)t − 1

(ωmk − ω)

]
(4.75)

or, for m �= k

Cm(t)≈−i
E0

�
Dmk

[
ei(ωmk+ω)t/2 sin (ωmk+ω) t

/
2

(ωmk + ω)
+ei(ωmk−ω)t/2 sin (ωmk−ω) t

/
2

(ωmk − ω)

]

(4.76)
It can be easily seen that for large values of t, the function

sin (ωmk − ω) t
/

2

(ωmk − ω)

is very sharply peaked around ω ≈ ωmk and negligible everywhere else (see
Fig. 4.11). Thus for states for which ωmk is significantly different from ω, Cm(t)
would be negligible and transitions between such states will not be stimulated by
the incident field. This justifies our earlier statement that the presence of only those
excited states be considered which are close to the resonance frequency.

In an emission process, ωk > ωm and hence ωmk is negative; thus it is the first
term on the right-hand side of Eq. (4.76) which contributes. On the other hand, in
an absorption process, ωmk > 0 and the second term in Eq. (4.76) contributes.

We consider absorption of radiation and assume that at t = 0 the atom is in state
1, the corresponding wave function being ψ1(�r). We also assume ω to be close to
ω21

[= (E2 − E1)
/

�
]

– see Fig. 4.1. The probability for the transition to occur to
state 2 is given by
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Fig. 4.11 For large values of
t, the function sin (ωmk−ω)t/2

(ωmk−ω)
is very sharply peaked around
ω = ωmk
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|C2(t)|2 = 1

4

D2
21E2

0

�2

{
sin

[
(ω21 − ω) /2

]
t

(ω21 − ω) /2

}2

(4.77)

The above expression represents the probability for stimulated absorption of radia-
tion. In deriving Eq. (4.77) we have assumed that |C2(t)|2 << 1; thus the result is
accurate when

D2
21E2

0t2

�2
<< 1 or

(
D2

21E2
0

�2

)

(ω21 − ω)2
<< 1 (4.78)

A more exact result for a two-state system will be discussed in Section 4.8.
We next assume that the quantity (ω21 − ω) has a range of values either on

account of the field having a continuous spectrum or the atom is capable of
interaction with radiation having a range of frequencies.

4.7.1 Interaction with Radiation Having a Broad Spectrum

We first consider the field having a continuous spectrum characterized by u(ω)
which is defined such that u(ω) dω represents the energy associated with the field
per unit volume within the frequency interval ω and ω + dω. Since the average
energy density associated with an electromagnetic wave is

(
1
/

2
)
ε0E2

0 where ε0

is the permittivity of free space, we replace E2
0 in Eq. (4.77) by

(
2
/
ε0

)
u(ω)dω

and integrate over all frequencies, which gives us the following expression for the
transition probability:

�12 = 1

2ε0

D2
21

�2

∫
u(ω)

{
sin

[
(ω21 − ω) /2

]
t

(ω21 − ω) /2

}2

dω (4.79)

Assuming that u(ω)varies very slowly in comparison to the quantity inside the
square brackets, we replace u(ω) by its value at ω = ω21 and take it out of the
integral to obtain

�12 ≈ 1

2ε0

D2
21

�2
u(ω21)

(∫
sin2 ξ

ξ2
dξ

)
2t

= π

ε0

D2
21

�2
u(ω21)t

(4.80)

where ξ = ω21−ω
2 t. The above expression shows that4 the probability of transition

is proportional to time; thus the probability per unit time (which we denote by w12)

4It may be noted that Eq. (4.80) predicts an indefinite increase in the transition probability with
time; however, the first-order perturbation theory itself breaks down when �21 is not appreciably
less than unity. Thus Eq. (4.80) gives correct results as long as �21� 1.
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would be given by

w12 ≈ π

ε0

D2
21

�2
u(ω21) (4.81)

Now (omitting the subscripts) we have

D = ê.P = P cos θ (4.82)

where θ is the angle that ê (i.e., the electric field) makes with the dipole moment
vector P. Assuming that the dipole moment vector is randomly oriented, the average
value of D2 is given by

D
2 = P2

〈
cos2 θ

〉
= 1

3
P2 (4.83)

where use has been made of the following relation:

〈
cos2 θ

〉
= 1

4π

2π∫

0

π∫

0

cos2 θ sin θ dθ dφ = 1

3
(4.84)

Thus

w12 = π

3ε0

P2

�2
u(ω21) (4.85)

If there are N1 atoms per unit volume in state 1 then the total number of absorptions
per unit time per unit volume would be N1w12, which would be equal to

N1
π

3ε0

P2

�2
u(ω21) (4.86)

Comparing Eqs. (4.86) and (4.1), we obtain

B12 = π

3ε0

P2

�2
= 4π2

3�2

(
e2

4πε0

) ∣∣∣∣
∫

ψ∗
2 rψ1dτ

∣∣∣∣
2

(4.87)

The corresponding expression for stimulated emission is obtained by starting with
the first term on the right-hand side of Eq. (4.76) and proceeding in a similar fashion.
The final expression is identical to Eq. (4.87) except for an interchange of indices 1
and 2.

Using Eq. (4.87) we get the following expression for the A coefficient

A = 4

3

(
e2

4πε0

1

�c

)
ω3

c2

∣∣∣∣
∫

ψ∗
2 rψ1dτ

∣∣∣∣
2

(4.88)

It may be of interest to note that
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(
e2

4πε0

1

hc

)
≈ 1

137
(4.89)

Using this value, we obtain

A = 4

3

1

137

ω3

c2

∣∣∣∣
∫

ψ∗
2 rψ1dτ

∣∣∣∣
2

(4.90)

As an example we calculate the A coefficient for the 2P→ 1S transition in the hydro-
gen atom, i.e., the transition from the (n = 2, l= 1, m = 0) state to the (n = 1, l = 0,
m = 0) state. For these states (see, e.g., Ghatak and Lokanathan (2004))

ψ1 = 1

(4π )1/2
2

a3/2
0

exp

(
− r

a0

)
(4.91)

and

ψ2 = 1

(2a0)3/2

r

a0
√

3
exp

(
− r

2a0

)[(
3

4π

)1/2
cos θ

]
(4.92)

where a0 = (
�

2
/

m
) (

4πε0
/

e2
) ≈ 0.5 × 10−10m. In order to evaluate the matrix

element, we write

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

(4.93)

Now,

∫
ψ∗

1 xψ2dτ = 1

4π
√

2

1

a4
0

⎛
⎝

∞∫

0

r2dre−3r/2a0r2

⎞
⎠ ×

⎛
⎝

π∫

0

cos θ sin2 θ dθ

⎞
⎠

×
⎛
⎝

2π∫

0

cosφ dφ

⎞
⎠ = 0

because the integral over φ vanishes. Similarly

∫
ψ∗

1 yψ2dτ =0 (4.94)

The only non-vanishing integral is
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∫
ψ∗

1 zψ2dτ = 1

4π
√

2

1

a4
0

⎛
⎝

∞∫

0

r2dre−3r/2a0r2

⎞
⎠

×
⎛
⎝

π∫

0

cos2 θ sin θ dθ

⎞
⎠ ×

⎛
⎝

2π∫

0

dφ

⎞
⎠ = 4

√
2

(
2

3

)5

a0

Thus5

∣∣∣∣
∫

ψ∗
1 rψ2dτ

∣∣∣∣
2

= 25
(

2

3

)10

a2
0 (4.95)

Further for the 2P→ 1S transition

ω = 1

�

3

8a0

(
e2

4πε0

)
= 3c

8a0

(
e2

4πε0

1

�c

)
≈ 3 × 3 × 108

8 × 0.51 × 10−10

1

137
≈ 1.5×1016s−1

(4.96)
Substituting in Eq. (4.90), we obtain

A ≈ 4

3

1

137

(
1.5 × 1016

)3

(
3 × 108

)2
25

(
2

3

)10 (
0.5 × 10−10

)2

= 6 × 108s−1

(4.97)

The mean lifetime of the state, τ , is the inverse of A giving

τ ≈ 1.6 × 10−9s

Thus the lifetime of the hydrogen atom in the upper level corresponding to the
2P→1S transition is about 1.6 ns. Transitions having such small lifetimes are
referred to as strongly allowed transitions.

In contrast, the levels used in laser transitions are such that the upper laser level
has a very long lifetime (∼10–3–10–6 s). A level having such a long lifetime is
referred to as a metastable level, and such transitions come under the class of
weakly allowed or nearly forbidden transitions. The strength of an atomic transi-
tion is usually expressed in terms of the f-value defined by the following equation:

f21 = 2

3

mω21

�
|D21|2 (4.98)

5 It can be shown that
∣∣∫ ψ∗

1 rψ2dτ
∣∣2 has the same value for transition from anyone of the states

(n = 2, l = 1, m = 0) or (n = 2, l = 1, m = -1) or (n = 2, l = 1, m = -1) to ( n = 2, l = 0, m = 0)
state. However, the matrix element for the transition from (n = 2, l = 0, m = 0) state to the (n = 1,
l = 0, m = 0) state is zero. This implies that the corresponding dipole transition is forbidden.
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For strongly allowed transitions, f is of the order of unity, for example, for the
2P→1S transition in the hydrogen atom, f = 0.416. On the other hand, for the
transitions from the upper laser level, f ∼ 10–3–10–6.

4.7.2 Interaction of a Near-Monochromatic Wave with an Atom
Having a Broad Frequency Response

We next consider a nearly monochromatic field interacting with atoms characterized
by the lineshape function g(ω). For such a case the probability for the atom being in
the upper state would be given by

�12 = 1

4

D2
21E2

0

�2

∫
g(ω′)

{
sin

[(
ω′ − ω

)
/2

]
t

(ω′ − ω) /2

}2

dω′

= 1

4

D2
21E2

0

�2
g(ω)2π t

= πP2

3�2ε0
g(ω)uωt

(4.99)

where in the last step we have replaced D2
21 and E2

0 by 1
3 P2 and 2uω

/
ε0, respectively.

Since

B12 = B21 = π

3ε0

P2

�2
= π2c3

�ω3tsp
(4.100)

we obtain the following expression for the transition rate (per unit time) per unit
volume:

W12 = N1
π2c3

�ω3tsp
uωg(ω) (4.101)

which is consistent with Eq. (4.18).

4.8 More Accurate Solution for the Two-Level System

A more accurate solution of the time-dependent Schrödinger equation can be
obtained if we assume that the atom can exist in only two possible states charac-
terized by ψ1(r) and ψ2(r). Thus Eq. (4.67) gets replaced by

�(r, t) = C1(t)ψ1(r)e−iω1t + C2(t)ψ2(r)e−iω2t (4.102)

If we substitute from Eq. (4.102) into Eq. (4.61), multiply by ψ∗
1 and integrate, we

would get [cf. Eq. (4.74)]

i�
dC1

dt
= 1

2
E0D12C2(t)

(
e−i(ω′−ω)t + e−i(ω′+ω)t

)
(4.103)
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Similarly

i�
dC2

dt
= 1

2
E0D12C1(t)

(
ei(ω′+ω)t + ei(ω′−ω)t

)
(4.104)

where use has been made of the fact that

∫
ψ∗

1 rψ1dτ =
∫

ψ∗
2 rψ2dτ =0

and

ω′ = (E2 − E1)

�
= ω21 = −ω12 (4.105)

In the rotating wave approximation, considering absorption we neglect the terms
e−i(ω′+ω)t and ei(ω′+ω)t in Eqs. (4.103) and (4.104) and obtain

dC1

dt
= − i

2�
E0D12C2(t)ei(ω−ω′)t (4.106)

dC2

dt
= − i

2�
E0D12C1(t)e−i(ω−ω′)t (4.107)

If we assume a solution of the form

C1(t) = ei	t (4.108)

then from Eq. (4.107),

C2(t) = − 2�	

E0D12
ei(	−ω+ω′)t (4.109)

Substituting in Eq. (4.106), we get

− i
2�	

E0D12

(
	 − ω + ω′) = − i

2�
E0D21

or

	
(
	 − ω + ω′) − 	2

0

4
= 0 (4.110)

where

	2
0 = E2

0D12D21

�2
= E2

0D2

�2
(4.111)
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and

D = D12 = D21 (4.112)

Equation (4.110) gives

	1,2 = 1

2

{
− (

ω′ − ω
) ±

[(
ω′ − ω

)2 + 	2
0

]1/2
}

(4.113)

Thus the general solution will be

C1(t) = A1ei	1t + A2ei	2t (4.114)

C2(t) = − 2

	0
ei(ω′−ω)t (A1	1ei	1t + A2	2ei	2t) (4.115)

If we now assume that the atom is initially in the ground state, i.e.,

C1(0) = 1, C2(0) = 0 (4.116)

then

A1 = −	2

	1
A2 (4.117)

and

1 = A1 + A2 = A2
	1 − 	2

	1
=

[(
ω′ − ω

)2 + 	2
0

]1/2 A2

	1

or

A2 = 	1

	′ (4.118)

where

	′ =
[(
ω′ − ω

)2 + 	2
0

]1/2
(4.119)

On substitution we finally obtain

C2(t) = −i
	0

	′ ei(ω′−ω)t/2 sin

(
	′t
2

)
(4.120)

Thus the transition probability for absorption is given by

|C2(t)|2 =
(

sin
(
	′t

/
2
)

	′/2

)2 (
	0

2

)2

(4.121)
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Fig. 4.12 Variation of the
transition probability with
time for a two-level system
for different frequencies of
the electromagnetic field. The
curves correspond to
the function DE0/� = 0.1ω′.
The solid line corresponds to
Eq. (4.121) and the dotted
curve corresponds to an
accurate numerical
computation (Reprinted with
permission from Salzman
(1917). © 1971 American
Institute of Physics)

which has been plotted in Fig. 4.12. Also shown in the figure are the results of the
exact numerical calculations without resorting to the rotating wave approximation.
At resonance ω = ω′ and one obtains

|C2(t)|2 = sin2
(
	0t

2

)
(4.122)

which shows that the system flip flops between states 1 and 2. A comparison of Eqs.
(4.122) and (4.77) shows that the perturbation theory result is valid if

(
D21E0

�
t

)2

<< 1 or

(
D21E0

�

)2 1

(ω′ − ω)2
<< 1 (4.123)

It may be of interest to note that the solutions obtained in this section are exact
when ω = 0 (i.e., a constant electric field) and if D21 is replaced by 2D21 in the
solution given by Eq. (4.121). This follows from the fact that for ω = 0, the exact
equations [Eqs. (4.103) and (4.104)] are the same as Eqs. (4.106) and (4.107) with
D21 replaced by 2D21.
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Problems

Problem 4.3 Consider the two-level system shown in Fig. 4.1 with E1 = −13.6 eV and E2 = −3.4 eV.
Assume A21 ≈ 6 × 108s−1. (a) What is the frequency of light emitted due to transitions from E2 and
E1? Assuming the emission to have only natural broadening, what is the FWHM of the emission? What
is the population ratio N2/N1 at T = 300 K?

[Answer : (a)v ≈ 2.5 × 1015Hz, �v = A21/2π ∼= 108Hz, N2/N1 ≈ e−394

Problem 4.4 Given that the gain coefficient in a Doppler-broadened line is

α(v) = α(v0) exp
[
−4 ln 2(v − v0)2/(�v0)2

]

where v0 is the centre frequency and �v0 is the FWHM and that the gain coefficient at the line centre
is twice the loss averaged per unit length, calculate the bandwidth over which oscillation can take place.
[Answer: �v0].

Problem 4.5 Consider an atomic system as shown below:

3——— E3 = 3 eV

2——— E2 = 1 eV

1——— E1 = 0 eV

The A coefficient of the various transitions are given by

A32 = 7 × 107s−1, A31 = 107s−1 , A21 = 108s−1

(a) What is the spontaneous lifetime of level 3?

(b) If the steady-state population of level 3 is 1015 atoms/cm3, what is the power emitted spontaneously
in the 3 → 2 transition? [Answer: (a) tsp = 1.2 × 10−8s (b) 2.2 × 1010 W/m3]

Problem 4.6 Consider the transition in neon that emits 632.8 nm in the He–Ne laser and assume a
temperature of 300 K. For a collision time of 500 ns, and a lifetime of 30 ns, obtain the broadening due
to collisions, lifetime, and Doppler and show that the Doppler broadening is the dominant mechanism.

Problem 4.7 Consider an atomic system under thermal equilibrium at T = 1000 K. The number of
absorptions per unit time corresponding to a wavelength of 1 μm is found to be 1022s–1. What would be
the number of stimulated emissions per unit time between the two energy levels? [Ans: 10225−1]

Problem 4.8 Consider a laser with plane mirrors having reflectivities of 0.9 each and of length 50 cm
filled with the gain medium. Neglecting scattering and other cavity losses, estimate the threshold gain
coefficient (in m−1) required to start laser oscillation. [Ans: 0.21 m−1]

Problem 4.9 An atomic transition has a linewidth of �ν = 108Hz. Estimate the approximate value of
g(ω) at the center of the line. [Ans: ∼ 1.6 × 10−95−1]
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Problem 4.10 There is a 10% loss per round trip in a ruby laser resonator having a 10 cm long ruby
crystal as the active medium. Calculate the cavity lifetime, assuming that the mirrors are coated on the
ends of the ruby crystal. Given: Refractive index of ruby at the laser wavelength is 1.78 [Ans: 11.3 ns]

Problem 4.11 In a ruby crystal, a population inversion density of (N2 – N1) = 5 × 1017cm–3 is generated
by pumping. Assuming g(ν0) = 5 × 10–12s, tsp = 3 × 10–3s, wavelength of 694.3 nm and a refractive
index of 1.78, obtain the gain coefficient γ(ν0). By what factor will a beam get amplified if it passes
through 5 cm of such a crystal? [Ans: 5 × 10–2cm–1, 1.28]

Problem 4.12 An optical amplifier of length 10 cm amplifies an input power of 1 to 1.1 W. Calculate the
gain coefficient in m–1. [Ans: 0.95 m−1]

Problem 4.13 Doppler broadening leads to a linewidth given by

�νD = 2ν0

√
2kBT

Mc2
ln 2

Estimate the broadening for the 632.8 nm transition of Ne (used in the He–Ne laser) assuming T = 300 K
and atomic mass of Ne to be 20. What would be the corresponding linewidth of the 10.6 μm transition
of the CO2 molecule? [Ans: 1.6 × 109Hz, 6 × 107Hz]

Problem 4.14 In a typical He–Ne laser the threshold population inversion density is 109cm–3. What is
the value of the population inversion density when the laser is oscillating in steady state with an output
power of 2 mW?

Problem 4.15 Given that the gain coefficient in a Doppler-broadened line is

γ (ν) = γ0 exp

[
− 4 ln 2(ν − ν0)2

(�ν0)
2

]

and that the gain coefficient at the center of the line is four times the loss averaged per unit length, obtain
the bandwidth over which oscillation will take place. [Ans:

√
2�υ0]

Problem 4.16 A laser resonator 1 m long is filled with a medium having a gain coefficient of 0.02 m-1.
If one of the mirrors is 100 % reflecting, what should be the minimum reflectivity of the other mirror so
that the laser may oscillate? [Ans: ∼ 96%]



Chapter 5
Laser Rate Equations

5.1 Introduction

In Chapter 4 we studied the interaction of radiation with matter and found that
under the action of radiation of proper frequencies, the atomic populations of var-
ious energy levels change. In this chapter, we will be studying the rate equations
which govern the rate at which populations of various energy levels change under
the action of the pump and in the presence of laser radiation. The rate equations
approach provides a convenient means of studying the time dependence of the
atomic populations of various levels in the presence of radiation at frequencies cor-
responding to the different transitions of the atom. It also gives the steady-state
population difference between the actual levels involved in the laser transition and
allows one to study whether an inversion of population is achievable in a transi-
tion and, if so, what would be the minimum pumping rate required to maintain a
steady population inversion between two levels, the gain that such a medium would
provide at and near the transition frequency, and the phase shift effects that such
a medium would introduce are discussed in detail in Chapter 6. Thus Chapter 6
discusses the behavior of a system having two levels when there is a population
inversion between the two levels, and this chapter deals with the means of obtaining
an inversion between two levels of an atomic system by making use of other energy
levels. The rate equations can also be solved to obtain the transient behavior of the
laser, which gives rise to phenomena like Q-switching and spiking.

The atomic rate equations along with the rate equation for the photon number in
the cavity form a set of coupled nonlinear equations. These equations can be solved
under the steady-state regime and one can study the evolution of the photon number
as one passes through the threshold pumping region.

In Section 5.2 we discuss a two-level system and show that it is not possible
to achieve population inversion in steady state in a two-level system. Sections 5.3
and 5.4 discuss three-level and four-level laser systems and obtain the dependence
of inversion on the pump power. In Section 5.5 we obtain the variation of laser
power around threshold showing the sudden increase in the output power as a func-
tion of pumping. This is a very characteristic behavior of a laser. Finally in Section
5.6 we discuss the optimum output coupling for maximizing the output power of a
laser.

97K. Thyagarajan, A. Ghatak, Lasers, Graduate Texts in Physics,
DOI 10.1007/978-1-4419-6442-7_5, C© Springer Science+Business Media, LLC 2010
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5.2 The Two-Level System

We first consider a two-level system consisting of energy levels E1 and E2 with
N1 and N2 atoms per unit volume, respectively [see (Fig. 5.1)]. Let radiation at
frequency ω with energy density u be incident on the system. The number of atoms
per unit volume which absorbs the radiation and is excited to the upper level will be
[see Eq. (4.18)]

�12 = π2c3

�ω3tspn3
0

ug(ω)N1 = W12N1 (5.1)

where

W12 = π2c3

�ω3tspn3
0

ug(ω) (5.2)

The number of atoms undergoing stimulated emissions from E2 to E1 per unit
volume per unit time will be [see Eqs. (4.16) and (4.18)]

�21 = W21N2 = W12N2 (5.3)

where we have used the fact that the absorption probability is the same as the stim-
ulated emission probability. In addition to the above two transitions, atoms in the
level E2 would also undergo spontaneous transitions from E2 to E1. If A21 and S21
represent the radiative and non-radiative transition1 rates from E2 to E1, then the
number of atoms undergoing spontaneous transitions per unit time per unit volume
from E2 to E1 will be T21N2 where

T21 = A21 + S21 (5.4)

Thus we may write the rate of change of population of energy levels E2 and E1 as

dN2

dt
= W12(N1 − N2) − T21N2 (5.5)

N1

N2E2

E1
Fig. 5.1 A two-level system

1In a non-radiative transitions when the atom de-excites, the energy is transferred to the
translational, vibrational or rotational energies of the surrounding atoms or molecules.
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dN1

dt
= −W12(N1 − N2) + T21N2 (5.6)

As can be seen from Eqs. (5.5) and (5.6)

d

dt
(N1 + N2) = 0

⇒ N1 + N2 = a constant = N (say) (5.7)

which is nothing but the fact that the total number of atoms N per unit volume is
constant. At steady state

dN1

dt
= 0 = dN2

dt
(5.8)

which gives us
N2

N1
= W12

W12 + T21
(5.9)

Since both W12 and T21 are positive quantities, Eq. (5.9) shows us that we can
never obtain a steady-state population inversion by optical pumping between just
two levels.

Let us now have a look at the population difference between the two levels. From
Eq. (5.9) we have

N2 − N1

N2 + N1
= − T21

2W12 + T21

or if we write �N = N2 − N1, we have
�N

N
= − 1

1 + 2W12/T21
(5.10)

In order to put Eq. (5.10) in a slightly different form, we first assume that the
transition from 2 to 1 is mostly radiative, i.e., A21 � S21 and T21 ≈ A21. We
also introduce a lineshape function g̃(ω) which is normalized to have unit value at
ω = ω0, the center of the line, i.e.,

g̃(ω) = g(ω)

g(ω0)
(5.11)

Since g(ω) ≤ g(ω0) for all ω, we have 0 < g̃(ω) < 1. Substituting the value of W12
in terms of u from Eq. (5.2) and observing that u = n0I/c, where I is the intensity
of the incident radiation at ω, we have

W12

T21
= π2c3

�ω3tspn3
0

I
n0

c
g̃(ω)g(ω0)

1

A21

= π2c3

�ω3n2
0

g(ω0)g̃(ω)I

(5.12)
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where we have used the fact that A21tsp = 1. Hence Eq. (5.10) becomes

�N

N
= − 1

1 + (I/Is)g̃(ω)
(5.13)

where

Is ≡ �ω3n2
0

2π2c2 g(ω0)
(5.14)

is called the saturation intensity. In order to see what Is represents let us consider
a monochromatic wave at frequency ω0 interacting with a two-level system. Since
g̃(ω0) = 1, we see from Eq. (5.13) that for I � Is, the density of population dif-
ference between the two levels �N is almost independent of the intensity of the
incident radiation. On the other hand for I comparable to Is,�N becomes a func-
tion of I and indeed for I = Is, the value of �N is half the value at low incident
intensities.

We showed in Section 4.3 that the loss/gain coefficient for a population difference
�N = N2 − N1 between two levels is given by [see Eq. (4.26)]

α = − π2c2

ω2tspn2
0

g(ω)�N

= α0

1 + (I/Is)g̃(ω)

(5.15)

where

α0 = π2c2

ω2tspn2
0

g(ω)N (5.16)

corresponds to the small signal loss, i.e., the loss coefficient when I � Is. We
can see from Problem 5.1 that with α given by Eq. (5.15), the loss is exponential
for I � Is while it becomes linear for I � Is. Thus we see that the attenuation
caused by a medium decreases as the incident intensity increases to values com-
parable to the saturation intensity. Organic dyes having reasonably low values of
Is(∼ 5 MW/cm2) are used as saturable absorbers in mode locking and Q-switching
of lasers (see Section 7.7.1).

Problem 5.1 Using Eq. (5.15) in Eq. (4.25) obtain the variation of I with z.
[Answer:

ln
I

I0
+ g̃(ω)

Is
(I − I0) = −α0z

where I0 is the intensity at z= 0.]
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5.3 The Three-Level Laser System

In the last section we saw that one cannot create a steady-state population inversion
between two levels just by using pumping between these levels. Thus in order to
produce a steady-state population inversion, one makes use of either a three-level or
a four-level system. In this section we shall discuss a three-level system.

We consider a three-level system consisting of energy levels E1, E2, and E3 all of
which are assumed to be nondegenerate. Let N1, N2, and N3 represent the population
densities of the three levels [see (Fig. 5.2)]. The pump is assumed to lift atoms from
level 1 to level 3 from which they decay rapidly to level 2 through some nonradiative
process. Thus the pump effectively transfers atoms from the ground level 1 to the
excited level 2 which is now the upper laser level; the lower laser level being the
ground state 1. If the relaxation from level 3 to level 2 is very fast, then the atoms
will relax down to level 2 rather than to level 1. Since the upper level 3 is not a laser
level, it can be a broad level (or a group of broad levels) so that a broadband light
source may be efficiently used as a pump source (see, e.g., the ruby laser discussed
in Chapter 11).

Rapid decay

Pump

Laser

hνp

hνl

N2

E3

E2

E1

N3

N1

Fig. 5.2 A three-level system. The pump excites the atoms from level E1 to level E3 from where
the atoms undergo a fast decay to level E2. The laser action takes place between levels E2 and E1

If we assume that transitions take place only between these three levels then we
may write

N = N1 + N2 + N3 (5.17)

where N represents the total number of atoms per unit volume.
We may now write the rate equations describing the rate of change of N1, N2 and

N3. For example, the rate of change of N3 may be written as

dN3

dt
= Wp(N1 − N3) − T32N3 (5.18)

where Wp is the rate of pumping per atom from level 1 to level 3 which depends
on the pump intensity. The first term in Eq. (5.18) represents stimulated transitions
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between levels 1 and 3 and T32N3 represents the spontaneous transition from level
3 to level 2:

T32 = A32 + S32 (5.19)

A32 and S32 correspond, respectively, to the radiative and nonradiative transition
rates between levels 3 and 2. In writing Eq. (5.18) we have neglected T31N3 which
corresponds to spontaneous transitions between levels 3 and 1 since most atoms
raised to level 3 are assumed to make transitions to level 2 rather than to level 1.

In a similar manner, we may write

dN2

dt
= W1(N1 − N2) + N3T32 − N2T21 (5.20)

and

dN1

dt
= Wp(N3 − N1) + Wl(N2 − N1) + N2T21 (5.21)

where

Wl = π2c2

�ω3n2
0

A21g(ω)Il (5.22)

represents the stimulated transition rate per atom between levels 1 and 2, I1 is the
intensity of the radiation in the 2 → 1 transition and g(ω) represents the lineshape
function describing the transitions between levels 1 and 2. Further,

T21 = A21 + S21 (5.23)

with A21 and S21 representing the radiative and nonradiative relaxation rates between
levels 1 and 2. For efficient laser action since the transition must be mostly radiative,
we shall assume A21>> S21.

At steady state we must have

dN1

dt
= 0 = dN2

dt
= dN3

dt
(5.24)

From Eq. (5.18) we obtain

N3 = Wp

Wp + T32
N1 (5.25)

Using Eqs. (5.20), (5.21), and (5.25) we get

N2 = Wl(T32 + Wp) + WpT32

(Wp + T32)(Wl + T21)
N1 (5.26)
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Thus from Eqs. (5.17), (5.25), and (5.26) we get

N2 − N1

N
= [Wp(T32 − T21) − T32T21]

[3WpWl + 2WpT21 + 2T32Wl + T32Wp + T32T21]
(5.27)

From the above equation, one may see that in order to obtain population inver-
sion between levels 2 and 1, i.e., for (N2 − N1) to be positive, a necessary (but not
sufficient) condition is that

T32 > T21 (5.28)

Since the lifetimes of levels 3 and 2 are inversely proportional to the relaxation rates,
according to Eq. (5.28), the lifetime of level 3 must be smaller than that of level 2
for attainment of population inversion between levels 1 and 2. If this condition is
satisfied then according to Eq. (5.27), there is a minimum pumping rate required to
achieve population inversion which is given by

Wpt = T32T21

T32 − T21
(5.29)

If T32 � T21,

Wpt ≈ T21 (5.30)

and under the same approximation, Eq. (5.27) becomes

N2 − N1

N
= (Wp − T21)/(Wp + T21)[

1 + 3Wp+2T32
T32(Wp+T21) W1

] (5.31)

Below the threshold for laser oscillation, W1 is very small and hence we may write

N2 − N1

N
= (Wp − T21)

(Wp + T21)
(5.32)

Thus when W1 is small, i.e., when the intensity of the radiation corresponding to the
laser transition is small [see Eq. (5.22)], then the population inversion is independent
of I1 and there is an exponential amplification of the beam. As the laser starts oscil-
lating, W1 becomes large and from Eq. (5.31) we see that this reduces the inversion
N2 − N1 which in turn reduces the amplification. When the laser oscillates under
steady-state conditions, the intensity of the radiation at the laser transition increases
to such a value that the value of N2 − N1 is the same as the threshold value.

Recalling Eq. (5.31), we see that for a population inversion N2 − N1, the gain
coefficient of the laser medium is

γ = π2c2

ω2tspn2
0

g(ω)(N2 − N1)

= γ0

1 + 3Wp+2T32
T32(Wp+T21) W1

(5.33)



104 5 Laser Rate Equations

where

γ0 = π2c2

ω2tspn2
0

g(ω)N
Wp − T21

Wp + T21
(5.34)

is the small signal gain coefficient. If we now carry out a similar analysis to that in
Section 5.2, we may write

γ = γ0

1 + (I/Is)g̃(ω)
(5.35)

where

g̃(ω) = g(ω)/g(ω0)

Is = �ω3n2
0

π2c2A21g(ω0)

T32(Wp + T21)

(3Wp + 2T32)

(5.36)

Is being the saturation intensity [see the discussion following Eq. (5.16)].
If T32 is very large then there will be very few atoms residing in level 3.

Consequently, we may write

N = N1 + N2 + N3 ≈ N1 + N2 (5.37)

Substituting in Eq. (5.32), we get

N2 − N1

N2 + N1
= Wp − T21

Wp + T21
or

WpN1 = T21N2 (5.38)

The left-hand side of the above equation represents the number of atoms being lifted
(by the pump) per unit volume per unit time from level 1 to level 2 via level 3 and
the right-hand side corresponds to the spontaneous emission rate per unit volume
from level 2 to level 1. These rates must be equal under steady-state conditions for
W1 ≈ 0, i.e., below the threshold.

We shall now estimate the threshold pumping power required to start laser oscil-
lation. In order to do this, we first observe that the threshold inversion required is
usually very small compared to N (i.e., N2 − N1 � N – see the example of the ruby
laser discussed in Chapter 11). Thus from Eq. (5.38), we see that the threshold value
of Wp required to start laser oscillation is also approximately equal to T21 Now the
number of atoms being pumped per unit time per unit volume from level 1 to level
3 is WpN1. If vp represents the average pump frequency corresponding to excitation
to E3 from E1, then the power required per unit volume will be

P = WpN1hvp (5.39)

Thus the threshold pump power for laser oscillation is given by

Pt = T21N1hvp (5.40)
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Since N2 − N1 � N and N3 ≈ 0, N1 ≈ N2 ≈ N/2. Also assuming the transition
from level 2 to level 1 to be mainly radiative (i.e., A21>>S21), we have

Pt ≈ Nhvp/2tsp (5.41)

where we have used A21 = 1/tsp.
As an example, we consider the ruby laser for which we have the following values

of the various parameters:

N ≈ 1.6 × 1019 cm−3 tsp ≈ 3 × 10−3s vp ≈ 6.25 × 1014 Hz (5.42)

Substitution in Eq. (5.41) gives us

Pt ≈ 1100 W/cm3 (5.43)

If we assume that the efficiency of the pumping source to be 25% and also that
only 25% of the pump light is absorbed on passage through the ruby rod, then the
electrical threshold power comes out to be about 18 kW/cm3 of the active medium.
This is consistent with the threshold powers obtained experimentally.

Under pulsed operation if we assume that the pumping pulse is much shorter
than the lifetime of level 2, then the atoms excited to the upper laser level do not
appreciably decay during the duration of the pulse and the threshold pump energy
would be

Upt = N

2
hνp

per unit volume of the active medium. For the case of ruby laser, with the above
efficiencies of pumping and absorption, one obtains

Upt ≈ 54 J/cm3

It may be noted here that even though ruby laser is a three-level laser system,
because of various other factors mentioned below it does operate with not too large
a pumping power. Thus, for example, the absorption band of ruby crystal is very
well matched to the emission spectrum of available pump lamps so that the pump-
ing efficiency is quite high. Also most of the atoms pumped to level 3 drop down to
level 2 which has a very long lifetime which is nearly radiative. In addition the line
width of laser transition is also very narrow.

5.4 The Four-Level Laser System

In the last section we found that since the lower laser was the ground level, one has
to lift more than 50% of the atoms in the ground level in order to obtain population
inversion. This problem can be overcome by using another level of the atomic sys-
tem and having the lower laser level also as an excited level. The four-level laser
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Fast nonradiative 
transition

Pump

Laser

N1

N2

N3

N4E4

E3

E2

E1

hνp

hν1

Fig. 5.3 A four-level system; the pump lifts atoms from level E1 to level E4 from where they
decay rapidly to level E3 and laser emission takes place between levels E3 and E2. Atoms drop
down from level E2 to level E1

system is shown in Fig 5.3. Level 1 is the ground level and levels 2, 3, and 4 are
excited levels of the system. Atoms from level 1 are pumped to level 4 from where
they make a fast nonradiative relaxation to level 3. Level 3 which corresponds to
the upper laser level is usually a metastable level having a long lifetime. The tran-
sition from level 3 to level 2 forms the laser transition. In order that atoms do not
accumulate in level 2 and hence destroy the population inversion between levels 3
and 2, level 2 must have a very small lifetime so that atoms from level 2 are quickly
removed to level 1 ready for pumping to level 4. If the relaxation rate of atoms from
level 2 to level 1 is faster than the rate of arrival of atoms to level 2 then one can
obtain population inversion between levels 3 and 2 even for very small pump pow-
ers. Level 4 can be a collection of a large number of levels or a broad level. In such a
case an optical pump source emitting over a broad range of frequencies can be used
to pump atoms from level 1 to level 4 effectively. In addition, level 2 is required to
be sufficiently above the ground level so that, at ordinary temperatures, level 2 is
almost unpopulated. The population of level 2 can also be reduced by lowering the
temperature of the system.

We shall now write the rate equations corresponding to the populations of the
four levels. Let N1, N2, N3, and N4 be the population densities of levels 1, 2, 3, and
4, respectively. The rate of change of N4 can be written as

dN4

dt
= Wp(N1 − N4) − T43N4 (5.44)

where, as before, WpN1 is the number of atoms being pumped per unit time per unit
volume, WpN4 is the stimulated emission rate per unit volume,

T43 = A43 + S43 (5.45)
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is the relaxation rate from level 4 to level 3 and is the sum of the radiative (A43) and
nonradiative (S43) rates. In writing Eq. (5.44) we have neglected (T42) and (T41) in
comparison to (T43), i.e., we have assumed that the atoms in level 4 relax to level 3
rather than to levels 2 and 1.

Similarly, the rate equation for level 3 may be written as

dN3

dt
= Wl(N2 − N3) + T43N4 − T32N3 (5.46)

where

Wl = π2c2

�ω3n2
0

A32gl(ω)I1 (5.47)

represents the stimulated transition rate per atom between levels 3 and 2 and the
subscript 1 stands for laser transition; gl(ω) is the lineshape function describing
the 3 ↔ 2 transition and I1 is the intensity of the radiation at the frequency ω =
(E3 − E2)/�. Also

T32 = A32 + S32 (5.48)

is the net spontaneous relaxation rate from level 3 to level 2 and consists of the
radiative (A32) and the nonradiative (S32) contributions. Again we have neglected
any spontaneous transition from level 3 to level 1. In a similar manner, we can write

dN2

dt
= −Wl(N2 − N3) + T32N3 − T21N2 (5.49)

dN1

dt
= −Wp(N1 − N4) + T21N2 (5.50)

where

T21 = A21 + S21 (5.51)

is the spontaneous relaxation rate from 2 → 1.
Under steady-state conditions

dN1

dt
= dN2

dt
= dN3

dt
= dN4

dt
= 0 (5.52)

We will thus get four simultaneous equations in N1, N2, N3, and N4 and in addition
we have

N = N1 + N2 + N3 + N4 (5.53)

for the total number of atoms per unit volume in the system.
From Eq. (5.44) we obtain, setting dN4/dt = 0

N4

N1
= Wp

(Wp + T43)
(5.54)
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If the relaxation from level 4 to level 3 is very rapid then T43 � Wp and hence
N4 � N1. Using this approximation in the remaining three equations we can obtain
for the population difference,

N3 − N2

N
≈ Wp(T21 − T32)

Wp(T21 + T32) + T32T21 + Wl(2Wp + T21)
(5.55)

Thus in order to be able to obtain population inversion between levels 3 and 2, we
must have

T21 > T32 (5.56)

i.e., the spontaneous rate of deexcitation of level 2 to level 1 must be larger than the
spontaneous rate of deexcitation of level 3 to level 2.

If we now assume T21 � T32, then from Eq. (5.55) we obtain

N3 − N2

N
≈ Wp

Wp + T32

1

1 + Wl(T21 + 2Wp)/T21(Wp + T32)
(5.57)

From the above equation we see that even for very small pump rates one can obtain
population inversion between levels 3 and 2. This is contrary to what we found in a
three-level system, where there was a minimum pump rate, Wpt, required to achieve
inversion. The first factor in Eq. (5.57) which is independent of Wl [i.e., independent
of the intensity of radiation corresponding to the laser transition – see Eq. (5.47)] –
gives the small signal gain coefficient whereas the second factor in Eq. (5.57) gives
the saturation behavior.

Just below threshold for laser oscillation, Wl ≈ 0, and hence from Eq. (5.57) we
obtain

�N

N
≈ Wp

(Wp + T32)
(5.58)

where �N = N3 − N2 is the population inversion density. We shall now consider
two examples of four-level systems.

Example 5.1 The Nd:YAG laser corresponds to a four-level laser system (see Chapter 11). For such a
laser, typical values of various parameters are

λ0 = 1.06 μm (v = 2.83 × 1014 Hz), �v = 1.95 × 1011 Hz,

tsp = 2.3 × 10−4s, N = 6 × 1019 cm−3, n0 = 1.82
(5.59)

If we consider a resonator cavity of length 7 cm and R1 = 1.00, R2 = 0.90, neglecting other loss factors
(i.e., α1 = 0)

tc = − 2n0d

c ln R1R2
≈ 8 × 10−9s
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We now use Eq. (4.32) to estimate the population inversion density to start laser oscillation corresponding
to the center of the laser transition:

(�N)t = 4v2n3
0

c3

1

g(ω)

tsp

tc

= 4v2n3
0

c3
π2�v

tsp

tc

(5.60)

where for a homogenous transition (see Section 4.5)

g(ω0) = 2/π�ω = 1/π2�v (5.61)

Thus substituting various values, we obtain

(�N)t ≈ 4 × 1015 cm−3 (5.62)

Since (�N)t � N, we may assume in Eq. (5.58) T32 � Wp and hence we obtain for the threshold
pumping rate required to start laser oscillation

Wpt ≈ (�N)t

N
T32 ≈ (�N)t

N

1

tsp

= 4 × 1015

6 × 1019
× 1

2.3 × 10−4
≈ 0.3 s−1

At this pumping rate the number of atoms being pumped from level 1 to level 4 is WptN1 and since
N2, N3 and N4 are all very small compared to N1, we have N1 ≈ N. For every atom lifted from level 1 to
level 4 an energy hvp has to be given to the atom where vp is the average pump frequency corresponding

to the 1 → 4 transition. Assuming vp ≈ 4 × 1014 Hz we obtain for the threshold pump power required
per unit volume of the laser medium

Pth = WptN1hvp ≈ WptNhνp

= 0.3 × 6 × 1019 × 6.6 × 10−34 × 4 × 1014

≈ 4.8 W/cm3

which is about three orders of magnitude smaller than that obtained for ruby.

Example 5.2 As a second example of a four-level laser system, we consider the He–Ne laser (see Chapter
11). We use the following data:

λ0 = 0.6328 × 10−4cm(v = 4.74 × 1014Hz),

tsp = 10−7s, �v = 109 Hz, n0 ≈ 1
(5.63)

If we consider the resonator to be of length 10 cm and having mirrors of reflectivities R1 = R2 = 0.98,
then assuming the absence of other loss mechanisms (αl = 0),

tc = −2n0d/c ln R1R2

≈ 1.6 × 10−8s
(5.64)

For an inhomogeneously broadened transition (see Section 4.5)
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g(ω0) = 2

�ω

(
ln 2

π

) 1
2

≈ 1.5 × 10−10s

(5.65)

Thus the threshold population inversion required is

(�N)t ≈ 1.4 × 109cm-3 (5.66)

Hence the threshold pump power required to start laser oscillation is

Pth = WptN1(E4 − E1)

≈ (�N)t

tsp
hvp

(5.67)

where again we assume (�N)t � N and T32 ≈ A32 = 1/tsp. Assuming vp ≈ 5 × 1015 Hz, we obtain

Pth = 1.4 × 109 × 6.6 × 10−34 × 5 × 1015

10−7

≈ 50 mW/cm3
(5.68)

which again is very small compared to the threshold powers required for ruby laser.

5.5 Variation of Laser Power Around Threshold

In the earlier sections we considered the three-level and four-level laser systems and
obtained conditions for the attainment of population inversion. In this section we
shall discuss the variation of the power in the laser transition as the pumping rate
passes through threshold.

We consider the two levels involved in the laser transition in a four-level laser2

and assume that the lower laser level has a very fast relaxation rate to lower levels
so that it is essentially unpopulated. We will assume that only one mode has suffi-
cient gain to oscillate and that the line is homogenously broadened so that the same
induced rate applies to all atoms (see Section 4.5). Let R represent the number of
atoms that are being pumped into the upper level per unit time per unit volume [see

2A similar analysis can also be performed for a three-level laser system but the general conclusions
of this simple analysis remain valid.
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R

E1

E2

N1 ~ 0

N2

Fig. 5.4 The upper level is
pumped at a rate R per unit
volume and the lower level is
assumed to be unpopulated
due to rapid relaxation to
other lower levels

(Fig. 5.4)]. If the population density of the upper level is N2, then the number of
atoms undergoing stimulated emissions from level 2 to level 1 per unit time will be
[see Eq. (4.16)]

F21 = �21V = π2c3

�ω3n3
0

A21ug(ω)N2V (5.69)

where u is the density of radiation at the oscillating mode frequency ω, V rep-
resents the volume of the active medium, and n0 is the refractive index of the
medium.

Instead of working with the energy density u, we introduce the number of photons
n in the oscillating cavity mode. Since each photon carries an energy �ω, the number
of photons n in the cavity mode will be given by

n = uV/�ω (5.70)

Thus

F21 = π2c3

ω2n3
0

A21g(ω)N2n = KnN2 (5.71)

where

K ≡ (π2c3/ω2n3
0)A21g(ω) (5.72)

The spontaneous relaxation rate from level 2 to level 1 in the whole volume will be
T21N2V where

T21 = A21 + S21 (5.73)

is the total relaxation rate consisting of the radiative (A21) and the nonradiative (S21)
components. Hence we have for the net rate of the change of population of level 2

d

dt
(N2V) = −KnN2 − T21N2V + RV

or
dN2

dt
= −KnN2

V
− T21N2 + R (5.74)
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In order to write a rate equation describing the variation of photon number n in the
oscillating mode in the cavity, we note that n change due to

a) All stimulated emissions caused by the n photons existing in the cavity mode
which results in a rate of increase of n of KnN2 since every stimulated emission
from level 2 to level 1 caused by radiation in that mode will result in the addition
of a photon in that mode. There is no absorption since we have assumed the
lower level to be unpopulated.

b) In order to estimate the increase in the number of photons in the cavity mode
due to spontaneous emission, we must note that not all spontaneous emission
occurring from the 2 → 1 transition will contribute to a photon in the oscillat-
ing mode. As we will show in Section 7.2 for an optical resonator which has
dimensions which are large compared to the wavelength of light, there are an
extremely large number of modes (∼ 108) that have their frequencies within the
atomic linewidth. Thus when an atom deexcites from level 2 to level 1 by spon-
taneous emission it may appear in any one of these modes. Since we are only
interested in the number of photons in the oscillating cavity mode, we must first
obtain the rate of spontaneous emission into a mode of oscillation of the cavity.
In order to obtain this we recall from Section 4.2 that the number of spontaneous
emissions occurring between ω and ω + dω will be

G21dω = A21N2g(ω)dωV (5.75)

We shall show in Appendix E that the number of oscillating modes lying in a
frequency interval between ω and ω + dω is

N(ω)dω = n3
0
ω2

π2c3
V dω (5.76)

where n0 is the refractive index of the medium. Thus the spontaneous emission
rate per mode of oscillation at frequency ω is

S21 = G21dω

N(ω)dω
= π2c3

n3
0ω

2
g(ω)A21N2

= KN2

(5.77)

i.e., the rate of spontaneous emission into a particular cavity mode is the same
as the rate of stimulated emission into the same mode when there is just one
photon in that mode. This result can indeed be obtained by rigorous quantum
mechanical derivation (see Chapter 9).

c) The photons in the cavity mode are also lost due to the finite cavity lifetime.
Since the energy in the cavity reduces with time as e−t/tc (see Section 4.4) the
rate of decrease of photon number in the cavity will also be n/tc.
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Thus we can write for the total rate of change of n

dn

dt
= KnN2 + KN2 − n

tc
(5.78)

Eqs. (5.74) and (5.78) represent the pair of coupled rate equations describing the
variation of N2 and n with time.

Under steady-state conditions both time derivatives are zero. Thus we obtain
from Eq. (5.78),

N2 = n

n + 1

1

Ktc
(5.79)

The above equation implies that under steady-state conditions N2 ≤ 1/Ktc. When
the laser is oscillating under steady-state conditions n � 1 and N2 ≈ 1/Ktc. If we
substitute the value of K from Eq. (5.72) we find that (for n � 1)

N2 ≈ ω2n3
0

π2c3

tsp

tc

1

g(ω)
(5.80)

which is nothing but the threshold population inversion density required for laser
oscillation (cf. Eq. (4.32)). Thus Eq. (5.79) implies that when the laser oscillates
under steady-state conditions, the population inversion density is almost equal to
and can never exceed the threshold value. This is also obvious since if the inversion
density exceeds the threshold value, the gain in the cavity will exceed the loss and
thus the laser power will start increasing. This increase will continue till saturation
effects take over and reduce N2 to the threshold value.

Substituting from Eq. (5.79) into Eq. (5.74) and putting dN2/dt = 0, we get

K

VT21
n2 + n

(
1 − R

Rt

)
− R

Rt
= 0 (5.81)

where

Rt = T21

Ktc
(5.82)

The solution of the above equation which gives a positive value of n is

n = VT21

2 K

⎧⎨
⎩
(

R

Rt
− 1

)
+

[(
1 − R

Rt

)2

+ 4 K

VT21

R

Rt

] 1
2

⎫⎬
⎭ (5.83)

The above equation gives the photon number in the cavity under steady-state
conditions for a pump rate R.

For a typical laser system, for example an Nd:glass laser (see Chapter 11),

V ≈ 10 cm3, n0 ≈ 1.5

λ ≈ 1.06 μm, �υ ≈ 3 × 1012 Hz
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so that

K

VT21
= c3

8v2n3
0

1

Vπ�v
≈ 1.3 × 10−13 (5.84)

where we have used T21 ≈ A21. For such small values of K/VT21, unless R/Rt is
extremely close to unity, we can make a binomial expansion in Eq. (5.83) to get

n ≈ R/Rt
1−R/Rt

for R
Rt
<1 − �

n ≈ VT21
K

(
R
Rt

− 1
)

for R
Rt
>1 + �

(5.85)

where � � (2 K/VT21)
1
2 . Further

n ≈
(

VT21

K

) 1
2

for
R

Rt
= 1 (5.86)

Figure 5.5 shows a typical variation of n with R/Rt. As is evident n ≈ 1 for R < Rt

and approaches 1012 for R > Rt. Thus Rt as given by Eq. (5.82) gives the threshold
pump rate for laser oscillation.

R/Rt

0.1 0.5 1.0 2.0 4.0 10.0

101

103

105

107

109

1011

n

Fig. 5.5 Variation of photon
number n in the cavity mode
as a function of pumping rate
R; Rt corresponds to the
threshold pumping rate. Note
the steep rise in the photon
number as one crosses the
threshold for laser oscillation

Problem 5.2 Show that the threshold pump rate Rt given by Eq. (5.82) is consistent with that obtained in
Section 4.4.

From the above analysis it follows that when the pumping rate is below threshold
(R < Rt) then the number of photons in the cavity mode is very small (∼1). As
one approaches the threshold, the number of photons in the preferred cavity mode
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(having higher gain and lower cavity losses) increases at a tremendous rate and
as one passes the threshold, the number of photons in the oscillating cavity mode
becomes extremely large. At the same time the number of photons in other cavity
modes which are below threshold remains orders of magnitude smaller.

In addition to the sudden increase in the number of photons in the cavity mode
and hence laser output power, the output also changes from an incoherent to a
coherent emission. The output becomes an almost pure sinusoidal wave with a
well-defined wave front, apart from small amplitude and phase fluctuations caused
by the ever-present spontaneous emission.3 It is this spontaneous emission which
determines the ultimate linewidth of the laser.

If the only mechanism in the cavity is that arising from output coupling due to
the finite reflectivity of one of the mirrors, then the output laser power will be

Pout = nhv

tc
(5.87)

where n/tc is the number of photons escaping from the cavity per unit time and hv
is the energy of each photon. Taking K/VT21 as given by Eq. (5.84) and tc ≈ 10−8s,
for R/Rt = 2 we obtain

Pout = 144 W

Example 5.3 It is interesting to compare the number of photons per cavity mode in an oscillating laser
and in a black body at a temperature T. The number of photons/mode in a black body is (see Appendix D)

n = 1

e�ω/kBT − 1
(5.88)

Hence for λ = 1.06 μm, T = 1000 K, we obtain

n ≈ 1

e13.5 − 1
≈ 1.4 × 10−6

which is orders of magnitude smaller than in an oscillating laser [see (Fig 5.5)].

From Eq. (5.85) we may write for the change in number of photons dn for a
change dR in the pump rate as

dn

dR
= VT21

K

1

Rt
= Vtc

or

VdR = dn

tc
(5.89)

where we have used Eq. (5.82). The LHS of Eq. (5.89) represents the additional
number of atoms that are being pumped per unit time into the upper laser level and

3In an actual laser system, the ultimate purity of the output beam is restricted due to mechanical
vibrations of the laser, mirrors, temperature fluctuations, etc.
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the RHS represents the additional number of photons that is being lost from the
cavity. Thus above threshold all the increase in pump rate goes toward the increase
in the laser power.

Example 5.4 Let us consider an Nd:glass laser (see Chapter 11) with the parameters given in page 119
and having

d = 10 cm

R1 = 0.95, R2 = 1.00

For these values of the parameters, using Eq. (4.31) we have

tc ≈ − 2n0d

c ln R1R2
≈ 1.96 × 10−8s

and
VT21

K
≈ V

Ktsp
= 4v2Vn3

0

c3 g(ω)
(5.90)

Thus for R/Rt = 2, i.e., for a pumping rate twice the threshold value (see Eq. (5.85))

n = VT21/K ≈ 7.7 × 1012

Hence the energy inside the cavity is
E = nhv

≈ 1.4 × 10−6J
(5.91)

If the only loss mechanism is the finite reflectivity of one of the mirrors, then the output power will be

Pout = nhv

tc
≈ 74 W

Problem 5.3 In the above example, if it is required that there be 1 W of power from the mirror at the left
and 73 W of power from the right mirror, what should the reflectivities of the two mirrors be? Assume
the absence of all other loss mechanisms in the cavity.

[Answer: R1 = 0.9993, R2 = 0.9507]

Example 5.5 In this example, we will obtain the relationship between the output power of the laser and
the energy present inside the cavity by considering radiation to be making to and fro oscillations in the
cavity. Figure 5.6a shows the cavity of length l bounded by mirrors of reflectivities 1 and R and filled by
a medium characterized by the gain coefficient α. Let us for simplicity assume absence of all other loss
mechanisms. Figure 5.6b shows schematically the variation of intensity along the length of the resonator
when the laser oscillates under steady-state conditions. For such a case, the intensity after one round trip
I4 must be equal to the intensity at the same point at the start of the round trip. Hence

R e2αl = 1 (5.92)

Also, recalling the definition of cavity lifetime (see Eq. (4.31) with α1 = 0), we have

tc = − 2 l

c
ln R = 1

α c
(5.93)

Now let us consider a plane P inside the resonator. Let the distance of the plane from mirror M1
be x. Thus if I1 is the intensity of the beam at mirror M1, then assuming exponential amplification, the
intensity of the beam going from left to right at P is
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(a) (b)

M2M1

R2 = RR1 = 1
l

P
x

I4 = R I2eα l

I1

I2 = I1eα l

I3 = I2R

1

2

Fig. 5.6 (a) A resonator of length l bound by mirrors of reflectivities 1 and R and filled by a
medium of gain coefficient α. (b) Curves 1 and 2 represent the qualitative variation of intensity
associated with the waves propagating in the forward and backward directions within the cavity.
The sudden drop in intensity from I2 to I3 is due to the finite reflectivity of the mirror M2

I+ = I1eαx (5.94)

Similarly, the intensity of the beam going from right to left at P is

I_ = I1eαlReα(l−x) = I1Re2αle−αx

= I1 e−αx
(5.95)

Hence the energy density at x is

u(x) = I+ + I−
c

= I1

c

(
eαx + e−αx) (5.96)

If A is the area of cross section, then the total energy in the cavity is

W =
∫ ∫

u d A dx = A
∫ 1

0
u dx

= AI1

αc
eαl (1 − R)

= AI1tceαl (1 − R)

(5.97)

where we have used Eqs. (5.92) and (5.93) and have assumed, for the sake of simplicity, uniform intensity
distribution in the transverse direction. Now the power emerging from mirror M2 is

Pout = I2A(1 − R)

= I1Aeαl(1 − R)

= W/tc

(5.98)

which is consistent with Eq. (5.87)

5.6 Optimum Output Coupling

In the last section we obtained the steady-state energy inside the resonator cavity
as a function of the pump rate. In order to get an output laser beam, one of the
mirrors is made partially transparent so that a part of the energy is coupled out. In
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this section we shall obtain the optimum reflectivity of the mirror so as to have a
maximum output power.

The fact that an optimum output coupling exists can be understood as follows.
If one has an almost zero output coupling (i.e., if both mirrors are almost 100%
reflecting) then even though the laser may be oscillating, the output power will be
almost zero. As one starts to increase the output coupling, the energy inside the
cavity will start to decrease since the cavity loss is being increased but, since one is
taking out a larger fraction of power the output power starts increasing. The output
power will start decreasing again if the reflectivity of the mirror is continuously
reduced since if it is made too small, then for that pumping rate, the losses will
exceed the gain and the laser will stop oscillating. Thus for a given pumping rate,
there must be an optimum output coupling which gives the maximum output power.

In Section 4.4 we showed that the cavity lifetime of a passive resonator is

1

tc
= c

2dn0
(2α1d − ln R1R2)

= 1

ti
+ 1

te

(5.99)

where

1

ti
= cα1

n0
,

1

te
= − c

2dn0
ln R1R2 (5.100)

ti accounts for all loss mechanisms except for the output coupling due to the finite
mirror reflectivities and te for the loss due to output coupling only. Thus, the number
photons escaping the cavity due to finite mirror reflectivity will be n/te and hence
the output power will be

Pout = nhv

te

= hv

te

VT21

K

[
RK

T21

(
1

ti
+ 1

te

)−1

− 1

] (5.101)

where we have used Eqs. (5.82), (5.85), and (5.99). The optimum output power will
correspond to the value of te satisfying ∂Pout/∂te = 0 which gives

1

te
=

(
RK

T21ti

) 1
2 − 1

ti
(5.102)

Using Eqs. (5.99) and (5.82), the above equation can be simplified to

1

te
= 1

ti

(
R

Rt
− 1

)
(5.103)
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Substituting for te from Eq. (5.103) in Eq. (5.101) we obtain the maximum output
power as

Pmax = hvRV

[
1 −

(
T21

KRti

)1/2
]2

(5.104)

It is interesting to note that the optimum te and hence the optimum reflectivity is a
function of the pump rate R.

Even though the output power passes through a maximum as the transmittivity
T = (1–R) of the mirror is increased, the energy inside the cavity monotonically
reduces from a maximum value as T is increased. This may be seen from the fact
that the energy in the cavity is

E = nhv = VT21

K

(
KRtc
T21

− 1

)
hv (5.105)

Thus as T is increased, tc reduces and hence E reduces monotonically finally
becoming zero when

tc = T21

KR
(5.106)

beyond which the losses become more than the gain.

Problems

Problem 5.4 Using Eq. (5.103) calculate the optimum reflectivity of one of the mirrors of the resonator
(assuming the other mirror to have 100% reflectivity) for R = 2Rt. Assume the length of the resonator to
be 100 cm, n0 = 1 and the intrinsic loss per unit length to be 3 × 10−5cm–1.

Problem 5.5 Consider an atomic system as shown below:
3———– E3 = 3 eV
2———– E2 = 1 eV
1———– E1 = 0 eV
The A coefficient of the various transitions are given by

A32 = 7 × 107s−1, A31 = 107s−1, A21 = 108s−1

(a) Show that this system cannot be used for continuous wave laser oscillation between levels 2 and 1.
(b) Suppose at t = 0, N0 atoms are lifted to level 3 by some external mechanism describe the change

of populations in levels 1, 2, and 3.

Problem 5.6 Using Eq. (5.103) calculate the optimum reflectivity of one of the mirrors of the resonator
(assuming the other mirror to be 100% reflecting) for R = 2Rt. Assume the length of the resonator to
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be 50 cm, n0 = 1 and the intrinsic loss per unit length to be 3 × 10−4m–1. If the power output at the
optimum coupling is 10 mW, what is the corresponding energy inside the cavity?

[Answer: R ≈ 0.9997, energy ∼= 1.1 × 10−7 J]

Problem 5.7 Consider a laser with plane mirrors having reflectivities of 0.9 each and of length 50 cm
filled with the gain medium. Neglecting scattering and other cavity losses, estimate the threshold gain
coefficient (in m–1) required to start laser oscillation.

Problem 5.8 The cavity of a 6328 Å He–Ne laser is 1 m long and has mirror of reflectivities 100 and
98%; the internal cavity losses are negligible. (a) If the steady-state power output is 10 mW, what is the
energy stored in the resonator? (b) What is the linewidth of the above passive cavity? (c) If the oscillating
linewidth is 1500 MHz, how many longitudinal modes would oscillate?

Problem 5.9 Consider a two-level system shown below:

———– E2 = 2 eV

A21 = 107 s−1

———– E1 = 0

a) What is the frequency of light emitted due to transitions from E2 to E1?

b) Assuming the emission to have only natural broadening, what is the FWHM of the emission?

c) What is the population ratio N2/N1 at 300 K?

d) An atomic system containing N0 atoms/cm3of the above atoms is radiated by a beam of intensity I0
at the line center. Write down the rate equation and obtain the population difference between E2 and
E1 under steady-state condition. Calculate the incident intensity required to produce a population
ratio N1 = 2 N2.

Problem 5.10 The active medium of a three-level atomic system is characterized by the following spon-
taneous emission rates: A21 = 108s–1, A31 = 106s–1, A32 = 105s–1. (Neglect non-radiative transitions.)
Can we use the atomic system to realize a laser? (YES or NO). Justify your answer.

Problem 5.11 Consider a three-level laser system with lasing between levels E2 and E1. The level E2
has a lift time of 1 μs. Assuming the transition E3 → E2 to be very rapid, estimate the number of atoms
that needs to be pumped per unit time per unit volume from level E1 to reach threshold for achieving
population inversion. Given that the total population density of the atoms is 1019cm–3.



Chapter 6
Semiclassical Theory of the Laser

6.1 Introduction

The present chapter deals with the semiclasscial theory of the laser as developed
by Lamb (1964). In this analysis, we will treat the electromagnetic field classically
with the help of Maxwell’s equations and the atom will be treated using quantum
mechanics. We will consider a collection of two-level atoms placed inside an opti-
cal resonator. The electromagnetic field of the cavity mode produces a macroscopic
polarization of the medium. This macroscopic polarization is calculated using quan-
tum mechanics. The polarization then acts as a source for the electromagnetic field
in the cavity. Since this field must be self-consistent with the field already assumed,
one gets, using this condition, the amplitude and frequencies of oscillation. We will
obtain explicit expressions for the real and imaginary parts of the electric suscepti-
bility of the medium. The real part is responsible for additional phase shifts due to
the medium and leads to the phenomenon of mode pulling. On the other hand, the
imaginary part of the susceptibility is responsible for loss or gain due to the medium.
Under normal conditions, the population of the upper level is less than that of the
lower level and the medium adds to the losses of the cavity. In the presence of popu-
lation inversion, the medium becomes an amplifying medium; however, a minimum
population inversion is necessary to sustain oscillations in the cavity. We will show
that in the first-order theory, the electric field in the cavity can grow indefinitely, but
using a third-order theory we would show that the field would indeed saturate rather
than growing indefinitely.

Since the analysis is semiclassical in nature, the effects of spontaneous emission
do not appear. Thus, the analysis does not give the ultimate linewidth of the laser
oscillator which is caused by spontaneous emissions.

6.2 Cavity Modes

We consider a laser cavity with plane mirrors at z = 0 and z = L (see Fig. 6.1).
The electromagnetic radiation inside the cavity can be described by Maxwell’s
equations, which in the MKS system of units are

121K. Thyagarajan, A. Ghatak, Lasers, Graduate Texts in Physics,
DOI 10.1007/978-1-4419-6442-7_6, C© Springer Science+Business Media, LLC 2010
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MIRRORMIRROR

ACTIVE

MEDUIM

Z = LZ = 0

Fig. 6.1 A plane parallel
resonator bounded by a pair
of plane mirrors facing each
other. The active medium is
placed inside the resonator

∇ × E = −∂B
∂t

(6.1)

∇ × H = Jf + ∂D
∂t

(6.2)

∇ · D = ρf (6.3)

∇ · B = 0 (6.4)

where ρf represents the free charge density and Jf the free current density;
E, D, B, and H represent the electric field, electric displacement, magnetic induc-
tion, and magnetic field, respectively. Inside the cavity we may assume

ρf = 0 (6.5)

B = μ0H (6.6)

D = ε0E + P (6.7)

Jf = σ E (6.8)

where P is the polarization, σ the conductivity, and ε0 and μ0 are the dielectric
permittivity and magnetic permeability of free space. It will be seen that the conduc-
tivity term leads to the medium being lossy which implies attenuation of the field;
we will assume that other losses like those due to diffraction and finite transmission
at the mirrors are taken into account in σ . Now,

∇ × (∇ × E) = −μ0
∂

∂t
(∇ × H) = −μ0

∂J
∂t

− μ0
∂2D
∂t2

(6.9)

or

∇ × (∇ × E) + μ0σ
∂E
∂t

+ ε0μ0
∂2E
∂t2

= −μ0
∂2P
∂t2

(6.10)

If we assume the losses to be small and the medium to be dilute, we may neglect the
second term on the left-hand side and the term on the right-hand side of the above
equation to approximately obtain

∇ × (∇ × E) + ε0μ0
∂2E
∂t2

= 0 (6.11)
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Further since P is small, Eq. (6.3) gives

0 = ∇ · D ≈ ε0∇ · E (6.12)

Thus

∇ × ∇ × E = −∇2E + ∇ (∇ · E) ≈ −∇2E (6.13)

or

∇ × ∇ × E ≈ −∇2E = −∂2E
∂z2

(6.14)

where, in writing the last equation, we have neglected the x and y derivatives; this
is justified when intensity variations in the directions transverse to the laser axis is
small in distances ~ λ, which is indeed the case (see Chapter 7). Thus Eq. (6.11)
becomes

− ∂2E
∂z2

+ 1

c2

∂2E
∂t2

= 0 (6.15)

where c = (ε0μ0)
−1/2 represents the speed of light in free space. If we further

assume a specific polarization of the beam, Eq. (6.15) becomes a scalar equation:

∂2E

∂z2
= 1

c2

∂2E

∂t2
(6.16)

which we solve by the method of separation of variables:

E (z, t) = Z(z)T(t) (6.17)

to obtain

1

Z

d2Z

dz2
= 1

c2

1

T

d2T

dt2
= −K2 (say) (6.18)

Thus

Z (z) = A sin (Kz + θ) (6.19)

where the quantity K corresponds to the wave number. At the cavity ends (i.e., at
z = 0 and z = L), the field [and hence Z(z)] will vanish, giving

θ = 0

and

K = nπ

L
, n = 1, 2, 3, . . . (6.20)
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We designate different values of K by Kn, (n = 1, 2, 3, . . .). The corresponding time
dependence will be of the form

cos	nt

where

	n = Knc = nπc

L
(6.21)

Thus the complete solution of Eq. (6.16) would be given by

E (z, t) =
∑

n

An cos (	nt) sin (Knz) (6.22)

If we next include the term describing the loses, we would have (instead of Eq. 6.16)

∂2E

∂z2
− μ0σ

∂E

∂t
= 1

c2

∂2E

∂t2
(6.23)

We assume the same spatial dependence (∼ sin Knz) and the time dependence to be
of the form ei�nt to obtain

�2
n − μ0σ c2i�n − 	2

n = 0 (6.24)

or

�n = 1

2

[
iμ0σc2 ±

(
−μ2

0σ
2c4 + 4	2

n

)1/2
]

≈ ±	n + iσ
/

2ε0

(6.25)

Thus the time dependence is of the form

exp

(
− σ

2ε0
t

)
e±i	nt (6.26)

the first term describing the attenuation of the beam. In the expression derived above,
the attenuation coefficient does not depend on the mode number n; however, in
general, there is a dependence on the mode number which we explicitly indicate by
writing the time-dependent factor as1

exp

(
− 	n

2Qn
t

)
e±i	nt (6.27)

where

1Because of the losses, the field in the cavity decays with time as exp
(−	nt

/
2Qn

)
and hence the

energy decays as exp
(−	nt

/
Qn

)
.Thus, the energy decays to 1

/
e of the value at t = 0 in a time

tc = Qn
/
	n which is referred to as the cavity lifetime (see also Section 7.4).
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Qn = ε0

σ
	n (6.28)

represents the quality factor (see Section 7.4). Thus the solution of Eq. (6.23)
would be

E (z, t) =
∑

n

An exp

(
− 	n

2Qn
t

)
cos (	nt) sin (Knz) (6.29)

Finally, we try to solve the equation which includes the term involving the
polarization:

∂2E

∂z2
− μ0σ

∂E

∂t
− 1

c2

∂2E

∂t2
= μ0

∂2P

∂t2
(6.30)

[cf. Eqs. (6.16) and (6.23)]. We assume E to be given by

E = 1

2

∑
n

{En (t) exp [−i (ωnt + φn (t))] + c.c.} sin Knz (6.31)

where c.c. stands for the complex conjugate (so that E is necessarily real), En (t)
and φn(t) are real slowly varying amplitude and phase coefficients, and ωn is the
frequency of oscillation of the mode which may, in general, be slightly different
from 	n. We assume P to be of the form

P = 1

2

∑
n

{Pn (t, z) exp [−i (ωnt + φn (t))] + c.c.} (6.32)

where Pn (t, z) may be complex but is a slowly varying component of the polar-
ization. On substitution of E and P in Eq. (6.30), we get2 (after multiplying
by c2)

	2
nEn − i

(
σ

ε0

)
ωnEn − 2iωnĖn − (

ωn + φ̇n
)2

En = ω2
n

ε0
pn (t) (6.33)

pn(t) = 2

L

∫ L

0
Pn (t, z) sin Knz dz

where we have neglected small terms involving Ën, φ̈n, P̈n, Ėnφ̇n, σ Ėn, σ φ̇n, φ̇nṗn,
and ṗn which are all of second order. Now, since ωn will be very close to 	n, we
may write

	2
n − (

ωn + φ̇n
)2 ≈ 2ωn

(
	n − ωn − φ̇n

)
(6.34)

2Actually we have equated each Fourier component; this follows immediately by multiplying
Eq. (6.32) by sin Kmz and integrating from 0 to L.
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Thus, equating real and imaginary parts of both sides of Eq. (6.33), we get

(
ωn + φ̇n − 	n

)
En (t) = −1

2

ωn

ε0
Re (pn (t)) (6.35)

Ėn (t) + 1

2

ωn

Q′
n

En (t) = − ωn

2ε0
Im (pn (t)) (6.36)

where

Q′
n = ε0ωn

σ
(6.37)

When pn = 0, ωn = 	n and En (t) will decrease exponentially with time – consis-
tent with our earlier findings. In general, if we define the susceptibility χ through
the equation

pn (t) = ε0χnEn (t) = ε0
(
χ ′

n + iχ ′′
n

)
En (t) (6.38)

where χ ′
n and χ ′′

n represent, respectively, the real and imaginary parts of χn, then

ωn + φ̇n = 	n − 1

2
ωnχ

′
n (6.39)

and

Ėn = −1

2

ωn

Q′
n

En − 1

2
ωnχ

′′
n En (t) (6.40)

The first term on the right-hand side of Eq. (6.40) represents cavity losses and the
second term represents the effect of the medium filling the cavity. It can be easily
seen that if χ ′′

n is positive, then the cavity medium adds to the losses. On the other
hand if χ ′′

n is negative, the second term leads to gain.3 If

− χ ′′
n = 1

Q′
n

(6.41)

the losses are just compensated by the gain and Eq. (6.41) is referred to as the
threshold condition. If −χ ′′

n > 1
/

Q′
n, there would be a buildup of oscillation.

From Eq. (6.39), one may note that if we neglect the term φ̇n the oscillation
frequency differs from the passive cavity frequency by − 1

2ωnχ
′
n, which is known

as the pulling term. In order to physically understand the gain and pulling effects
due to the cavity medium, we consider a plane wave propagating through the cavity
medium. If χn represents the electric susceptibility of the medium for the wave, then
the permittivity ε of the medium would be

3We will show in Section 6.3 that χ ′′
n is negative for a medium with a population inversion.
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ε = ε0 + ε0χn = ε0 (1 + χn) (6.42)

This implies that the complex refractive index of the cavity medium is

(
ε

ε0

)1/2

= (1 + χn)
1/2 ≈

(
1 + 1

2
χn

)
= 1 + 1

2
χ ′

n + i

2
χ ′′

n (6.43)

The propagation constant of the plane wave in such a medium would be

β = ω

c

(
ε

ε0

)1/2

= ω

c

(
1 + 1

2
χ ′

n

)
+ 1

2
i
ω

c
χ ′′

n

= α + iδ (6.44)

where

α = ω

c

(
1 + 1

2
χ ′

n

)
; δ = 1

2

ω

c
χ ′′

n (6.45)

Thus, a plane wave propagating along the z-direction would have a z dependence of
the form

eiβz = eiαze−δz 6.46)

In the absence of the component due to the laser transition χ ′
n = χ ′′

n = 0 and the
plane wave propagating through the medium undergoes a phase shift per unit length
of ω/c. The presence of the laser transition contributes both to the phase change and
to the loss or amplification of the beam. Thus if χ ′′

n is positive, then δ is positive
and the beam is attenuated as it propagates along the z-direction. On the other hand
if χ ′′

n is negative, then the beam is amplified as it propagates through the medium.
As the response of the medium is stimulated by the field, the applied field and the
stimulated response are phase coherent.

In addition to the losses or amplification caused by the cavity medium, there is
also a phase shift caused by the real part of the susceptibility χ ′

n. We will show in
the next section that χ ′

n is zero exactly at resonance, i.e., if the frequency of the
oscillating mode is at the center of the atomic line and it has opposite signs on
either side of the line center. This additional phase shift causes the frequencies of
oscillation of the optical cavity filled with the laser medium to be different from
the frequencies of oscillation of the passive cavity (i.e., the cavity in the absence of
the laser medium). The actual oscillation frequencies are slightly pulled toward the
center of the atomic line and hence the phenomenon is referred to as mode pulling.
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6.3 Polarization of the Cavity Medium

In the last section, we obtained equations describing the cavity field and the oscil-
lation frequency of the cavity in terms of the polarization associated with the cavity
medium. In the present section, we consider a collection of two-level atoms and
obtain an explicit expression for the macroscopic polarization (and hence the elec-
tric susceptibility) of the cavity medium in terms of the atomic populations in the
two levels of the system. The time-dependent Schrödinger equation is given by.

i�
∂�

∂t
= H� (6.47)

where H is the Hamiltonian and � represents the time-dependent wave function of
the atomic system.

Let H0 represent the Hamiltonian of the atom and let ψ1 (r) e−iω1t and
ψ2 (r) e−iω2t be the normalized wave functions associated with the lower level 1
and the upper level 2, respectively, of the atom. Then

H0ψ1 (r) = E1ψ1 (r) (6.48a)

H0ψ2 (r) = E2ψ2 (r) (6.48b)

where E1 = �ω1 and E2 = �ω2 are the energies of the lower and the upper
levels, respectively. The interaction of the atom with the electromagnetic field is
described by

H′ = −eE.r (6.49)

which is assumed to be a perturbation on the Hamiltonian H0; here E represents the
electric field associated with the radiation. In the presence of such an interaction we
write the wave function as

� (r, t) = C1 (t) ψ1 (r) + C2 (t) ψ2 (r) (6.50)

where C1 (t) and C2 (t) are time-dependent factors. The physical significance of
C1 (t) and C2 (t) is that |C1 (t)|2 and |C2 (t)|2 represent, respectively, the probability
of finding the atom in the lower state ψ1 and in the upper state ψ2 at time t. Also,
since we are considering a collection of Nυ atoms per unit volume and each atom
has a probability |C1 (t)|2 of being found in the level ψ1 at time t, the mean number
of atoms per unit volume in the lower level 1, namely N1 would be

N1 = Nυ |C1 (t)|2 (6.51a)

Similarly, the mean number of atoms per unit volume in the level 2, N2, would be

N2 = Nυ |C2 (t)|2 (6.51b)
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Using Eqs. (6.48) and (6.50), Eq. (6.47) gives

i�
∑

n=1,2

Ċnψn =
∑

n=1,2

(
�ωn + H′)Cnψn (6.52)

Multiplying both sides by ψ∗
1

and integrating over spatial coordinates, one obtains

i�Ċ1 = E1C1 + H′
11C1 + H′

12C2 (6.53)

where

H′
mn =

∫
ψ∗

mH′ψndτ (6.54)

Similarly by multiplying Eq. (6.52) by ψ∗
2 and integrating one obtains

i�Ċ2 = E2C2 + H′
22C2 + H′

21C1 (6.55)

But

H′
11 = −e.E.

∫
ψ∗

1 (r) rψ1 (r) dτ = 0 (6.56)

because r is an odd function. Similarly

H′
22 = 0 and H′

12 = H′∗
21 (6.57)

Thus

Ċ1 (t) = 1

i�

[
E1C1 (t) + H′

12C2 (t)
]

(6.58a)

and

Ċ2 (t) = 1

i�

[
E2C2 (t) + H′

21C1 (t)
]

(6.58b)

In deriving the above equations, we have not considered any damping mechanism.
We wish to do so now by introducing phenomenological damping factors. Even
though we are considering only two levels of the atomic system, the phenomeno-
logical damping factors take account of not only spontaneous transitions from the
two levels but also, for example, collisions, etc. This we do by rewriting Eqs. (6.58a)
and (6.58b) as

Ċ1 (t) = − i

�
E1C1 − 1

2
γ1C1 (t) − i

�
H′

12C2 (t) (6.59a)

Ċ2 (t) = − i

�
E2C2 − 1

2
γ2C2 (t) − i

�
H′

21C1 (t) (6.59b)
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where γ1 and γ2 represent damping factors for levels 1 and 2, respectively. In order
to see more physically, we find that in the absence of any interaction when H′

12 =
0 = H′

21 the solutions of Eqs. (6.59a) and (6.59b) would be

C1 (t) = const × exp

(
−i

E1

�
t

)
e−(γ1/2)t (6.60a)

C2 (t) = const × exp

(
−i

E2

�
t

)
e−(γ2/2)t (6.60b)

Hence the probability of finding the atom in levels 1 and 2 (which are, respectively,
proportional to |C1|2 and |C2|2) decays as e−γ1t and e−γ2t, respectively. Thus, the
lifetimes of levels 1 and 2 are 1

/
γ1 and 1

/
γ2, respectively.

We now define the following quantities4:

ρ11 = C∗
1C1, ρ12 = C1C∗

2 (6.61)

ρ21 = C∗
1C2, ρ22 = C∗

2C2 (6.62)

Notice that ρ11 and ρ22 are nothing but the probabilities of finding the system in
states 1 and 2, respectively. Since we know the time dependence of C1 and C2 we
can write down the time variation of the quantities ρ11, etc. Thus,

ρ̇11 = Ċ1C∗
1 + C1Ċ∗

1

= −
(

i
E1

�
+ γ1

2

)
C1C∗

1 − i

�
H′

12C2C∗
1

−
(

−i
E1

�
+ γ1

2

)
C∗

1C1 + i

�
H′∗

12C∗
2C1

or

ρ̇11 = −γ1ρ11 +
(

i

�
H′

21ρ12 + c.c.

)
(6.63)

where c.c. represents the complex conjugate. Similarly

ρ̇22 = −γ2ρ22 −
(

i

�
H′

21ρ12 + c.c.

)
(6.64)

ρ̇21 = − (iω21 + γ12) ρ21 + i

�
H′

21 (ρ22 − ρ11) (6.65)

where

ω21 = E2 − E1

�
and γ12 = γ1 + γ2

2
(6.66)

4The four quantities ρ11, ρ12, ρ21, and ρ22 form the elements of what is known as the density
matrix ρ.
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Now,

H′
21 = −eE.

∫
ψ∗

2 rψ1dτ (6.67)

and if we consider single-mode operation with E along with the x-axis then

H′
21 = −eEn

∫
ψ∗

2 xψ1dτ = −EnP (6.68)

where

P = e
∫

ψ∗
2 xψ1dτ (6.69)

and

En = 1

2
En (t) exp {−i [ωnt + φn (t)]} sin Knz + c.c.

= En (t) cos [ωnt + φn (t)] sin Knz
(6.70)

Further when the system is in the state � (t), the average dipole moment is given by

Pa = e
∫

�∗x� dτ

= e
∫ (

C∗
1ψ

∗
1 + C∗

2ψ
∗
2

)
x (C1ψ1 + C2ψ2) dτ

= P (ρ21 + ρ12)

(6.71)

where we have used the relation
∫

ψ∗
1 xψ2 dτ =

∫
ψ∗

2 xψ1 dτ (6.72)

which can always be made to satisfy by appropriate choice of phase factors. Thus,
in order to calculate Pa we must know ρ12 and its complex conjugate ρ21. We first
present the first-order theory which will be followed by the more rigorous third-
order theory.

6.3.1 First-Order Theory

In the first-order theory, we assume (ρ22 − ρ11) to be dependent only on z and to be
independent of time5:

ρ22 − ρ11 = N (z) (6.73)

Referring to Eqs. (6.51a) and (6.51b), we see that Nυ (ρ22 − ρ11) represents the
difference (per unit volume) in the population of the upper and lower states. Thus,

5This will be justified in Section 6.3.2
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Eq. (6.65) becomes

ρ̇21 = − (iω21 + γ12) ρ21 − i

2�
PEn (t)

(
e−i(ωnt+φn) + c.c.

)
sin Knz N (z) (6.74)

where we have used Eqs. (6.68) and (6.70). Now, if we neglect the second term on
the right-hand side of the above equation, the solution would be of the form

ρ21 (t) = ρ
(0)
21 exp

[− (iω21 + γ12) t
]

(6.75)

We next assume the solution of Eq. (6.74) to be of the above form with ρ
(0)
21 now

depending on time. On substitution in Eq. (6.74), we obtain

ρ̇
(0)
21 = −P

i

2�
En (t)N (z) sin Knz

{
exp

[−i (ωn − ω21 + iγ12) t − iφn
]

+ exp
[
i (ωn + ω21 − iγ12) t − iφn

]} (6.76)

We neglect the time dependence of En and φn and integrate the above equation to
get

ρ
(0)
21 ≈ P

2�
N (z)En (t) sin Knz

{
exp

[−i (ωn − ω21 + iγ12) t − iφn
]

ωn − ω21 + iγ12

− exp
[
i (ωn + ω21 − iγ12) t − iφn

]

ωn + ω21 + iγ12

} (6.77)

We neglect the second exponential term in the curly brackets in the above equation
as it has very rapid variations and we obtain

ρ
(0)
21 ≈ P

1

2�
N (z)En (t) sin Knz eγ12t exp {−i [(ωn − ω21) t + φn (t)]}

(ωn − ω21) + iγ12
(6.78)

Thus,6:

ρ21 ≈ P
1

2�

N (z) sin Knz En (t)

(ωn − ω21) + iγ12
exp [−i (ωnt + φn)]

or

ρ21 ≈ P
1

2�

N (z) sin Knz En (t)

�n
e−iθn exp [−i (ωnt + φn)] (6.79)

6The constant of integration in Eq. (6.77) would have led to an exponentially decaying term in
Eq. (6.79).
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where

cos θn = ωn − ω21

�n
, sin θn = γ12

�n
(6.80)

�n ≡
[
(ωn − ω21)

2 + γ 2
12

]1/2
(6.81)

Thus, from Eq. (6.71) we get for the average dipole moment per atom

Pa = P (ρ21 + ρ12) = P (ρ21 + c.c.)

If we assume that there are Nυ atoms per unit volume in the cavity, then the
macroscopic polarization would be given by

P = NυPa

= P2 Nυ

2�

[
N (z) sin Knz

�n
En (t) e−iθn e−i(ωnt+φn) + c.c.

]
(6.82)

where we have used Eq. (6.79). Comparing with Eq. (6.78), we get

Pn (t, z) = Nυ P2 En (t)N (z) sin Knz

��n
e−iθn (6.83)

and

pn (t) = 2

L

∫ L

0
Pn (t, z) sin Knz dz

= P2 En (t)

��n
e−iθn NNυ (6.84)

where

N = 2

L

∫ L

0
N (z) sin2 Knz dz ≈ 1

L

∫ L

0
N (z) dz (6.85)

In writing the last step, we have assumed that N (z) (which represents the population
inversion density) varies slowly in an optical wavelength. Comparing Eq. (6.84)
with Eq. (6.38), we get

χ ′
n = P2 NNυ

�ε0

ωn − ω21

(ωn − ω21)
2 + γ 2

12

(6.86)

and

χ ′′
n = −P2 NNυ

ε0�

γ12

(ωn − ω21)
2 + γ 2

12

(6.87)

The above two equations represent the variation of the real and imaginary parts of
the susceptibility with the mode frequency ωn.
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Fig. 6.2 Variation of χ ′
n and

χ ′′
n , which represent,

respectively, the real and
imaginary parts of the electric
susceptibility of the medium,
as a function of ωn − ω21; χ ′

n
is peaked at ωn = ω21 and
thus maximum gain appears
at ωn = ω21

In Fig. 6.2 we have plotted the variation of χ ′
n and χ ′′

n with ωn for a medium with
a population inversion (i.e., N > 0).

Substituting for χ ′′
n in Eq. (6.40), we get

Ėn (t) =
[
− ωn

2Q′
n

+ ωnP2N̄Nυ

2ε0�

γ12

(ωn − ω21)
2 + γ 2

12

]
En(t) (6.88)

Thus, for the amplitude to grow with time, the quantity inside the square brackets
should be positive or

P2 NNυ

ε0�

γ12

(ωn − ω21)
2 + γ 2

12

>
1

Q′
n

(6.89)

When the two sides of the above inequality are equal, then the losses are exactly
compensated by the gain due to the cavity medium and this corresponds to the
threshold condition.

The sign of the second term in the square brackets in Eq. (6.88) depends on the
sign of N. It may be recalled that N is proportional to the population difference
between the upper and the lower states7. Thus if N is negative, i.e., if there are more
atoms in the lower level than in the upper level, then the second term contributes
an additional loss. On the other hand, if there is a population inversion between the
levels 1 and 2 then N is positive and the medium acts as an amplifying medium. In
order that the mode may oscillate, the losses have to be compensated by the gain
and this leads to the threshold condition, for which we must have

7In fact NNυ represents the population inversion density in the cavity medium, i.e., it is equal to
(N2 − N1) of Chapter 5 [see discussion after Eq. (6.73)].
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NtNυ = (N2 − N1)t = ε0�

P2γ12

(ωn − ω21)
2 + γ 2

12

Q′
n

= ε0�

πg (ω)P2Q′
n

(6.90)

where the subscript t implies the threshold value and g (ω) represents the normalized
lineshape function.

g (ω) = γ12

π

1

(ωn − ω21)
2 + γ 2

12

(6.91)

which is identical to Eq. (4.37) with 2tsp = 1
/
γ12. Further

P2 = e2
[∫

ψ∗
2 xψ1dτ

]2

= e2

3

∣∣∣∣
∫

ψ ′
2rψ1dτ

∣∣∣∣
2

= πε0�c3

ω3
A = πε0�c3

ω3

1

tsp

(6.92)

where tsp is the spontaneous relaxation time of level 2. Substituting for P2 in Eq.
(6.90), we get an expression for (N2 − N1)t identical to Eq. (4.32) for the case of
natural broadening.

The minimum value of threshold inversion would correspond to ωn = ω21 (i.e.,
at resonance) giving8

Ntm = ε0�γ12

P2Q′
nNυ

(6.93)

Next, we substitute for χ ′
n from Eq. (6.86) in Eq. (6.39) to obtain

ωn − 	n = ωn

2�ε0
P2NNυ

ω21 − ωn

(ωn − ω21)
2 + γ 2

12

(6.94)

where we have neglected the term φ̇n, in Eq. (6.39). Thus, in the presence of the
active medium, the oscillations do not occur at the passive cavity resonances but are
shifted because of the presence of the χ ′

n term. In general, this shift is small and one
can obtain the approximate oscillation frequencies as

ωn ≈ 	n + 	nP2

2�ε0
NNυ

ω21 − 	n

(	n − ω21)
2 + γ 2

12

(6.95)

8Notice that for ωn �= ω21, i.e., for a mode shifted away from resonance, the value of Nt increases
with increase in the value of |ωn − ω21|.
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If 	n coincides exactly with the resonance frequency ω21 then ωn = 	n and in
such a case the frequency of oscillation in the active resonator is the same as in the
passive case. If 	n < ω21, then for an inverted medium ωn > 	n. Similarly for
	n > ω21,ωn < 	n. Thus, in the presence of the active medium, the oscillation
frequencies are pulled toward the line center.

At threshold, we substitute for Nt from Eq. (6.90) to obtain

ωn − 	n ≈ ωn

2Q′
nγ12

(ω21 − ωn) (6.96)

where we have assumed ωn ≈ ω21. We define a parameter

S = ωn
/

2Q′
n

γ12
(6.97)

which is known as the stabilizing factor9, so that

ωn − 	n ≈ S (ω21 − ωn)

or

ωn ≈ 	n + Sω12

1 + S
(6.98)

For a gas laser S ∼ 0.01 − 0.1 so that the oscillation frequency lies very close to the
normal mode frequency of the passive cavity mode.

6.3.2 Higher Order Theory

We have shown earlier that if the laser operates above threshold [see Eq. (6.89)], the
power will grow exponentially with time [see Eq. (6.88)]. This unlimited growth
is due to the assumption that the population difference remains constant with time
[see Eq. (6.73)]. However, as the power increases, the population of the upper level
would decrease (because of increase in stimulated emission), and hence in an actual
laser, the power level would saturate at a certain value. We will show this explicitly
in this section10.

Similar to the rate equations discussed in Chapter 5, we start with the equations
describing the population of the two levels:

ρ̇11 = λ1 − γ1ρ11 +
(

i

�
H′

21ρ12 + c.c.

)
(6.99a)

ρ̇22 = λ2 − γ2ρ22 −
(

i

�
H′

21ρ12 + c.c.

)
(6.99b)

9It represents the ratio of the cavity bandwidth to the natural linewidth.
10See also Section 5.5, where we showed that on a steady-state basis the inversion can never exceed
the threshold value.
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E2

E1

λ2

γ2

γ1λ1

Fig. 6.3 λ1 and λ2 represent
the rates of pumping of the
lower and upper levels,
respectively, and γ1 and γ2
represent their decay
constants

Just as in Section 5.4, the quantities λ1 and λ2 represent constant rates of pumping
of atoms into levels 1 and 2, respectively (see Fig. 6.3). In order to solve the above
equations, we substitute for ρ12 from the first-order solution obtained in the previous
section. Thus

i

�
H′

21ρ12 = i

�
[−EnP cos (ωnt + φn) sin Knz]

P

2�
N (z)

sin Knz

�n
En (t) eiθn ei(ωnt+φn)

= − i

2�2
P2 E2

n (t)

�n
(ρ22 − ρ11) sin2 Knz cos (ωnt + φn) ei(ωnt+φn+θn)

Hence

i

�
H′

21ρ12 + c.c. = P2

2�2

E2
n (t)

�n
sin2 Knz (ρ22 − ρ11) G (6.100)

where

G = − cos (ωnt + φn)
[
iei(ωnt+φn+θn) − ie−i(ωnt+φn+θn)

]

= 2 cos (ωnt + φn) sin (ωnt + φn + θn)

= 2 cos2 (ωnt + φn) sin θn + sin 2 (ωnt + φn) cos θn

≈ sin θn = γ12

�n
(6.101)

where we have replaced G by its time average value. Substituting in Eq. (6.99a),
we get

ρ̇11 = λ1 − γ1ρ11 + R (ρ22 − ρ11) (6.102)

Similarly

ρ̇22 = λ2 − γ2ρ22 − R (ρ22 − ρ11) (6.103)
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where

R = γ12

2�2
P2E2

n
sin2 Knz

�2
n

(6.104)

At steady state we must have ρ̇11 = ρ̇22 = 0, and

ρ11 − R

γ1
(ρ22 − ρ11) = λ1

γ1
(6.105a)

ρ22 + R

γ2
(ρ22 − ρ11) = λ2

γ2
(6.105b)

or

ρ22 − ρ11 = N (z)

1 + R
/

Rs
(6.106)

where

N (z) = λ2

γ2
− λ1

γ1
(6.107)

and

Rs =
(

1

γ1
+ 1

γ2

)−1

= γ1γ2

2γ12
(6.108)

It follows from Eq. (6.106) that the population inversion depends on the field value
also. In the absence of the field, R = 0 and the population difference density is
simply N (z)Nv; however, as the field strength En (and hence R) increases, the pop-
ulation difference decreases. Since R (z) has a sinusoidal dependence on z [see Eq.
(6.104)], the population difference also varies with z. Whenever Knz is an odd mul-
tiple of π

/
2 [i.e., wherever the field has a maximum amplitude – see Eq. (6.70)],

the population difference has a minimum value, which is often referred to as hole
burning in the population difference and the holes have a spacing of half of a
wavelength.

If instead of Eq. (6.73), we now use Eq. (6.106) for ρ22 − ρ11, Eq. (6.79) would
be replaced by

ρ21 ≈ P

2�

En sin Knz

�n

N (z)

1 + R
/

Rs
e−iθn e−i(ωnt+φn) (6.109)

Thus [cf. Eq. (6.84)]

pn (t) = P2En (t) e−iθn

��n
Nυ

⎡
⎣2

L

L∫

0

N (z)

1 + R
/

Rs
sin2 Knz dz

⎤
⎦ (6.110)
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We next assume En (and hence R) to be small enough so that

(
1 + R

Rs

)−1

≈ 1 − R

Rs
(6.111)

Substituting this in Eq. (6.110) and carrying out a term-by-term integration, we
obtain

2

L

L∫

0

N (z)

1 + R
/

Rs
sin2 Knz dz ≈ 2

L

L∫

0

N (z) sin2 Knz dz

− P2E2
nγ

2
12

�2γ1γ2

1

�2
n

⎡
⎣2

L

L∫

0

N (z) sin4 Knz dz

⎤
⎦

≈ N

[
1 − 3

4

P2E2
n

�2γ1γ2

γ 2
12

�2
n

]

(6.112)

where we have used Eq. (6.85) and the relation

2

L

L∫

0

N (z) sin4 Knz dz = 2

L

⎡
⎣

L∫

0

N (z) dz

⎤
⎦ 〈

sin4 Knz
〉
≈ 3

4
N (6.113)

Thus,

pn (t) ≈ P2En

��n
e−iθn N̄Nυ

(
1 − 3

4

P2E2
n

�2γ1γ2

γ 2
12

�n

)
(6.114)

or

pn (t) ≈ P2En

��n
e−iθn N̄Nυ

(
1 + 3

4

P2E2
n

�2γ1γ2

γ 2
12

�2
n

)−1

(6.115)

where in the last step we have assumed the two terms inside the square brackets
in Eq. (6.114) to be the first two terms of a geometric series. This way the gain
saturates as the electric field increases indefinitely. Eq. (6.115) may be compared
with Eq. (6.84); hence instead of Eqs. (6.86) and (6.87), we get

χ ′
n ≈ P2N̄Nυ

�ε0�n
cos θn

(
1 + 3

4

P2E2
n

�2γ1γ2

γ 2
12

�2
n

)−1

(6.116)

χ ′′
n ≈ −P2NNυ

�ε0�n
sin θn

(
1 + 3

4

P2E2
n

�2γ1γ2

γ 2
12

�2
n

)−1

(6.117)
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Substituting this value of χ ′′
n in Eq. (6.40), we get at steady state,

0 = Ėn =
⎡
⎣−1

2

ωn

Q′
n

+ 1

2
ωn

P2NNυ

�ε0�n
sin θn

(
1 + 3

4

P2E2
n

�2γ1γ2

γ 2
12

�2
n

)−1
⎤
⎦En (6.118)

which after simplification gives

E2
n = 4�

2

3P2
γ1γ2

[
N

Ntm
− 1 − (ωn − ω21)

2

γ 2
12

]
(6.119)

where Ntm is given by Eq. (6.93). The above equation gives the dependence of
the saturation value of the intensity as a function of the detuning (ωn − ω21). At
resonance ωn = ω21 and we get

E2
n = 4�

2γ1γ2

3P2

(
N

Nm
− 1

)
(6.120)

It is clear from the above equation that the intensity of the field inside the cavity
increases linearly with the pumping rate above threshold.

It should be pointed out that in the above equation, Ntm is proportional to the
pumping rate at threshold [see Eq. (6.107)] and happens to be equal to the inversion
density at the threshold [see Eq. (6.73)]. On the other hand, N is proportional to the
pumping rate corresponding to the actual laser operation which is greater than Nt.
Thus if we assume γ1 ≫ γ2, then NNυ is nothing but R

/
T21 of Section 5.5. Using

this value of N one obtains

E2
n � 4

3

�
2γ1γ2

P2

(
R

Rt
− 1

)
(6.121)

where we have used the relation

Rt = N2tT21 ≈ NυNtγ2 (6.122)

Further, in order to relate the photon number of the cavity to E2
n, we note that the

energy density of the field in the cavity is given by 1
2ε0E2

n and the total energy in the
cavity of volume V would be 1

2ε0VE2
n. If the frequency of the cavity mode is ωn, the

number of photons in the cavity mode would be

n = 1

2
ε0

E2
n V

�ωn
(6.123)
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Substituting this in Eq. (6.121) and using the fact that K defined in Eq. (5.72) is
identical to11

K = P2ωn

�ε0γ12
(6.124)

we obtain

n = 4

3
V

(
γ1γ2

2γ12

)
1

K

(
R

Rt
− 1

)
(6.125)

For γ1 � γ2 (i.e., the lower level has a very short lifetime as compared to the upper
state)

γ1γ2

2γ12
= γ1γ2

γ1 + γ12
≈ γ2 (6.126)

Thus Eq. (6.125) becomes

n = 4

3
V
γ2

K

(
R

Rt
− 1

)
(6.127)

which is the same as Eq. (5.85) obtained in the last chapter (γ2 correspond to
T21 of Section 5.5), apart from the factor 4/3 which has appeared because of the
consideration of the spatial dependence of the modal field in this chapter.

11Use has been made of Eq. (6.92)





Chapter 7
Optical Resonators

7.1 Introduction

In Chapter 4 we discussed briefly the optical resonator, which consists of a pair
of mirrors facing each other in between which is placed the active laser medium
which provides for optical amplification. As we discussed, the mirrors provide opti-
cal feedback and the system then acts as an oscillator generating light rather than just
amplifying. In this chapter we give a more detailed account of optical resonators. In
Section 7.2 we will discuss the modes of a rectangular cavity and show that there
exist an extremely large number of modes of oscillation under the linewidth of the
active medium in a closed cavity of practical dimensions (which are large com-
pared to the wavelength of light). Section 7.3 discusses the important concept of
the quality factor of an optical resonator. In this section we obtain the linewidth
corresponding to the passive cavity in terms of the parameters of the resonator.
We also introduce the concept of cavity lifetime. In Section 7.4 we discuss the
ultimate linewidth of the laser oscillator – this is, as discussed earlier in Chapter
6, determined by spontaneous emissions occurring in the cavity. In practice the
observed linewidth is much larger than the ultimate linewidth and is determined by
mechanical stability, temperature fluctuations, etc. Section 7.5 discusses some tech-
niques for selecting a single transverse and longitudinal mode in a laser oscillator.
In Sections 7.6 and 7.7 we discuss the techniques for producing short intense pulses
of light using Q-switching and mode locking. Using the mode locking techniques
one can obtain ultrashort pulses of very high peak power which find widespread
applications.

In Section 7.8 we give a scalar wave analysis of the modes of a symmetrical
confocal resonator which consists of a pair of concave mirrors of equal radii of
curvatures and separated by a distance equal to the radius of curvature. We will
show that in such a structure, the lowest order transverse mode has a Gaussian field
distribution across its wave front. Most practical lasers are made to oscillate in this
mode. In Section 7.9 we give the results for the beamwidth and the field distributions
corresponding to a general spherical resonator.

143K. Thyagarajan, A. Ghatak, Lasers, Graduate Texts in Physics,
DOI 10.1007/978-1-4419-6442-7_7, C© Springer Science+Business Media, LLC 2010
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7.2 Modes of a Rectangular Cavity and the Open
Planar Resonator

Consider a rectangular cavity of dimensions 2a × 2b × d as shown in Fig. 7.1.
Starting from Maxwell’s equations [see Eqs. (2.1), (2.2), (2.3), and (2.4)] one can
show that the electric and magnetic fields satisfy a wave equation of the form
given by

∇2E − n2
0

c2

∂2E
∂t2

= 0 (7.1)

where c represents the velocity of light in free space and n0 represents the refractive
index of the medium filling the rectangular cavity. Equation (7.1) has been derived
in Chapter 2.

If the walls of the rectangular cavity are assumed to be perfectly conducting then
the tangential component of the electric field must vanish at the walls. Thus if n̂
represents the unit vector along the normal to the wall then we must have

E × n̂ = 0 (7.2)

on the walls of the cavity.
Let us consider a Cartesian component (say x component) of the electric vector;

this will also satisfy the wave equation, which in the Cartesian system of coordinates
will be given by

∂2Ex

∂x2
+ ∂2Ex

∂y2
+ ∂2Ex

∂z2
= n2

0

c2

∂2Ex

∂t2
(7.3)

In order to solve Eq. (7.3) we use the method of separation of variables and write

Ex = X(x)Y(y)Z(z)T(t) (7.4)

y

2a

2b

d

x

Fig. 7.1 A rectangular cavity
of dimensions 2a × 2b × d
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Substituting this in Eq. (7.3) and dividing by Ex We obtain

1

X

∂2X

∂x2
+ 1

Y

∂2Y

∂y2
+ 1

Z

∂2Z

∂z2
= n2

0

c2T

∂2T

∂t2
(7.5)

Thus the variables have indeed separated out and we may write

1

X

∂2X

∂x2
= −k2

x (7.6)

1

Y

∂2Y

∂y2
= −k2

y (7.7)

1

Z

∂2Z

∂z2
= −k2

z (7.8)

and

n2
0

c2T

∂2T

∂t2
= −k2 (7.9)

where

k2 = k2
x + k2

y + k2
z (7.10)

Equation (7.9) tells us that the time dependence is of the form

T(t) = Ae−iω t (7.11)

where ω = c k/n0 represents the angular frequency of the wave and A is a constant.
It should be mentioned that we could equally well have chosen the time dependence
to be of the form eiωt. Since Ex is a tangential component on the planes y = 0, y =
2b, z = 0, and z = d, it has to vanish on these planes and the solution of Eqs. (7.7)
and (7.8) would be sin kyy and sin kzz, respectively, with

ky = nπ

2b
, kz = qπ

d
, n, q = 0, 1, 2, 3, ... (7.12)

where we have intentionally included the value 0, which in this case would lead to
the trivial solution of Ex vanishing everywhere (The above solutions are very similar
to the ones discussed in Example 3.3). In a similar manner, the x and z dependences
of Ey would be sin kxx and sin kzz, respectively, with

kx = mπ

2a
, m = 0, 1, 2, 3, . . . (7.13)

and kz given by Eq. (7.12). Finally the x and y dependences of Ez would be sin kxx
and sin kyy respectively.
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Now, because of the above forms of the x dependence of Ey and Ez, ∂Ey / ∂y, and
∂Ez / ∂z would vanish on the surfaces x = 0 and x = 2 a. Thus on the planes x = 0
and x = 2a, the equation ∇.E = 0 leads to ∂Ex / ∂x = 0.Hence the x dependence
of Ex will be of the form cos kxx with kx given by Eq. (7.13). Notice that the case
m = 0 now corresponds to a nontrivial solution.

In a similar manner, one may obtain the solutions for Ey and Ez. The complete
solution (apart from the time dependence) would therefore be given by

Ex = E0x cos kxx sin kyy sin kzz

Ey = E0y sin kxx cos kyy sin kzz

Ez = E0z sin kxx sin kyy cos kzz

(7.14)

where E0x, E0y, and E0z are constants. The use of Maxwell’s equation ∇.E = 0,
immediately gives

�E0.�k = 0 (7.15)

where �k = x̂kx + ŷky + ẑkz. Since the coefficients E0x, E0y and E0z have to satisfy
Eq. (7.15) it follows that for a given mode, i.e., for a given set of values of m, n,
and q only two of the components of E0 can be chosen independently. Thus a given
mode can have two independent states of polarization.

Note that when one of the quantities m, n, or q is zero, then there is only one
possible polarization state associated with the mode. Thus if we consider the use
with m = 0, n �= 0, q �= 0, then Ex = E0x sin kyy sin kzz, Ey = 0, Ez = 0. Thus the
only possible case is with the electric vector oriented along the x-direction.

Using Eqs (7.10), (7.12), and (7.13), we obtain

ω2 = c2 k2

n2
0

= c2

n2
0

(
k2

x + k2
y + k2

z

)

= c2π2

n2
0

(
m2

4a2
+ n2

4b2
+ q2

d2

)

or

ω = cπ

n0

(
m2

4a2
+ n2

4b2
+ q2

d2

)1/ 2

(7.16)

which gives us the allowed frequencies of oscillation of the field in the cavity. Field
configurations given by Eq. (7.14) represent standing wave patterns in the cavity and
are called modes of oscillation of the cavity. These are similar to the acoustic modes
of vibration of an acoustic cavity (like in a musical instrument such as a guitar and
veena) and represent the only possible frequencies that can exist within the cavity.

Example 7.1 As a specific example we consider a mode with

m = 0, n = 1, and q = 1
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Thus kx = 0, ky = π / 2b, kz = π / d and using Eq. (7.14), we have

Ex = E0x sin kyy sin kzz = E0x sin
( π

2b
y
)

sin
(π

d
z
)

Ey = 0

Ez = 0

Using the time dependence of the form e–iωt and expanding the sine functions into exponentials, we may
write

E = 1

(2i)2
x̂
(

e−i(ωt−kyy−kzz) + e−i(ωt−kyy+kzz) + e−i(ωt+kyy−kzz) + e−i(ωt+kyy+kzz)
)

(7.17)

Thus the total field inside the cavity has been broken up into four propagating plane waves; in Eq. (7.17)
the first term on the right-hand side represents a wave propagating along the (+y, +z) direction, the
second along (+y, –z) direction, the third along (–y, +z) direction, and the fourth along (–y, –z) direction,
respectively. These four plane waves interfere at every point inside the cavity to produce a standing wave
pattern. However, since ky and kz take discrete values, the plane waves which constitute the mode make
discrete angles with the axes.

Example 7.2 If we take a cavity with a = b = 1 cm and d = 20 cm and consider the mode with m = 0, n
= 1, q = 106

then
kx = 0, ky = π / 2cm−1, kz = 106π / 20 cm−1

implying
k ≈ 106π / 20 cm−1 and ν = ck/2π = 7.5 × 1014 Hz

which lies in the optical region. For such a case

θy = cos−1
(

ky

k

)
≈ 89.9994◦

θz = cos−1
(

kz

k

)
≈ 0.0006◦

and θx = 0 because of which θy + θ z = 90◦. It may be noted that the component waves are propagating
almost along the z-axis. In general,

cos2 θx + cos2 θy + cos2 θz = 1

Further for m �= 0, n �= 0, q �= 0 the cavity mode can be thought of as a standing wave pattern formed
by eight plane waves with components of �k given by

(±kx, ±ky, ±kz
)
.

Example 7.3 Let us now consider a few hundred nanometer-sized rectangular cavity (also referred to as
a microcavity) filled with free space. Let 2a = 2b = d = 500 nm. We now calculate the wavelengths
(λ = c/ν) of oscillation corresponding to some of the lower order modes which can be obtained from
Eq. (7.16) as

m n q λ (nm)

1 0 0 1000
0 1 0 1000
0 0 1 1000
1 1 0 707.1
1 0 1 707.1
0 1 1 707.1
1 1 1 577.4
2 0 0 500
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Note that since the cavity dimensions are of the order of optical wavelength, in the optical wavelength
region, the wavelengths of oscillation of the modes are well separated. Also the cavity cannot support
any mode at wavelengths longer than 1000 nm. If we place an atom in such a cavity and if the atom has
energy levels separated by energy difference corresponding to a wavelength of say 800 nm with emission
spectral width of about 10 nm, then since there are no possible modes in the cavity corresponding to this
wavelength region, the atom would be inhibited from emitting radiation. Thus it is possible to inhibit
spontaneous emission from atoms and increase the lifetime of the level. Microcavities of dimensions
comparable to optical wavelength are now being extensively investigated for various applications includ-
ing suppressing spontaneous emission or for enhancing spontaneous emission, for lowering threshold for
laser oscillation, etc. (see, e.g., Vahala (2003) and Gerard (2003)).

If we had chosen even one of the dimensions to be much larger then the mode spacing would be
much smaller. As an example if we assume 2a = 2b = 500 nm and d = 10,000 nm, then the wavelength
corresponding to various low-order modes would be

m n q λ (nm)

1 0 0 1000
0 1 0 1000
1 1 0 707.1
1 0 1 998.8
0 1 1 998.8
1 1 1 706.7
2 0 0 500
0 0 21 952.3
0 0 22 909.1
0 0 23 869.5
0 0 24 833.3

It can be noted that since the value of d is large compared to wavelength around 900 nm, the mode
spacing is small.

Using Eq. (7.16) we can show (see Appendix E) that the number of modes per
unit volume in a frequency interval from ν to ν + dν will be given by

p(ν)dν = 8π n3
0

c3
ν2dν (7.18)

where n0 represents the refractive index of the medium filling the cavity. For a typ-
ical atomic system dν∼3 × 109 Hz at ν = 3 × 1014 Hz and the number of modes
per unit volume would be (assuming n0 = 1)

p(ν)dν = 8π n3
0

c3
ν2dν = 8 × π × 1 × (

3 × 1014
)2

(
3 × 108

)3
× 3 × 109 ≈ 2 × 108cm−3

Thus for cavities having typical volumes of 10 cm3, the number of possible oscil-
lating modes within the linewidth will be 2 × 109 which is very large. To achieve a
very small number of possible oscillating modes within the linewidth of the atomic
transition, the volume of the cavity has to be made very small. Thus to achieve
a single mode of oscillation within the linewidth the volume of the cavity should
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be of the order of 5 × 10–9 cm3. This corresponds to a cube of linear dimen-
sion of the order of 17 μm. Optical microcavities having such small dimensions
can be fabricated using various techniques and are finding applications for studying
strong interactions between atoms and radiation (cavity quantum electrodynamics),
for inhibiting spontaneous emission, or for enhancing spontaneous emission and
as filters for optical fiber communication systems. For a nice review, readers are
referred to Vahala (2003).

In the case of conventional lasers the volume of the cavity is large and thus the
number of oscillating modes within the linewidth of the atomic transition is very
large. Thus all these oscillating modes can draw energy from the atomic system and
the resulting emission would be far from monochromatic. In order to have very few
oscillating modes within the cavity, if the dimensions of the cavity are chosen to be
of the order of the wavelength, then the volume of the atomic system available for
lasing becomes quite small and the power would be quite small.

The problem of the extremely large number of oscillating modes can be over-
come by using open cavities (as against closed cavities) which consist of a pair of
plane or curved mirrors facing each other. As we have seen earlier, a mode can
be considered to be a standing wave pattern formed between plane waves propa-
gating within the cavity with �k given by

(±kx, ±ky, ±kz
)
. Thus the angles made

by the component plane waves with the x-, y- and z-directions will, respectively, be,
cos−1(mλ / 2a), and cos−1(nλ / 2b), cos−1(qλ / d). Since in open resonators, the side
walls of the cavity have been removed, those modes which are propagating almost
along the z-direction (i.e., with large value of q and small values of m and n) will
have a loss which is much smaller than the loss of modes which make large angles
with the z-axis (i.e., modes with large values of m and n). Thus on removing the side
walls of the cavity, only modes having small values of m and n (∼0, 1, 2..,) will have
a small loss, and thus as the amplifying medium placed inside the cavity is pumped,
only these modes will be able to oscillate. Modes with larger values of m and n will
have a large loss and thus will be unable to oscillate.

It should be noted here that since the resonator cavity is now open, all modes
would be lossy. Thus even the modes that have plane wave components travel-
ing almost along the z-direction will suffer losses. Since m and n specify the field
patterns along the transverse directions x and y and q that along the longitudinal
direction z, modes having different values of (m, n) are referred to as various trans-
verse modes while modes differing in q-values are referred to as various longitudinal
modes.

The oscillation frequencies of the various modes of the closed cavity are given
by Eq. (7.16). In order to obtain an approximate value for the oscillation frequencies
of the modes of an open cavity, we may again use Eq. (7.16) with the condition m,
n << q. Thus making a binomial expansion in Eq. (7.16) we obtain

νmnq = c

2n0

(
q

d
+

(
m2

a2
+ n2

b2

)
d

8q

)1/ 2

(7.19)

The difference in frequency between two adjacent modes having same values of m
and n and differing in q value by unity would be very nearly given by
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�νq ≈ c

2n0d
(7.20)

which corresponds to the longitudinal mode spacing. In addition if we completely
neglect the terms containing m and n in Eq. (7.19) we will obtain

νq ≈ q
c

2n0d
(7.21)

The above equation is similar to the frequencies of oscillation of a stretched string
of length d.

Example 7.4 For a typical laser resonator d∼100 cm and assuming free space filling the cavity, the
longitudinal mode spacing comes out to be ∼150 MHz which corresponds to a wavelength spacing of
approximately 0.18 pm (= 0.18 × 10–12 m) at a wavelength of 600 nm.

Problem 7.1 Show that the separation between two adjacent transverse modes is much smaller than �νq.

Solution The frequency separation between two modes differing in m values by unity would be

�νm ≈ c

2n0

d

8a2q

[
m2 − (m − 1)2

]
≈ �νq

λd

8a2

(
m − 1

2

)

where we have used q ≈ 2d / λ [see Eq. (7.21)]. For typical values of λ = 600 nm, d = 100 cm,
a = 1 cm, λd

8a2 = 7.5 × 10−4. Thus for m ∼1, �νm << �νq.

It is of interest to mention that an open resonator consisting of two plane mir-
rors facing each other is, in principle, the same as a Fabry–Perot interferometer or
an etalon (see Section 2.9). The essential difference in respect of the geometrical
dimensions is that in a Fabry–Perot interferometer the spacing between the mirrors
is very small compared to the transverse dimensions of the mirrors while in an opti-
cal resonator the converse is true. In addition, in the former case the radiation is
incident from outside while in the latter the radiation is generated within the cavity.

Earlier we showed that the modes in closed cavities are essentially superpositions
of propagating plane waves. Because of diffraction effects, plane waves cannot rep-
resent the modes in open cavities. Indeed if we start with a plane wave traveling
parallel to the axis from one of the mirrors, it will undergo diffraction as it reaches
the second mirror and since the mirror is of finite transverse dimension the energy
in the diffracted wave that lies outside the mirror would be lost. The wave reflected
from the mirror will again undergo diffraction losses when it is reflected from the
first mirror. Fox and Li (1961) performed numerical calculations of such a planar
resonator. The analysis consisted of assuming a certain field distribution at one of
the mirrors of the resonator and calculating the Fresnel diffracted field at the second
mirror. The field reflected at the second mirror is used to calculate back the field
distribution at the first mirror. It was shown that after many traversals between the
mirrors, the field distribution settles down to a steady pattern, i.e., it does not change
between successive reflections but only the amplitude of the field decays exponen-
tially in time due to diffraction losses. Such a field distribution represents a normal
mode of the resonator and by changing the initial field distribution on the first mirror
other modes can also be obtained.
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A pair of curved mirrors instead of plane mirrors can also form an optical cav-
ity. Depending on the curvature of the mirrors and the spacing between them, the
resonator so formed can be stable or unstable. In stable resonators, the field distribu-
tion can keep bouncing back and forth between the mirrors without much loss due
to the finite size of the mirrors. On the other hand, in unstable resonators, the field
escapes from the sides of the mirrors and is not well confined to the cavity. Thus the
diffraction losses in resonators formed by curved mirrors can be much smaller. In
fact if the mirrors are sufficiently large in the transverse dimensions, the diffraction
losses can be made almost negligible.

7.3 Spherical Mirror Resonators

An open resonator with plane mirrors would have significant diffraction losses on
account of the finite transverse size of the mirrors. If focusing action is provided in
the cavity then the diffraction losses can be much reduced; this can be achieved by
replacing plane mirrors by spherical mirrors.

In spherical mirror resonators, the resonator is formed by a pair of spherical mir-
rors or a plane mirror and a concave mirror. Figure 7.2 shows various spherical
mirror resonators. These include the symmetric confocal resonator which consists
of a pair of identical concave mirrors each having a radius of curvature R and the
separation between the mirrors is R so that the foci of the two mirrors coincide at
the center of the resonator. In a symmetric concentric resonator, identical concave
mirrors of radii of curvature R are separated by a distance 2R so that the centers of
curvatures of the mirrors coincide. In general one can form a spherical mirror res-
onator with plane, concave, or convex mirrors. Depending on the curvatures of the

(a) (b)

(c) (d)
Fig. 7.2 Different spherical
mirror resonators
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mirrors and the separation between the mirrors, the resonator is stable or unstable.
In the language of geometrical optics, in stable resonators, a family of light rays may
keep bouncing back and forth between the mirrors of the cavity indefinitely without
ever escaping from the cavity. On the other hand in unstable resonator system, there
are no ray families that can bounce back and forth without escaping from the cav-
ity; the ray diverges away from the axis after every pass and thus escapes from the
resonator after a few traversals.

In Section 7.9 we will give a detailed scalar analysis of spherical mirror res-
onators and will show that the modes of such a stable resonator system are given by
Hermite–Gauss functions:

Emn(x, y) = E0Hm

(√
2 x

w0

)
Hn

(√
2 y

w0

)
e−(

x2+y2
)
/ w2

0 (7.22)

where m and n represent the transverse mode numbers, Hm

(√
2 x / w0

)
and

Hn

(√
2 y / w0

)
represent Hermite polynomials (see Chapter 3), and w0 is the char-

acteristic mode width which depends on the wavelength of operation, the resonator
characteristics such as the radii of the mirrors, and the distance between them.
Figure 7.3 shows the intensity patterns of some of the lower order modes of a stable
resonator cavity formed by spherical mirrors.

Fig. 7.3 Photograph showing some of the lower order resonator modes (www.absolute
astromy.com/topics/Transverse_mode)
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The lowest order mode of such a resonator system has a Gaussian amplitude
distribution across its wave front and is given by

E00(x, y) = E0e−(
x2+y2

)
/ w2

0 (7.23)

Higher order modes are characterized by a larger transverse dimension.

7.4 The Quality Factor

The quality factor (Q factor) is a dimensionless parameter that characterizes the
energy dissipation in a resonant system by comparing the time constant of decay
of energy to the oscillation period of the system. The smaller the loss, the slower
would be the decay rate compared to the oscillating period and larger would be the
Q factor. If we consider a closed optical cavity made up of perfectly conducting
walls which do not have any loss and if the cavity is filled with free space, then
in principle energy fed into the cavity will never die and thus would correspond to
an infinite quality factor. Since in practice the walls of the cavity would have some
loss and also the medium within the cavity would have some loss the Q factor of
the cavity would not be infinite. On the other hand, open cavities by definition are
lossy even if the two mirrors at the ends of the cavity are lossless with the free space
filling the cavity; diffraction loss would still occur.

In an actual resonator, the mirrors would not be having 100% reflectivity; the
medium filling the cavity would have some losses.

We define the Q factor of the cavity by the following equation:

Q = ω0
energy stored in the mode

energy lost per unit time
(7.24)

Here ω0 is the oscillation frequency of the mode. If W(t) represents the energy in
the mode at time t, then from Eq. (7.24) we obtain

Q = ω0
W(t)

−dW / dt

or

dW

dt
= −

(
ω0

Q

)
W(t)

whose solution is

W(t) = W(0)e−ω0t/ Q (7.25)

Thus if tc represents the cavity lifetime, i.e., the time in which the energy in the
mode decreases by a factor 1/e, then,
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tc = Q

ω0
= Q

2πν0
(7.26)

We can write for the electric field associated with the mode as

E(t) = E0eiω0te−ω0t/ 2Q (7.27)

The frequency spectrum of this wave train can be obtained in a manner similar to
that used in Section 4.5.1 to obtain the spontaneous emission spectrum and it comes
out to be

∣∣Ẽ(ν)
∣∣2 = E2

0

4π2

1

(ν − ν0)
2 + ν2

0
4Q2

(7.28)

which represents a Lorentzian (see Fig. 4.7). The FWHM of the spectrum is

�νP = ν0

Q
(7.29)

Thus the linewidth of the passive mode depends inversely on the quality factor. The
higher the quality factor (i.e., longer the cavity lifetime) the smaller will be the
FWHM.

In order to calculate the Q of a passive resonator, we first find the energy left in
the cavity after one complete cycle of oscillation and then use Eq. (7.25) to obtain
an explicit expression for Q. Let W0 be the total energy contained within the cavity
at t = 0. One complete cycle of oscillation in the cavity corresponds to a pair of
reflections from the mirrors M1 and M2 (with power reflection coefficients R1 and
R2, respectively) and two traversals through the medium filling the cavity, which
is assumed to have a net power attenuation coefficient αl per unit length. Thus the
energy remaining within the cavity after one complete cycle would be

W0R1R2e−2αld = W0e−2αld+ln R1R2 (7.30)

where d is the length of the cavity. Also one complete cycle corresponds to a time
interval of

tr = 2n0d

c

where n0 is the refractive index of the medium filling the cavity. Thus from Eq.
(7.25) we obtain for the energy inside the cavity

W(tr) = W0 exp

(
−2πν0

Q

2n0d

c

)
(7.31)

From Eqs. (7.30) and (7.31) we obtain

2αld − ln R1R2 = 4πν0n0d

cQ
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or

Q = 4πν0n0d

c

1

2αld − ln R1R2
(7.32)

We can also obtain an expression for the cavity lifetime tc in terms of the fractional
loss per round trip. The initial energy W0 becomes W0 exp(–κ) after one round trip;
here

κ = 2αld − ln R1R2

Thus the fractional loss per round trip would be

x = W0 − W0e−κ

W0
= 1 − e−κ

or

κ = ln

(
1

1 − x

)

Hence from Eqs. (7.26) and (7.32) we have

tc = 2n0d

c ln (1 / (1 − x))
= 2n0d

c (2αld − ln R1R2)
(7.33)

From Eqs. (7.29) and (7.32) we may write

�νP = c

4πn0d
(2αld − ln R1R2) (7.34)

where the subscript P stands for passive cavity.

Example 7.5 Let us consider a typical cavity of a He–Ne laser with the following specifications: d =
20 cm, n0 = 1, R1 = 1, R2 = 0.98, αl∼0

For such a cavity
�νP ≈ 2.4 MHz

For the same cavity, the frequency separation between adjacent longitudinal modes is

δν ≈ c

2d
= 750 MHz

Thus the spectral width of each mode is much smaller than the separation between adjacent modes.

Example 7.6 As another example we consider a GaAs semiconductor laser (see Chapter 13) with the
following values of various parameters: d = 500 μm, n0 = 3.5, R1 = R2 = 0.3, αl∼0

For such a cavity we obtain
�νP ≈ 3.3 × 1010 Hz

7.5 The Ultimate Linewidth of a Laser

One of the most important properties of a laser is its ability to produce light of high
spectral purity or high temporal coherence. The finite spectral width of a laser oper-
ating continuously in a single mode is caused by two primary mechanisms. One
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is the external factors, which tend to perturb the cavity, for example, temperature
fluctuations, vibrations. randomly alter the oscillation frequency which results in a
finite spectral width. The second more fundamental mechanism which determines
the ultimate spectral width of the laser is that due to the ever present random sponta-
neous emissions in the cavity. Since spontaneous emission is completely incoherent
with respect to the existing energy in the cavity mode, it leads to a finite spectral
width of the laser. In this section, we shall give a heuristic derivation of the ultimate
linewidth of a laser (Gordon, Zeiger and Townes 1955, Maitland and Dunn 1969). In
order to obtain a value for the ultimate laser linewidth, we assume that the radiation
arising out of spontaneous emission represents a loss as far as the coherent energy is
concerned. This loss will then lead to a finite linewidth of the laser. We recall from
Section 5.5 that the number of spontaneous emissions per unit time into a mode of
the cavity is given by KN2 [where K is defined by Eq. (5.72)] and N2 represents
the number of atoms per unit volume in the upper laser level. We are assuming that
N1∼0. When the laser oscillates in steady state, then we know from Eq. (5.79) that
N2∼1/Ktc where we are assuming that n >> 1 and tc is the passive cavity lifetime.
Thus above threshold the number of spontaneous emissions per unit time would be
KN2 = 1/tc. Hence the energy appearing per unit time in a mode due to spontaneous
emission will be hν0/tc where ν0 is the oscillation frequency of the mode.

Now the total energy contained in the mode is nhν0 and since the output power
Pout is given by nhν0/tc, the energy contained in the mode is Pout tc.

We now use Eq (7.29) and denote the linewidth of the oscillating laser caused by
spontaneous emission by δνsp to obtain

Q = ν0

δνsp
= 2πν0

Pouttc
hν0 / tc

= 2πPoutt2c
h

(7.35)

Now if �νP is the passive cavity linewidth then tc = 1
/

2π�νP and thus from Eq.
(7.35) we obtain

δνsp = 2π (�νP)
2 hν0

Pout
(7.36)

The above equation gives the ultimate linewidth of an oscillating laser and is similar
to the one given by Schawlow and Townes (1958). It is interesting to note that δνsp
depends inversely on the output power Pout. This is physically due to the fact that
for a given mirror reflectivity, an increase in Pout corresponds to an increase in the
energy in the mode inside the cavity which in turn implies a greater dominance of
stimulated emission over spontaneous emission. Figure 7.4 shows a typical mea-
sured variation of the linewidth of a GaAs semiconductor laser which shows the
linear increase in the linewidth with inverse optical power.

The above derivation is rather heuristic: an analysis based on the random-phase
additions due to spontaneous emission is given by Jacobs (1979) which gives a result
half that predicted by Eq. (7.36).

Example 7.7 Let us first consider a He–Ne laser given in Example 7.5 and we assume that it oscillates
with an output power of 1 mW at a wavelength of 632.8 nm. The spontaneous emission linewidth of the
laser will be
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δvsp∼0.01 Hz

which is extremely small. To emphasize how small these widths are, let us try to estimate the precision
with which the length of the cavity has to be controlled in order that the oscillation frequency changes by
0.01 Hz. We know that the approximate oscillation frequency of a mode is ν = qc / 2d.Thus the change
in frequency �ν caused by a change in length �d is

δν =
( ν

d

)
�d

Using d = 20 cm, λ0 = 632.8 nm, and δν = 0.01 Hz, we obtain

�d∼4 × 10−18

which corresponds to a stability of less than nuclear dimensions.

Example 7.8 As another example consider a GaAs semiconductor laser operating at a wavelength of
850 nm with an output power of 1 mW with cavity dimensions as given in Example 7.6. For such a laser

δνsp ≈ 1.6 MHz

which is much larger than that of a He–Ne laser. This is primarily due to the very large value of �νP in
the case of semiconductor lasers. Since �νP can be reduced by increasing the length of the cavity, one
can use an external mirror for feedback and thus reduce the linewidth. For a more detailed discussion of
semiconductor laser linewidth, readers are referred to Mooradian (1985).

7.6 Mode Selection

Since conventional laser resonators have dimensions that are large compared to the
optical wavelength there are, in general, a large number of modes which fall within
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the gain bandwidth of the active medium and which can oscillate in the laser. Hence
the output may consist of various transverse and longitudinal modes leading to a
greater divergence of the output beam as well as containing a number of oscillating
frequencies. In fact the power per unit frequency and solid angle interval is maxi-
mum when the laser oscillates in a single mode which is the fundamental mode. In
order to obtain highly directional and spectrally pure output, various techniques have
been developed both for transverse and for longitudinal mode selection in lasers. In
this section we will describe some techniques that are used to select a single trans-
verse mode (well-defined transverse field pattern with minimal divergence) and a
single longitudinal mode (small spectral width) of oscillation.

7.6.1 Transverse Mode Selection

As we mentioned in Section 7.3 different transverse modes are characterized by
different transverse field distributions. The lowest order transverse mode has a
Gaussian amplitude distribution across the transverse plane. It is this mode that one
usually prefers to work with as it does not have any abrupt phase changes across
the wave front (as the higher order transverse modes have) and has also a mono-
tonically decreasing amplitude away from the axis. This leads to the fact that it
can be focused to regions of the order of wavelength of light, producing enormous
intensities.

Since the fundamental Gaussian mode has the narrowest transverse dimension,
an aperture placed inside the resonator cavity can preferentially introduce higher
losses for higher order modes. Thus if a circular aperture is introduced into the
laser cavity such that the loss suffered by all higher order modes is greater than the
gain while the loss suffered by the fundamental mode is lower that its gain, then
the laser would oscillate only in the fundamental mode (see Fig. 7.5). It is inter-
esting to note that specific higher order transverse modes can also be selected at a
time by choosing complex apertures which introduce high loss for all modes except

Laser beam

R = 10 mR = ∞

1.25 m

2 mm
Fig. 7.5 A typical
configuration for achieving
single transverse mode
oscillation. The aperture
introduces differential losses
between the fundamental
mode and the higher order
modes
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the required mode or by profiling the reflectivity of one of the mirrors to suit the
required mode. Thus a wire placed normal to the axis would select the second-order
TE01 mode.

Problem 7.2 Consider a Gaussian mode and the first-order Hermite–Gauss mode with w0 = 1 mm.
Assume that both the beams pass through a circular aperture of radius a placed with its center coinciding
with the axis. Obtain the fraction of light passing through the aperture for the Gaussian and the first-
order Hermite–Gauss mode. For what value of a would there be maximum discrimination between the
two modes?

7.6.2 Longitudinal Mode Selection

We have seen in Section 7.2 that the various longitudinal modes corresponding to
a transverse mode are approximately separated by a frequency interval of c/2n0d.
As an example if we consider a 50 cm long laser cavity with n0 = 1, then the
longitudinal mode spacing would be 300 MHz. If the gain bandwidth of the laser
is 1500 MHz, then in this case even if the laser is oscillating in a single transverse
mode it would still oscillate in about five longitudinal modes. Thus the output would
consist of five different frequencies separated by 300 MHz. This would result in a
much reduced coherence length of the laser (see Problem 7.3). Thus in applications
such as holography and interferometry where a long coherence length is required or
where a well-defined frequency is required (e.g., in spectroscopy) one would require
the laser to oscillate in a single longitudinal mode in addition to its single transverse
mode oscillation.

Referring to Fig. 7.6 we can have a simple method of obtaining single longitudi-
nal mode oscillation by reducing the cavity length to a value such that the intermode

δν δν

Gain

Threshold

(a) (b)

c/2d c/2d

Modes with
Gain > Loss

Gain

Threshold

Oscillating
mode

ν ν

Fig. 7.6 (a) The longitudinal mode spacing of a resonator of length d is c/2d. Different modes
having gain more than loss would oscillate simultaneously. (b) If the resonator length is reduced,
the mode spacing can become less than the gain bandwidth and if there is a mode at the line center,
then it would result in single longitudinal mode oscillation of the laser
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spacing is larger than the spectral width over which gain exceeds loss in the cavity.
Thus if this bandwidth is �νg then for single longitudinal mode laser oscillation the
cavity length must be such that

c

2n0d
> �νg

For a He–Ne laser �νg ∼1500 MHz and for single longitudinal mode oscillation
one must have d < 10 cm. We should note here that if one can ensure that a resonant
mode exists at the center of the gain profile, then single mode oscillation can be
obtained even with a cavity length of c / n0�νg.

One of the major drawbacks with the above method is that since the volume of
the active medium gets very much reduced due to the restriction on the length of
the cavity, the output power is small. In addition, in solid-state lasers where the gain
bandwidth is large, the above technique becomes impractical. Hence other tech-
niques have been developed which can lead to single longitudinal mode oscillation
without any restriction in the length of the cavity and hence capable of high powers.

It is important to understand that even if the laser oscillates in a single longitudi-
nal mode (single-frequency output), there could be a temporal drift in the frequency
of the output. In many applications it is important to have single-frequency lasers
in which the frequency of the laser should not deviate beyond a desired range. To
achieve this the frequency of oscillation of the laser can be locked by using feedback
mechanisms in which the frequency of the output of the laser is monitored contin-
uously and any change in the frequency of the laser is fed back to the cavity as an
error signal which is then used to control the mirror positions of the cavity to keep
the frequency stable. There are many techniques to monitor the frequency of the
laser output; this includes using very accurate wavelength meters capable of giving
frequency accuracy in the range of 2 MHz.

Oscillation of a laser in a given resonant mode can be achieved by introducing
frequency selective elements such as Fabry–Perot etalons (see Chapter 2) into the
laser cavity. The element should be so chosen that it introduces losses at all but the
desired frequency so that the losses of the unwanted frequencies are larger than gain
resulting in a single-frequency oscillation. Figure 7.7 shows a tilted Fabry–Perot
etalon placed inside the resonator. The etalon consists of a pair of highly reflecting
parallel surfaces which has a transmission versus frequency variation as shown in
Fig. 7.8. As discussed in Chapter 2, such an etalon has transmission peaks centered
at frequencies given by

νp = p
c

2nt cos θ
(7.37)

Fabry-Perot etalon

Fig. 7.7 A laser resonator
with a Fabry–Perot etalon
placed inside the cavity
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Fig. 7.8 Transmittance
versus frequency of a
Fabry–Perot etalon. The
higher the reflectivity the
sharper are the resonances

where t is the thickness of the etalon and n is the refractive index of the medium
between the reflecting plates and θ is the angle made by the wave inside the etalon.
The width of each peak depends on the reflectivity of the surfaces, the higher the
reflectivity, the shaper are the resonance peaks. The frequency separation between
two adjacent peaks of transmission is

�ν = c

2nt cos θ
(7.38)

which is also referred to as free spectral range (FSR).
If the etalon is so chosen that its free spectral range is greater than the spectral

width of the gain profile, then the Fabry–Perot etalon can be tilted inside the res-
onator so that one of the longitudinal modes of the resonator cavity coincides with
the peak transmittance of the etalon (see Fig. 7.9) and other modes are reflected
away from the cavity. If the finesse of the etalon is high enough so as to introduce
sufficiently high losses for the modes adjacent to the mode selected, then one can
have single longitudinal mode oscillation (see Fig. 7.9).

Example 7.9 Consider an argon ion laser for which the FWHM of the gain profile is about 8 GHz. Thus
for near normal incidence (θ ∼0) the free spectral range of the etalon must be greater than about 10 GHz.
Thus

c

2nt
> 1010 Hz

Taking fused quartz as the medium of the etalon, we have n∼1.462 (at λ∼510 nm) and thus t ≤ 1 cm

Another very important method used to obtain single-frequency oscillation is
to replace one of the mirrors of the resonator with a Fox–Smith interferometer as
shown in Fig. 7.10. Waves incident on the beam splitter BS from M1 will suffer
multiple reflections as follows:

Reflection 1: M1 → BS → M2 → BS → M1
Reflection 2: M1 → BS→ M2 → BS → M3→ BS→ M2→ BS→ M1, etc.
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Only oscillating
mode

Gain spectrum

(a)

(b)

(c)

Cavity modes

Fig. 7.9 The figure shows how by inserting a Fabry–Perot etalon in the laser cavity one can achieve
single longitudinal mode oscillation

BS

M2

M3

M1

d3

d2
d1

Fig. 7.10 The Fox–Smith interferometer arrangement for selection of a single longitudinal mode

Thus the structure still behaves much like a Fabry–Perot etalon if the beam split-
ter BS has a high reflectivity.1 For constructive interference among waves reflected
toward M1 from the interferometer, the path difference between two consecutively
reflected waves must be mλ, i.e.,

1It is interesting to note that if mirror M3 is put above BS (in Fig. 7.10), then it would correspond
to a Michelson interferometer arrangement and the transmittivity would not be sharply peaked.
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(2d2 + 2d3 + 2d2 − 2d2) = mλ

or

ν = m
c

2 (d2 + d3)
, m = any integer (7.39)

Thus the frequencies separated by �ν = c / 2 (d2 + d3) will have a low loss. Hence
if �ν is greater than the bandwidth of oscillation of the laser, then one can achieve
single mode oscillation. Since the frequencies of the resonator formed by mirrors
M1 and M2 are

ν = q
c

2 (d1 + d2)
, q = any integer (7.40)

for the oscillation of a mode one must have

m

(d2 + d3)
= q

(d1 + d2)
(7.41)

which can be adjusted by varying d3 by placing the mirror M3 on a piezoelectric
movement.

Example 7.10 If one wishes to choose a particular oscillating mode out of the possible resonator modes
which are separated by 300 MHz, what is the approximate change in d3 required to change oscillation
from one mode to another? Assume λ0 = 500 nm, d2 + d3 = 5 cm.

Solution Differentiating Eq. (7.39) we have

δν = mc

2 (d2 + d3)
2
δd3 = ν

(d2 + d3)
δd3

which gives us δd3 = 25 nm.

Problem 7.3 Consider a laser which is oscillating simultaneously at two adjacent frequencies ν1 and
ν2. If this laser is used in an interference experiment, what is the minimum path difference between the
interfering beams for which the interference pattern disappears?

Solution The interference pattern disappears when the interference maxima produced by one wavelength
fall on the interference minima produced by the other wavelength. This will happen when

l = m
c

ν1
=

(
m + 1

2

)
c

ν2
, m = 0, 1, 2...

Eliminating m from the two equations we get

l = c

2 (ν2 − ν1)
= d

where d is the length of the laser resonator. Thus the laser can be considered coherent only for path
differences of l = d, the length of the laser. On the other hand, if the laser was oscillating in a single
mode the coherence length would have been much larger and would be determined by the frequency
width of the oscillating mode only.
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7.7 Pulsed Operation of Lasers

In many applications of lasers, one wishes to have a pulsed laser source. In principle
it is possible to generate pulses of light from a continuously operating laser, but it
would be even more efficient if the laser itself could be made to emit pulses of light.
In this case the energy contained in the population inversion would be much more
efficiently utilized. There are two standard techniques for the pulsed operation of
a laser; these are Q-switching and mode locking. Q-switching is used to generate
pulses of high energy but nominal pulse widths in the nanosecond regime. On the
other hand mode locking produces ultrashort pulses with smaller energy content.
We shall see that using mode locking it is possible to produce laser pulses in the
femtosecond regime.

7.7.1 Q-Switching

Imagine a laser cavity within which we have placed a shutter which can be opened
and closed at will (see Fig. 7.11). Let us assume that the shutter is closed (i.e., does
not transmit) and we start to pump the amplifying medium. Since the shutter is
closed, there is no feedback from the mirror and the laser beam does not build up.
Since the pump is taking the atoms from the ground state and disposing them into the
excited state and there is no stimulated emission the population inversion keeps on
building up. This value could be much higher than the threshold inversion required
for the same laser in the absence of the shutter. When the inversion is built to a
reasonably high value, if we now open the shutter, then the spontaneous emission is
now able to reflect from the mirror and pass back and forth through the amplifying
medium. Since the population inversion has been built up to a large value, the gain
provided by the medium in one round trip will be much more than the loss in one
round trip and as such the power of the laser beam would grow very quickly with
every passage. The growing laser beam consumes the population inversion, which
then decreases rapidly resulting in the decrease of power of the laser beam. Thus
when the shutter is suddenly opened, a huge light pulse gets generated and this
technique is referred to as Q-switching. High losses imply low Q while low losses

Amplifying medium
Shutter

Pump

Fig. 7.11 A laser resonator with a shutter placed in front of one of the mirrors to achieve Q-
switching
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imply high Q. Thus when the shutter is kept closed and suddenly opened, the Q of
the cavity is suddenly increased from a very small value to a large value and hence
the name Q-switching. For generating another pulse the medium would again need
to be pumped while the shutter is kept closed and the process repeated again.

Figure 7.12 shows schematically the time variation of the cavity loss, cavity Q,
population inversion, and the output power. As shown in the figure an intense pulse
is generated with the peak intensity appearing when the population inversion in
the cavity is equal to the threshold value. Figure 7.13 shows a Q-switched pulse
emitted from a neodymium–YAG laser. The energy per pulse is 850 mJ and the
pulse width is about 6 ns. This corresponds to a peak power of about 140 MW. The
pulse repetition frequency is 10 Hz, i.e., the laser emits 10 pulses per second. Using
this phenomenon it is possible to generate extremely high power pulses for use in
various applications such as cutting, drilling, or in nuclear fusion experiments.

We will now write down rate equations corresponding to Q-switching and obtain
the most important parameters such as peak power, total energy, and duration of the
pulse. We shall consider only one mode of the laser resonator and shall examine

t

t

t

t

Loss

Q

ΔNι

ΔN

ΔNτ

Pout

t = 0

Fig. 7.12 Schematic of the
variation of loss, Q value,
population inversion, and the
laser output power with time
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Fig. 7.13 An acousto optically Q-switched output from an Nd:YAG laser. The average power of
the pulse train is 15 W and the repetition frequency is 2 kHz with the pulse duration of 97 ns.
[Figure provided by Brahmanand Upadhyaya, RRCAT, Indore]

the specific case of a three-level laser system such as that of ruby. In Section 5.5
while writing the rate equations for the population N2 and the photon number n, we
assumed the lower laser level to be essentially unpopulated. If this is not the case
then instead of Eq. (5.74) we will have

d(N2V)

dt
= −KnN2 + KnN1 − T21N2V + RV (7.42)

where the second term on the right-hand side is the contribution due to absorption
by N1 atoms per unit volume in the lower level. Since the Q-switched pulse is of a
very short duration, we will neglect the effect of the pump and spontaneous emission
during the generation of the Q-switched pulse. It must, at the same time, be noted
that for the start of the laser oscillation, spontaneous emission is essential. Thus we
get from Eq. (7.42)

dN′
2

dt
= −

(
Kn

V

)
�N′ (7.43)

where

�N′ = (N2 − N1)V , N′
2 = N2V (7.44)

and V is the volume of the amplifying medium. Similarly one can also obtain or the
rate of change of population of the lower level

dN′
1

dt
=

(
Kn

V

)
�N′ (7.45)

where N′
1 = N1V . Subtracting Eq. (7.45) from Eq. (7.43) we get



7.7 Pulsed Operation of Lasers 167

d(�N′)
dt

= −2

(
Kn

V

)
�N′ (7.46)

We can also write the equation for the rate of change of the photon number n in the
cavity mode in analogy to Eq. (5.78) as

dn

dt
= Kn (N2 − N1) − n

tc
+ KN2

≈
(

Kn

V

)
�N′ − n

tc

(7.47)

where we have again neglected the spontaneous emission term KN2. From Eq. (7.47)
we see that the threshold population inversion is

(�N′)t = V

Ktc
(7.48)

when the gain represented by the first term on the right-hand side becomes equal
to the loss represented by the second term [see Eq. (7.47)]. Replacing V/K in Eqs.
(7.46) and (7.47) by (�N′)ttc and writing

τ = t

tc
(7.49)

we obtain

d(�N′)
dτ

= −2n
�N′

(�N′)t
(7.50)

and

dn

dτ
= n

[ (
�N′)

(�N′)t
− 1

]
(7.51)

Equations (7.51) and (7.50) give us the variation of the photon number n and the
population inversion �N′ in the cavity as a function of time. As can be seen the
equations are nonlinear and solutions to the above set of equations can be obtained
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numerically by starting from an initial condition

(
�N′) (τ = 0) = (

�N′)
i and n(τ = 0) = ni (7.52)

where the subscript i stands for initial values. Here ni represents the initial small
number of photons excited in the cavity mode through spontaneous emission. This
spontaneous emission is necessary to trigger laser oscillation.

From Eq. (7.51) we see that since the system is initially pumped to an inver-
sion �N′ >

(
�N′)

t, dn / dτ is positive; thus the number of photons in the cavity
increases with time. The maximum number of photons in the cavity appear when
dn / dτ = 0, i.e., when �N′ = (

�N′)
t. At such an instant n is very large and from

Eq. (7.50) we see that �N′ will further reduce below
(
�N′)

t and thus will result in
a decrease in n.

Although the time-dependent solution of Eqs. (7.50) and (7.51) requires numeri-
cal computation, we can analytically obtain the variation of n with�N′ and from this
we can draw some general conclusions regarding the peak power, the total energy in
the pulse, and the approximate pulse duration. Indeed, dividing Eq. (7.51) by (7.50)
we obtain

dn

d(�N′)
= 1

2

[(
�N′)

t

(�N′)
− 1

]

Integrating we get

n − ni = 1

2

{
�N′

t ln

[
�N′

(�N′)i

]
+ [(

�N′)
i − �N′]

}
(7.53)

7.7.1.1 Peak Power

Assuming the only loss mechanism to be output coupling and recalling our
discussion in Section 7.5 we have for the instantaneous power output

Pout = nhν

tc
(7.54)

Thus the peak power output will correspond to maximum n which occurs when
�N′ = (

�N′)
t. Thus

Pmax = nmaxhν

tc

= hν

2tc

[(
�N′)

t ln

((
�N′)

t

(�N′)i

)
+ ((

�N′)
t − (

�N′)
i

)] (7.55)

where we have neglected ni (the small number of initial spontaneously emitted pho-
tons in the cavity). This shows that the peak power is inversely proportional to cavity
lifetime.
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7.7.1.2 Total Energy

In order to calculate the total energy in the Q-switched pulse we return to Eq. (7.51)
and substitute for

(
�N′) /

(
�N′)

t from Eq (7.50) to get

dn

dτ
= −1

2

d
(
�N′)

dτ
− n

Integrating the above equation from t = 0 to ∞ we get

nf − ni = 1

2

[(
�N′)

i − (
�N′)

f

]
−

∞∫

0

ndτ

or ∞∫

0

ndτ = 1

2

[(
�N′)

i − (
�N′)

f

] − (nf − ni) (7.56)

where the subscript f denotes final values. Since ni and nf are very small in
comparison to the total integrated number of photons we may neglect them and
obtain

∞∫

0

ndτ ≈ 1

2

[(
�N′)

i − (
�N′)

f

]

Thus the total energy of the Q-switched pulse is

E =
∞∫

0

Poutdt

= hν

∞∫

0

ndτ

= 1

2

[(
�N′)

i − (
�N′)

f

]
hν

(7.57)

The above expression could also have been derived through physical argu-
ments as follows: for every additional photon appearing in the cavity mode
there is an atom making a transition from the upper level to the lower level
and for every atom making this transition the population inversion reduces by
2. Thus if the population inversion changes from (�N′)i to (�N′)f, the num-
ber of photons emitted must be 1

2

[(
�N′)

i − (
�N′)

f

]
and Eq. (7.57) follows

immediately.
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7.7.1.3 Pulse Duration

An approximate estimate for the duration of the Q-switched pulse can be obtained
by dividing the total energy by the peak power. Thus

td = E

Pmax
=

(
�N′)

i − (
�N′)

f[
(�N′)t ln

(
(�N′)t
(�N′)i

)
+ ((�N′)t − (�N′)i)

] tc (7.58)

In the above formulas we still have the unknown quantity
(
�N′)

f the final inversion.
In order to obtain this, we may use Eq. (7.53) for t → ∞. Since the final number of
photons in the cavity is small, we have

((
�N′)

i − (
�N′)

f

)
= (

�N′)
t ln

((
�N′)

i

(�N′)f

)
(7.59)

from which we can obtain
(
�N′)

f for a given set of
(
�N′)

i and
(
�N′)

t

Example 7.11 We consider the Q-switching of a ruby laser with the following
characteristics:

Length of ruby rod = 10 cm
Area of cross section = 1 cm2

Resonator length = 10 cm
Mirror reflectivities = 1 and 0.7
Cr3+ population density = 1.58 × 1019 cm–3

λ0 = 694.3 nm
n0 = 1.76
tsp = 3 × 10–3 s
g(ω0) = 1.1 × 10–12 s

The above parameters yield a cavity lifetime of 3.3 × 10–9 s and the required
threshold population density of 1.25 × 1017 cm–3. Thus(

�N′)
t = 1.25 × 1018

Choosing (
�N′)

i = 4
(
�N′)

t = 5 × 1018

we get

Pmax = 8.7 × 107 W

Solving Eq. (7.59) we obtain
(
�N′)

f ≈ 0.02
(
�N′)

i Thus

E ≈ 0.7J
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and

td ≈ 8 ns

7.7.2 Techniques for Q-Switching

As discussed, for Q-switching the feedback to the amplifying medium must be
initially inhibited and when the inversion is well past the threshold inversion, the
optical feedback must be restored very rapidly. In order to perform this, various
devices are available which include mechanical movements of the mirror or shutters
which can be electronically controlled. The mechanical device may simply rotate
one of the mirrors about an axis perpendicular to the laser axis which would restore
the Q of the resonator once every rotation. Since the rotation speed cannot be made
very large (typical rotation rates are 24,000 revolutions per second) the switching of
the Q from a low to a high value does not take place instantaneously and this leads
to multiple pulsing.

In comparison to mechanical rotation, electronically controlled shutters employ-
ing the electro optic or acousto optic effect can be extremely rapid. A schematic
arrangement of Q-switching using the electro optic effect is shown in Fig. 7.14
The electro optic effect is the change in the birefringence of a material on applica-
tion of an external electric field (see, e.g., Yariv (1977), Ghatak and Thyagarajan
(1989)). Thus the electro optic modulator (EOM) shown in Fig. 7.14 could be a
crystal which is such that in the absence of any applied electric field the crystal
does not introduce any phase difference between two orthogonally polarized com-
ponents traveling along the laser axis. On the other hand, if a voltage V0 is applied
across the crystal, then the crystal introduces a phase difference of π /2 between the
orthogonal components, i.e., it behaves like a quarter wave plate. If we now con-
sider the polarizer–modulator–mirror system, when there is no applied voltage, the

Laser rod

Polarizer

Electrooptic
modulator

M1

M2

Fig. 7.14 A typical arrangement for achieving Q-switching using an electro optic modulator
placed within the cavity
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state of polarization (SOP) of the light incident on the polarizer after reflection by
the mirror is along the pass axis of the polarizer and thus corresponds to a high Q
state. When a voltage V0 is applied the linearly polarized light on passage through
the EOM becomes circularly polarized (say right circularly polarized). Reflection
from the mirror converts this to left circularly polarized light and passage through
the EOM the wave becomes linearly polarized but now polarized perpendicular to
the pass axis of the polarizer. The polarizer does not allow this to pass through and
this leads to essentially no feedback which corresponds to the low Q state. Hence
Q-switching can be accomplished by first applying a voltage across the crystal and
removing it at the instant of highest inversion in the cavity. Some important electro
optic crystals used for Q-switching include potassium dihydrogen phosphate (KDP)
and lithium niobate (LiNbO3).

An acousto optic Q-switch is based on the acousto optic effect. In the acousto
optic effect a propagating acoustic wave in a medium creates a periodic refractive
index modulation due to the periodic strain in the medium, and this periodic refrac-
tive index modulation leads to diffraction of a light wave interacting with it (see,
e.g., Ghatak and Thyagarajan (1989), Yariv (1977)). The medium in the presence
of the acoustic wave behaves like a phase grating. Thus if an acousto optic cell is
placed inside the resonator, it can be used to deflect the light beam out of the cavity,
thus leading to a low Q value. The Q can be switched to high value by switching off
the acoustic wave.

Q-switching can also be obtained by using a saturable absorber inside the laser
cavity. In a saturable absorber (which essentially consists of an organic dye dis-
solved in an appropriate solvent) the absorption coefficient of the medium reduces
with an increase in the incident intensity. This reduction in the absorption is caused
by the saturation of a transition (see Chapter 5). In order to understand how a
saturable absorber can be made to Q-switch, consider a laser resonator with the
amplifying medium and the saturable absorber placed inside the cavity as shown in
Fig. 7.15. As the amplifying medium is pumped, the intensity level inside the cavity
is initially low since the saturable absorber does not allow any feedback from the
mirror M2. As the pumping increases, the intensity level inside the cavity increases
which, in turn, starts to bleach the saturable absorber. This leads to an increase in
feedback which gives rise to an increased intensity and so on. Thus the energy stored
inside the medium is released in the form of a giant pulse leading to Q-switching. If
the relaxation time of the absorber is short compared to the cavity transit time then
as we will discuss in Section 7.7.3, the saturable absorber would simultaneously
mode lock and Q-switch the laser.

Saturable
absorber

PumpM1 M2

Fig. 7.15 A laser resonator
with a saturable absorber
placed inside the cavity for
passive Q-switching
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7.7.3 Mode Locking

Q-switching produces very high energy pulses but the pulse durations are typi-
cally in the nanosecond regime. In order to produce ultrashort pulses of durations
in picoseconds or shorter, the technique most commonly used is mode locking. In
order to understand mode locking let us first consider the formation of beats when
two closely lying sound waves interfere with each other. In this case we hear beats
due to the fact that the two sound waves (each of constant intensity) being of slightly
different frequency will get into and out of phase periodically (see Fig. 7.16). When
they are in phase then the two waves add constructively to produce a larger inten-
sity. When they are out of phase, then they will destructively interfere to produce no
sound. Hence in such a case we hear a waxing and waning of sound waves and call
them as beats.

Fig. 7.16 The top curve is obtained by adding the lower two sinusoidal variations and corresponds
to beats as observed when two sound waves at closely lying frequencies interfere with each other

Mode locking is very similar to beating except that instead of just two waves now
we are dealing with a large number of closely lying frequencies of light. Thus we
expect beating between the waves; of course this beating will be in terms of intensity
of light rather than intensity of sound. In order to understand mode locking, we first
consider a laser oscillating in many frequencies simultaneously. Usually these waves
at different frequencies are not correlated and oscillate almost independently of each
other, i.e., there is no fixed-phase relationship between the different frequencies. In
this case the output consists of a sum of these waves with no correlation among
them. When this happens the output is almost the sum of the intensities of each
individual mode and we get an output beam having random fluctuations in intensity.
In Fig. 7.17 we have plotted the output intensity variation with time obtained as a
sum of eight different equally spaced frequencies but with random phases. It can be
seen that the output intensity varies randomly with time resembling noise.

Now, if we can lock the phases of each of the oscillating modes, for example
bring them all in phase at any time and maintain this phase relationship, then just
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Fig. 7.17 The intensity variation obtained by adding eight equally spaced frequencies with random
phases. The intensity variation is noise like

like in the case of beats, once in a while the waves will have their crests and troughs
coinciding to give a very large output and at other times the crests and troughs will
not be overlapping and thus giving a much smaller intensity (see Fig. 7.18). In such a
case the output from the laser would be a repetitive series of pulses of light and such
a pulse train is called mode-locked pulse train and this phenomenon is called mode
locking. Figure 7.19 shows the output intensity variation with time corresponding
to the same set of frequencies as used to plot Fig.7.17, but now the different waves
have the same initial phase. In this case the output intensity consists of a periodic
series of pulses with intensity levels much higher than obtained with random phases.
The peak intensity in this case is higher than the average intensity in the earlier case
by the number of modes beating with each other. Also the pulse width is inversely
proportional to the number of frequencies.

Fig. 7.18 Figure showing interference between four closely lying and equally spaced frequencies
and which are in phase at the beginning and retain a constant phase relationship. Note that the
waves add constructively periodically
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Fig. 7.19 The output intensity variation for the same situation as in Fig. 7.17 but now the waves
are having the same phase at a given instant of time and they maintain their phase relationship.
Note that the resultant intensity peaks periodically

If the number of waves interfering becomes very large, e.g., a hundred or so,
then the peak intensity can be very high and the pulse widths can be very small.
Figure 7.20 shows the output mode-locked pulse train coming out of a titanium
sapphire laser. Such mode-locked pulse train can be very short in duration (in
picoseconds) and have a number of applications.

Mode locking is very similar to the case of diffraction of light from a grating.
In this case the constructive interference among the waves diffracted from differ-
ent slits appears at specific angles and at other angular positions, the waves almost
cancel each other. The angular width of any of the diffracted order depends on the
number of slits in the grating similar to the temporal width of the mode-locked pulse
train depending on the number of modes that are locked in phase.

In order to understand the concept of mode locking, we consider a laser formed
by a pair of mirrors separated by a distance d. If the bandwidth over which gain
exceeds losses in the cavity is �ν (see Fig.7.21), then, since the intermodal spacing
is c/2n0d, the laser will oscillate simultaneously in a large number of frequencies.
The number of oscillating modes will be approximately (assuming that the laser is
oscillating only in the fundamental transverse mode)

Fig. 7.20 Mode-locked pulse
train from a titanium sapphire
laser. Each division
corresponds to 2 ns (Adapted
from French et al. (1990) ©
1990 OSA)
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Fig. 7.21 Gain profile of an
active medium centered at the
frequency ν0 and of width �ν

N + 1 ≈ 1 + integer closest to but less than
�ν

c
/

2n0d
(7.60)

For example if we consider a ruby laser with an oscillating bandwidth of 6 ×
1010 Hz, with a cavity length of about 50 cm, the number of oscillating modes
will be ∼200. This large number of modes oscillates independently of each other
and their relative phases are, in general, randomly distributed over the range –π to
+ π . In order to obtain the output intensity of the laser when it oscillates in such
a condition, we note that the total electric field of the laser output will be given by a
superposition of the various modes of the laser. Thus

E(t) =
N/2∑

n=−N/2
An exp (2π iνnt + iφn) (7.61)

where An and φn represent the amplitude and phase of the nth mode whose
frequency is given by

νn = ν0 + nδν, n = −N

2
, −

(
N

2
+ 1

)
...

N

2
(7.62)

with δν = c/2n0d, the intermode spacing, and ν0 represents the frequency of the
mode at the line center.

In general the various modes represented by different values of ν oscillate with
different amplitudes An and also different phases φn. The intensity at the output of
the laser will be given by

I = K |E(t)|2 = K

∣∣∣∣∣
N/2∑

n=−N/2
An exp (2π iνnt + iφn)

∣∣∣∣∣
2

=K

∣∣∣∣∣
N/2∑

n=−N/2
An exp (2π i nδν t + iφn)

∣∣∣∣∣
2 (7.63)

where K represents a constant of proportionality and we have used Eq. (7.62) for νn.
Equation (7.63) can be rewritten as
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I = K
∑

n

|An|2 + K
∑
n �=m

∑
m

AnA∗
m exp[2π i(n − m)δν t + i(φn − φm)] (7.64)

From the above equation the following observations can be made:

(a) Since the phases φn are randomly distributed in the range –π to +π for the
various modes, if the number of modes is sufficiently large, the second term on
the right-hand side in Eq. (7.64) will have a very small value. Thus the intensity
at the output would have an average value equal to the first term which is nothing
but the sum of the intensities of various modes. In this case the output is an
incoherent sum of the intensities of the various modes.

(b) Although the output intensity has an average value of the sum of the individual
mode intensities, it is fluctuating with time due to the second term in Eq. (7.64).
It is obvious from Eq. (7.64) that if t is replaced by t + q/δν where q is an inte-
ger, then the intensity value repeats itself. Thus the output intensity fluctuation
repeats itself every time interval of 1/δν = 2n0d /c which is nothing but the
round-trip transit time in the resonator (see Fig. 7.17).

(c) It also follows from Eq. (7.64) that within this periodic repetition in intensity,
the intensity fluctuates. The time interval of this intensity fluctuation (which is
caused by the beating between the two extreme modes) will be

tf ≈
[(

ν0 + 1

2
Nδν

)
−

(
ν0 − 1

2
Nδν

)]−1

≈ 1

�ν
(7.65)

i.e., the inverse of the oscillation bandwidth of the laser medium.

When the laser is oscillating below threshold the various modes are largely uncor-
related due to the absence of correlation among the various spontaneously emitting
sources. The fluctuations become much less on passing about threshold but the
different modes remain essentially uncorrelated and the output intensity fluctuates
with time.

Let us now consider the case in which the modes are locked in phase such that
φn = φ0, i.e., they are all in phase at some arbitrary instant of time t = 0. For such
a case we have from Eq. (7.63)

I = K

∣∣∣∣∣∣

N/2∑
n=−N/2

An exp (2π iνnt)

∣∣∣∣∣∣

2

(7.66)

If we also assume that all the modes have the same amplitude, i.e, An = A0, then
we have

I = I0

∣∣∣∣∣∣

N/2∑
n=−N/2

exp (2π iνnt)

∣∣∣∣∣∣

2

(7.67)

where I0 = KA2
0 is the intensity of each mode. The sum in Eq. (7.67) can be easily

evaluated and we obtain
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I = I0

{
sin [π (N + 1)δν t]

sin [πδν t]

}2

(7.68)

The variation of intensity with time as given by Eq. (7.68) is shown in Fig. 7.22.
It is interesting to note that Eq. (7.68) represents a variation in time similar to that
exhibited by a diffraction grating in terms of angle. Indeed the two situations are
very similar, in the case of diffraction grating, the principal maxima are caused due
to the constructive interference among waves diffracted by different slits and in the
present case it is the interference in the temporal domain among modes of various
frequencies.

t

I

tr

Fig. 7.22 Time variation of
the output intensity of a
mode-locked laser

From Eq. (7.68) we can conclude the following:

(a) The output of a mode-locked laser will be in the form of a series of pulses and
the pulses are separated by a duration

tr = 1

δν
= 2n0d

c
(7.69)

i.e., the cavity round-trip time. Thus the mode-locked condition can also be
viewed as a condition in which a pulse of light is bouncing back and forth inside
the cavity and every time it hits the mirror, a certain fraction is transmitted as
the output pulse.

(b) From Eq. (7.68) it follows that the intensity falls off very rapidly around every
peak (for large N) and the time interval between the zeroes of intensity on either
side of the peak is

�t ∼ 2

(N + 1)δν
= 2

�ν

We may define the pulse duration as approximately (like FWHM)

tD ∼ 1

�ν
(7.70)
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i.e., the inverse of the oscillating bandwidth of the laser. Thus the larger the
oscillating bandwidth the smaller would be the pulse width. Table 7.1 shows
the bandwidth and expected and observed pulse duration for some typical laser
systems. As can be seen one can obtain pulses of duration as short as a few
hundred femtoseconds. Such ultrashort pulses are finding wide applications in
various scientific investigations and industrial applications.

Table 7.1. Some typical laser systems and their mode locked pulse widths

Laser λ (μm) �ν (GHz) tD∼ (�ν)–1(ps) Observed pulse width (ps)

He-Ne 0.6328 1.5 670 600
Argon ion 0.488 7 150 250
Nd: YAG 1.06 12 83 76
Ruby 0.6943 60 17 12
Nd: Glass 1.06 3000 0.33 0.3
Dye 0.6 10000 0.1 0.1

(c) The peak intensity of each mode-locked pulse is given by

I = (N + 1)2I0 (7.71)

which is (N+1) times the average intensity when the modes are not locked.
Thus for typical solid-state lasers which can oscillate simultaneously in 103–104

modes, the peak power due to mode locking can be very large.

Figure 7.23 shows the output from a mode-locked He–Ne laser operating at
632.8 nm. Notice the regular train of pulses separated by the round-trip time of
the cavity. Figure 7.23b shows an expanded view of one of the pulses, the pulse
width is about 330 ps.

7.7.3.1 Techniques for Mode Locking

As we have seen above, mode locking essentially requires that the various longi-
tudinal modes be coupled to each other. In practice this can be achieved either by
modulating the loss or optical path length of the cavity externally (active mode lock-
ing) or by placing saturable absorbers inside the laser cavity (passive mode locking).
In Chapter 12 we also discuss the concept of Kerr lens mode locking.

In order to understand how a periodic loss modulation inside the resonator cavity
can lead to mode locking, we consider a laser resonator having a loss modulator
inside the cavity with the modulation frequency equal to the intermode frequency
spacing δν. Consider one of the modes at a frequency νq. Since the loss of the
cavity is being modulated at a frequency δν, the amplitude of the mode will also be
modulated at the same frequency δν and thus the resultant field in the mode may be
written as
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Fig. 7.23 Output train of a
mode-locked He–Ne laser
(Reprinted with permission
from A.G. Fox, S.E. Schwarz,
and P.W. Smith, use of neon
as a nonlinear absorber for
mode locking a He-Ne laser,
Appl. Phys. Lett. 12 (1969),
371, © 1969 American
Institute of Physics.)

(A + B cos 2πδνt) cos 2πνqt = A cos 2πνqt + 1

2
B cos[2π (νq + δν)t]

+ 1

2
B cos[2π (νq − δν)t]

Thus the amplitude-modulated mode at a frequency νq generates two waves at
frequencies νq +δν and νq–δν. Since δν is the intermode spacing, these new frequen-
cies correspond to the two modes lying on either side of νq. The oscillating field at
the frequencies (νq ± δν) = νq±1 forces the modes corresponding to these frequen-
cies to oscillate such that a perfect phase relationship now exists between the three
modes. Since the amplitudes of these new modes are also modulated at the frequency
δν, they generate new side bands at (νq+1 + δν) = νq+2 and (νq−1 − δν) = νq−2.
Thus all modes are forced to oscillate with a definite phase relationship and this
leads to mode locking.
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The above phenomenon of mode locking can also be understood in the time
domain by noticing that the intermode frequency spacing δν=c/2n0d corresponds
to the time for the light wave to go through one round trip through the cavity. Hence
considering the fluctuating intensity present inside the cavity (see Fig. 7.17), we
observe that since the loss modulation has a period equal to a round-trip time, the
portion of the fluctuating intensity incident on the loss modulator at a given value
of loss would after every round trip be incident at the same loss value. Thus the
portion incident at the highest loss instant will suffer the highest loss at every round
trip. Similarly, the portion incident at the instant of lowest loss will suffer the lowest
loss at every round trip. This will result in the buildup of narrow pulses of light
which pass through the loss modulator at the instant of lowest loss. The pulse width
must be approximately the inverse of the gain bandwidth since wider pulses would
experience higher losses in the modulator and narrower pulses (which would have a
spectrum broader than the gain bandwidth) would have lower gain. Thus the above
process leads to mode locking.

The loss modulator inside the cavity could be an electro optic modulator or an
acousto optic modulator. The electro optic modulator changes the state of polariza-
tion of the propagating light beam and the output state of polarization depends on
the voltage applied across the modulator crystal. Thus the SOP of the light pass-
ing through the modulator, reflected by the mirror and returning to the polarizer,
can be changed by the applied voltage and consequently the feedback provided by
the polarizer–modulator–mirror system. This leads to a loss modulation. Some of
the electro optic materials used include potassium dihydrogen phosphate (KDP),
lithium niobate (LiNbO3).

Acousto optic modulators can also be used for mode locking. In this case the
acousto optic modulator is used to diffract the propagating light beam out of the
cavity (see Fig. 7.24) and thus can be used to modulate the loss of the cavity.
Thus standing acoustic waves at frequency 	 produce a loss modulation at the fre-
quency 2	 and if this equals the intermode spacing, then this would result in mode
locking.

The above techniques in which an external signal is used to mode lock the laser
are referred to as active mode locking. One can also obtain mode locking using a
saturable absorber inside the laser cavity. This technique does not require an exter-
nal signal to mode lock and is referred to as passive mode locking. As described
in Section 7.7.2 in a saturable absorber the absorption coefficient decreases with an
increase in the incident light intensity. Thus, the material becomes more and more
transparent as the intensity of the incident light increases. In order to understand
how a saturable absorber can mode lock a laser, consider a laser cavity with a cell
containing the saturable absorber placed adjacent to one of the resonator mirrors
(see Fig. 7.15). Initially the saturable absorber does not transmit fully and the inten-
sity inside the resonator has a noise-like structure. The intensity peaks arising from
this fluctuation bleach the saturable absorber more than the average intensity values.
Thus the intensity peaks suffer less loss than the other intensity values and are ampli-
fied more rapidly as compared to the average intensity. If the saturable absorber has
a rapid relaxation time (i.e., the excited atoms relax back rapidly to the ground state)
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Fig. 7.24 A typical configuration for mode locking of lasers using an acousto optic modulator
placed within the cavity

so that it can follow the fast oscillations in the intensity in the cavity, one will obtain
mode locking. Since the transit time of the pulse through the resonator is 2n0d/c, the
mode-locked pulse train will appear at a frequency of c/2n0d. Table 7.2 gives some
organic dyes used to mode lock ruby and Nd laser systems; Is and τD represent the
saturation intensity and relaxation time, respectively.

Table 7.2. Some organic dyes used to mode lock laser systems

Eastman Eastman
DDI∗ Cryptocyanine No. 9740 No. 9860

Laser Rudy Rudy Nd: Nd:
Is (W/m2) ∼ 2 × 107 ∼ 5 × 106 ∼ 4 × 107 ∼ 5.6 × 107

τp(ps) ∼ 14 ∼ 22 ∼ 8.3 ∼ 9.3
Solvents Methanol

Ethanol
Nitrobenzene
Acetone
Ethanol
Methanol

1,2-
Dichloroethane
Chlorobenzene

DDI∗ stands for 1,1’-diethyl-2,2’-dicarbocyanine iodide. Table adapted from
Koechner (1976)

7.8 Modes of Confocal Resonator System

In this section, we shall obtain the modes of a symmetric confocal resonator sys-
tem which consists of a pair of mirrors of equal radii of curvatures separated by a
distance equal to the radius of curvature – see Fig. 7.25. Since the resonator system
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Fig. 7.25 A symmetric
confocal resonator system

is symmetric about the midplane N1N2 the modes of the resonator can be obtained
by simply requiring that the field distribution across the plane AB (say) after com-
pleting half a round trip (i.e., after traversing a distance R and getting reflected from
mirror M2) must repeat itself on the plane CD. Such a condition would give us the
transverse modes of the resonator. The oscillation frequencies can also be obtained
by requiring that the phase shift suffered by the wave in half a round trip must be
equal to an integral multiple of π .

In order to obtain the modes, we recall that if the field in a plane z = 0 is given
by f(x,y,0), then the field on a plane z is given by (see Chapter 2)

f (x, y, z) = i

λz
e−ikz

∫ ∫
f (x′, y′, 0)exp

[
−i

k

2z

{
(x − x′)2 + (y − y′)2

}]
dx′dy′

(7.72)

We also need to know the effect of a mirror on the field distribution as it gets
reflected from a mirror of radius of curvature R. In order to calculate this we note
that a spherical wave emanating from an axial point situated at a distance u from the
mirror, after getting reflected from the mirror, becomes a spherical wave converging
to a point at a distance v from the mirror (see Fig. 7.26); u and v are related through
the mirror equation

1

u
+ 1

v
= 2

R
(7.73)

Thus the mirror converts the incident diverging spherical wave of radius u
to a converging spherical wave of radius v. The phase variation produced on
the plane AB by the diverging spherical wave would be given by e–ikr, where
r = √

x2 + y2 + z2 ; x and y being the transverse coordinates on the plane
AB. If we assume x, y << z (which is the paraxial approximation), then we
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Fig. 7.26 Diverging
spherical waves are converted
to converging spherical waves
by a concave mirror

may write

r = u

(
1 + x2 + y2

u2

)1/2

≈ u + x2 + y2

2u
(7.74)

Thus the phase distribution on the plane AB would be

exp

(
− ik

2u
(x2 + y2)

)

where we have omitted the constant phase term exp(–iku). Similarly the phase dis-
tribution produced on the plane AB by the spherical wave converging to the point Q
at a distance v from the mirror would be

exp

(
ik

2v
(x2 + y2)

)

where we have again omitted the constant phase term exp (+ikv). Hence if pm rep-
resents the factor which when multiplied to the incident-phase distribution gives the
emergent phase distribution, then we have

pm exp

(
− ik

2u
(x2 + y2)

)
= exp

(
ik

2v
(x2 + y2)

)

or

pm = exp

(
ik

2f
(x2 + y2)

)
(7.75)

where f = R/2 represents the focal length of the mirror. Equation (7.75) represents
the effect of the mirror on the incident field distribution.
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A field distribution f(x,y) would be a transverse mode of the resonator if it repro-
duces itself after traversing from plane AB to plane CD (see Fig. 7.25). Thus if f(x,y)
represents the field distribution on the plane AB, then the field distribution on the
plane CD (after half a round trip) would be given by

g(x, y) = i

λR
e−ikR

∫ ∫
f (x′, y′)exp

[
−i

k

2R

{
(x − x′)2 + (y − y′)2

}]
dx′dy′

exp

[
i

k

2R
(x2 + y2)

]

(7.76)
where the integration is performed over the surface represented by AB. The field

distribution f(x,y) would be a mode of the resonator if

g(x, y) = σ f (x, y) (7.77)

where σ is some complex constant. The losses suffered by the field would be gov-
erned by the magnitude of σ , and the phase shift suffered by the wave (which
determines the oscillation frequencies of the resonator) would be determined by
the phase of σ . Using Eq. (7.77), Eq. (7.76) may be written as

σ f (x, y) = i

λR
e−ikR

∫ ∫
f (x′, y′)exp

[
−i

k

2R

{
(x − x′)2 + (y − y′)2

}]
dx′dy′

exp

[
i
k

R
(x2 + y2)

]

(7.78)
where we have used the fact that f = R/2.

In order to solve Eq. (7.78) we define a function u(x,y) through the following
relation:

u(x, y) = f (x, y) exp

[
−i

k

2R
(x2 + y2)

]
(7.79)

We also introduce a set of dimensionless variables

ξ =
(

k

R

)1/2
x =

(
2π

λR

)1/2
x (7.80)

η =
(

k

R

)1/2
y =

(
2π

λR

)1/2
y (7.81)

Using Eqs. (7.79), (7.80), and (7.81), Eq. (7.78) becomes

σu(ξ , η) = i

2π
e−ikR

∫ ∫
u(ξ ′, η′)ei(ξξ ′+ηη′)dξ ′dη′ (7.82)

In order to simplify the analysis, we assume the mirrors to be rectangular with
dimensions 2ax2b. In such a case we may write
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σu(ξ , η) = i

2π
e−ikR

ξ0∫

−ξ0

η0∫

−η0

u(ξ ′, η′)ei(ξξ ′+ηη′)dξ ′dη′ (7.83)

where

ξ0 =
(

k

R

)1/2
a; η0 =

(
k

R

)1/2
b (7.84)

In order to solve Eq. (7.83) we try the separation of variable technique and write

σ = κτ (7.85)

u(ξ , η) = p(ξ )q(η) (7.86)

On substituting Eq. (7.86) in Eq. (7.83) we find that the variables indeed separate
out and we obtain

κp(ξ ) =
√

i

2π
e−ikR/2

ξ0∫

−ξ0

p(ξ ′)eiξξ ′
dξ ′ (7.87)

and

τq(η) =
√

i

2π
e−ikR/2

η0∫

−η0

q(η′)eiηη′
dη′ (7.88)

The integrals appearing in Eqs. (7.87) and (7.88) are referred to as finite Fourier
transforms; they reduce to the usual Fourier transforms in the limit ξ0− > ∞ and
η0− > ∞. It has been shown by Slepian and Pollack (1961) that the solutions of
Eqs. (7.87) and (7.88) are prolate spheroidal functions. We will only consider the
case when ξ0 >> 1 and η0 >> 1, i.e, resonators having large Fresnel numbers. For
such a case, we may extend the limits of integration in Eq. (7.87) from −∞ to +∞.
Thus Eq. (7.87) becomes

Ap(ξ ) =
∞∫

−∞
p(ξ ′)eiξξ ′

dξ ′ (7.89)

where

A = κ

√
2π

i
e+ikR/2 (7.90)

An identical equation is satisfied by q(η). Equation (7.89) requires that (apart from
some constant factors) p(ξ ) be its own Fourier transform.

In order to solve Eq. (7.89) for p(ξ ), we differentiate Eq. (7.89) twice with respect
to ξ and obtain

A
d2p

dξ2
= −

∞∫

−∞
p(ξ ′)ξ ′2eiξξ ′

dξ ′ (7.91)
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We now consider the integral

I =
∞∫

−∞

d2p

dξ ′2 eiξξ ′
dξ ′ (7.92)

For the mode, we assume p(ξ ) and its derivative to vanish at infinity and integrate
Eq. (7.92) twice by parts and obtain

∞∫

−∞

d2p

dξ ′2 eiξξ ′
dξ ′ = −ξ2

∞∫

−∞
p(ξ ′)eiξξ ′

dξ ′

= Aξ2p(ξ )

(7.93)

Combining Eqs. (7.91) and (7.93) we get

A

[
d2p

dξ2
− ξ2p(ξ )

]
=

∞∫

−∞

(
d2p

dξ ′2 − ξ ′2p(ξ ′)
)

eiξξ ′
dξ ′ (7.94)

Comparing Eq. (7.89) with Eq. (7.94) we note that both p(ξ ) and[
d2p

/
dξ2 − ξ2p(ξ )

]
satisfy the same equation and as such one must have

d2p

dξ2
− ξ2p(ξ ) = −Kp(ξ ) (7.95)

where K is a constant. We may rewrite Eq. (7.95) as

d2p

dξ2
+ (K − ξ2)p(ξ ) = 0 (7.96)

The solutions of Eq. (7.96) with the condition that p(ξ ) vanish at large values of ξ
are the Hermite–Gauss functions (see Chapter 3):

pm(ξ ) = NmHm(ξ )e−ξ2/2 (7.97)

where Nm is the normalization constant, Hm(ξ ) represents the mth order Hermite
polynomial of argument ξ . A few lower order Hermite polynomials are

H0(ξ ) = 1, H1(ξ ) = 2ξ , H2(ξ ) = 4ξ2 − 2... (7.98)

Thus the complete solution of Eq. (7.78) may be written as

f (x, y) = CHm(ξ )Hn(η)e−(ξ2+η2)/2 ei(ξ2+η2)/2 (7.99)

where C is some constant; here m and n represent the transverse mode numbers
and determine the transverse field distributions of the mode. The Hermite–Gauss
functions satisfy the equation
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imHm(ξ )e−ξ2/2 = 1√
2π

∞∫

−∞
dξ ′Hm(ξ ′)e−ξ ′2/2 eiξξ ′

(7.100)

If we use the fact that p(ξ ) in Eq. (7.87) is a Hermite–Gauss function, then using
Eq. (7.100) one readily obtains

κ = im
√

ie−ikR/2 = exp

{
−i

[
kR

2
−

(
m + 1

2

)
π

2

]}
(7.101)

Similarly

τ = in
√

ie−ikR/2 = exp

{
−i

[
kR

2
−

(
n + 1

2

)
π

2

]}
(7.102)

Thus from Eq. (7.85) we have

σ = κτ = exp
{
−i

[
kR − (m + n + 1)

π

2

]}
(7.103)

Observe that |σ | = 1 implying the absence of any losses. This can be attributed
to the fact that, in our analysis we have essentially assumed the mirrors to be of
extremely large transverse dimensions.

Since the phase of σ represents the phase shift suffered by the wave in half a
round trip, one must have

kR − (m + n + 1)
π

2
= qπ , q = 1, 2, 3... (7.104)

where q refers to the longitudinal mode number. Using k = 2πν/c, we obtain the
frequencies of oscillation of the cavity as

νmnq = (2q + m + n + 1)
c

4R
(7.105)

Observe that all modes having the same value of (2q + m + n) would have the
same oscillation frequency and hence would be degenerate. The frequency sepa-
ration between two modes having the same value of m and n but adjacent values
of q is

�νq = c

2R
(7.106)

The frequency separation between two transverse modes corresponding to the same
value of q is

�νm = �νn = c

4R
(7.107)

which is half that between two consecutive longitudinal modes.
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In Fig. 7.27 we depict the transverse intensity distribution corresponding to the
mode amplitude distributions given by Eq. (7.99). Figure 7.3 shows the photographs
of the intensity distribution corresponding to different transverse modes of the res-
onator. Observe that higher order modes extend more in the transverse dimension
and hence would have higher diffraction losses.

The field given by Eq. (7.99) is the field distribution in a transverse plane pass-
ing through the pole of the mirror. The field distribution at any other plane can
be derived by using the diffraction formula given in Eq. (7.72). Thus the field
distribution midway between the mirrors would be

fM(x, y) = iC

π
e−ikR/2

∫ ∫
Hm(ξ ′)Hn(η′) exp

[
−1

2
ξ ′2(1 − i) − 1

2
η′2(1 − i)

]

× exp
[
−i

(
ξ2 + ξ ′2 − 2ξξ ′) − i

(
η2 + η′2 − 2ηη′)] dξ ′dη′

= iC

π
e−ikR/2e−i

(
ξ2+η2

) ∫
Hm(ξ ′) exp

[
−1

2
ξ ′2(1 + i) + 2iξξ ′

]
dξ ′

×
∫

Hn(η′) exp

[
−1

2
η′2(1 + i) + 2iηη′

]
dη′

(7.108)
Using the integral

∫
Hn(αx)e−x2+2xydx = √

πey2
(

1 − α2
)n/2

Hn

[
αy(

1 − α2
)n/2

]
(7.109)

we obtain

fM(x, y) = C exp

[
−i

(
kR

2
− π

2

)]
exp

[
−

(
ξ2 + η2

)]
Hm(

√
2ξ )Hn(

√
2η)

(7.110)
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which shows that the phase along the transverse plane midway between the mirrors
is constant. Thus the phase fronts are plane midway between the mirrors. From Eq.
(7.99) it can also be seen that the phase front of the modal field distribution has
a radius of curvature R which is equal to the radius of curvature of the resonator
mirror.

7.9 Modes of a General Spherical Resonator

In Section 7.8 we showed that the transverse modes of a symmetric confo-
cal resonator are Hermite–Gauss functions. In fact Hermite–Gauss functions
describe the transverse modes of stable resonators formed using spherical mir-
rors. In this section we consider a general spherical resonator and obtain the
characteristics of the fundamental Gaussian mode and also obtain the stability
condition.

We consider a general spherical resonator consisting of two mirrors of radii of
curvatures R1 and R2 separated by a distance d (see Fig. 7.28). The radius of cur-
vature is assumed to be positive if the mirror is concave toward the resonator and
negative if it is convex toward the resonator. We will now show that such a res-
onator is stable or unstable depending on the values of R1, R2, and d and if the
resonator is stable, then the fundamental transverse mode of such a resonator is a
Gaussian.

M1 M2

R2
R1

d

Fig. 7.28 A general
spherical resonator

In Chapter 2 we had shown that a Gaussian beam propagating along the
z-direction and whose amplitude distribution on the plane z = 0 is given by

u(x, y, 0) = a exp

[
−x2 + y2

w2
0

]
(7.111)

has the following electric field distribution at a plane z (see Eq. 2.51):
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u (x, y, z) ≈ a

(1 − i γ )
exp

[
−x2 + y2

w2 (z)

]
ei� (7.112)

where

γ = λ z

π w2
0

(7.113)

w (z) = w0

[
1 + γ 2

] 1/2 = w0

[
1 + λ2 z2

π2 w4
0

] 1/2

(7.114)

� = k z + k

2 R (z)

(
x2 + y2

)
(7.115)

R(z) ≡ z

(
1 + 1

γ 2

)
= z

[
1 + π2 w4

0

λ2 z2

]
(7.116)

Let the poles of the mirrors M1 and M2 be at z = z1 = −d1 and at z = z2 = +d2,
respectively. We are assuming the origin somewhere between the mirrors so that
both d1 and d2 are positive quantities. Thus the distance between the two mirrors is
given by

d = d1 + d2 (7.117)

Now, for the Gaussian beam to resonate between the two mirrors, the radii of
the phase front (at the mirrors) should be equal to the radii of curvatures of
the mirrors:

− R1 = −d1 − α

d1
and R2 = d2 + α

d2
(7.118)

where α = π2w4
0/λ

2. In such a case, the Gaussian beam would be normally incident
on the mirrors and hence will retrace its path to the other mirror where it is normally
incident. Thus such a Gaussian beam can resonate in the resonator and would form
a mode of the resonator.

With the sign convention mentioned earlier, for the type of mirrors shown in
Fig. 7.28, both R1 and R2 are positive. Thus

α = d1 (R1 − d1) = d2 (R2 − d2) (7.119)

If we use the relation d2 = d – d1, we would readily get

d1 = (R2 − d) d

R1 + R2 − 2d
and d2 = (R1 − d) d

R1 + R2 − 2d
(7.120)

We define
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g1 = 1 − d

R1
and g2 = 1 − d

R2
(7.121)

From the above equations we may write R1 = d
1−g1

and R2 = d
1−g2

and we
obtain

d1 = g2 (1 − g1) d

g1 + g2 − 2g1g2
and d2 = g1 (1 − g2) d

g1 + g2 − 2g1g2
(7.122)

Thus (see Eq. 7.119)

α = d1 (R1 − d1 )

= g1g2 d2 (1 − g1g2)

(g1 + g2 − 2g1g2)
2

(7.123)

Since, α = π2 w4
0

λ2 we get for the spot size at the waist

w2
0 = λd

π (g1 + g2 − 2g1g2)

√
g1g2 (1 − g1g2) (7.124)

For w0 to be real we must have 0 ≤ g1g2 ≤ 1, or

0 ≤
(

1 − d

R1

)(
1 − d

R2

)
≤ 1 (7.125)

where R1 and R2 are the radii of curvatures of the mirrors. The above equa-
tion represents the stability condition for a resonator consisting of two spher-
ical mirrors. Figure 7.2 shows different resonator configurations. Figure 7.29
shows the stability diagram and the shaded region correspond to stable resonator
configurations.

The spot sizes of the Gaussian beam at the two mirrors are given by

w2 (z1) = λd

π

√
g2

g1 (1 − g1g2)
(7.126)

and

w2(z2) = λd

π

√
g1

g2(1 − g1g2)
(7.127)

Since most of the energy in a Gaussian beam is contained within a radius of about
twice the beamwidth, if the transverse dimensions of the mirrors are large compared
to the spot sizes at the mirrors, then most of the energy is reflected back and the loss
due to diffraction spill over from the edges of the mirrors is small. It can be easily
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Fig. 7.29 The stability diagram of spherical mirror resonators. The shaded region corresponds to
stable resonators

seen from Eqs. (7.126) and (7.127) that when g1g2→ 0 or g1g2→ 1, w(z1) or w(z2)
both become very large and our analysis would not remain valid.

Problems

Problem 7.4 A Fabry–Perot (F.P.) etalon made of glass of refractive index 1.5 and having faces of
reflectivities of 0.9 each is used inside a laser resonator cavity having a gain medium with a bandwidth
Δν∼10 GHz. What thickness would you choose so that the F.P. etalon, placed perpendicular to the cavity,
can lead to single longitudinal mode operation of the laser?

Problem 7.5 I wish to make a resonator in which one of the mirrors is a convex mirror of radius of
curvature 1 m. If the length of the resonator is to be 1 m, what type of mirror (plane, convex or concave)
and what radius of curvature will you choose so that the resonator is stable?

Problem 7.6 A gas laser of length 20 cm oscillates simultaneously in two adjacent longitudinal modes
around a wavelength of 800 nm. Calculate the wavelength spacing between the modes and estimate the
coherence length of the laser.

Problem 7.7 Consider a symmetric spherical resonator consisting of two concave mirrors of radii of
curvature 1 m and separated by 20 cm operating at 1 μm. What will be the angle of divergence of the
laser beam (oscillating in the fundamental mode) emanating from such a laser?
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Problem 7.8 Consider a resonator shown below:
R =1 m

75 cm

R = ∞

Given that; λ0 = 1 μm

(a) Obtain the transverse intensity distributions of the fundamental mode at the position of the two
mirrors

(b) If both the mirrors are partially reflecting which beam (one coming from the right and the other
coming from the left) would have a larger diffraction divergence and why?

(c) If the same resonator is used for oscillation at 1.5 μm by what approximate factor would the
diffraction divergence of the beam at 1.5 μm increase or decrease compared to 1 μm?

(d) For what range of mirror separation will the above resonator be stable.

Problem 7.9 The length of a laser resonator oscillating in a single longitudinal mode varies randomly by
20 nm from the equilibrium position. Assuming d = 10 cm and λ0 = 500 nm, calculate the corresponding
variation in the frequency of oscillation of the laser.

Problem 7.10 A He–Ne laser with a gain tube of length 10 cm and a mirror separation of 40 cm oscillates
over a bandwidth of 1.5 GHz. Estimate the shortest pulse that can be generated by mode locking such a
laser. What is the duration of each pulse and the pulse repetition frequency.

Problem 7.11 The gain coefficient (in m–1) of a laser medium with a center wavelength of 500 nm
depends on frequency through the following equation:

γ (υ) = γ (υ0) exp

[
− 4

{
υ − υ0

�υ

}2
]

where ν0 is the center frequency, γ (ν0)= 1 m–1 and Δν = 3 GHz. The length of the laser cavity is 1 m
and the mirror reflectivities are 99% each. Obtain the number of longitudinal modes that will oscillate in
the laser. Neglect all other losses in the cavity.

Problem 7.12 Shown below is the output power from a mode-locked laser as a function of time:

(a) What is the length of the laser resonator? (Assume the refractive index of the medium within the
cavity to be unity).

(b) What is the approximate number of oscillating modes?

(c) What would be the average output power if the same laser operates without mode locking?

(d) What should be the frequency of the loss modulation for mode locking?
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Problem 7.13 The cavity of a 6328 Å He–Ne laser is 1 m long and has mirror of reflectivities 100 and
98%; the internal cavity losses are negligible (a) if the steady-state power output is 10 mW, what is the
energy stored in the resonator (b) What is the linewidth of the above passive cavity. (c) If the oscillating
band width is 1500 MHz, how many longitudinal mode would oscillate?

Problem 7.14 Limiting apertures are used to suppress higher order transverse mode oscillation. Consider
a Gaussian beam of waist size w0 = 0.5 mm and a total power of 1 mW. An aperture of radius 1 mm is
introduced at the position of the waist. Calculate the power which goes through the aperture.

Problem 7.15 What is the approximate angular divergence of the output beam from a He–Ne laser
(operating at 6328 Å) having a 1 m long confocal cavity?

Problem 7.16 The Gaussian beam coming out of a 100 cm long symmetric spherical resonator oscillating
at a wavelength of 1 μm has an angular divergence of 0.06◦ of arc. Calculate the radius of curvature of
the mirrors.

Problem 7.17 Consider a He–Ne laser with Doppler broadened linewidth of 1700 MHz. What should be
the length of the resonator cavity so that only a single longitudinal mode would oscillate?

Problem 7.18 The cavity of a 6328 Å He–Ne laser is 1 m long and has mirror of reflections 98 and 100%;
the internal cavity losses being negligible. If the steady-state power output is 35 mW, what is the steady
state photon number in the cavity?

Problem 7.19 Consider a confocal resonator of length 1 m used for a He–Ne laser at λ = 6328 Å.
Calculate the spot size at the resonator center and at the mirrors. If the total power in the laser beam is 1
mW, calculate the intensity of the beam on the axis as it comes out of the laser.

Problem 7.20 Consider a laser of resonator length 100 cm and oscillating at a frequency of 3 × 1014 Hz.
Calculate the variation in the cavity length that will lead to a frequency fluctuation of 1 kHz
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Problem 7.21 A stable resonator is to be made using a convex mirror of radius of curvature 1 m and a
concave mirror of radius of curvature 0.5 m. What is the condition on the separation so that the resonator
is stable?

Problem 7.22 Consider a resonator consisting of a convex mirror of radius of curvature 1 m and a concave
mirror of radius of curvature 0.5 m. Take a separation between the mirrors so that the resonator is stable.
Obtain the position of the waist of the Gaussian mode. λ = 1 μm.

Problem 7.23 Consider a laser with a resonator consisting of mirrors of reflectivity 100 and 98%, oscil-
lating in a single longitudinal mode; the length and width of the resonator are 20 and 1 cm, respectively.
There are no intrinsic losses in the laser resonator. The laser is oscillating in steady state with a fre-
quency ω0, which corresponds to the peak of the lineshape function g(ω). A monochromatic wave at
a frequency [ω0 + (�ω/2)], where �ω is the FWHM of the lineshape function, passes perpendicular
through the laser (see figure). Will the wave (at frequency [ω0 + (�ω/2)] get amplified or attenuated ?
Obtain the corresponding amplification/attenuation factor for the intensity of this wave, in going across
the laser.

⎟
⎠
⎞⎜

⎝
⎛ ωΔ+ω

20

20 cm
98%100%

1 cm

Problem 7.24 Consider a resonator made of a concave mirror of radius of curvature 20 cm, and silvered
thin plano-convex lens, as shown in the figure. The focal length of the unsilvered plano-convex lens is
20 cm. For what values of d will the resonator be stable?

R1 R2

d
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Problem 7.25 The cavity of a 6328 Å laser is 1 m long and has mirror of reflectivities 100 and 98%,
with negligible internal cavity losses (a) what is the cavity lifetime? (b) If the output of the laser is 50
mW, calculate the energy inside the cavity. (c) What is the value of the gain coefficient required to reach
threshold for laser oscillation?

Problem 7.26 A Fabry–Perot interferometer with mirrors of reflectivity 90% and separated by a distance
h is kept inclined at 45◦ with the axis of the laser within the cavity of a He–Ne laser. If the gain bandwidth
of the laser is 1 GHz, what is the condition on h so that only one longitudinal mode can oscillate? Are
there any other conditions that need to be satisfied so that the laser oscillates?

Problem 7.27 There are 1011 photons in the cavity of an Ar-ion laser oscillating in steady state at the
wavelength of 514 nm. If the laser resonator is formed by two plane mirrors of reflectivities 100 and
90%, separated by a distance of 50 cm, calculate the output power and the energy inside the cavity.[Ans :
Po = 1.22 W, E = 38nJ].

Problem 7.28 State whether resonators made with the following mirror pairs are stable or not?

(a) R1 = ∞, R2 = 20 cm, d = 25 cm

(b) R1 = 20 cm, R2 = 20 cm, d = 40 cm

(c) R1 = 20 cm, R2 = –20 cm, d = 15 cm.

Problem 7.29 When a laser oscillates, the emerging transverse field distribution is characterized by a
Hermite–Gaussian distribution:

Emn (x, y, z = 0) = E0Hm

(√
2x

w0

)
e
− x2

w2
0 Hn

(√
2x

w0

)
e
− y2

w2
0

These correspond to the various modes of oscillation of the laser. The fundamental mode corresponds
to m = 0, n = 0 and has a Gaussian field distribution. Obtain the Fraunhofer diffraction pattern of such a
field distribution.

Problem 7.30 In a ruby crystal, a population inversion density of (N2 – N1) = 5 × 1017 cm–3 is generated
by pumping. Assuming g(ν0) = 5 × 10–12 s, tsp = 3 × 10–3 s, wavelength of 694.3 nm and a refractive
index of 1.78, obtain the gain coefficient γ (ν0). By what factor will a beam get amplified if it passes
through 5 cm of such a crystal?

[Ans: 5 × 10–2 cm–1, 1.28]

Problem 7.31 The longitudinal mode spectrum of a passive resonator consisting of plane mirrors having
one mirror of reflectivity 98% is shown below.

(a) What is the length of the cavity? (1.5 m)

(b) What is the reflectivity of the second mirror? (Assume n0 = 1 and absence of any internal losses
in the cavity) (95.8%).

(c) If the cavity is filled with an amplifying medium having a single pass gain G, what is the threshold
value of G to start laser oscillation? (1.03).

(d) If for a given pumping rate, the output from the mirror having reflectivity 98% is 1 mW, what is
the output from the other mirror? (2.12 mW).
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Problem 7.32 The beam coming out of a laser resonator 50 cm long is seen to have an angular divergence
of 1.1 min of arc and it is seen that the beam coming out of one of the mirrors is converging and reaches
a minimum diameter at a distance of 10 cm from the mirror. Assuming the wavelength to be 1000 nm

(a) Calculate the radii of curvatures of the mirrors.

(b) Calculate the beam size at the two mirrors.

(c) For what range of distance between the mirrors would the resonator be stable?

Problem 7.33 A He–Ne laser of length 20 cm oscillates in two longitudinal modes. If the output of the
laser is incident on a photodetector (a device which converts light into electrical current) whose output
current is proportional to the incident intensity, what will be the time variation of the output current ?

Problem 7.34 Consider a resonator consisting of a plane mirror and a concave mirror of radius of cur-
vature R (see figure). Assume λ = 1 μm, R = 100 cm, and the distance between the two mirrors to be
50 cm. Calculate the spot size of the Gaussian beam.

50 cm

R

Solution

R = d

[
1 + π2w4

0

λ2d2

]
⇒ w0 =

√
λd

π

[
R

d
− 1

]1/4
≈ 4 × 10−4m = 0.4 mm

Problem 7.35 Show that a phase variation of the type exp
[
−i k

2R

(
x2 + y2

)]
(on the x–y plane)

represents a diverging spherical wave of radius R.

Solution For a spherical wave diverging from the origin, the field distribution is given by

u ∼ 1

r
e−i k r

Now, on the plane z = R

r =
[
x2 + y2 + R2

] 1/2

= R

[
1 + x2 + y2

R2

] 1/2

≈ R + x2 + y2

2 R

where we have assumed |x| , |y| << R. Thus on the plane z = R, the phase distribution (corresponding to
a spherical wave of radius R) would be given by
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ei k r ≈ e−i k Re
− i k

2 R

(
x2+ y2

)

Thus, a phase variation of the type exp
[
−i k

2R

(
x2 + y2

)]
(on the x–y plane) represents a diverging

spherical wave of radius R. Similarly, a phase variation of the type exp
[
+i k

2R

(
x2 + y2

)]
(on the x–y

plane) represents a converging spherical wave of radius R.

Problem 7.36 The output of a semiconductor laser can be approximately described by a Gaussian
function with two different widths along the transverse (wT) and lateral (wL) directions as

ψ (x, y) = A exp

(
− x2

w2
L

− y2

w2
T

)

where x and y represent axes parallel and perpendicular to the junction plane. Typically wT ≈ 0.5 μm
and wL = 2 μm. Discuss the far field of this beam (see figure below).

y

x

Solution

u(x, y, z) = a√
(1 + iγT ) (1 + iγL)

exp

[
− x2

w2
1

− y2

w2
2

]
ei�

Thus

I(x, y, z) = I0√(
1 + γ 2

T

) (
1 + γ 2

L

) exp

[
− 2x2

w2
1(z)

− 2y2

w2
2(z)

]

where

w2
1(z) = wT

(
1 + γ 2

T

)1/2 = wT

[
1 + λ2z2

π2w4
T

]1/2

≈ λz

πwT
(for large z)

and

w2
2(z) = wL

(
1 + γ 2

L

)1/2 = wL

[
1 + λ2z2

π2w4
L

]1/2

≈ λz

πwL
(for large z)

Problem 7.37 The output of a He–Ne laser (λ = 6328 Å) can be assumed to be Gaussian with plane
phase front. For w0 = 1 mm and w0 = 0.2 mm, calculate the beam diameter at z = 20 m.
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Solution The beam diameter is given by

2w = 2w0

[
1 + γ 2

]1/2 = 2w0

[
1 + λ2z2

π2w4
0

]1/2

, γ = λ z

π w2
0

For w0 = 0.1 cm, λ = 6.328 ×10–5 cm, z = 2000 cm

λ2z2

π2w4
0

≈ 16.23 ⇒ 2w ≈ 0.83 cm

For w0 = 0.2 mm = 0.02 cm and with same values of λ and z

λ2z2

π2w4
0

≈ 10143 ⇒ 2w ≈ 4.0 cm

The above results show that the divergence increases as w0 becomes smaller.



Chapter 8
Vector Spaces and Linear Operators:
Dirac Notation

8.1 Introduction

In this chapter we will introduce Dirac’s bra and ket notation and also discuss the
representation of observables by linear operators. By imposing the commutation
relations, we will solve the linear harmonic oscillator problem which will be used
in the next chapter to study the quantized states of the radiation field. Here, we will
discuss only those aspects of the bra and ket algebra which will be used later on. For
a thorough account, the reader is referred to the classic treatise by Dirac (1958a).

8.2 The Bra and Ket Notation

A state of a system can be represented by a certain type of vector, which we call a
ket vector and represent by the symbol | 〉 .1 In order to distinguish the ket vectors
corresponding to different states, we insert a label; thus, the ket vector (or simply
the ket) corresponding to the state A is described by the symbol |A〉. The kets form
a linear vector space implying that if we have two states described by the kets |A〉
and |B〉, then the linear combination

C1 |A〉 + C2 |B〉 (8.1)

is also a vector in the same space; here C1 and C2 are arbitrary complex numbers.
The state |P〉 = C1 |A〉 represents the same state |A〉; thus, if a ket is superposed on
itself, it corresponds to the same state. Further, to quote Dirac (p.16)

. . .each state of a dynamical system at a particular time corresponds to a ket vector, the
correspondence being such that if a state results from the superposition of certain other
states, its corresponding ket vector is expressible linearly in terms of the corresponding ket
vectors of the other states, and conversely.

The conjugate imaginary of a ket vector |A〉 is denoted by 〈A| and is called a bra
vector (or simply a bra). The scalar product of |A〉 and 〈B| is denoted by 〈B |A 〉,

1The analysis will be based on the book by Dirac (1958a).

201K. Thyagarajan, A. Ghatak, Lasers, Graduate Texts in Physics,
DOI 10.1007/978-1-4419-6442-7_8, C© Springer Science+Business Media, LLC 2010
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which is a complex number. Further

〈B |A 〉 = 〈A |B 〉 (8.2)

where 〈B |A 〉 denotes the complex conjugate of the scalar product. If we put
|B〉 = |A〉, we obtain from Eq. (8.2) that 〈A |A〉 should be a real number. We further
impose that

〈A |A 〉 ≥ 0 (8.3)

the equality sign holds if and only if |A〉 = 0, i.e., |A〉 is a null vector.
The bra corresponding to C |A〉 is denoted by C∗ 〈A| where C is a complex

number and C∗ its complex conjugate. A ket |A〉 is said to be normalized if

〈A |A 〉 = 1 (8.4)

and the two kets are said to be orthogonal to each other if

〈A |B 〉 = 0 (8.5)

We may mention here the relationship between the Schrödinger wave functions
developed in Chapter 3 to the bra and kets developed in this section. If |�〉 and
|�〉 represent the kets corresponding to the states described by the wave functions
ψ (r) and ϕ (r), respectively, then

〈� |� 〉 =
∫

ϕ∗ (r) ψ (r) dτ = 〈� |� 〉 (8.6)

8.3 Linear Operators

Let α̂ be a linear operator which, acting on |A〉, produces |B〉:

α̂ |A〉 = |B〉 (8.7)

The hat on α̂ represents the fact that α̂ is an operator. If |B〉 = 0 for all possible |A〉,
then α̂ = 0, i.e., α̂ is a null operator. The operator is said to be linear if

α̂ (C1 |A〉 + C2 |B〉) = C1α̂ |A〉 + C2α̂ |B〉 (8.8)

where C1 and C2 are any complex numbers and |A〉 and |B〉 are arbitrary kets. Two
linear operators α̂ and β̂ are said to be equal if

〈A| α̂ |A〉 = 〈A| β̂ |A〉 (8.9)
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for any |A〉. The addition and multiplication of two linear operators α̂ and β̂ are
defined through the equations

(
α̂ + β̂

)
|A〉 = α̂ |A〉 + β̂ |A〉{

α̂β̂
}

|A〉 = α̂
{
β̂ |A〉

}
⎫⎬
⎭ for any |A〉 (8.10)

An operator α̂ acting on the bra 〈A| results in 〈A| α̂ and is defined through the
equation {〈A| α̂} |B〉 = 〈A| {α̂ |B〉} for any |B〉 (8.11)

The adjoint of the operator α̂ is denoted by α̂† and is defined through the following
equation:

〈A| α̂† |B〉 = 〈B| α̂ |A〉 (8.12)

where 〈B| α̂ |A〉 is the complex conjugate of the number 〈B| α̂ |A〉. Now

〈A| α̂†† |B〉 = 〈A| β̂† |B〉 ;
(
β̂ ≡ α̂†

)

= 〈B| β̂ |A〉
= 〈B| α̂† |A〉
= 〈A| α̂ |B〉
= 〈A| α̂ |B〉

(8.13)

because the complex conjugate of the complex conjugate of a number is the original
number itself. Since the above equation holds for arbitrary |A〉 and |B〉, we must have

α̂†† = α̂ (8.14)

implying that the adjoint of the adjoint of an operator is the original operator itself.
If α̂† = α̂, then α̂† is said to be a real or a Hermitian operator.

Let α̂ |A〉 = |P〉, then

〈A| α̂† |B〉 = 〈B| α̂ |A〉 = 〈B |P 〉
= 〈P |B 〉 [using Eq.(8.2)]

(8.15)

Since the above equation is valid for arbitrary |B〉 we have

〈P| = 〈A| α̂† = conjugate of α̂ |A〉 (8.16)

We next consider two linear operators α̂ and β̂ whose adjoints are denoted by α̂†

and β̂†, respectively. Let

|P〉 = α̂β̂ |A〉 (8.17)
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then

〈P| = 〈A| (α̂β̂)† (8.18)

Further, if |Q〉 = β̂ |A〉, then |P〉 = α̂ |Q〉 and

〈P| = 〈Q| α̂† = 〈A| β̂†α̂† (8.19)

Thus

(α̂β̂)† = β̂†α̂† (8.20)

and, in general,

(α̂β̂γ̂ . . . .)† = · · · γ̂ †β̂†α̂† (8.21)

It may be mentioned that the quantity

|P〉 〈Q| (8.22)

is a linear operator, because when it acts on the ket |A〉 it produces the ket

C |P〉 (8.23)

where C = 〈Q |A 〉 is a complex number. However, operations like |P〉 |Q〉 or 〈Q| 〈P|
or α 〈Q| (where α is a linear operator) are meaningless.

The bras and kets follow the same axiomatic rules as row and column matri-
ces, and linear operators follow the axiomatic rules of a square matrix. Thus the
multiplication of a row matrix by a column matrix (cf. 〈B | A〉) gives a number,
and multiplication of a column matrix by a row matrix (cf. |A〉 〈B|) gives a square
matrix. The multiplication of a square matrix by a column matrix (cf. α̂ |P〉) gives
another column matrix, whereas multiplications of a square matrix by a row matrix
(cf. α̂ 〈P|) or of two column matrices (cf.|P〉 |Q〉) are meaningless.

8.4 The Eigenvalue Equation

The equation

α̂ |P〉 = a |P〉 (8.24)

where a is a complex number, defines an eigenvalue equation; |P〉 is said to be an
eigenket of the operator α̂ belonging to the eigenvalue a. We premultiply Eq. (8.24)
by 〈P| to obtain

〈P| α̂ |P〉 = a 〈P |P 〉 (8.25)
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If we assume α̂ to be a real operator, then by taking the complex conjugate of both
sides we get

a∗ 〈P |P 〉 = 〈P| α̂ |P〉 = 〈P| α̂† |P〉 = 〈P| α̂ |P〉 = a 〈P |P 〉 (8.26)

where we have used Eq. (8.14) and the fact that α̂† = α̂. Since 〈P |P 〉 is always
positive (unless |P〉 is a null ket – which corresponds to the trivial solution) we
obtain that a is a real number. Thus, all eigenvalues of a real linear operator are real.

We next show that eigenkets (of a real linear operator) belonging to different
eigenvalues are necessarily orthogonal. The conjugate of Eq. (8.24) gives us

〈P| α̂ = a∗ 〈P| = a 〈P| (8.27)

because a is just a real number. Now, if |Q〉 is another eigenket of α̂ belonging to
the eigenvalue b then

α̂ |Q〉 = b |Q〉 (8.28)

Thus, postmultiplying Eq. (8.27) by |Q〉 and premultiplying Eq. (8.28) by 〈P| we get

〈P| α̂ |Q〉 = a 〈P |Q 〉 = b 〈P |Q 〉 (8.29)

Since b �= a, we get

〈P |Q 〉 = 0 (8.30)

implying that two eigenkets of a real linear operator (belonging to different eigen-
values) are orthogonal. Further, if |P1〉 and |P2〉 are eigenkets of α̂ belonging to the
same eigenvalue a, i.e.,

α̂ |P1〉 = a |P1〉 and α̂ |P2〉 = a |P2〉

then

α̂ (C1 |P1〉 + C2 |P2〉) = a (C1 |P1〉 + C2 |P2〉)

implying that the ket C1 |P1〉 + C2 |P2〉 is also an eigenket belonging to the same
eigenvalue a. Consequently, we can always choose appropriate linear combinations
so that the eigenkets form an orthonormal set.

8.5 Observables

We assume that all measurable quantities (like position, momentum, energy) can
be represented by linear operators. Further, if one makes a precise measurement of
such a quantity, one gets one of the eigenvalues of the corresponding linear operator.
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The operator corresponding to the observable must be real (Hermitian) because the
result of measurement of any observable must be a real number; however, not every
linear operator need to correspond to an observable. Finally, if a system is in a state
described by |P〉, then the expectation value of an observable α̂ is given by

〈
α̂
〉 = 〈P| α̂ |P〉 (8.31)

The above equation may be compared with Eq. (3.101). And, if |P〉 is such that

|P〉 = C1 |α1〉 + C2 |α2〉 (8.32)

where |α1〉 and |α2〉 are the normalized eigenkets of α̂ belonging to the eigenvalues
α1 and α2, respectively, then a measurement of an observable represented by the
operator α̂ on |P〉 would lead to either α1 or α2 with probabilities |C1|2 and |C2|2,
respectively; here we have assumed |P〉 to be normalized (i.e., 〈P |P 〉 = 1) implying

|C1|2 + |C2|2 = 1 (8.33)

In general, if the system is in any state then a measurement of α̂ will definitely lead
to one of its eigenvalues. Thus any ket |P〉 can be expressed as a linear combination
of the eigenkets of the observable:

|P〉 =
∑

n

Cn |αn〉 (8.34)

implying that the eigenkets of an observable form a complete set.

8.6 The Harmonic Oscillator Problem

In Section 3.2 we solved the Schrödinger equation for the linear harmonic oscillator
problem. In this section we will use Dirac algebra to solve the harmonic oscillator
problem for which the Hamiltonian is given by

Ĥ = p̂2

2m
+ 1

2
mω2x̂2 (8.35)

Since Ĥ, p̂, and x̂ are observables,

Ĥ = Ĥ†, p̂ = p̂†, x̂ = x̂† (8.36)

Further, the operators x̂ and p̂ will be assumed to satisfy the commutation relation
(see Section 3.6):

[
x̂, p̂

] = x̂p̂ − p̂x̂ = i� (8.37)
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Our objective is to solve the eigenvalue equation

Ĥ
∣∣H′〉 = H′ ∣∣H′〉 (8.38)

where
∣∣H′〉 is the eigenket of the operator Ĥ belonging to the eigenvalue H′.

It is convenient to introduce the dimensionless complex operator

â = 1

(2m�ω)1/2

(
mωx̂ + ip̂

)
(8.39)

The adjoint of â would be given by

â† = 1

(2m�ω)1/2

(
mωx̂ − ip̂

)
(8.40)

where we have used Eq. (8.36). In terms of the above operators

�ωââ† = 1

2m

(
mωx̂ + ip̂

) (
mωx̂ − ip̂

)

= 1

2m

[
mω2x̂2 + p̂2 − imω

(
x̂p̂ − p̂x̂

)]

= Ĥ + 1

2
�ω

(8.41)

where we have used Eqs. (8.35) and (8.37). Similarly

�ωâ†â = Ĥ − 1

2
�ω (8.42)

Thus

Ĥ = 1

2
�ω

(
â†â + ââ†

)
(8.43)

and

ââ† − â†â =
[
â, â†

]
= 1 (8.44)

From Eq. (8.41)

�ωââ†â = Ĥâ + 1

2
�ωâ (8.45)

and from Eq. (8.42)

�ωââ†â = âĤ − 1

2
�ωâ (8.46)
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Thus

âĤ − Ĥâ =
[
â, Ĥ

]
= �ωâ (8.47)

Similarly

â†Ĥ − Ĥâ† =
[
â†, Ĥ

]
= −�ωâ† (8.48)

Let

|P〉 = â
∣∣H′〉

where
∣∣H′〉 is an eigenket of H belonging to the eigenvalue H′ [see Eq. (8.38)]. Then

�ω 〈P |P 〉 = �ω
〈
H′∣∣ â†â

∣∣H′〉

= 〈
H′∣∣ Ĥ − 1

2
�ω

∣∣H′〉 [using Eq. (8.42)]

=
(

H′ − 1

2
�ω

) 〈
H′ ∣∣H′ 〉 [using Eq. (8.38)]

But 〈P |P 〉 and
〈
H′ ∣∣H′ 〉 are positive numbers [see Eq. (8.3)] and therefore

H′ ≥ 1

2
�ω (8.49)

and H′ = 1
2�ω if and only if |P〉 = â

∣∣H′〉 = 0 (conversely, â
∣∣H′〉 is also a null ket

only when H′ = 1
2�ω). That H′ should be positive follows from Eq. (8.35) and the

fact that the expectation values of x̂2 and p̂2 should be positive or zero for any state
of the system.

Next, let us consider the operator Ĥâ operating on
∣∣H′〉:

Ĥâ
∣∣H′〉 =

(
âĤ − �ωâ

) ∣∣H′〉

= (
âH′ − �ωâ

) ∣∣H′〉

= (
H′ − �ω

)
â
∣∣H′〉

(8.50)

Thus, if
∣∣H′〉 is an eigenket of Ĥ then â

∣∣H′〉 is also an eigenket of Ĥ belonging to the
eigenvalue H′−�ω provided, of course, â

∣∣H′〉 is not a null ket, which will occur only
if H′ = 1

2�ω. Thus if H′ �= 1
2�ω, H′ − �ω is also an eigenvalue (provided â

∣∣H′〉 �=
0). Similarly if H′−�ω �= 1

2�ω then H′−2�ω is also an eigenvalue of Ĥ. We can thus
say that H′−�ω, H′−2�ω, . . . are also eigenvalues provided â

∣∣H′〉 , ââ
∣∣H′〉 , . . . are

not null kets. This, however, cannot go on indefinitely because it will then contradict

Eq. (8.49). Further, it can terminate only at H′ = 1
2�ω because then â

∣∣∣ 1
2�ω

〉
= 0.
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Now, using Eq. (8.48)

Ĥâ†
∣∣H′〉 =

(
â†Ĥ + �ωâ

) ∣∣H′〉

=
(

â†H′ + �ωâ†
) ∣∣H′〉

= (
H′ + �ω

)
â†

∣∣H′〉
(8.51)

implying that
(
H′ + �ω

)
is another eigenvalue of Ĥ, with â†

∣∣H′〉 as the eigenket
belonging to it, unless â†

∣∣H′〉 = 0. However, â†
∣∣H′〉 can never be equal to zero,

since it would lead to

0 = �ωââ†
∣∣H′〉 =

(
Ĥ + 1

2
�ω

) ∣∣H′〉 [using Eq. (8.41)]

=
(

H′ + 1

2
�ω

) ∣∣H′〉

giving H′ = − 1
2�ω, which contradicts Eq. (8.49). Thus if H′ is an eigenvalue, then

H′ + �ω is always another eigenvalue of Ĥ, and so are

H′ + 2�ω, H′ + 3�ω, . . .

Hence the eigenvalues of the Hamiltonian for the linear harmonic oscillator
problem are

1

2
�ω,

3

2
�ω,

5

2
�ω,

7

2
�ω, . . . (8.52)

extending to infinity, which is the same as obtained in Section 3.2.
We now relabel the eigenfunctions with the index n; thus |n〉 denotes the

eigenfunction corresponding to the eigenvalues
(

n + 1
2

)
�ω:

Ĥ |n〉 =
(

n + 1

2

)
�ω |n〉; n = 0, 1, 2, 3, . . . (8.53)

The eigenkets corresponding to different eigenvalues will necessarily be orthogonal.
We assume that the states |n〉 are normalized, so that

〈m |n 〉 = δmn (8.54)

Further, since |0〉 corresponds to H′ = 1
2�ω, we must have

â |0〉 = 0 (8.55)
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Now, for n = 1, 2, 3, . . . , â |n〉 is an eigenket of Ĥ belonging to the eigenvalue
n − 1

2�ω [see Eq. (8.50)]; therefore â |n〉 must be a multiple of |n − 1〉:

â |n〉 = αn |n − 1〉 (8.56)

In order to determine αn we calculate the square of the length of â |n〉:

〈n| â†â |n〉 = |αn|2 〈n − 1 |n − 1 〉 = |αn|2

But

�ω 〈n| â†â |n〉 = 〈n|
(

Ĥ − 1

2
�ω

)
|n〉

= 〈n|
(

n + 1

2

)
�ω − 1

2
�ω |n〉

= n�ω 〈n |n 〉 = n�ω

Thus

|αn|2 = n

and therefore

â |n〉 = √
n |n − 1〉 (8.57)

Similarly

â† |n〉 = √
n + 1 |n + 1〉 (8.58)

Thus, if |0〉 denotes the ground-state eigenket, then

|1〉 = â†

√
1

|0〉 , |2〉 = â†â†

√
1.2

|0〉 =
(
â†

)2

√
2! |0〉 , |2〉 =

(
â†

)3

√
3! |0〉 , . . .

and, in general,

|n〉 =
(
â†

)n

√
n! |0〉 (8.59)

We can think of an excited state |n〉 of the oscillator as containing n quanta of energy
�ω in addition to the zero-point energy of 1

2�ω. The operator â†, according to Eq.
(8.58), creates a quantum of energy; and, therefore, â† is called the creation operator.
Similarly, the operator â, according to Eq. (8.57), annihilates a quantum of energy,
and therefore, â is called the annihilation or destruction operator.
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8.6.1 The Number Operator

Consider the operator

N̂op = â†â (8.60)

Using Eq. (8.42) we may write

Ĥ =
(

N̂op + 1

2

)
�ω (8.61)

Since

Ĥ |n〉 =
(

n + 1

2

)
�ω |n〉 (8.62)

we have

�ω

(
N̂op + 1

2

)
|n〉 =

(
n + 1

2

)
�ω |n〉

or

N̂op |n〉 = n |n〉 (8.63)

Thus |n〉 are also the eigenkets of N̂op, the corresponding eigenvalue being n, and
since n takes the values 0, 1, 2,. . ., the operator N̂op is called the number operator.
Obviously

〈m| N̂op |n〉 = nδmn (8.64)

8.6.2 The Uncertainty Product

The quantities �x and �p, which represent the uncertainties in x̂ and p̂, are defined
through the equations

�x =
(〈

x̂2
〉
− 〈

x̂
〉2)1/2

(8.65)

�p =
(〈

p̂2
〉
− 〈

p̂
〉2)1/2

(8.66)

where
〈
x̂2

〉
represents the expectation value of x̂2, etc. We will calculate the expec-

tation values of x̂, x̂2, etc., when the harmonic oscillator is in the state |n〉. Now

〈n| x̂ |n〉 =
(

�

2mω

)1/2

〈n| (â + â†) |n〉 [using Eqs. (8.39) and (8.40)]

=
(

�

2mω

)1/2 [√
n 〈n |n − 1 〉 + √

n + 1 〈n |n + 1 〉
]

[using Eqs. (8.57) and (8.58)]

= 0 [using Eqs. (8.54)]

(8.67)
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and

〈n| x̂2 |n〉 =
(
〈n| ââ |n〉 + 〈n| ââ† |n〉 + 〈n| â†â |n〉 + 〈n| â†â† |n〉

)

= �

2mω
[0 + (n + 1) + n + 0]

= �

mω

(
n + 1

2

)

Thus

�x =
√

�

mω

(
n + 1

2

)
(8.68)

Similarly

〈n| p̂ |n〉 = 0 (8.69)

and

�p =
√

〈n| p2 |n〉 =
√

mω�

(
n + 1

2

)
(8.70)

Thus

�x�p =
(

n + 1

2

)
� (8.71)

The minimum uncertainty product
(
= 1

2�

)
occurs for the ground state (n = 0). The

result given by Eq. (8.71) is consistent with the uncertainty principle.

8.6.3 The Coherent States

Consider the eigenvalue equation

â |α〉 = α |α〉 (8.72)

where â is the annihilation operator defined through Eq. (8.39). The eigenkets
defined by Eq. (8.72) are known as the coherent states.2 In this section we will
study some of the properties of the coherent states; these properties will be used in
Chapter 9.

2In Section 9.4 we will show that when a laser is operated much beyond the threshold, it generates
a coherent-state excitation of the cavity mode. It is left as an exercise for the reader to show that
the operator â

†
cannot have any eigenkets and similarly â cannot have any eigenbras.
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Since the eigenkets of an observable form a complete set, we expand |α〉 in terms
of the kets |n〉:

|α〉 =
∑

n=0,1...

Cn |n〉 (8.73)

Now

â |α〉 =
∑

Cnâ |n〉 =
∞∑

n=1

Cn
√

n |n − 1〉 (8.74)

Also

â |α〉 = α |α〉 = α
∑

Cn |n〉 (8.75)

Thus

α (C0 |0〉 + C1 |1〉 + · · ·) = C1 |0〉 + C2
√

2 |1〉 + C3
√

3 |2〉 + · · ·
or

C1 = αC0, C2 = αC1√
2

= α2

√
2

C0

C3 = α
C2√

3
= α3

√
3!C0, . . . (8.76)

In general,

Cn = αn

√
n!C0 (8.77)

Thus

|α〉 = C0

∑
n

αn

√
n! |n〉 (8.78)

If we normalize |α〉, we would get

1 = 〈α |α 〉 = |C0|2
∑

n

∑
m

αnα
∗m

√
n!√m!δnm

= |C0|2
∑

n

(|α|2)n

n! = |C0|2 exp
(
|α|2

)

or

C0 = exp

(
−1

2
|α|2

)
(8.79)

within an arbitrary phase factor. Substituting in Eq. (8.78) we obtain

|α〉 = exp

(
−1

2
|α|2

)∑ αn

√
n! |n〉 (8.80)



214 8 Vector Spaces and Linear Operators: Dirac Notation

Notice that there is no restriction on the value of α, i.e., α can take any complex
value. Further, if |β〉 is another eigenket of â belonging to the eigenvalue β, then

|〈α |β 〉|2 =
∣∣∣∣∣exp

(
−1

2
|α|2

)
exp

(
−1

2
|β|2

)∑
n

∑
m

α∗nβm

√
n!m! 〈n |m 〉

∣∣∣∣∣
2

= exp
(
− |α|2 − |β|2

) ∣∣∣∣∣
∑

n

(α∗β)n

n!

∣∣∣∣∣
2

= exp
(
− |α|2 − |β|2 + α∗β + αβ∗) = exp

(
− |α − β|2

)

(8.81)

Thus the eigenkets are not orthogonal (this is because â is not a real operator); they,
however, become approximately orthogonal for large values of |α − β|2. Further,
the kets |α〉 can be shown to satisfy the following relations:

|〈n |α 〉|2 = 1

n!
∣∣∣α2

∣∣∣
n

exp
(
− |α|2

)
(8.82)

�x�p = 1

2
� (8.83)

where

�x ≡
√

〈α| x̂2 |α〉 − 〈α| x̂ |α〉2 (8.84)

and

�p ≡
√

〈α| p̂2 |α〉 − 〈α| p̂ |α〉2 (8.85)

Thus the uncertainty product �x�p has the minimum value
(
= 1

2�

)
for all

coherent states. Indeed it can be shown that if we solve the eigenvalue equation

âψ = 1

(2m�ω)1/2

(
mωx̂ + ip̂

)
ψ = αψ (8.86)

by replacing p̂ by −i�d / dx [see Eq. (3.9)] then the eigenfunctions would be
displaced Gaussian functions and the uncertainty product is a minimum for the
Gaussian function (see, e.g., Ghatak and Lokanathan (2004)). It may be pointed
out that the ground state (n = 0) wave function for the harmonic oscillator problem
is also Gaussian [see Eq. (3.54) with H0 (ξ) = 1]; the corresponding uncertainty
product is a minimum [see Eq. (8.71) with n = 0].
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8.7 Time Development of States

Let us consider a system described by the time-independent Hamiltonian Ĥ. Let |n〉
represent the eigenkets of Ĥ belonging to the eigenvalue En:

Ĥ |n〉 = En |n〉 (8.87)

Now, since the eigenkets form a complete set, we may express an arbitrary ket |ψ〉
as a linear combination of |n〉:

|ψ〉 =
∑

n

Cn |n〉 (8.88)

The constants Cn can be obtained by premultiplying the above equation by

〈m |ψ 〉 =
∑

Cn 〈m |n 〉 =
∑

Cnδmn = Cm (8.89)

where we have used the orthonormality condition satisfied by the eigenkets. Thus

|ψ〉 =
∑

|n〉 〈n |ψ 〉 (8.90)

which may be rewritten as

|ψ〉 =
{∑

n

|n〉 〈n|
}

|ψ〉 (8.91)

Since the above equation is valid for an arbitrary ket, the quantity inside the curly
brackets must be the unit operator:

∑
n

|n〉 〈n| = 1 (8.92)

Equation (8.92) is often referred to as the completeness condition.
Next, we are interested in finding out how a system (described by the time-

independent Hamiltonian Ĥ) will evolve with time, if the state of the system, at
t = 0, is described by the ket |ψ (0)〉. Now, the ket |ψ (t)〉 (which describes the
evolution of the system with time) would satisfy the time-dependent Schrödinger
equation [Eq. (3.61)]:

i�
∂

∂t
|� (t)〉 = Ĥ |� (t)〉 (8.93)

Since the Hamiltonian is independent of time, we can “integrate” the above equation
to obtain

|� (t)〉 = e−iĤt/� |� (0)〉 (8.94)
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where the exponential of an operator is defined through the power series:

eÔ = 1 + Ô + 1

2! ÔÔ + 1

3! ÔÔÔ + · · · (8.95)

That Eq. (8.94) is the solution of Eq. (8.93) can be immediately seen by direct
substitution. Using Eq. (8.91), we obtain

|� (t)〉 = e−iĤt/�
∑

n

|n〉 〈n |� (0) 〉 (8.96)

Replacing e−iĤt/ � by the power series and using Eq. (8.87), we get

|� (t)〉 =
∑

n

e−iEnt/� |n〉 〈n |� (0) 〉 (8.97)

We may use the above equation to study the time development of coherent
states. Thus,

|� (0)〉 = |α〉 = exp

(
−1

2
|α|2

) ∑
n

αn

√
n! |n〉 (8.98)

[see Eq. (8.80)]. Thus

〈n |� (0) 〉 = 〈n |α 〉 = exp

(
−1

2
|α|2

)
αn

√
n! (8.99)

Hence

|� (t)〉 = exp

(
−1

2
|α|2

) ∑
n

[
αn

√
n!

]
exp

[
−i

(
n + 1

2

)
ωt

]
|n〉 (8.100)

where we have used the fact that

En =
(

n + 1

2

)
�ω (8.101)

8.8 The Density Operator

Let |0〉 , |1〉 , |2〉 , . . . form a complete set of orthonormal kets, i.e.,

〈n |m 〉 = δmn (8.102)
and ∑

n

|n〉 〈n| = 1 (8.103)

[see Eqs. (8.54) and (8.92)]. An arbitrary ket can be expanded in terms of |n〉:
|P〉 =

∑
n

Cn |n〉, Cn = 〈n |P 〉 (8.104)
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A state can be characterized by the density operator ρ̂ defined by the following
equation:

ρ̂ = |P〉 〈P| (8.105)

The trace3 of an operator is defined to be equal to the sum of the diagonal matrix
elements for any complete set of states; thus

TrÔ =
∑

n

〈n| Ô |n〉 (8.106)

where Ô is an arbitrary operator and

Onm ≡ 〈n| Ô |m〉 (8.107)

is known as the (nm)th matrix element of the operator Ô with respect to kets
|0〉 , |1〉 , . . . being the basis states; the n = m terms represent the diagonal
elements. Now

Tr (|P〉 〈Q|) =
∑

n

〈n |P 〉 〈Q |n 〉

=
∑

n

〈Q |n 〉 〈n |P 〉

[because 〈n |P 〉 and 〈Q |n 〉 are complex numbers]

= 〈Q|
{∑

n

|n〉 〈n|
}

|P〉 (8.108)

or

Tr (|P〉 〈Q|) = 〈Q |P 〉 (8.109)

where, in the last step, we have used Eq. (8.103). Thus

Tr ρ = Tr |P〉 〈P| = 〈P |P 〉 = 1 (8.110)

where we have assumed |P〉 to be normalized. Further, the expectation value of the
operator Ô (when the system is in the state |P〉) is given by

〈
Ô
〉
= 〈P| Ô |P〉 =

∑
n

〈P|Ô |n〉 〈n |P 〉 [using Eq. (8.103)]

=
∑

〈n |P 〉 〈P| Ô |n〉 [because 〈n |P 〉 is a number]

=
∑

〈n| ρ̂ Ô |n〉 [using Eq. (8.105)]

3Abbreviated as Tr.
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or 〈
Ô
〉
= Tr

(
ρ̂ Ô

)
(8.111)

Also

ρnm = 〈n |P 〉 〈P |n 〉 = |Cn|2 (8.112)

implying that the diagonal matrix elements of the density operator represent the
probabilities of finding the system in the basis states.

Perhaps the most important application of the density operator is in the field
of statistical mechanics where we consider a large number of identical systems,
each system having a certain probability of being in a certain state. If wψ repre-
sents the probability of finding the system in the state characterized by |ψ〉, then the
corresponding density operator is given by

ρ̂ =
∑
�

w� |�〉 〈�| (8.113)

where the summation is carried over all possible states of the system; the density
operator contains all the information about the ensemble. Since

∑
�

w� = 1 (8.114)

we obtain

Tr ρ̂ =
∑
�

w�Tr |�〉 〈�|

=
∑
�

w� 〈� | �〉

=
∑
�

w� = 1

(8.115)

Equation of Motion of the Density Operator
We calculate the time dependence of the density operator by differentiating Eq.

(8.113) with respect to time:

i�
dρ̂

dt
=

∑
�

w�

{
i�

d |�〉
dt

〈�| + |�〉
[

i�
d

dt
〈�|

]}
(8.116)

But

i�
d

dt
|�〉 = Ĥ |�〉 (8.117)

and taking its conjugate imaginary

− i�
d

dt
〈�| = 〈�| Ĥ (8.118)



8.9 The Schrödinger and Heisenberg Pictures 219

Thus

i�
dρ̂

dt
=

∑
�

w�

[
Ĥ |�〉 〈�| − |�〉 〈�| Ĥ

]

= Ĥρ̂ − ρ̂Ĥ

(8.119)

or

i�
dρ̂

dt
= −

[
ρ̂, Ĥ

]
(8.120)

8.9 The Schrödinger and Heisenberg Pictures

While solving the linear harmonic oscillator problem in Section 8.6, we had
assumed the observables x, p, and H to be real operators and independent of
time. This is the so-called Schrödinger picture, and the time development of
the ket describing the quantum mechanical system is obtained by solving the
time-dependent Schrödinger equation:

i�
∂

∂t
|� (t)〉 = Ĥ |� (t)〉 (8.121)

If the Hamiltonian is independent of time then we can “integrate” the above equation
to obtain (see Section 8.7)

|� (t)〉 = e−iĤt/ � |� (0)〉 (8.122)

where

e−iĤt/ � ≡ 1 −
(

iĤt

�

)
+ 1

2!

(
iĤt

�

)(
iĤt

�

)
+ · · · (8.123)

Now, the expectation value of an observable characterized by the operator Ô is
given by 〈

Ô
〉
= 〈� (t)| Ô |� (t)〉 (8.124)

Next, let |n〉 represent the eigenkets of the Hamiltonian Ĥ belonging to the
eigenvalue E n, i.e.,

Ĥ |n〉 = En |n〉 (8.125)

then [see Eq. (8.97)]

|� (t)〉 =
∑

e−iĤt/ � |n〉 [ 〈n |� (0) 〉] (8.126)

Thus, in the Schrödinger picture, we may visualize the basis vectors (here |n〉) as a
fixed set of vectors and |ψ (t)〉 (describing the system) as moving.
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Now, if we substitute for |ψ (t)〉 from Eq. (8.126) in Eq. (8.124), we would get

〈
Ô
〉
= 〈� (0)| e+iĤt/ �Ô e−iĤt/ � |� (0)〉
= 〈� (0)| ÔH (t) |� (0)〉

(8.127)

where the operator ÔH (t) is defined by the following equation:

ÔH (t) = eiĤt/ �Ô e−iĤt/ � (8.128)

Equations (8.124) and (8.127) tell us that the expectation values remain the same
if we endow the operator ÔH (t) with the entire time dependence but assume that
the kets are time independent. This is known as the Heisenberg picture (and hence
the subscript H) in which operators representing the observables change with time
but the ket describing the state of the system is time independent. From Eq. (8.128),
we have

dÔH

dt
= e+iĤt/ �∂Ô

∂t
e−iĤt/ � + i

�
eiĤt/ �

[
ĤÔ − ÔĤ

]
e−iĤt/ � (8.129)

where the first term on the right-hand side allows for any explicit time dependence
of the operator. If there is no such explicit time dependence, we may write

i�
dÔH (t)

dt
=

[
eiĤt/ �Ôe−iĤt/ �

]
Ĥ − Ĥ

[
eiĤt/ �Ôe−iĤt/ �

]
(8.130)

= ÔH (t) Ĥ − ĤÔH (t) (8.131)

or

i�
dÔH (t)

dt
=

[
ÔH (t) , Ĥ

]
(8.132)

The above equation is known as the Heisenberg equation of motion and gives the
time dependence of an operator in the Heisenberg picture.

If the Hamiltonian is assumed to be independent of time in the Schrödinger rep-
resentation, then it is also independent of time in the Heisenberg representation:

ĤH (t) = eiĤt/ �Ĥ e−iĤt/ � = eiĤt/ � e−iĤt/ �Ĥ = Ĥ (8.133)

It should be mentioned that if Ĥ had an explicit time dependence, the analysis would
have been much more involved (see, e.g., Baym (1969), Chapter 5).
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We next consider the operators α̂ and β̂, which, in the Schrödinger representation,
satisfy the commutation relation

[
α̂, β̂

]
= iγ̂ (8.134)

or

α̂β̂ − β̂α̂ = iγ̂ (8.135)

If we multiply on the left by eiĤt/ � and on the right by e−iĤt/ �, we obtain

eiĤt/ �α̂e−iĤt/ �eiĤt/ �β̂e−iĤt/ � − eiĤt/ �β̂e−iĤt/ �eiĤt/ �α̂e−iĤt/ � = ieiĤt/ �γ̂−iĤt/ �

(8.136)

where we have inserted e−iĤt/ �eiĤt/ � (= 1) between α̂ and β̂. Using Eq. (8.128),
we get

[
α̂H (t) , β̂H (t)

]
= iγ̂H (t) (8.137)

which shows the physical equivalence of Heisenberg and Schrödinger pictures.
As an illustration we consider the harmonic oscillator problem. However, before

we do so, we note that

[
x̂, p̂n] = i�np̂n−1 = i�

∂

∂ p̂
p̂n (8.138)

and

[
p̂, x̂n] = −i�nx̂n−1 = −i�

∂

∂ x̂
x̂n (8.139)

Thus if P
(
p̂
)

and X
(
x̂
)

can be expanded in a power series in p and x, respectively,
we will have

[
x̂, P

(
p̂
)] = i�

∂P̂

∂ p̂
(8.140)

and

[
p̂, X

(
x̂
)] = −i�

∂X̂

∂ x̂
(8.141)

Now for the harmonic oscillator problem

Ĥ = p̂2

2m
+ 1

2
mω2x̂2 = ĤH = p̂2

H (t)

2m
+ 1

2
mω2x̂2

H (t) (8.142)
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where we have used Eq. (8.133). Thus, using Eq. (8.132),

dx̂H (t)

dt
= 1

i�

[
x̂H (t) , ĤH

]
= ∂ĤH

∂ p̂H
= 1

m
p̂H (t) (8.143)

and

dp̂H (t)

dt
= 1

i�

[
p̂H (t) , ĤH

]
= ∂ĤH

∂ x̂H
= −mω2x̂H (t) (8.144)

These are the Hamilton equations of motion (see, e.g., Goldstein (1950)). The
solutions of the above equations are

x̂H (t) = x̂ cos ωt + 1

mω
p̂ sin ωt (8.145)

p̂H (t) = −mωx̂ sin ωt + p̂ cos ωt (8.146)

where x̂ = x̂H (t = 0) and p̂ = p̂H (t = 0) represent the operators in the Schrödinger
representation. Further,

âH (t) = 1

(2m�ω)1/2

[
mωx̂H (t) + ip̂H (t)

]
[see Eq. (8.39)]

= âe−iωt
(8.147)

where â ≡ âH (t = 0). Similarly

â†
H (t) = â†e+iωt (8.148)

where

â† ≡ â†
H (t = 0) (8.149)

These relations will be used in the next chapter.

Problems

Problem 8.1 If |δ〉 is an eigenket of an operator ĝ with an eigenvalue δ, then 〈δ| is an eigenbra of which
operator and what is the corresponding eigenvalue?

Problem 8.2 Consider a harmonic oscillator state given by the following superposition state:

|ψ〉 = α |0〉 + β |1〉

Normalize |ψ〉 and obtain the relationship between α and β.
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Problem 8.3 Using the commutation relations between â and â† obtain the value of the commutator[
â, â†2

]
.

Problem 8.4 A harmonic oscillator is in a superposition of number states as given by

|ψ〉 = 1

2
|2〉 +

√
3

2
|3〉

Obtain the expectation value of energy of the harmonic oscillator.

Problem 8.5 Consider a harmonic oscillator in a number state |n〉 with n = 10. (a) what is the uncertainty
in the energy of the oscillator? (b) What are the variances of the position and momentum of the oscillator
in this state? (c) Is this a minimum uncertainty state?





Chapter 9
Quantum Theory of Interaction of Radiation
Field with Matter

9.1 Introduction

In this chapter we show that the electromagnetic field can be considered as an infi-
nite set of harmonic oscillators, each corresponding to a particular value of the
frequency, wave vector, and a particular state of polarization. Comparing with the
quantum mechanical treatment of harmonic oscillators, we replace the generalized
coordinates and generalized momenta by operators. By imposing the commutation
relations between the canonical variables, it is shown that the energy of each oscil-
lator can increase or decrease by integral multiples of a certain quantum of energy;
this quantum of energy is known as the photon. Having quantized the field, we show
that the state which corresponds to a given number of photons (also referred to as
the number state) for a particular mode does not correspond to the classical plane
wave. Indeed, we show that the eigenstates of the annihilation operator (which are
known as the coherent states) resemble the classical plane wave for large intensities.

In Section 6.3 we considered the interaction of the radiation field with matter
using the semiclassical theory; i.e., we used a quantum mechanical description of
the atom and a classical description of the electromagnetic field. In Section 9.6 we
use the quantum mechanical description of the radiation field to study its interac-
tion with an atom and thereby obtain explicit expressions for the Einstein A and B
coefficients, which are shown to be identical to the one obtained in Chapter 6. We
may mention here that the fully quantum mechanical theory automatically leads to
spontaneous emissions which in the semiclassical theory had to be introduced in an
ad hoc manner. Further, the theory also shows that the natural lineshape function is
Lorentzian; this is explicitly shown in Appendix G.

In Section 9.7 we show that it is difficult to give a quantum mechanical
description of the phase of the electromagnetic field.

9.2 Quantization of the Electromagnetic Field

We start with Maxwell’s equations in free space

∇ × H = ∂D
∂t

= ε0
∂E
∂t

(9.1)
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∇ × E = −∂B
∂t

= −μ0
∂H
∂t

(9.2)

∇ · E = 0 (9.3)

∇ · B = 0 (9.4)

where we have assumed the absence of free currents and free charges; E, D, B and H
represent the electric field, electric displacement, magnetic field, and magnetic H
vector, respectively; ε0 and μ0 represent the permittivity and magnetic permeability
of free space. From Eq. (9.4), it follows that B can be expressed as the curl of a
vector:

B = ∇ × A = μ0H (9.5)

where A is called the vector potential. Thus Eqs. (9.2) and (9.5) give us

∇ ×
(

E + ∂A
∂t

)
= 0 (9.6)

Hence we may set

E + ∂A
∂t

= −∇φ (9.7)

or,

E = −∇φ − ∂A
∂t

(9.8)

where φ is known as the scalar potential. Substituting Eq. (9.8) into Eq. (9.3), we
get

∇2φ + ∂

∂t
(∇ · A) = 0 (9.9)

Now, B is left unchanged if the gradient of any scalar quantity is added to A:

A → A′ = A + ∇χ (9.10)

where χ is any scalar function.1 We may choose χ such that

∇ · A = 0 (9.11)

1This is because ∇ × (∇χ) = 0 for arbitrary χ .
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This is known as the Coulomb gauge. The scalar potential then satisfies the equation
∇2φ = 0 and we may assume φ = 0 Thus, we finally obtain

B = μ0H = ∇ × A (9.12)

and

E = −∂A
∂t

(9.13)

Substituting for H and E in Eq. (9.1), we get

∇ × (∇ × A) = −ε0μ0
∂2A
∂t2

(9.14)

If we now use the identity

∇ × (∇ × A) = ∇ (∇ · A) − ∇2A = −∇2A (9.15)

(because ∇ · A = 0), we finally obtain

∇2A = 1

c2

∂2A
∂t2

(9.16)

where c[= (ε0μ0)
−1/2] represents the speed of light in free space. Equation (9.16)

represents the wave equation. In order to solve the wave equation, we use the method
of separation of variables:

A (r, t) = A (r) q (t) (9.17)

Thus

q (t)∇2A (r) = A (r)
1

c2

d2q

dt2
(9.18)

We next consider a Cartesian component (say the x component) of A (r) which we
denote by Ax (r); thus

c2

Ax (r)
∇2Ax (r) = 1

q (t)

d2q

dt2
= −ω2 (say) (9.19)

Thus

q (t) ∼ e−iωt, e+iωt (9.20)

and

∇2Ax (r) + k2Ax (r) = 0 (9.21)
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where

k2 ≡ ω2

c2
(9.22)

The solutions of Eq. (9.21) are plane waves; and similarly if we consider the y and
z components, we obtain

A (r) ∼ ê eik·r, ê e−ik·r (9.23)

where k = x̂kx + ŷky + ẑkz and k · k = k2 and ê is the unit vector along A. The
condition ∇ · A = 0 gives us

k · ê = 0 (9.24)

implying that ê is at right angles to the direction of propagation k; this is nothing
but the transverse character of the wave, the vector ê denotes the polarization of the
wave. For a given k there are two independent states of polarization.

In free space all values of ω are allowed and the total electromagnetic field is,
in general, an integral over all possible frequencies and direction of propagation.
In order to simplify the analysis, it is convenient to impose boundary conditions
over a finite volume so that the frequency spectrum becomes discrete and the total
electromagnetic field then can be written as a sum (rather than an integral) of various
terms. It is then possible to let the volume of the region considered tend to infinity
to go over to fields in free space.

One can impose two types of boundary conditions; one in which the cavity is
bounded by perfectly conducting walls and the other in which we apply periodic
boundary conditions. The former leads to standing wave solutions, while the latter
to propagating wave solutions. Here we consider a cube of side L and use periodic
boundary conditions, i.e., assume that the fields on the sides facing each other to be
equal. Thus we will have

A (x = 0, y, z) = A (x = L, y, z) , etc. (9.25)

giving

eikxL = 1 = eikyL = eikzL (9.26)

Thus

kx = 2πvx

L

ky = 2πvy

L

kz = 2πvz

L

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

vx, vy, vz = 0, ±1, ±2, . . . (9.27)
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The complete solution of Eq. (9.16) is therefore given by

A (r, t) =
∞∑

λ=−∞

[
qλ (t)Aλ (r) + q∗

λ (t) A∗
λ (r)

]
(9.28)

where
Aλ (r) = êλeikλ·r ; qλ (t) = |qλ| e−iωλt (9.29)

and the subscript λ signifies the various modes of the field [see (Eq. 9.27)] including
the two states of polarization. Thus, a particular value of λ corresponds to a particu-
lar set of values of vx, vy, vz (which implies a particular frequency) and a particular
direction ê. In Eq. (9.28), the second term on the right-hand side is the complex
conjugate of the first term, making A necessarily real. We also assume that

k−λ = −kλ and ω−λ = ωλ (9.30)

Thus negative values of λ in Eq. (9.28) correspond to plane waves traveling in
opposite direction to the waves with positive values of λ.

Because of the allowed values of kλ [see Eq. (9.27)], we readily obtain

∫∫∫

v

Aλ · A∗
μ dτ =

∫∫∫

v

Aλ · A−μdτ = Vδλ,μ (9.31)

where the integration is over the entire volume of the cavity.
Using Eq. (9.28), we obtain the following expressions for the electric and

magnetic fields:

E = −∂A
∂t

=
∑
λ

Eλ (9.32)

H = 1

μ0
∇ × A =

∑
λ

Hλ (9.33)

where

Eλ = iωλ

[
qλ (t)Aλ (r) − q∗

λ (t)A∗
λ (r)

]
(9.34)

and

Hλ = i

μ0
kλ × (

qλAλ − q∗
λA∗

λ

)
(9.35)

The total energy of the radiation field is given by

H = 1

2

∫ (
ε0E · E + μ0H · H

)
dτ (9.36)
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Now

1

2
ε0

∫

v
E · E dτ = − 1

2
ε0

∫

v

∑
λ

∑
μ

ωλωμ

[
qλqμ

∫
Aλ · Aμdτ − qλq∗

μ

∫
Aλ · A∗

μdτ

−q∗
λqμ

∫
Aλ

∗ · Aμ dτ + q∗
λq∗

μ

∫
Aλ

∗ · A∗
μdτ

]

= −1

2
ε0V

∑
λ

∑
μ

ωλωμ

[
qλ qμδλ,−μ − qλq∗

μδλ,μ

−q∗
λqμδλ,μ + q∗

λq∗
μδλ,−μ

]

− 1

2
ε0V

∑
λ

ω2
λ

[
qλq−λ + q∗

λq∗−λ − 2qλq∗
λ

]

(9.37)

Similarly one can evaluate
∫

H · H dτ . The final result is

1

2
μ0

∫
H · H dτ = +1

2
ε0V

∑
λ

ω2
λ

[
qλq−λ + q∗

λq∗−λ + 2qλq∗
λ

]
(9.38)

where use has to be made of the vector identity

(a × b) · (c × d) = (a · c) (b · d) − (b · c) (a · d) (9.39)

and the relation

k2
λ = ω2

λ

c2
= ε0μ0ω

2
λ (9.40)

Thus

H = 2ε0V
∑
λ

ω2
λqλ (t) q∗

λ (t) (9.41)

We next introduce the dimensionless variables Qλ (t) and Pλ (t) defined through the
equations

Qλ (t) ≡ (ε0V)1/2 [
qλ (t) + q∗

λ (t)
]

(9.42)

and

Pλ (t) ≡ 1

i

(
ε0Vω2

λ

)1/2 [
qλ (t) − q∗

λ (t)
]

(9.43)
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Thus

qλ (t) =
(

4ε0Vω2
λ

)−1/2
[ωλQλ (t) + iPλ (t)] (9.44)

q∗
λ (t) =

(
4ε0Vω2

λ

)−1/2
[ωλQλ (t) − iPλ (t)] (9.45)

and

H =
∑
λ

Hλ (9.46)

where2

Hλ = 1

2

[
P2
λ + ω2

λQ2
λ

]
(9.47)

The Hamiltonian given by Eq. (9.47) is identical to that of the linear harmonic oscil-
lator [see Eq. (8.35) with mass m = 1] which suggests that the electromagnetic field
can be regarded as an infinite set of harmonic oscillators with each mode (i.e., for
each value of kλ and to a particular direction of polarization) being associated with
a harmonic oscillator. Just to remind, the analysis carried out till now is completely
classical.

In order to quantize the electromagnetic field we use the same approach as in
Section 8.6; we consider Qλ and Pλ to be Hermitian operators Q̂λ and P̂λ satisfying
the following commutation relations [cf. Eqs. (8.37) and (8.137)]:

[
Q̂λ (t) , P̂λ (t)

]
≡ Q̂λ (t) P̂λ (t) − P̂λ (t) Q̂λ (t) = i� (9.48)

[
Q̂λ (t) , P̂λ′ (t)

]
= 0, λ �= λ′ (9.49)

[
Q̂λ (t) , Q̂μ (t)

]
= 0 =

[
P̂λ (t) , P̂μ (t)

]
(9.50)

2Notice that

∂Hλ

∂Qλ

= ω2
λQλ = ω2

λ (ε0V)1/2 (
qλ + q∗

λ

) = i
(
ε0Vω2

λ

)1/2 (
q̇λ − q̇∗

λ

) = −Ṗλ

Similarly
∂Hλ

∂Pλ

= Q̇λ

which are nothing but Hamilton’s equations of motion (see, e.g., Goldstein (1950)). Thus Qλ and
Pλ are the canonical coordinates.
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where all the operators are in the Heisenberg representation (see Section 8.9). We
next introduce the dimensionless variables

âλ (t) = (2�ωλ)
−1/2

[
ωλQ̂λ (t) + iP̂λ (t)

]
(9.51)

â†
λ (t) = (2�ωλ)

−1/2
[
ωλQ̂λ (t) − iP̂λ (t)

]
(9.52)

Since
[
ωλQ̂λ (t) + iP̂λ (t)

]
is proportional to qλ (t) [see Eq. (9.44)] which has a time

dependence of the form e−iωλt, we may write [cf. Eq. (8.147)]

âλ (t) = âλe−iωλt (9.53)

Similarly

â†
λ (t) = â†

λe+iωλt (9.54)

where

âλ ≡ âλ(0) and â†
λ ≡ â†

λ(0) (9.55)

Solving Eqs. (9.51) and (9.52) for Q̂λ (t) and P̂λ (t) we obtain

Q̂λ (t) =
(

�

2ωλ

)1/2 [
â†
λ (t) + âλ (t)

]
(9.56)

P̂λ (t) = i

(
�ωλ

2

)1/2 [
â†
λ (t) − âλ (t)

]
(9.57)

Substituting the above expressions for Q̂λ (t) and P̂λ (t) in Eq. (9.47), we obtain

Ĥ =
∑
λ

Ĥλ =
∑
λ

1

2
�ωλ

[
â†
λ (t) âλ (t) + âλ (t) â†

λ (t)
]

=
∑
λ

1

2
�ωλ

[
â†
λâλ + âλâ†

λ

]
(9.58)

Using the commutation relation between âλ and â†
λ, we can write Eq. (9.58) as

Ĥ =
∑
λ

�ωλ

[
â†
λâλ + 1

2

]

which is the quantum mechanical Hamiltonian operator of the total electromag-
netic field. If we now carry out an analysis similar to that followed in Section 8.6,



9.2 Quantization of the Electromagnetic Field 233

we obtain

(
nλ + 1

2

)
�ωλ, nλ = 0, 1, 2, . . . (9.59)

as the eigenvlaues of Ĥλ and

∑
λ

(
nλ + 1

2

)
�ωλ (9.60)

as the eigenvalues of the total Hamiltonian Ĥ

(
= ∑

λ

Ĥλ

)
Thus, quantum mechan-

ically, we can visualize the radiation field as consisting of an infinite number of
simple harmonic oscillators; the energy of each oscillator can increase or decrease
only by integral multiples of �ωλ. If we consider �ωλ, as the energy of a photon,
then we can say that each oscillator can have energy corresponding to nλ photons or
that the λth mode is occupied by nλ photons.

Note from Eq. (9.60) that even in a state in which none of the modes are
occupied, i.e., nλ = 0 for all λ, each mode still possesses an energy of �ωλ

/
2

also referred to as zero-point energy. Since there are infinite number of radiation
modes, this implies that the zero-point energy is infinite. This infinite value of zero-
point energy is a major unresolved issue in the quantization of electromagnetic
waves.

The eigenkets of the total Hamiltonian would be

|n1〉 |n2〉 · · · |nλ〉 · · · = |n1, n2, . . . nλ, . . .〉 (9.61)

where nλ represents the number of photons in the mode characterized by λ. Thus

Ĥ |n1, n2, . . . nλ, . . .〉 =
[∑

λ

(
nλ + 1

2

)
�ωλ

]
|n1, n2, . . . nλ, . . .〉 (9.62)

The multimode vacuum state is a state in which none of the modes is occupied and
is represented by

|ψ〉 · · · = |01, 02, 03 . . . .0i, . . .〉 (9.63)

Further

âλ |n1, n2, . . . nλ, . . .〉 = (nλ)
1/2 |n1, n2, . . . nλ − 1, . . .〉 (9.64)

â†
λ |n1, n2, . . . nλ, . . .〉 = (nλ + 1)1/2 |n1, n2, . . . nλ + 1, . . .〉 (9.65)

[cf. Eqs. (8.57) and (8.58)]; and
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〈
n′

1, n′
2, . . . , n′

λ, . . .
∣∣ n1, n2, . . . , nλ, . . .

〉

= δn1n′
1
δn2n′

2
· · · δnλn′

λ
· · · (9.66)

Finally, the state of the radiation field need not be an eigenstate of Ĥ, it could be a
superposition of the eigenstates like that given by the following equation:

|�〉 =
∑

n1,n2,...

Cn1,n2,...nλ,... |n1, n2, . . . , nλ, . . .〉 (9.67)

Physically
∣∣Cn1,n2,...

∣∣2 would represent the probability of finding n1 photons in the
first mode, n2 in the second mode, etc.

9.3 The Eigenkets of the Hamiltonian

In this section we study the properties of the radiation field when it is in one of the
eigenkets of the Hamiltonian. In order to do so we have to first express the electric
field in terms of the operators âλ and â†

λ. Now, using Eqs. (9.44) and (9.51), we get
for a mode λ,

q̂λ (t) =
(

�

2ε0Vωλ

)1/2

âλ (t) (9.68)

which is now to be considered as an operator. Using Eq. (9.34), we may write

Êλ (t) = i

(
�ωλ

2ε0V

)1/2 [
âλ (t) eikλ·r − â†

λ (t) e−ikλ·r
]

êλ (9.69)

where all the operators Êλ (t) , âλ (t) and â†
λ (t) are in the Heisenberg representation

(see Section 8.9). In the Schrödinger representation, we will have

Êλ = i

(
�ωλ

2ε0V

)1/2 (
âλeikλ·r − â†

λe−ikλ·r
)

êλ (9.70)

which will be independent of time.
We consider the state of the radiation field for which there are precisely nλ pho-

tons in the state λ Operating with the number operator of the λth state we have

â†
λâλ |n1, n2, . . . nλ, . . .〉 = nλ |n1, n2, . . . nλ, . . .〉 (9.71)

which implies that the state is an eigenstate of the number operator with eigen-
value nλ.
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The expectation value of the electric field operator Êλ in this state would be
given by

〈n1, n2, . . . nλ, . . .| Êλ |n1, n2, . . . nλ, . . .〉

= 〈n1 | n1〉 〈n2 | n2〉 · · · 〈nλ| Êλ |nλ〉 · · · = 0 (9.72)

because

〈nλ| âλ |nλ〉 = 0 = 〈nλ| â†
λ |nλ〉 (9.73)

Similarly the expectation value of Ê2
λ would be

〈n1, n2, . . . nλ, . . .| Ê2
λ |n1, n2, . . . nλ, . . .〉

= 〈n1 | n1〉 〈n2 | n2〉 · · · 〈nλ| Ê2
λ |nλ〉 · · ·

= − �ωλ

2ε0V
〈nλ|

(
âλeikλ·r − â†

λeikλ·r·
) (

âλeikλ·r − â†
λe−ikλ·r

)
|nλ〉

=
(

�ωλ

ε0V

) (
nλ + 1

2

)

(9.74)

where use has been made of relations like (see Section 8.6)

〈nλ| âλâ†
λ |nλ〉 = (nλ + 1)1/2 〈nλ| âλ |nλ + 1〉 = (nλ + 1) (9.75)

〈nλ| â†
λâλ |nλ〉 = (nλ)

1/2 〈nλ| â†
λ |nλ − 1〉 = nλ (9.76)

〈nλ| âλâλ |nλ〉 = 0 (9.77)

〈nλ| â†
λâ†

λ |nλ〉 = 0 (9.78)

The uncertainty �Eλ in the electric field Eλ of the λth mode can be defined through
the variance

(�Eλ)
2 =

〈
Ê2
λ

〉
−

〈
Êλ

〉2

= �ωλ

ε0V

(
nλ + 1

2

)
(9.79)

Equation (9.72) tells us that the expectation value of the electric field in the state
|n〉 (= |n1, n2, . . . , nλ, . . .〉) is zero. Since the average of sine waves with random
phases is zero, we may loosely say that in the state |n〉 the phase of the electric field
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is completely uncertain.3 Thus if we take an ensemble of identical states and make
measurements of the phase of the field we will obtain random values spanning all
values giving an average field value of zero. Some authors tend to explain this by
resorting to the uncertainty principle

�E�t ≥ � (9.80)

where �E is the uncertainty in the energy of the radiation field and �t is related to
the uncertainty in the phase angle through the relation

�φ = ω · �t (9.81)

Since E =
(

n + 1
2

)
�ω, �E = �ω�n and we obtain

�n�φ ≥ 1 (9.82)

If the number of photons is exactly known, then �n = 0 and consequently there
is no knowledge of the phase. However, such arguments are not rigorously cor-
rect because it is not possible to give a precise definition of �φ (see Section 9.6).
Nevertheless, we can say that the states described by |n〉 do not correspond to the
classical electromagnetic wave with a certain phase.

Returning to Eq. (9.74), we notice that the states have an amplitude(
�ωλ

/
ε0V

)1/2
(

nλ + 1
2

)1/2
, for the mode λ, which is directly related to the number

of photons.
A state with all nλ = 0 for all λ, i.e., the state

|0〉 = |01, 02, . . . 0λ, . . .〉 (9.83)

is referred to as the vacuum state. In this state the variance in the electric field will
be [see Eq. (9.79)] (

�E2
λ

)
= �ωλ

2ε0V
(9.84)

Thus even when none of the modes are occupied, i.e., in vacuum, the variance of the
electric field is finite. This is referred to as vacuum fluctuations and is responsible
for many effects such as spontaneous emission, parametric down conversion, etc.

We can also introduce two quadrature operators defined as follows:

X̂1 = â + â†

2
; X̂2 = â − â†

2i
(9.85)

3We say it loosely because it is not possible to define a phase operator which is real (see Section
9.7).
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Note that the operators â and â† are not Hermitian operators, while X̂1 and X̂2 are
Hermitian operators. Here we have dropped the subscript λ to keep the notation
simple. We can express the electric field operator Ê [see Eq. (9.69)] in terms of the
quadrature operators as follows:

Ê (t) =
(

2�ω

ε0V

)1/2 [
X̂1 sin(ωt − k.r) − X̂2 cos(ωt − k.r)

]
êλ (9.86)

Since the operators X̂1 and X̂2 are factors multiplying sine and cosine terms, they
are called quadrature operators. It is easy to show that the commutator

[
X̂1, X̂2

]
= i

2
(9.87)

For the number state we can show that the expectation values of X̂1 and X̂2 are
zero and the variances are given by

(�X1)
2 = 1

2

(
n + 1

2

)
(9.88)

(�X2)
2 = 1

2

(
n + 1

2

)
(9.89)

and the product of the uncertainties in the two quadratures is given by

(�X1) (�X2) = 1

2

(
n + 1

2

)
(9.90)

The minimum value of the uncertainty product is 1/4 and is for the vacuum state with
n = 0. A state with the uncertainty product of 1/4 is referred to as minimum uncer-
tainty state (MUS). States with higher occupation numbers have larger uncertainty
product. Also note that the uncertainties in both quadratures are equal.

Equation (9.90) implies that it is not possible to simultaneously measure pre-
cisely both the quadratures of the electromagnetic field. At the same time there are
states in which the product of the uncertainties in the quadratures is 1/4 but the uncer-
tainty in either one of the quadrature is below the value of 1/2. Such states are referred
to as squeezed states (see Section 9.5).

Example 9.1 Let us consider a state described by the following ket

|ψ〉 = 1√
2

(|1〉i + |1〉j
)

(9.91)

where |1〉i represents a number ket with the ith mode of the radiation field occupied by a single photon
and all other modes being unoccupied. Similarly |1〉j represents a number ket with the jth mode of the
radiation field occupied by a single photon and all other modes being unoccupied.

Now the total number operator for the radiation field is given by

N̂ =
∞∑

l=0

â†
l âl (9.92)
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Thus

N̂ |ψ〉 =
∞∑

l=0

â†
l âl |ψ〉 = 1√

2

∞∑

l=0

â†
l âl

(|1〉i + |1〉i
)

= 1√
2

(
1 |1〉i + 1 |1〉j

)

= 1 |ψ〉

(9.93)

where we have used the fact that

∞∑

l=0

â†
l âl |1〉i =

(
â†

1â1 + â†
2â2 + . . . .â†

i âi + . . . .
)

|1〉i

= (0 + 0 + . . . .1 + 0 . . . .) |1〉i

= |1〉i

(9.94)

and similarly for |1〉j
Thus the state |ψ〉 is occupied by a single photon and is in a superposition state of occupying the ith

mode and jth mode with equal probabilities of 1/2.

Example 9.2 We consider another state in which only one mode is occupied. Let the state be

|ψ〉 = 1√
2
(|0〉 + |10〉)

i.e., the state is a superposition of two eigenstates, one a vacuum state |0〉 and the other a number state
with n = 10. For simplicity we have omitted the subscript identifying the mode. Now the probability of
detecting no photons is

|〈0 | ψ〉|2 = 1

2
(9.96)

Similarly the probability of detecting 10 photons is also 1/2. The probability of detecting any other number
of photons is zero. You can show that |ψ〉 is not an eigenket of the number operator. What would be the
expectation value of the number of photons in this state?

Example 9.3 Let us consider two modes represented by subscripts 1 and 2 propagating along two different
directions. For each direction of propagation we can have two independent states of polarization referred
to as horizontal and vertical. We shall represent the ket corresponding to the occupation of mode 1 by
a single horizontally polarized photon by |H〉1. Similarly let us represent the ket corresponding to the
occupation of mode 1 by a single vertically polarized photon by |V〉1. Similarly we shall have for mode
2 occupied by a single horizontally polarized photon or a single vertically polarized photon the following
kets: |H〉2 and |V〉2

Now let us consider the following ket:

|ψ〉 = 1√
2
(|H〉1 |V〉2 − |V〉1 |H〉2) (9.97)

First note that the ket cannot be written as a product of kets belonging to mode 1 and mode 2. Such a
state is referred to as an entangled state.

To calculate the number of photons in this state we first see that the number operator that we must
use to operate is given by

N̂ = â†
1Hâ1H + â†

1 Vâ1 V + â†
2Hâ2H + â†

2 Vâ2 V (9.98)
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since these are the only occupied modes. Now

N̂ |ψ〉 =
(

â†
1Hâ1H + â†

1 Vâ1 V + â†
2Hâ2H + â†

2 Vâ2 V

) 1√
2
(|H〉1 |V〉2 − |V〉1 |H〉2)

= 1√
2
(1 |H〉1 |V〉2 + 0 + 0 + 1 |H〉1 |V〉2 − 0 − 1 |V〉1 |H〉2 − 1 |V〉1 |H〉2 − 0)

= 2
1√
2
(|H〉1 |V〉2 − |V〉1 |H〉2) = 2 |ψ〉

(9.99)

which implies that the state is an eigenstate of the number operator and is occupied by 2 photons.
Now, in this state the polarization of the photon occupying mode 1 or mode 2 is undefined. For

example if we pass mode 1 through a polarizer which has its pass axis oriented in the horizontal direction,
then the probability of its getting transmitted through the polarizer is 1/2. This is so because the probability
that the photon in mode 1 is horizontal and the photon in mode 2 is also horizontal is zero since

|(1 〈H| 2 〈H|) |ψ〉|2 = 1

2

∣∣[1 〈H | H〉1 2 〈H | V〉2 − 1 〈H | V〉1 2 〈H | H〉2
]∣∣2 = 0 (9.100)

Similarly the probability that the photon in mode 1 is horizontally polarized and the photon in mode 2 is
vertically polarized is given by

|(1 〈H| 2 〈V|) |ψ〉|2 = 1

2

∣∣[1 〈H | H〉1 2 〈V | V〉2 − 1 〈H | V〉1 2 〈V | H〉2
]∣∣2 = 1

2
(9.101)

Thus the total probability that photon in mode 1 is horizontally polarized and the photon in mode 2 is
either horizontally or vertically polarized is 1/2. Similarly it can be shown that the probability that photon
in mode 1 is vertically polarized and the photon in mode 2 is also vertically polarized is zero and the
probability of photon in mode 1 being vertically polarized and the photon in mode 2 is horizontally
polarized is 1/2.

Now let us assume that we pass the photon through a polarizer with pass axis which is oriented in
the horizontal direction. Now from the earlier discussions the probability of the photon passing through
the polarizer is 1/2. If the photon in mode 1 is detected after the polarizer then it implies that the photon
in mode 1 is projected into the horizontal state of polarization. From the state vector it can be seen that
the photon in mode 2 must be automatically projected into a vertical state of polarization. There is no
more any uncertainty in the state of polarization of the photon in mode 2. Before the measurement on
mode 1, the state of polarization of mode 2 was uncertain. However, measuring the state of polarization
of mode 1 forces the photon in mode 2 to have a definite polarization state. This happens irrespective of
the distance between the experimental arrangements detecting photons in mode 1 and 2. Similarly if the
photon in mode 1 is not detected, then automatically the photon in mode 2 gets projected into a horizontal
state of polarization. This mysterious correlation between the two photons is a characteristic of entangled
states and is finding wide applications in the branch of quantum information science including quantum
cryptography, quantum teleportation, and quantum computing. The process of spontaneous parametric
down conversion discussed in Chapter 14 leads to such entangled states of photons.

9.4 The Coherent States

We next consider the radiation field to be in one of the coherent states which are
the eigenkets of the operator âλ (see Section 8.6.3). We will show that when the
radiation field is in a coherent state, the field has properties very similar to that of a
classical electromagnetic wave with a certain phase and amplitude. However, before
we do so, we would like to discuss some of the properties of the coherent state.
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The coherent states satisfy the equation

âλ |αλ〉 = αλ |αλ〉 (9.102)

where αλ, which represents the eigenvalue of âλ, can be an arbitrary complex
number. In Section 8.6, we showed that

|αλ〉 = exp

(
−1

2
|αλ|2

) ∑
nλ=0,1,...

α
nλ
λ

(nλ!)1/2
|nλ〉 (9.103)

For convenience we drop the subscript λ so that the above equation becomes

|α〉 = exp

(
−1

2
|α|2

) ∑
n=0,1,2,...

αn

(n!)1/2
|n〉 (9.104)

Some of the important properties of |α〉 are discussed below:
(i) The expectation value of the number operator N̂op

(= â†â
)

is given by

〈α| N̂op |α〉 = e−|α|2 ∑
m

α∗m

(m!)1/2
〈m|

∑
n

αn

(n!)1/2
n |n〉

= e−|α|2 ∑
m

∑
n

α∗mαn

(n!m!)1/2
n δmn

= e−|α|2 ∑
n=1,2,...

n |α|2n

n!

[using Eq. (8.102)]

or

〈α| N̂op |α〉 = e−|α|2 |α|2
∑

n=0,1,...

|α|2n

n! = |α|2 = N (9.105)

Thus the average number of photons (which we will denote by N) in the state
|α〉 is |α|2, and we may write

|α〉 = e−N/2
∑

n

αn

n! |n〉 (9.106)

(ii) From Eq. (9.106) it readily follows that the probability of finding n photons
in a coherent state is given by

|〈n | α〉|2 = 1

n! |α|2n exp
(
− |α|2

)
= Nne−N

n! (9.107)

which is a Poisson distribution about the mean |α|2 [see also Section (18.9)].
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(iii) In Section 8.9, we showed that if the field is in the coherent state at t = 0,
then at a later time t the state will be given by

|� (t)〉 = e−N/2
∑

n

αn

(n!)1/2
|n〉 e−i(n+1/2)ωt (9.108)

It is easy to see that

|� (0)〉 = e−N/2
∑

n

αn

(n!)1/2
|n〉 = |α〉 (9.109)

Further

〈� (t)| N̂op |� (t)〉 = N (independent of time) (9.110)

and4

〈� (t)| â |� (t)〉 = e−N
∑

m

∑
n

α∗mαn

(m!n!)1/2
ei(m−n)ωt (n + 1)1/2 〈m | n + 1〉

= eiωte−N
∑ α∗ |α|2n

n! = α∗eiωt (9.111)

Similarly (or, taking the complex conjugate of the above equation)

〈� (t)| â† |� (t)〉 = αeiωt (9.112)

We now consider the radiation field to be in the coherent state and calculate the
expectation value of Ê and Ê2

〈� (t)| Ê |� (t)〉 = i

(
�ω

2ε0V

)1/2

[〈� (t)| â |� (t)〉 eik·r

− 〈� (t)| â† |� (t)〉 e−ik·r] ê

= i

(
�ω

2ε0V

)1/2 [
αei(k·r−ωt) − α∗e−i(k·r−ωt)

]
ê

=
(

2�ω

ε0V

)1/2

|α| sin (ωt − k · r + ϕ) ê

(9.113)

where

α = |α| eiϕ (9.114)

4In the Heisenberg representation, the expectation value of â would have been
〈� (0)| â (t) |� (0)〉 = 〈α| âeiωt |α〉 = a∗eiωt, which is the same as expressed by Eq. (9.111).
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which resembles a classical sinusoidal electromagnetic wave. Thus the coherent
state can be interpreted to represent a harmonic wave with phase ϕ. In a similar
manner, we can calculate the expectation value of Ê2. The result is

〈� (t)| Ê · Ê |� (t)〉 = �ω

2ε0V

[
1 + 4 |α|2 sin2 (ωt − k · r + ϕ)

]
(9.115)

Finally, the variance in Ê would be given by [cf. Eq. (9.79)]

(�E)2 = 〈� (t)| Ê · Ê |� (t)〉 − 〈� (t)| Ê |� (t)〉2

=
(

�ω

2ε0V

)
(9.116)

which is the same as was found for the vacuum state [see Eq. (9.84)]. Thus the
coherent state has an expectation value of electric field resembling a classical elec-
tromagnetic wave and has a noise which is equal to the noise of vacuum field. Notice
that the uncertainty �E is independent of the amplitude |α|; thus, the greater the
intensity of the beam (i.e., larger is the expectation value of Ê · Ê), the greater will
be the proximity of the radiation field (corresponding to the coherent state) to the
classical plane wave.

Earlier in this section, we had evaluated 〈α| N̂op |α〉 – see Eq. (9.105); in a similar
manner, we can calculate 〈α| N̂2

op |α〉 from which we obtain5

�N =
[
〈α| N̂2

op |α〉 − 〈α| N̂op |α〉2
]1/2 = N1/2 (9.117)

or

�N

N
= 1

N1/2
(9.118)

implying that the fractional uncertainty in the average number of photons goes to
zero with increase in intensity.

9.5 Squeezed States of Light

Another very important class of quantum states are the squeezed states. In order to
understand squeezed states, we consider the following operator:

b̂ = μ â + ν â† (9.119)

5It is of interest to point out that even in nuclear counting, the uncertainty in the actual count is
N1/2 (see, e.g., Bleuler and Goldsmith (1952)).
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where â and â† are the annihilation and creation operators for an electromagnetic
mode and μ and ν are complex coefficients. We are again omitting the subscript for
brevity. From Eq. (9.119) we have

b̂† = μ∗ â† + ν∗ â (9.120)

We also assume that μ and ν are related through

|μ|2 − |ν|2 = 1 (9.121)

Squeezed states |β〉 are defined as the eigenstates of the operator b̂ with eigen-
value β: b̂ |β〉 = β |β〉 (9.122)

Now the commutator between b̂ and b̂† is given by

[
b̂, b̂†

]
= b̂b̂† − b̂†b̂ =

(
μ â + ν â†

) (
μ∗ â† + ν ∗â

)

−
(
μ∗ â† + ν ∗â

) (
μ â + ν â†

)
= 1

(9.123)

where we have used the commutation relations between â and â†. From Eqs. (9.119)
and (9.120) we obtain

â = μ ∗b̂ − ν b̂† (9.124)

â† = μ b̂† − ν∗ b̂ (9.125)

The states |β〉 are referred to as squeezed states.
In order to understand the nature of these quantum states we assume for simplic-

ity that μ, ν, and β are real. Now the time dependence of the operators â(t) and â†(t)
are given by

â(t) = â(0)e−iωt (9.126)

â†(t) = â†(0)eiωt (9.127)

Thus we have

b̂(0) = μ â(0) + ν â†(0) = μ â0 + ν â†
0 (9.127)

b̂(t) = μ â0e−iωt + ν â†
0eiωt (9.128)

b̂†(t) = μ â†
0eiωt + νâ0e−iωt (9.129)

We now calculate the expectation value of the electric field in the state |β〉. Referring
to Eq. (9.70), we note that the electric field operator is given by
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Ê = i

(
�ω

2ε0V

)1/2 (
âei(kz−ωt) − â†e−i(kz−ωt)

)
(9.130)

where we consider a mode propagating in the z-direction. Now

〈
β| â |β 〉 = 〈β|μ b̂ − ν b̂† |β〉 = (μ − ν) β (9.131)

Similarly

〈
β| â† |β

〉
= 〈β|μ b̂† − ν b̂ |β〉 = (μ − ν) β (9.132)

Hence

〈
Ê
〉
= 〈β| Ê |β〉 = i

(
�ω

2ε0V

)1/2

〈β|
(

âei(k·r−ωt) − â†e−i(k·r−ωt)
)

|β〉

= i

(
�ω

2ε0V

)1/2

(μ − ν) β2i sin (ωt − kz)

=
(

2�ω

ε0V

)1/2

(μ − ν) β sin (ωt − kz)

(9.133)

The expectation value of Ê2 is given by

〈
Ê2

〉
= 〈β| ÊÊ |β〉 = −i

�ω

2ε0V
[〈β| ââ |β〉 e−2i(ωt−kz) − 〈β| ââ† |β〉

− 〈β| â†â |β〉 + 〈β| â†â† |β〉 e2i(ωt−kz)]
(9.134)

Now

〈β| ââ |β〉 = 〈β| (μb̂ − νb̂†)(μb̂ − νb̂†) |β〉
= μ2 〈β| b̂2 |β〉 − μν 〈β| b̂b̂† |β〉 − μν 〈β| b̂†b̂ |β〉 + ν2 〈β| b̂†2 |β〉
= μ2β2 − μν − μνβ2 − μνβ2 + ν2β2

= β2 (μ − ν)2 − μν

(9.135)
Similarly

〈β| â†â† |β〉 = β2 (μ − ν)2 − μν (9.136)

〈β| â†â |β〉 = β2 (μ − ν)2 + ν2 (9.137)

〈β| ââ† |β〉 = β2 (μ − ν)2 + ν2 + 1 (9.138)

Substituting the values in Eq. (9.134) and simplifying we obtain
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〈
Ê2

〉
= �ω

ε0V

[
−

{
β2 (μ − ν)2 − μν

}
cos 2(ωt − kz) + β2 (μ − ν)2 + ν2 + 1

2

]

(9.139)
Thus the variance in the electric field is given by

〈
�Ê

〉2 =
〈
E2

〉
− 〈E〉2

= �ω

2ε0V

[
μ2 + ν2 + 2μν cos 2(ωt − kz)

] (9.140)

From Eq. (9.140) we notice that the variance in the electric field in the squeezed state
oscillates between �ω

2ε0V (μ + ν)2 and �ω
2ε0V (μ − ν)2 at a frequency 2ω. Comparing

this with a coherent state for which the variance is a constant and equals �ω
2ε0V (which

can be obtained by putting ν = 0 in which case the squeezed state becomes a coher-
ent state) we find that the variance can go below that in the vacuum state at certain
times. Note that μ and ν are related through Eq. (9.121).

From the commutation relations it is possible to evaluate the expectation values
and variances of the quadrature operators. We give here the results:

〈
X̂1

〉
= 〈β| X̂1 |β〉 = (μ − ν) β cosωt (9.141)

〈
X̂2

〉
= 〈β| X̂2 |β〉 = − (μ − ν) β sinωt (9.142)

〈
X̂2

1

〉
= 1

4
(μ − ν)2 + (μ − ν)2 β2 cos2 ωt + μν sin2 ωt (9.143)

〈
X̂2

2

〉
= 1

4
(μ − ν)2 + (μ − ν)2 β2 sin2 ωt + μν cos2 ωt (9.144)

Hence

(�X1)
2 = 1

4
(μ − ν)2 + μν sin2 ωt (9.145)

(�X2)
2 = 1

4
(μ − ν)2 + μν cos2 ωt (9.146)

As can be seen from the above equations, for example, for positive values of μ
and ν, the uncertainty in the quadrature X̂1 varies from 1

2 (μ − ν) at t = 0, π /ω to
1
2 (μ + ν) at π /2ω, 3π /2ω, etc. The uncertainty oscillates periodically with time and
attains value below that for vacuum at periodic instants of time. Of course at those
times the noise in the other quadrature is more than for vacuum and the product of
their uncertainties will always be equal to or more than 1/4.

This implies that the uncertainty in the quadrature X̂1 (which is the coefficient of
the sine term) goes below that of vacuum state at periodic intervals. Such squeezed
states of light find many applications such as in communication, gravitational wave
detection.
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9.6 Transition Rates

The Hamiltonian of a system consisting of an atom in a radiation field can be
written as

Ĥ = Ĥ0 + Ĥ′

= Ĥa + Ĥr + Ĥ′ (9.147)

where Ĥa represents the Hamiltonian of the atom, Ĥr the Hamiltonian correspond-
ing to the pure radiation field [see Eq. (9.58)], and H′ represents the interaction
between the atom and the radiation field. We will consider H0 (= Ha + Hr) as the
unperturbed Hamiltonian and H′ will be considered as a perturbation which will be
assumed to be of the form [see Eqs. (9.32) and (9.70)]

Ĥ′ = −eE · r

= −e
∑
λ

Eλ · r (9.148)

Now, the eigenvalue equations for Ĥa and Ĥr are

Ĥa |ψi〉 = Ei |ψi〉 (9.149)
and

Ĥr |n1, n2, . . . nλ, . . .〉 =
[∑

λ

(
nλ + 1

2

)
�ωλ

]
|n1, n2, . . . nλ, . . .〉 (9.150)

where |ψi〉 and Ei represent, respectively, the eigenkets and energy eigenvalues of
the isolated atom and |n1, n2, . . . , nλ, . . .〉 represents the eigenket of the pure radi-

ation field with
∑

λ

(
nλ + 1

2

)
�ωλ representing the corresponding eigenvalue [see

Eq. (9.62)]. Thus the eigenvalue equation for H0 will be

Ĥ0 |un〉 = Wn |un〉 (9.151)
where

Wn = En +
∑
λ

(
nλ + 1

2

)
�ωλ (9.152)

and

|un〉 = |i〉 |n1, n2, . . . , nλ, . . .〉 = |i; n1, n2, . . . , nλ, . . .〉 (9.153)

represents the ket corresponding to the atom being in state |i〉 and the radiation being
in the state |n1, n2, . . . , nλ, . . .〉.

Now the Schrödinger equation for the system consisting of the atom and the
radiation field is

i�
∂

∂t
|�〉 =

(
Ĥ0 + Ĥ′) |�〉 (9.154)
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As in Section 3.3, the solution of the above equation can be written as a linear
combination of the eigenkets of Ĥ0 [cf. Eq. (3.38)]:

|�〉 =
∑

n

Cn (t) e−iWnt/� |un〉 (9.155)

Substituting in Eq. (9.154), we obtain

i�
∑

n

[
dCn

dt
− iWn

�
Cn

]
e−iWnt/� |un〉

=
∑

n

Cn (t) Wne−iWnt/� |un〉 + H′ ∑
n

Cn (t) e−iWnt/� |un〉 (9.156)

where we have used Eq. (9.151). It is immediately seen that the second term on the
left-hand side cancels exactly with the first term on the right-hand side. If we now
multiply by 〈um| on the left, we would get

i�
dCm

dt
=

∑
n

〈um|Ĥ′ |un〉 ei(Wm−Wn)t/�Cn (t) (9.157)

Now, using Eq. (9.69) for Eλ, we obtain for H′:

Ĥ′ = −ie
∑
λ

(
�ωλ

2ε0V

)1/2 [
âλeikλ·r − â†

λe−ikλ·r
]

êλ · r (9.158)

Now, because of the appearance of âλ and â†
λ in the expression for Ĥ′, the various

terms in 〈um| Ĥ′ |un〉 will be non-zero only if the number of photons in |um〉 dif-
fers by unity from the number of photons in |un〉. If we write out completely the
right-hand side of Eq. (9.157) it will lead to a coupled set of an infinite number
of equations which would be impossible to solve. We employ the perturbation the-
ory and consider the absorption of one photon (of energy �ωi) from the ith mode.
Further, if we assume the frequency ωi to be very close to the resonant frequency
corresponding to the transition from the atomic state |a〉 to |b〉, then Eq. (9.157)
reduces to the following two coupled equations:

i�
dC1

dt
= H′

12ei(W1−W2)t/�C2 (t) (9.159)

i�
dC2

dt
= H′

21e−i(W1−W2)t/�C1 (t) (9.160)

where

|1〉 = |a; n1, n2, . . . , nλ, . . . , ni, . . .〉 (9.161)
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and

|2〉 = |b; n1, n2, . . . , nλ, . . . , ni − 1, . . .〉 (9.162)

represent the initial and final states of the system. Obviously, because of relations
like Eqs. (9.73),

〈1| Ĥ′ |1〉 = H′
11 = 0 = H′

22

Further,

W1 = Ea +
∑
λ

λ�=i

(
nλ + 1

2

)
�ωλ +

(
ni + 1

2

)
�ωi (9.163)

and

W2 = Eb +
∑
λ

λ�=i

(
nλ + 1

2

)
�ωλ +

(
ni − 1 + 1

2

)
�ωi (9.164)

Thus,

W1 − W2 = (Ea − Eb) + �ωi (9.165)
Now,

H′∗
21 = H′

12 =
∑
λ

〈a; n1, n2, . . . , ni, . . .| (−ie)

(
�ωλ

2ε0V

)1/2

×
[
âλeikλ·r − â†

λe−ikλ·r
]

êλ · r |b; n1, n2, . . . , ni − 1, . . .〉

= 〈a; n1, n2, . . . , ni, . . .|
[
+ie

(
�ωi

2ε0V

)1/2

e−ikλ·rêi · r (ni)
1/2

]

× |b; n1, n2, . . . , ni, . . .〉

= ie

(
�ωi

2ε0V

)1/2

(ni)
1/2 〈a| e−ikλ·rr |b〉 · êi (9.166)

where we have used Eqs. (9.64), (9.65), and (9.66). In calculating the above matrix
element between the atomic states a and b we note that the atomic wave functions
are almost zero for r ≥ 10−8 cm. On the other hand, since in the optical region,
|k| (= 2π

/
λ
) ≈ 105 cm−1, in the domain of integration, in the evaluation of the

matrix element kλ · r << 1. Thus we may replace e−ikλ·r by unity; this is known as
the dipole approximation, and we obtain

H′
12 = −i

(
�ωi

2ε0V

)1/2

(ni)
1/2 Dab (9.167)

where Dab is defined through Eq. (4.71). We next try to solve Eqs. (9.159) and
(9.160) by using a method similar to that employed in Section 4.7. We assume that
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at t = 0 the system is in the state represented by |1〉, i.e.,

C1 (0) = 1, C2 (0) = 0 (9.168)

On working out the solution one obtains

|C2 (t)|2 =
(
	̃0

2

)2
⎡
⎣ sin

(
	̃′t

/
2
)

	̃′
/

2

⎤
⎦

2

(9.169)

where

	̃2
0 = 2ωiniD2

ab

�ε0V
(9.170)

	̃′ =
[(

Eb − Ea

�
− ωi

)2

+ 	̃2
0

]1/2

(9.171)

For
(
	̃2

0t2
/

�
2
)

<< 1, we obtain

|C2 (t)|2 ≈ ωn

2�ε0V
D2

ab

(
sin

{[
(Eb − Ea)

/
� − ω

] (
t
/

2
)}

1
2

[
(Eb − Ea)

/
� − ω

]
)2

(9.172)

where we have dropped the subscript i. Equation (9.172) is the same as Eq. (4.77)
provided we replace E2

0 by 2�ωn
/
ε0V (see Section 4.7.1). Similarly, if we consider

the emission process, we would obtain

|C2 (t)|2 = ω (n + 1)

2�ε0V
D2

ab

(
sin

{[
(Eb − Ea)

/
� − ω

] (
t
/

2
)}

1
2

[
(Eb − Ea)

/
� − ω

]
)2

(9.173)

where the states |1〉 and |2〉 are now given by

|1〉 = |b; n1, n2, . . . , ni, . . .〉 (9.174)

|2〉 = |a; n1, n2, . . . , ni + 1, . . .〉 (9.175)

Notice the presence of the term6 (n + 1) in Eq. (9.173). This implies that even if
the number of photons were zero originally, the emission probability is finite. The
term proportional to n in Eq. (9.173) gives the probability for induced or stimulated

6The appearance of the term (n + 1) is because of the relation

â† |n〉 = (n + 1)1/2 |n + 1〉



250 9 Quantum Theory of Interaction of Radiation Field with Matter

emission since the rate at which it occurs if proportional to the intensity of the
applied radiation. On the other hand, the second term, which is independent of n,
gives the spontaneous emission rate into the mode. Observe that the spontaneous
emission probability into a particular mode is exactly the same as the stimulated
emission probability caused by a single photon into the same mode, a fact which we
have used in Section 5.5.

We next calculate the probability per unit time for spontaneous emission of
radiation. If we consider the emission to be in the solid angle d	 then the num-
ber of modes for which the photon frequency lies between ω and ω + dω is (see
Appendix E)

N (ω) dω d	 = Vω2 dω

8π3c3
d	 (9.176)

Thus, the total probability of emission in the solid angle d	 would be given by

� = |Dab|2
2�ε0V

∫ {
sin

[
(ωba − ω)

(
t
/

2
)]

(ωba − ω)
/

2

}2

ω
V

8π3c3
ω2 dω d	

≈ |Dab|2
16π3�ε0c3

d	ω3
ba

∫ {
sin

[
(ωba − ω)

(
t
/

2
)]

(ωba − ω)
/

2

}2

dω (9.177)

where use has been made of the fact that the quantity inside the curly brackets is
a sharply peaked function around ω = ωba. Carrying out the integration, using the
fact that ∫ +∞

−∞
sin2 x

x2
dx = π (9.178)

we obtain

� ≈ 1

2π

(
e2

4πε0�c

)
ω3

c2

∣∣〈b| r |a〉 · ê
∣∣2 t d	 (9.179)

Thus the transition rate is given by

wsp = 1

2π

[
e2

4πε0�c

]
ω3

c2

∣∣〈b| r |a〉 · ê
∣∣2 d	 (9.180)

In order to calculate the total probability per unit time for the spontaneous emission
to occur (the inverse of which will give the spontaneous lifetime of the state), we
must sum over the two independent states of polarization and integrate over the solid
angle. Assuming the direction of k to be along the z-axis, we may choose E to be
along the x or y axes. Thus, if we sum

∣∣〈b| r |a〉 · ê
∣∣2

over the two independent states of polarization, we obtain

∣∣〈b| r |a〉 · x̂
∣∣2 + ∣∣〈b| r |a〉 · ŷ

∣∣2 = P2
x + P2

y = P2 sin2 θ (9.181)
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where P ≡ 〈b| r |a〉 and θ is the angle that P makes with the z-axis. Thus in order to
obtain the Einstein A coefficient (which represents the total probability per unit time
for the spontaneous emission to occur), in Eq. (9.180), we replace

∣∣〈b| r |a〉 · ê
∣∣2 by

|〈b| r |a〉|2 sin2 θ and integrate over the solid angle d	 to obtain

A = 1

2π

[
e2

4πε0�c

]
ω3

c2
|〈b| r |a〉|2

∫ π

0

∫ 2π

0
sin2 θ sin θ dθ dϕ

= 4

3

[
e2

4πε0�c

]
ω3

c2
|〈b| r |a〉|2 (9.182)

which is identical to Eq. (4.88).

9.7 The Phase Operator7

Classically, for the Hamiltonian given by

H = p2

2m
+ 1

2
mω2x2 (9.183)

the Hamilton equations of motion (see, e.g., Goldstein (1950))

ẋ = ∂H
∂p

and − ṗ = ∂H
∂x

(9.184)

gives us

ẋ = p

m
and − ṗ = mω2x2 (9.185)

Thus

ẍ = 1

m
ṗ = −ω2x (9.186)

or

ẍ + ω2x = 0 (9.187)

giving

x = Ae+iφ + Ae−iφ , φ = ωt (9.188)

and

p = mẋ = imω
(
Aeiφ − Ae−iφ) (9.189)

7A major part of the discussion in this section is based on a paper by Susskind and Glogower
(1964).
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where A has been assumed to be real. In general, we should have written φ = ωt+α,
but with proper choice of the time origin, we can always choose α = 0. In quantum
mechanics

x̂ =
(

2�

mω

)1/2 (
â† + â

)
(9.190)

and

p̂ = imω

(
2�

mω

)1/2 (
â† − â

)
(9.191)

[see Eqs. (8.39) and ( 8.40)]. If we compare Eqs. (9.190) and (9.191) with Eqs.
(9.188) and (9.189), we are tempted to define the phase operator φ through the
equations

â† = R̂eiφ̂ and â = e−iφ̂R̂ (9.192)

where R̂ and φ̂ are assumed to be Hermitian operators. This is indeed what has
been done by Dirac (1958b) and Heitler (1954); however, this definition leads to
inconsistent results as will be shown later. Now, the number operator is given by

N̂op = â†â = R̂eiφ̂e−iφ̂R̂ = R̂2 (9.193)

Thus

R̂ = N̂1/2
op (9.194)

where the square root operator is defined through the relation

N̂op = N̂1/2
op N̂1/2

op (9.195)

Now
[
â, â†

]
= ââ† − â†â = 1 [see Eq. (8.44)] (9.196)

Thus

e−iφ̂R̂ R̂eiφ̂ − R̂eiφ̂e−iφ̂R̂ = 1 (9.197)

or, premultiplying by eiφ̂ , we get

N̂opeiφ̂ − eiφ̂N̂op = eiφ̂ (9.198)

Hence
[
N̂op, eiφ̂

]
= eiφ̂ (9.199)
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The above equation is satisfied if φ̂ and N̂op satisfy the commutation relation8

[
N̂op, φ̂

]
= N̂opφ̂ − φ̂N̂op = −i (9.200)

The above equation suggests the uncertainty relation9

�N �φ ≥ 1 (9.201)

From the above equation it follows that if the number of light quanta of a wave are
given, the phase of this wave is entirely undetermined and vice versa (Heitler 1954).
However, the above definition of the phase operator (and hence the uncertainty rela-
tion) is not correct because the definition leads to inconsistent results. For example,
let us consider the matrix element:

〈m|
[
N̂op, φ̂

]
|n〉 = −i 〈m | n〉 = −iδm,n (9.202)

But

〈m|
[
N̂op, φ̂

]
|n〉 = 〈m| N̂opφ̂ − φ̂N̂op |n〉 = (m − n) 〈m| φ |n〉 (9.203)

Thus

(m − n) 〈m| φ |n〉 = −iδm,n (9.204)

which is certainly an impossibility. One can also show that e−iφ̂e+iφ̂ is not a
unit operator. Thus the definition of a Hermitian φ̂ through Eq. (9.192) leads

8This can be shown by noting that repeated application of Eq. (9.200) gives

Nopφ
m − φmNop = −imφm−1

Now
[
Nop, eiφ] =

∑
m

im

m!
[
Nop, em] =

∑ im−1φm−1

(m − 1)! = eiφ

9Equation (8.152) may be compared with the equation [see Eq. (7.37)]
[
x, px

] = xpx − pxx = i�

from which one can derive the uncertainty relation

�x�px ≥ �

(see any text on quantum mechanics, e.g., Powell and Craseman (1961)).
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to inconsistent results. Susskind and Glogower (1964) define the phase operator
through the equations

P̂exp − ≡ â
(

N̂op + 1
)−1/2

(9.205)
and

P̂exp + ≡
(

N̂op + 1
)−1/2

â† (9.206)

The subscripts to P̂ imply that a certain limiting sense P̂exp − and P̂exp + behave

as e−iφ̂ and e+iφ̂ , respectively. These operators are used to define trigonometric
functions of phase:

P̂cos = 1

2

(
P̂exp + + P̂exp −

)
(9.207)

P̂sin = 1

2i

(
P̂exp + − P̂exp −

)
(9.208)

Both P̂cos and P̂sin are Hermitian operators; however, they do not commute. Indeed,

it is the non-commuting nature of P̂cos and P̂sin which makes e+iφ̂ not unitary.
Although we leave the discussion on the phase operator rather abruptly here,

what we have shown is that the phase operator for an oscillator cannot exist. We
refer the reader to the works of Susskind and Glogower (1964) and of Loudon
(1973), where they show that the operators P̂cos and P̂sin are observables and that
in a certain limiting sense they do become the classical functions of phase. Indeed
these operators can be used to define uncertainty relations.

9.8 Photons Incident on a Beam Splitter

A beam splitter is a device which is used in many optical experiments and from an
incident beam gives rise to a transmitted beam and a reflected beam (see Fig. 9.1). In
this section we consider a lossless beam splitter and assume that it has a transmittiv-
ity of 0.5 and a reflectivity of 0.5. It can be shown that for a symmetric beam splitter
covered by the same medium on both sides, the phases of amplitude reflectivity and
transmittivity differ by π /2. If the input arms of the beam splitter are denoted by
the subscripts 1 and 2 and the two other arms are denoted by subscripts 3 and 4
(see Fig. 9.1), the electric field of the waves emerging in arms 3 and 4 are related to
the electric fields of the waves incident in arms 1 and 2 on the beam splitter by the
following equations:

E3 = i√
2

E1 + 1√
2

E2

E4 = 1√
2

E1 + i√
2

E2

(9.209)

For a quantum mechanical description of the beam splitter we replace the clas-
sical electric fields by annihilation operators corresponding to the electromagnetic
fields in each arm. Thus the annihilation operators of the electromagnetic waves in



9.8 Photons Incident on a Beam Splitter 255

Arm 1 Arm 4

Arm 3

Arm 2

Beam
splitter

Fig. 9.1 A beam splitter has
two input arms and two
output arms

arms 3 and 4 are related to the annihilation operators of the electromagnetic waves
in arms 1 and 2 by the relations:

â3 = i√
2

â1 + 1√
2

â2

â4 = 1√
2

â1 + i√
2

â2

(9.210)

The above equations can be inverted to obtain

â1 = − i√
2

â3 + 1√
2

â4

â2 = 1√
2

â3 − i√
2

â4

(9.211)

Since vacuum state is the lowest state of an electromagnetic field, vacuum states in
arms 1 and 2 will lead to output vacuum states in arms 3 and 4. Hence we can say
that the beam splitter converts vacuum states in arms 1 and 2 to vacuum states in
arms 3 and 4:

|0〉1 |0〉2 − > |0〉3 |0〉4 (9.212)

9.8.1 Single-Photon Incident on a Beam Splitter

Let us consider the incidence of a single photon on arm 1 of the beam splitter and
vacuum state in arm 2. The input state is then given by

|1〉1 |0〉2 = â†
1 |0〉1 |0〉2 (9.213)
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The effect of the beam splitter is taken into account using Eq. (9.211) and we get

|1〉1 |0〉2 = â†
1 |0〉1 |0〉2 − >

(
i√
2

â†
3 + 1√

2
â†

4

)
|0〉3 |0〉4

= i√
2

|1〉3 |0〉4 + 1√
2

|0〉3 |1〉4

(9.214)

The output state is a superposition state of finding either 1 photon in arm 3 and no
photon in arm 4 or finding one photon in arm 4 and no photon in arm 3. Both these
have equal probabilities of 1/2. Thus the incident photon goes into a superposition
state.

Example 9.4 Consider now a situation in which one photon each is simultaneously incident in each of
the input arms. Thus the incident state becomes

|1〉1 |1〉2 = â†
1â†

2 |0〉1 |0〉2 (9.215)

Using Eq. (9.211) we can introduce the effect of the beam splitter through the following transformation:

|1〉1 |1〉2 = â†
1â†

2 |0〉1 |0〉2 − >

(
i√
2

â†
3 + 1√

2
â†

4

)(
1√
2

â†
3 + i√

2
â†

4

)
|0〉3 |0〉4

= i

2

(|2〉3 |0〉4 + |0〉3 |2〉4
)

(9.216)

This implies that both photons exit from the same port with equal probabilities. The probability of
one photon exiting each of the arms is zero. Thus detectors placed at the two output ports of the beam
splitter will never register simultaneous detection events. An experimental demonstration of this was first
carried out by Hong, Ou, and Mandel (1987)). In the experiment as the delay of arrival of the photon on
one of the arms of the beam is changed, the rate of coincidence counting would show a dip when the two
photons arrive simultaneously at the beam splitter. This is referred to as Hong–Ou–Mandel dip.

Mach Zehnder Interferometer
Let us now consider the incidence of a photon on one of the arms of a Mach

Zehnder interferometer as shown in Fig. 9.2. Let us assume that in one of the arms,
there is a phase shifter which shifts the phase by φ. Now

Input to the interferometer:

|1〉1 |0〉2 = â†
1 |0〉1 |0〉2 (9.217)

After beam splitter BS1 the state becomes:

(
i√
2

â†
3 + 1√

2
â†

4

)
|0〉3 |0〉4 = i√

2
|1〉3 |0〉4 + 1√

2
|0〉3 |1〉4 (9.218)

Let us assume that mirrors M1 and M2 introduce a phase shift of π/2 each. Thus the
state of the field just after the two mirrors would be

− 1√
2

|1〉3 |0〉4 + i√
2

|0〉3 |1〉4
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Arm 6

Arm 5

Arm 3

Arm 2

Arm 1 Arm 4 M1

M2

Phase shifter

BS1

BS2

Fig. 9.2 A Mach Zehnder interferometer set up with a single-photon incident in arm 1

After the phase shifter the state would become

− 1√
2

|1〉3 |0〉4 + i√
2

|0〉3 |1〉4 eiφ (9.219)

since the phase shift takes place only along path 4 of the interferometer.
In order to take account of the effect of beam splitter BS2 we write the state

incident on beam splitter 2 as

− 1√
2

â†
3 |0〉3 |0〉4 + i√

2
â†

4 |0〉3 |0〉4 eiφ

Since BS2 will convert |0〉3 |0〉4 to |0〉5 |0〉6, we write for the state after BS2 as

− 1√
2

(
i√
2

â†
5 + 1√

2
â†

6

)
|0〉5 |0〉6 + i√

2

(
1√
2

â†
5 + i√

2
â†

6

)
|0〉5 |0〉6 eiφ

which on simplification gives us

− i

2

(
1 − eiφ) |1〉5 |0〉6 − 1

2

(
1 + eiφ) |0〉5 |1〉6 (9.220)

Thus the probability of finding a photon in arm 5 will be

∣∣∣∣−
i

2

(
1 − eiφ)

∣∣∣∣
2

= 1

2
(1 − cosφ) (9.221)
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Similarly the probability of finding a photon in arm 6 would be

∣∣∣∣−
1

2

(
1 + eiφ)

∣∣∣∣
2

= 1

2
(1 + cosφ) (9.222)

This clearly shows interference effects between the two possible paths of photons to
the output of the interferometer. Note that it is a single photon which is interfering
with itself; actually the probability amplitudes of the two indistinguishable paths
are interfering to produce the interference effects in the probability. If we choose
φ = 0, then the probability of detecting a photon in arm 5 is 0; the photon will
always exit from the arm 6. Thus in this setup it is incorrect to state that the photon
chooses one of the arms when it arrives on BS1; it chooses both the paths of the
interferometer!

9.8.2 Moving Mirror in One Arm

Let us now consider a slight modification of the above interferometer. We now
assume that mirror M2 is not fixed but can move. We assume that the mirror is so
sensitive that even if one photon hits it, it will vibrate. Let us denote the two states of
the mirror namely stationary and vibrating mirror by the following two orthogonal
states:

|ψ〉S and |ψ〉V (9.223)

Now let us again assume the incidence of a single photon in arm 1 or the interferom-
eter and assume φ = 0. The analysis remains the same until the state passes through
the mirrors 1 and 2. Thus to repeat, the state after BS1 is

i√
2

|1〉3 |0〉4 + 1√
2

|0〉3 |1〉4

After mirrors M1 and M2 the state becomes

i√
2

|1〉3 |0〉4 |ψ〉S + 1√
2

|0〉3 |1〉4 |ψ〉V (9.224)

where we have used the fact that for the portion corresponding to the photon being
found in path 3 the mirror will remain stationary and for the path in which the photon
may be found in arm 4 the mirror would vibrate.
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Continuing as before the state after BS2 would be

|χ〉 = − 1√
2

(
i√
2

â†
5 + 1√

2
â†

6

)
|0〉5 |0〉6 |ψ〉S

+ i√
2

(
1√
2

â†
5 + i√

2
â†

6

)
|0〉5 |0〉6 |ψ〉V

=
(

− i

2
|1〉5 |0〉6 |ψ〉S − 1

2
|0〉5 |1〉6 |ψ〉S

)

+
(

i

2
|1〉5 |0〉6 |ψ〉V − 1

2
|0〉5 |1〉6 |ψ〉V

)

= − i

2
|1〉5 |0〉6

(|ψ〉S − |ψ〉V
) − 1

2
|0〉5 |1〉6

(|ψ〉S + |ψ〉V
)

(9.225)

Thus the expectation value of the photon number is arm 5 would be

∣∣∣〈χ | â†
5â5 |χ〉

∣∣∣
2 = 1

4

∣∣5 〈1|1〉5 6 〈0|0〉6

(
S 〈ψ | ψ〉S + V 〈ψ | ψ〉V − S 〈ψ | ψ〉V − V 〈ψ | ψ〉S

)∣∣2 = 1

2

(9.226)

Notice that now the probability of detecting a photon on arm 5 is 1/2. By having a
vibrating mirror in one of the arms, we have a device in the interferometer which
can tell us about the path of the photon in the interferometer and immediately the
interference vanishes from the output.

In fact if we had an absorbing object in the arm 4 of the interferometer, then
the probability of detecting a photon in arm 5 is still half (show this result). Thus
appearance of a photon in arm 5 in a balanced interferometer wherein no photon
is supposed to have exited arm 5 signifies the presence of an object in arm 4. Also
since the photon has exited arm 5, it has not been absorbed by the absorber. Thus the
photon is able to detect the presence of an object in arm 4 without interacting with
the object. Such effects are referred to as interaction free measurements and are very
interesting from both a philosophical perspective and for practical applications.

Problems

Problem 9.1 Given �S = �E × �H show that

〈
n
∣∣∣�S
∣∣∣ n〉 = c2

V
(n + 1

2
)��k

The energy flow for a radiation mode is proportional to the photon momentum ��k

Problem 9.2 Prove that the creation operator â† has no normalizable eigenstates.



260 9 Quantum Theory of Interaction of Radiation Field with Matter

Problem 9.3 Consider two coherent states |α〉 and |β〉. Show that they are not orthonormal, i.e., show
that 〈β | α〉 �= 0.

Problem 9.4 The vector potential for a single-mode plane electromagnetic wave propagating along the
z-direction and polarized along x is given by

A = q e−i(ωt−kz) + c.c.

Obtain the corresponding expressions for the electric and magnetic fields.

Problem 9.5 If |δ〉 is an eigenket of an operator ĝ with an eigenvalue δ, then 〈δ| is an eigenbra of which
operator and what is the corresponding eigenvalue?

Problem 9.6 A single-mode electromagnetic wave is in a state given by

|ψ〉 = 1

2
|2〉 +

√
3

2
|3〉

Obtain the expectation value of energy.

Problem 9.7 Consider a single-mode quantum state given by

|ψ〉 = α |0〉 + β |1〉

a) Normalize |ψ〉 and obtain the relationship between α and β.

b) Obtain the values of α and β for which the quantum state will exhibit squeezing in the quadrature
represented by X̂1?

Problem 9.8 Show that the expectation value of photon number in a coherent vacuum state is zero while
that in a squeezed vacuum state is not zero. For positive real μ and ν for the squeezed state, plot the
uncertainty area in the X1 -X 2 plane at t = 0, t = π /2ω where ω is the frequency of the electromagnetic
wave.

Problem 9.9 If |β〉 is an eigenstate of the operator b̂ = √
2â− â† with eigenvalue β, obtain the variances

in X̂1 and X̂2 and plot the corresponding uncertainty area graphically in a figure. Assume β to be real.

Problem 9.10 Consider a harmonic oscillator in a state descried by

|ψ〉 = 1

2
|n〉 +

√
3

2
|n + 1〉

Obtain the expectation value of the harmonic oscillator energy in this state.

Problem 9.11 A squeezed state |β〉 is the eigenstate of the operator b̂ defined by

b̂ = μâ + νa� †



Problems 261

with |μ|2 − |ν|2 = 1. Obtain the expectation value of X
�

1 = 1
2 (a� + a� †) for this state. Assume μ, ν,

and β to be real quantities.

Problem 9.12 Consider a coherent state |α〉. The value of α is such that the probability of detecting 2
photons is 1% of the probability of detecting one photon. What is the probability of detecting no photons?
Assume α to be real.

Problem 9.13 Consider a state of an electromagnetic wave described by |ψ〉 = A
( |n〉i + |n〉j

)
where

the number state |n〉i corresponds to having n photons in ith mode with all other modes unoccupied.
Similarly for the state |n〉j corresponding to the jth mode. Obtain the number of photons in this state. A
is a constant.

Problem 9.14 Consider a number state |n〉 with n = 10.

a) Obtain the value of uncertainty in the photon number in this state.

b) Obtain the variances of the two quadrature operators.

c) Is this a minimum uncertainty state?

Problem 9.15 Show that the expectation value of photon number in a coherent vacuum state (defined by
â |0〉c = 0) is zero while that in a squeezed vacuum state is not zero where squeezed vacuum is defined
by b̂ |0〉s = 0 with b̂ = μ â + ν â† (assume μ and ν to be real). Obtain the expectation value of photon
number in the squeezed vacuum state with b̂ = 2â − √

3â†

Problem 9.16 Consider a superposition of two coherent states |α〉 and − |α〉:
|ψ〉 = N(|α〉 + |−α〉)

a) Normalize |ψ〉.
b) Show that the state |ψ〉 = N(|α〉 + |−α〉) is an eigenstate of the operator â2.

Show that the probability of finding an odd number of photons in this state is zero.





Chapter 10
Properties of Lasers

10.1 Introduction

So far we have discussed the physics behind laser operation. Basically the light from
both a laser and any ordinary source of light is electromagnetic in nature, but laser
light can be extremely monochromatic, highly directional, and very intense. Apart
from these laser light also differs from light produced by thermal emission in the
basic quantum properties.

In this chapter we shall look at the different properties of laser light and in Part
II of the book we shall discuss some of the most interesting applications of lasers.

10.2 Laser Beam Characteristics

Light from the laser arises primarily from stimulated emission and the resonator
cavity within which the amplifying medium is kept leads to the following special
properties:

Directionality
Spectral purity
High power
Extremely short pulse durations

Table 10.1 gives the achievable laser characteristics; these special properties lead
to many applications of lasers.

Directionality: Light from a source of light such as a torchlight diverges sig-
nificantly as it propagates (see Fig. 10.1). But the beam coming from a laser is in
the form of a pencil of rays and seems to propagate without any divergence. The
laser beam also diverges but by a much smaller magnitude. The wave nature of
light imparts an intrinsic divergence to the beam due to the phenomenon of diffrac-
tion (see Chapter 2). Thus unlike a torchlight where the divergence is due to the
finite size of the filament, the divergence of the laser beam is limited by diffraction
depending on the laser types and can be less than 10–5 radians (∼ 2 s of arc). This
extremely small divergence leads to the many application of the laser in surveying,
remote sensing, lidar, etc.

263K. Thyagarajan, A. Ghatak, Lasers, Graduate Texts in Physics,
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Table 10.1 Some of the special properties possessed by laser beams from different types of lasers

• Directionality (Divergence ∼ 10–7rad)
• Spectral purity (�λ ∼ 10–9 μm)
• High power (P ∼ 1018 W/cm2)
• Ultra short pulses (�t ∼ 10–15 s)
• High electric fields (E ∼ 1012 V/m)
• Small focused areas (∼ 10–12 m2)

Fig. 10.1 Light from a torch
has a divergence primarily
due to the fact that light
emanating from different
points on the filament
propagates along different
directions after reflection
from the parabolic mirror

As an example consider a tiny filament lamp placed at the focus of a convex lens
as shown in Fig. 10.2. The filament can be considered to be made up of a number
of point sources, and thus the light emanating from different points on the filament
will travel along different directions after passing through the lens and the exiting
beam will diverge. If the linear dimension of the filament is about 2 mm and if the
focal length of the convex lens is 10 cm then the angular divergence of the beam
(due to the finite size of the filament) is approximately 1◦ (= 0.02 radians). This
divergence could be reduced provided we reduce the dimension of the filament, but
then the amount of light will also get correspondingly reduced.

Compared to the filament, the divergence of a laser beam is primarily due to
diffraction. For most laser beams, the spot size (the radius of the cross section of the
laser beam) of the beam is about a few millimeters. As discussed in Chapter 2, if the
laser beam has a free space wavelength of λ0 and a spot size w0, then the divergence
angle of the beam is given by

θ ≈ λ0

π w0
(10.1)

l Δθ

 f

Fig. 10.2 Light from the
filament of a bulb placed at
the focus of a convex lens
diverges after passing
through it
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For a typical spot size of 1 mm and a wavelength of 0.6 μm, the divergence angle is
given approximately by 0.01◦. A beam is said to be diffraction limited if it diverges
only due to diffraction and usually laser beams are diffraction limited. We may
mention that the laser beam from a laser diode has a significant divergence due to
the small spot size of the beam. At the same time, unlike the case of the torch, the
divergence of the beam can be reduced by simply using a lens in front of the laser
diode.

Tight Focusing: Because of highly directional properties of the laser beams, they
can be focused to very small areas of a few (μm)2. The limits to focusing are again
determined by diffraction effects. Smaller the wavelength, smaller the size of the
focused spot. This property leads to applications in surgery, material processing,
compact discs, etc.

When a convex lens images a point object, the size of the image point is directly
proportional to the wavelength of the light wave and also to the ratio of focal length
to the diameter. The ratio of focal length to the diameter of a lens is also called the
f-number. This parameter is used in specifying the quality of camera lenses. Thus
an f/2 lens implies that the focal length to diameter ratio is 2. If the focal length of
this camera lens is 50 mm then its diameter is 25 mm. Smaller the f-number for a
given focal length larger is the diameter of the lens. Smaller the wavelength, smaller
the spot size, and similarly smaller the f-number, smaller the image size. Since an
object can be considered to be made up of points, if we consider the imaging by
the convex lens, the resolution provided by the lens will depend on the f-number
and the wavelength. For a given wavelength, for better resolution we must have a
smaller f-number. Smaller the f-number of a camera, better will be the resolution of
the camera.

Thus when a laser beam is allowed to fall on a convex lens then the radius of
the focused spot is directly proportional to the wavelength and to the f-number,
provided the laser beam fills the entire area of the lens (see Fig. 10.3). If we take a
lens having an f-number of 2 (i.e., focal length is twice the lens diameter), then for a
laser wavelength of 600 nm the radius of the focused spot will be about 1.5 μm. Thus
the area of such a focused spot would be about 7 μm2. If the laser beam has a power
of 1 MW (= 106 W) then the intensity at the focused spot would be approximately
14 TW/cm2. Such intensities of light lead to electric fields of 109 V/m. Such high

Laser
beam

2a ≈2λf/a

f

Fig. 10.3 If a truncated plane
wave (of diameter 2a) is
incident on a lens without any
aberration of focal length f,
then the wave emerging from
the lens will get focused to
spot of radius ≈ λ f/a
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Fig. 10.4 Focusing of a
3 MW peak power-pulsed
ruby laser beam. At the focus,
the electric field strengths are
of the order of a billion Volts
per meter which results in the
creation of a spark in the air.
(Photograph courtesy
Dr. R. W. Terhune)

Eye

Fig. 10.5 When a laser beam falls on the eye, then it gets focused to a very small diffraction-
limited size producing very high intensities even for small powers as 2 mW

electric fields can create a spark in air – see Fig. 10.4. This shows that laser beams
(because of their high directionality) can be focused to extremely small regions
producing very high intensities and electric fields.

When the electric fields are very high inside a medium, the light beam can
change the properties of the medium. Such effects are termed non-linear effects;
some effects of this non-linearity are discussed in Chapters 14 and 18.

We may mention here that a low-power (≈ 2 mW) diffraction-limited laser beam
incident on the eye gets focused to a very small spot (see Fig. 10.5) and can produce
an intensity of about 100 W/cm2 on the retina – this could indeed damage the retina.
On the other hand, when we look at a 20 W bulb at a distance of about 5 m from
the eye, the eye produces an image of the bulb on the retina and this would produce
an intensity of only about 10 W/m2 on the retina of the eye (see Fig. 10.6). Thus,
whereas it is quite safe to look at a 20 W bulb, it is very dangerous to look directly
into a 2 mW laser beam. Indeed, because a laser beam can be focused to very nar-
row areas, it has found important applications in areas like eye surgery and laser
cutting.

Eye
~ 5m

Fig. 10.6 Looking at a bulb produces an image of the bulb on the retina and even 20 W bulb does
not produce very high intensities
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It may be of interest to mention that, if we are directly looking at the sun, the
power density in the image formed is about 30 kW/m2. This follows from the fact
that on the earth, about 1.35 kW of solar energy is incident (normally) on an area
of 1 m2. Thus the energy entering the eye is about 4 mW. Since the sun subtends
about 0.5◦ on the earth, the radius of the image of the sun (on the retina) is about
2 × 10–4 m. Therefore if we are directly looking at the sun the power density in the
image formed is about 30 kW/m2. Thus, never look into the sun; the retina will be
damaged not only because of high intensities but also because of large ultraviolet
content of the sunlight.

A very interesting application of the extreme directionality of laser beams is
in the realization of artificial stars in the sky. At a height of about 95 km above
the surface of earth there is a layer containing sodium atoms. If a laser beam at
a wavelength of 589 nm is sent up, then the sodium atoms absorb the radiation,
get excited to a higher energy level, and then emit spontaneously when they get de-
excited. Some of this radiation is traveling toward the earth and resembles a star. The
position of this artificial star or guide star can be adjusted by changing the direction
of the laser beam. Typically pulsed lasers emitting a power of about 20 W and pulse
widths of 100 ns are used to create the star. One of the interesting applications of this
guide star is in the correction of images formed by telescopes on the earth. Since the
light coming from objects outside the earth has to pass via the turbulent atmosphere,
the image of any extra terrestrial object will not be stable. By looking at the image
of this artificial star it is possible to determine the correction to the optical system
required in real time for canceling the effects of turbulence. Figure 10.7 shows the
images of the application of laser guide star in imaging the dense star cluster at the
center of the Milky Way.

Fig. 10.7 Images of the dense star cluster at the center of the Milky Way Galaxy in infrared light
at 3.6 μm wavelength. Left: image using laser guide star adaptive optics. Right: best natural guide
star image. The laser guide star image has a total integration time of 8 min, while the natural guide
star image has 150 min. The plus sign marks the position of the central million-solar-mass black
hole, Sgr A∗, in both images. (Credit: UCLA Galactic Center Group and W.M. Keck Observatory
Laser Guide Star Team; photograph provided by Prof Claire Max, University of California, USA)
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Problem 10.1 Consider a confocal laser resonator made of mirrors of radii of curvature 1 m each.
Assuming that the laser is oscillating in the fundamental Gaussian mode, obtain the divergence of the
exiting laser beam if the free space wavelength of the laser is 500 nm. [Ans: w0 ∼ 300 μm, 90 s of arc].

Problem 10.2 Referring to Problem 10.1 if the separation between the mirrors is kept 1 m while the
mirror radii of curvatures are increased to 5 m, obtain the corresponding divergence. [Ans: w0 ∼ 5 mm,
6 s of arc].

Spectral Purity: Laser beams can have an extremely small spectral width, of the
order of 10–6 Å. Compare this with a typical source such as a sodium lamp which
has a spectral width of about 0.1 Å. The stimulated emission process coupled with
the optical resonator within which the amplifying medium is placed is responsible
for the very small spectral widths. In general a laser may oscillate in a number of
frequencies simultaneously unless special techniques are adopted (see Chapter 7).
This includes using Fabry–Perot filters within the laser cavity to allow only one
frequency to oscillate. Even in a laser oscillating in a single frequency, there could
be random but small variations in the frequency of oscillation due to temperature
fluctuations and vibrations of the mirrors of the cavity. Stabilization of frequency
is achieved using various techniques, for example, the laser is coupled to another
very stable cavity and the emission from the laser gets locked to this stable cav-
ity. Frequency-stabilized lasers with frequency stability of better than 10–8 (i.e.,

Fig. 10.8 Increase in achievable laser intensity with the year. The increase has a large slope around
1960 due to the invention of the laser and then again after 1985. (Adapted from Mourou and
Yanovsky (2004) © 2004 OSA)
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fractional frequency shift of less than 10 parts per billion) are commercially avail-
able. Because of high spectral purity, lasers find applications in holography, optical
communications, spectroscopy, etc.

High Power: Lasers can generate extremely high powers, and since they can also
be focused to very small areas, it is possible to generate extremely high-intensity val-
ues. Figure 10.8 shows how the intensity achievable using laser beams has increased
every year. At intensities such as 1021 W/m2, the electric fields are so high that
electrons can get accelerated to relativistic velocities (velocities approaching that
of light) leading to very interesting effects. Apart from scientific investigations of
extreme conditions, continuous wave lasers having power levels ~ 105 W and pulsed
lasers having a total energy ~ 50000 J have applications in welding, cutting, laser
fusion, star wars, etc.

10.3 Coherence Properties of Laser Light

In this section we will introduce the concepts of temporal and spatial coherence
since these play a significant role in their applications.

10.3.1 Temporal Coherence

In order to understand the concept of temporal coherence, we consider a Michelson
interferometer arrangement as shown in Fig. 10.9. S represents an extended near
monochromatic source, G represents a beam splitter, and M1 and M2 are two plane
mirrors. The mirror M2 is fixed while the mirror M1 can be moved either toward

M2

M1

Eye  E

Source S

G

Fig. 10.9 A Michelson
interferometer setup
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or away from G. Light from the source S is incident on G and is divided into two
equal portions; one part travels toward M1 and is reflected back and the other part is
reflected back from M2. The two reflected waves interfere and produce interference
fringes which are visible from E. When the mirrors M1 and M2 are nearly equidis-
tant from G, i.e, when the two waves traversing the two different paths take the
same amount of time, then it is observed that the contrast of the interference fringes
formed is good. If now the mirror M1 is slowly moved away from G, then it is seen
that for ordinary extended source of light (like a sodium lamp), the contrast in the
fringes goes on decreasing and when the difference between the distances from G
to M1 and M2 is about a few millimeters to a few centimeters, the fringes are no
longer visible. This decrease in contrast of the fringes can be explained as follows:
The source S is emitting small wave trains of an average duration τ c (say) and there
is no phase relationship between different wave trains (see Section 4.5). This is in
contrast to an infinitely long pure sinusoidal wave train, which is also referred to
as a monochromatic wave. When the difference in time taken by the wave trains to
travel the paths G to M1 and back and G to M2 and back is much less than the aver-
age duration τ c, then the interference is produced between two wave trains each one
being derived from the same wave train. Hence even though different wave trains
emanating from the source S do not have definite phase relationship, since one is
superimposing two wave trains derived from the same wave train, fringes of good
contrast will be seen. On the other hand, if the difference in the time taken to tra-
verse the paths to M1 and back and to M2 and back is much more than τ c, then one
is superimposing two wave trains which are derived from two different wave trains,
and since there is no definite phase relationship between two wave trains emanating
from S, interference fringes will not be observed. Hence as the mirror M1 is moved,
the contrast in the fringes becomes poorer and poorer and for large separations no
fringes would be seen. The time τ c is referred to as the coherence time and the
length of the wave train cτ c is referred to as the longitudinal coherence length. It
may be mentioned that there is no definite distance at which the interference pattern
disappears; as the distance increases, the contrast in the fringes becomes gradually
poorer and eventually the fringes disappear.

As an example, for the neon 632.8 nm line from a discharge lamp, the interfer-
ence fringes would vanish if the path difference between the two mirrors is about a
few centimeters. Thus for this source, τ c ~ 100 ps. On the other hand, for the red
cadmium line at 643.8 nm, the coherence length is about 30 cm, which gives τ c ~
1 ns.

The decrease in contrast of the fringes can also be interpreted as being due to
the fact that the source S is not emitting a single frequency but emits over a band
of frequencies (see Section 4.5). When the path difference is zero or very small,
the different wavelength components produce fringe patterns superimposed on one
another and the fringe contrast is good. On the other hand, when the path difference
is increased, different wavelength components produce fringe patterns which are
slightly displaced with respect to one another and the fringe contract becomes poor.
Thus the non-monochromaticity of the light source can equally well be interpreted
as the reason for poor fringe visibility for large optical path differences.
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The equivalence of the above two approaches can also be seen using Fourier
analysis (see Section 4.5). One can indeed show that a wave having a coherence
time ~ τ c is essentially a superposition of harmonic waves having frequencies in the
range ν0 − �ν/2 ≤ ν ≤ ν0 + �ν/2 where

�ν ∼ 1

2πτc
(10.2)

Thus the longer the coherence time, the smaller the frequency width. For ordinary
sources τ c ~ 100 ps and

�ν ∼ 1010 Hz

For λ = 600 nm, ν = 5 × 1014 Hz and

�ν

ν0
∼ 0.00002

The quantity �ν/ν0 represents the monochromaticity and one can see that even for
ordinary light sources it is quite small. In Section 4.5 we have discussed some of the
mechanisms leading to the broadening of spectral lines emitted by atoms.

In a laser, in contrast to an ordinary source of light, the optical resonant cavity is
excited in different longitudinal modes of the cavity which are specified by discrete
frequencies of oscillation. In an optical resonator without the amplifying medium,
the finite loss of the resonator leads to an exponentially decaying output amplitude
which leads to a finite linewidth of the output. On the other hand, in an actual laser
oscillating in steady state, the loss is exactly compensated by the gain provided by
the laser medium, and when the laser is oscillating in a single mode, the output
is essentially a pure sinusoidal wave. Superposed on this are the random emissions
arising out of spontaneous emission and it is this spontaneous emission which limits
the ultimate monochromaticity of the laser (see Section 7.5).

In contrast to �ν ~ 1010 Hz, for an ordinary source of light, for a well-controlled
laser one can obtain �ν ~ 500 Hz, which gives τ c ~ 2 ms. The corresponding coher-
ence length is about 600 km. Such long coherence lengths imply that the laser could
be used for performing interference experiments with very large path differences.

For a laser oscillating in many modes, the monochromaticity depends obviously
on the number of oscillating modes (see Problem 7.3). Also for a pulsed laser, the
minimum linewidth is limited by the duration of the pulse. Thus for a 1 ps pulse, the
coherence time is 1 ps and the spectral width would be about 1012 Hz.

10.3.2 Spatial Coherence

In order to understand the concept of spatial coherence, we consider the Young’s
double-hole experiment as shown in Fig. 10.10. S represents a source placed in
front of a screen with two holes S1 and S2 and the interference pattern between the
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S

S

S2

S1

d

D
T

O

Fig. 10.10 Young’s
double-slit experimental
arrangement

waves emanating from S1 and S2 is observed on screen T. We restrict ourselves to
the region near O for which the optical path lengths S1O and S2O are equal. If S
represents a point source then it illuminates the pinholes S1 and S2 with spherical
waves. Since the holes S1 and S2 are being illuminated coherently, the interference
fringes formed near O will be of good contrast. Consider now another point source S̄
placed near S and assume that the waves from S and S̄ have no phase relationship. In
such a case the interference pattern observed on the screen T will be a superposition
of the intensity distributions of the interference patterns formed due to S and S̄. If
S̄ is moved slowly away from S, the contrast in the interference pattern on T will
become poorer because of the fact that the interference pattern produced by S̄ is
slightly shifted in relation to that produced by S. For a particular separation, the
interference maximum produced by S falls on the interference minimum produced
by S̄ and the minimum produced by S falls on the maximum produced by S̄. For
such a position the interference fringe pattern on the screen T is washed away.

In order to obtain an approximate expression for the separation SS̄ for disap-
pearance of fringes, we assume that S and O are equidistant from S1 and S2. If the
position of S̄ is such that the path difference between S̄S2 and S̄S1 is λ/2 (where λ

is the wavelength of light used), then the source S̄ produces an interference mini-
mum at O and the two fringe patterns would be out of step. If we assume SS̄ = l,
S1S2 = d, and the distance between S and the plane of the pinholes is D, we obtain

S̄S2 =
[

D2 +
(

d

2
+ l

)2
]1/ 2

≈ D + 1

2D

(
d

2
+ l

)2

(10.3)

S̄S1 =
[

D2 +
(

d

2
− l

)2
]1/ 2

≈ D + 1

2D

(
d

2
− l

)2

(10.4)

where we have assumed that D >> d, l. Thus for disappearance of fringes,

S̄S2 − S̄S1 = λ

2
≈ ld

D

or

l ≈ λD

2d
(10.5)
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For an extended source made up of independent point sources, one may say that
good interference fringes will be observed as long as

l <<
λD

d
(10.6)

Equivalently for a given source of width l, interference fringes of good contrast will
be formed by interference of light from two point sources S1 and S2 separated by a
distance d as long as

d <<
λD

l

Since l/d is the angle (say θ ) subtended by the source at the slits above equation can
also be written as

d <<
λ

θ
(10.7)

The distance lw (=λ/θ ) is referred to as the lateral coherence width. It can be seen
from Eq. (10.7) that lw depends inversely on θ .

Example 10.1 The angle subtended by sun on the earth is 32 s of arc which is approximately 0.01 radians.
Thus assuming a wavelength of 500 nm, the lateral coherence width of the sun would be 50 μm. Thus
if we have a pair of pinholes separated by a distance much less than 50 μm, and illuminated by the sun,
interference pattern of good contrast will be obtained on the screen.

Using ordinary extended sources, one must pass the light through a pinhole in
order to produce a spatially coherent light beam. In contrast, the laser beam is highly
spatially coherent. For example, Fig. 10.11 shows the interference pattern obtained
by Nelson and Collins (1961) by placing a pair of slits of width 7.5 μm separated
by a distance of 54 μm on the end of a ruby rod of a ruby laser. The interference
pattern agrees with the theoretical prediction to within 20%. To show that the spatial

Fig. 10.11 Interference fringes observed by placing a pair of slits in front of a ruby laser show-
ing the spatial coherence of the laser beam (Reprinted with permission from D.F. Nelson and
R.J. Collins, Spatial coherence in the output of a maser, J. Appl. Phys. 32 (1961) 739. © 1961
American Institute of Physics)
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coherence is indeed due to laser action, they showed that below threshold no inter-
ference pattern was observed; only a uniform darkening of the photographic plate
was obtained.

Problem 10.3 A 1550 nm semiconductor laser emits an elliptical Gaussian beam (i.e., the spot sizes in
the x- and y-directions are not equal) with minimum spot sizes of 100 and 10 μm in two orthogonal
directions at the output facet of the laser. At what distance from the facet does the beam become circular
and what is the spot size at this point?

Problem 10.4 Consider a symmetric spherical resonator consisting of two concave mirrors of radii of
curvature 1 m and separated by 20 cm operating at 1 mm. What will be the angle of divergence of the
laser beam emanating from such a laser?

Problem 10.5 Consider an optical resonator shown below:

λ = 6328 Å

R  =100 cm R = ∞60 cm

(a) Calculate the intensity distribution of the fundamental Gaussian mode at the plane mirror and at
the spherical mirror

(b) If both mirrors are partially reflecting, which of the beams coming out (one from the plane mirror
and the other from the spherical mirror) would have a larger diffraction divergence?

(c) If the same resonator is used for oscillation at 1.5 μm by what approximate factor would the
diffraction divergence of the beam at 1.5 μm increase or decrease compared to 1 μm?

Problem 10.6 What is the approximate angular divergence of the output beam from a He–Ne laser
(operating at 6328 Å) having a 1 m long confocal cavity?

Problem 10.7 A parallel laser beam with a diameter of 2 mm and a power of 10 W falls on a convex lens
of diameter 25 mm and focal length 10 mm. If the wavelength of the laser beam is 500 nm, estimate the
intensity at the focused spot?

Problem 10.8 Estimate the intensity levels produced on the retina if someone accidentally happens to
look straight into a laser beam of 10 mW power and a diameter of 2 mm. Assume the pupil diameter to
be 5 mm and the wavelength of light as 600 nm.

Problem 10.9 In continuation, estimate the intensity levels produced on the retina if someone acciden-
tally looks at the sun. Assume the pupil diameter to be 2 mm and the wavelength of light as 600 nm. Also
calculate the intensity levels produced on the retina when someone looks straight at a 60 W bulb. Take
reasonable values of various parameters.
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Problem 10.10 An interference experiment is to be conducted using a He–Ne laser. We have two lasers
one oscillating in a single longitudinal mode with a linewidth of 10 MHz and the other with two modes
with linewidths of 10 MHz and separated by a frequency of 600 MHz. Estimate the minimum path
difference for which the interference pattern will disappear when either of the lasers is used.

Problem 10.11 A He–Ne laser of length 20 cm oscillates in two longitudinal modes. If the output of
the laser is incident on a photodetector (a device that converts light into electrical current) whose output
current is proportional to the incident intensity, what will be the time variation of the output current?

Problem 10.12 Consider a laser beam of circular cross section of diameter 10 cm and of wavelength
800 nm pointed toward the moon which is at a distance of 3.76 × 10 5 km. What will be the approximate
diameter of the laser spot on the moon? Neglect effects due to atmospheric turbulence, etc. [Ans: ~ 6 km].

Problem 10.13 Consider a lens having a focal length of 5 mm and an f-number of 2. Obtain the area of
the focused spot using a laser at 650 nm and a laser at 400 nm.

Problem 10.14 Consider two sources, one having a spectral width of 0.1 nm and the other with a spectral
width of 0.001 nm. Obtain the coherence length of the two sources.

Problem 10.15 Consider a laser emitting pulses of duration 100 fs. What would be the approximate
spectral width of the pulse. What will be the physical length of the optical pulse in free space?

Problem 10.16 The breakdown electric field of air is 30 V/μm. To what intensity level does this
correspond?





Chapter 11
Some Laser Systems

11.1 Introduction

In this chapter we shall discuss some specific laser systems and their important
operating characteristics. The systems that we shall consider are some of the more
important lasers that are in widespread use today for different applications. The
lasers considered are

(a) solid-state lasers: ruby, Nd:YAG, Nd:glass;
(b) gas lasers: He–Ne, argon ion, and CO2;
(c) liquid lasers: dyes;
(d) excimer lasers;

In Chapters 12–14 we shall discuss in detail fiber lasers, semiconductor lasers and
coherent sources based on non-linear optical effect, namely parametric oscillators.

11.2 Ruby Lasers

The first laser to be operated successfully was the ruby laser which was fabricated
by Maiman in 1960. Ruby, which is the lasing medium, consists of a matrix of
aluminum oxide in which some of the aluminum ions are replaced by chromium
ions. It is the energy levels of the chromium ions which take part in the lasing action.
Typical concentrations of chromium ions are ~0.05% by weight. The energy level
diagram of the chromium ion is shown in Fig. 11.1. As is evident from figure this
a three-level laser.1 The pumping of the chromium ions is performed with the help
of flash lamp (e.g., a xenon or krypton flashlamp) and the chromium ions in the
ground state absorb radiation around wavelengths of 5500 Å and 4000 Å and are
excited to the levels marked E1 and E2. The chromium ions excited to these levels
relax rapidly through a non-radiative transition (in a time ∼ 10–8–10–9s) to the level

1The level M actually consists of a pair of levels corresponding to wavelengths of 6943 and 6929 Å.
However, laser action takes place only on the 6943 Å line because of higher inversion.
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Fig. 11.1 The energy levels
of the chromium ions in the
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marked M which is the upper laser level. The level M is a metastable level with a
lifetime of ∼ 3 ms. Laser emission occurs between level M and the ground state G
at an output wavelength of λ0 = 6943 Å.

The flashlamp operation of the laser leads to a pulsed output of the laser. As
soon as the flashlamp stops operating the population of the upper level is depleted
very rapidly and lasing action stops till the arrival of the next flash. Even during
the short period of a few tens of microseconds in which the laser is oscillating,
the output is a highly irregular function of time with the intensity having random
amplitude fluctuations of varying duration as shown in Fig. 11.2. This is called laser
spiking, the formation of which can be understood as follows: when the pump is
turned on, the intensity of light at the laser transition is small and hence the pump
builds up the inversion rapidly. Although under steady-state conditions the inver-
sion cannot exceed the threshold inversion, on a transient basis it can go beyond the
threshold value due to the absence of sufficient laser radiation in the cavity which
causes stimulated emission. Thus the inversion goes beyond threshold when the
radiation density in the cavity builds up rapidly. Since the inversion is greater than
threshold, the radiation density goes beyond the steady-state value which in turn
depletes the upper level population and reduces the inversion below threshold. This
leads to an interruption of laser oscillation till the pump can again create an inver-
sion beyond threshold. This cycle repeats itself to produce the characteristic spiking
in lasers.

Figure 11.3 shows a typical setup of a flashlamp pumped pulsed ruby laser. The
helical flashlamp is surrounded by a cylindrical reflector to direct the pump light
onto the ruby rod efficiently. The ruby rod length is typically 2–20 cm with diam-
eters of 0.1–2 cm. As we have seen in Section 5.3, typical input electrical energies
required are in the range of 10–20 kJ. In addition to the helical flashlamp pumping
scheme shown in Fig. 11.3, one may use other pumping schemes such as that shown
in Fig. 11.4 in which the pump lamp and the laser rod are placed along the foci of
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Fig. 11.2 Temporal output
power variations of a ruby
laser beam leading to what is
referred to as laser spiking.
The three figures show
regular spiking, partially
regular spiking and irregular
spiking. (Adapted with
permission from Sacchi and
Svelto (1965) © 1965 IEEE)
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a flashlamp pumped-pulsed
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covered by a cylindrical
reflector for efficient coupling
of the pump light to the
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Fig. 11.4 Elliptical pump
cavity in which the lamp and
the ruby rod are placed along
the foci of the elliptical
cylindrical reflector
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an elliptical cylindrical reflector. It is well known that the elliptical reflector focuses
the light emerging from one focus into the other focus of the ellipse, thus leading to
an efficient focusing of pump light on the laser rod.

In spite of the fact that the ruby laser is a three-level laser, it still is one of the
important practical lasers. The absorption bands of ruby are very well matched with
the emission spectra of practically available flashlamps so that an efficient use of
the pump can be made. It also has a favorable combination of a long lifetime and
a narrow linewidth. The ruby laser is also attractive from an application point of
view since its output lies in the visible region where photographic emulsions and
photodetectors are much more sensitive than they are in the infrared region. Ruby
lasers find applications in pulsed holography, in laser ranging, etc.

11.3 Neodymium-Based Lasers

The Nd:YAG laser (YAG stands for yttrium aluminum garnet which is Y3Al5O12)
and the Nd:glass laser are two very important solid-state laser systems in which
the energy levels of the neodymium ion take part in laser emission. They both cor-
respond to a four-level laser. Using neodymium ions in a YAG or glass host has
specific advantages and applications.

(a) Since glass has an amorphous structure the fluorescent linewidth of emission is
very large leading to a high value of the laser threshold. On the other hand YAG
is a crystalline material and the corresponding linewidth is much smaller which
implies much over thresholds for laser oscillation.

(b) The fact that the linewidth in the case of the glass host is much larger than in
the case of the YAG host can be made use of in the production of ultrashort
pulses using mode locking since as discussed in Section 7.7.3, the pulsewidth
obtainable by mode locking is the inverse of the oscillating linewidth.

(c) The larger linewidth in glass leads to a smaller amplification coefficient and
thus the capability of storing a larger amount of energy before the occurrence
of saturation. This is especially important in obtaining very high-energy pulses
using Q-switching.

(d) Other advantages of the glass host are the excellent optical quality and excellent
uniformity of doping that can be obtained and also the range of glasses with
different properties that can be used for solving specific design problems.

(e) As compared to YAG, glass has a much lower thermal conductivity which may
lead to induced birefringence and optical distortion.

From the above discussion we can see that for continuous or very high pulse
repetition rate operation the Nd:YAG laser will be preferred over Nd:glass. On the
other hand for high energy-pulsed operation, Nd:glass lasers maybe preferred. In
the following we discuss some specific characteristics of Nd:YAG and Nd:glass
laser systems.
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11.3.1 Nd:YAG Laser

The Nd:YAG laser is a four-level laser and the energy level diagram of the
neodymium ion is shown in Fig. 11.5. The laser emission occurs at λ0 ≈ 1.06μm.
Since the energy difference between the lower laser level and the ground level is
∼ 0.26 eV, the ratio of its population to that of the ground state at room temperature
(T= 300 K) is e−�E

/
kBT ≈ e−9<<1. Thus the lower laser level is almost unpopu-

lated and hence inversion is easy to achieve. The main pump bands for excitation of
the neodymium ions are in the 0.81 and 0.75 μm wavelength regions and pumping
is done using arc lamps (e.g., the Krypton arc lamp). Typical neodymium ion con-
centrations used are ∼1.38 × 1020 cm–3. The spontaneous lifetime corresponding
to the laser transition is 550 μs and the emission line corresponds to homogeneous
broadening and has a width �v ∼ 1.2 × 1011 Hz which corresponds to �λ ∼ 4.5Å.
We have shown in Section 5.4 that the Nd:YAG laser has a much lower threshold of
oscillation than a ruby laser.

With the availability of high-power compact and efficient semiconductor lasers,
efficient pumping of Nd ions to upper laser level can be accomplished using laser
diodes. This leads to very compact diode pumped Nd-based lasers. Diode laser
pumping is simpler than lamp pumping and also produces much less heat in the
laser medium leading to increased overall efficiency. Since the laser diode output is
narrow band unlike a normal lamp, the output at 808 nm can be efficiently used for
pumping. Typical output powers of 150 W are commercially available. In fact an
intracavity second-harmonic generator can efficiently convert the laser wavelength
to 532 nm (the second harmonic of 1064 nm of Nd:YAG) leading to very efficient
green lasers.

Lower laser level
τ ~ 30 ns
Ground level 

Upper laser level
Laser transition

Pump band

λ = 1.06 μm

Fig. 11.5 The energy levels
of neodymium ion in the
Nd:YAG laser
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Nd:YAG lasers find many applications in range finders, illuminators with Q-
switched operation giving about 10–50 pulses per second with output energies in
the range of 100 mJ per pulse, and pulse width ∼ 10 ns. They also find applications
in resistor trimming, scribing, micromachining operations as well as welding, hole
drilling, etc.

11.3.2 Nd:Glass Laser

The Nd:glass laser is again a four-level laser system with a laser emission around
1.06 μm. Typical neodymium ion concentrations are ∼2.8 × 1020 cm–3 and var-
ious silicate and phosphate glasses are used as the host material. Since glass has
an amorphous structure different neodymium ions situated at different sites have
slightly different surroundings. This leads to an inhomogeneous broadening and the

resultant linewidth is �v ∼ 7.5 × 1012 Hz which corresponds to �λ ∼ 260
o
A.

This width is much larger than in Nd:YAG lasers and consequently the threshold
pump powers are also much higher. The spontaneous lifetime of the laser transition
is ∼ 300 μs.

Nd-doped fiber lasers are also efficient. Chapter 12 discusses fiber lasers and
primarily erbium-doped fiber lasers. But similar analysis can also be carried out for
Nd-doped fiber lasers.

Nd:glass lasers are more suitable for high energy-pulsed operation such as in
laser fusion where the requirement is of subnanosecond pulses with an energy con-
tent of several kilojoules (i.e., peak powers of several tens of terawatts). Other
applications are in welding or drilling operations requiring high pulse energies.

Table 11.1 gives a comparison of some important characteristics of ruby,
Nd:YAG, and Nd:glass laser systems.

Table 11.1 Comparison of ruby, Nd:YAG, and Nd:glas laser systems

Laser Ruby Nd:YAG Nd:glass

Wavelength (Å) 6943 10,641 10,623
Spontaneous lifetime (μs) 3000 240 300
Active ion concentration (cm–3) 1.58×1019 1.38×1020 2.83×1020

Linewidth (GHz)
(Å)

330
5.5

120
4.0

7500
260

Population inversion
density for 1%
gain/cm (cm–3)

4×107

+ 7.6×1018
1.1×1016 3.3×1017

Index of refraction (n)
(at laser λ)

no= 1.763
ne= 1.755

1.82 1.55

Major pump
bands (Å)

4040
5540

5800
7500
8100

5800
7500
8100

Table adapted from Koechner (1976).
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11.4 Titanium Sapphire Laser

Titanium sapphire (Ti:sapphire) laser is one of the most important solid-state lasers
since it is a continuously tunable laser from about 650 to 1100 nm and due to its large
gain bandwidth can produce mode-locked pulses in the tens of femtosecond regime.
Titanium sapphire laser consists of titanium-doped sapphire (Al2O3), in which the
energy levels of titanium take part in laser action. The titanium sapphire laser is
pumped by another laser, usually argon ion laser emitting in the wavelength region
of 514 nm; other lasers such as frequency-doubled Nd:YAG laser emitting 532 nm
wavelength is also used for pumping the laser. Figure 11.6 shows the absorption and
emission spectra of titanium sapphire. The broad absorption and emission spectra
are evident. The broad emission spectrum leads to a broad gain spectrum which in
turn allows for ultrashort pulse generation using mode locking techniques.

Relative 
intensity

0.5

1.0

Wavelength (nm)
400 500 600 700 800 900 1000

Absorption Emission

0

Fig. 11.6 Absorption and
emission spectrum of
titanium sapphire laser
medium [Adapted from
http://www.olympusmicro.com/
primer/techniques/fluorescence/
multiphoton/images/
tisapspectra.jpg]

11.5 The He–Ne Laser

The first gas laser to be operated successfully was the He–Ne laser. As we dis-
cussed earlier in solid-state lasers, the pumping is usually done using a flashlamp
or a continuous high-power lamp. Such a technique is efficient if the lasing sys-
tem has broad absorption bands. In gas lasers since the atoms are characterized by
sharp energy levels as compared to those in solids, one generally uses an electrical
discharge to pump the atoms.

The He–Ne laser consists of a long and narrow discharge tube (diameter ~ 2–
8 mm and length 10–100 cm) which is filled with helium and neon with typical
pressures of 1 torr2 and 0.1 torr. The actual lasing atoms are the neon atoms and
as we shall discuss helium is used for a selective pumping of the upper laser level

2Torr is a unit of pressure and 1 torr = 1 mm Hg.
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Fig. 11.7 A typical He–Ne
laser with external mirrors.
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of neon. The laser resonator may consist of either internal or external mirrors (see
Fig. 11.7). Figure 11.8 shows the energy levels of helium and neon. When an elec-
trical discharge is passed through the gas, the electrons which are accelerated down
the tube collide with helium and neon atoms and excite them to higher energy levels.
The helium atoms tend to accumulate at levels F2 and F3 due to their long lifetimes
of ∼ 10–4 and 5 × 10–6 s, respectively. Since the levels E4 and E6 of neon atoms
have almost the same energy as F2 and F3, excited helium atoms colliding with neon
atoms in the ground state can excite the neon atoms to E4 and E6. Since the pres-
sure of helium is ten times that of neon, the levels E4 and E6 of neon are selectively
populated as compared to other levels of neon.

Transition between E6 and E3 produces the very popular 6328 Å line of the
He–Ne laser. Neon atoms de-excite through spontaneous emission from E3 to E2
(lifetime ∼ 10–8 s). Since this time is shorter than the lifetime of level E6 (which
is ∼ 10–7 s) one can achieve steady-state population inversion between E6 and E3.
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Level E2 is metastable and thus tends to collect atoms. The atoms from this level
relax back to the ground level mainly through collisions with the walls of the tube.
Since E2 is metastable it is possible for the atoms in this level to absorb the sponta-
neously emitted radiation in the E3→E2 transition to be re-excited to E3. This will
have the effect of reducing the inversion. It is for this reason that the gain in this
laser transition is found to increase with decreasing tube diameter.

The other two important wavelengths from the He–Ne laser are 1.15 and
3.39 μm, which correspond to the E4→E3 and E6→E5 transitions. It is interest-
ing to observe that both 3.39 μm and 6328 Å transitions share the same upper laser
level. Now since the 3.39 μm transition corresponds to a much lower frequency than
the 6328 Å line, the Doppler broadening is much smaller at 3.39 μm and also since
gain depends inversely on ν2 (see Eq. (4.26)), the gain at 3.39 μm is much higher
than at 6328 Å. Thus due to the very large gain, oscillations will normally tend to
occur at 3.39 μm rather than at 6328 Å. Once the laser starts to oscillate at 3.39 μm,
further build up of population in E6 is not possible. The laser can be made to oscil-
late at 6328 Å by either using optical elements in the path which strongly absorb
the 3.39 μm wavelength or increasing the linewidth through the Zeeman effect by
applying an inhomogeneous magnetic field across the tube.

If the resonator mirrors are placed outside the discharge tube then reflections
from the ends of the discharge tube can be avoided by placing the windows at the
Brewster angle (see Fig. 11.7). In such a case the beam polarized in the plane of
incidence suffers no reflection at the windows while the perpendicular polarization
suffers reflection losses. This leads to a polarized output of the laser.

11.6 The Argon Ion Laser

In an argon ion laser, one uses the energy levels of the ionized argon atom and the
laser emits various discrete lines in the 3500–5200 Å wavelength region. Figure 11.9
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shows some of the energy levels taking part in the laser transition. The argon atoms
have to be first ionized and then excited to the higher energy levels of the ion.
Because of the large energies involved in this, the argon ion laser discharge is very
intense; typical values being 40 A at 165 V. A particular wavelength out of the many
possible lines is chosen by placing a dispersive prism inside the cavity close to one
of the mirrors. Rotation of the prism–mirror system provides feedback only at the
wavelength which is incident normally on the mirror. Typical output power in a con-
tinuous wave argon ion laser is 3–5 W. Some of the important emission wavelengths
include 5145 Å, 4965 Å, 4880 Å, 4765 Å, and 4579 Å.

11.7 The CO2 Laser

The lasers discussed above use transitions among the various excited electronic
states of an atom or an ion. In a CO2 laser one uses the transitions occurring between
different vibrational states of the carbon dioxide molecule. Figure 11.10 shows the
carbon dioxide molecule consisting of a central carbon atom with two oxygen atoms
attached one on either side. Such a molecule can vibrate in the three independent
modes of vibration shown in Fig. 11.10.

These correspond to the symmetric stretch, the bending, and the asymmetric
stretch modes. Each of these modes is characterized by a definite frequency of vibra-
tion. According to basic quantum mechanics these vibrational degrees of freedom
are quantized, i.e., when a molecule vibrates in any of the modes it can have only
a discrete set of energies. Thus if we call ν1 the frequency corresponding to the
symmetric stretch mode then the molecule can have energies of only

E1 =
(

m + 1

2

)
hv1, m = 0, 1, 2, . . . (11.1)
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Oxygen Carbon Oxygen
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Fig. 11.10 The three
independent modes of
vibration of the carbon
dioxide molecule
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when it vibrates in the symmetric stretch mode. Thus the degree of excitation is
characterized by the integer m when the carbon dioxide molecule vibrates in the
symmetric stretch mode. In general, since the carbon dioxide molecule can vibrate
in a combination of the three modes the state of vibration can be described by three
integers (mnq); the three integers correspond, respectively, to the degree of excita-
tion in the symmetric stretch, bending, and asymmetric stretch modes, respectively.
Figure 11.11 shows the various vibrational energy levels taking part in the laser
transition.

The laser transition at 10.6 μm occurs between the (001) and (100) levels of
carbon dioxide. The excitation of the carbon dioxide molecules to the long-lived
level (001) occurs both through collisional transfer from nearly resonant excited
nitrogen molecules and also from the cascading down of carbon dioxide molecules
from higher energy levels.

The CO2 laser possesses an extremely high efficiency of ∼30%. This is because
of efficient pumping to the (001) level and also because all the energy levels involved
are close to the ground level. Thus the atomic quantum efficiency which is the ratio
of the energy difference corresponding to the laser transition to the energy difference
of the pump transition, i.e.,

η = E5 − E4

E5 − E1

is quite high (∼45%). Thus a large portion of the input power can be converted into
useful laser power.

Output powers of several watts to several kilowatts can be obtained from CO2
lasers. High-power CO2 lasers find applications in materials processing, welding,
hole drilling, cutting, etc., because of their very high output power. In addition, the
atmospheric attenuation is low at 10.6 μm which leads to some applications of CO2
lasers in open air communications.
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11.8 Dye Lasers

One of the most widely used tunable lasers in the visible region is the organic dye
laser. The dyes used in the lasers are organic substances which are dissolved in
solvents such as water, ethyl alcohol, methanol, and ethylene glycol. These dyes
exhibit strong and broad absorption and fluorescent spectra and because of this they
can be made tunable. By choosing different dyes one can obtain tenability from
3000 Å to 1.2 μm.

The levels taking part in the absorption and lasing correspond to the various
vibrational sublevels of different electronic states of the dye molecule. Figure 11.12
shows a typical energy level diagram of a dye in which S0 is the ground state,
S1 is the first excited singlet state, and T1, T2 are the excited triplet states of the
dye molecule. Each state consists of a large number of closely spaced vibrational
and rotational sublevels. Because of strong interaction with the solvent, the closely
spaced sublevels are collision broadened to such an extent that they almost form a
continuum.
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Fig. 11.12 Typical energy
level diagram of a dye
molecule

When dye molecules in the solvent are irradiated by visible or ultraviolet radi-
ation then the molecules are excited to the various sublevels of the state S1. Due
to collisions with the solvent molecules, the molecules excited to higher vibrational
and rotational states of S1 relax very quickly (in times ∼10–11–10–12 s) to the lowest
level V2 of the state S1. Molecules from this level emit spontaneously and de-excite
to the different sublevels of S0. Thus the fluorescent spectrum is found to be red
shifted against the absorption spectrum.
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Problems

Problem 11.1 Consider mode locking an Nd:YAG laser and an Nd:glass laser. Compare the minimum
pulse widths obtainable using these two lasers. If the length of the resonators in both cases is 20 cm, what
typical pulse widths are possible by mode locking these two lasers?

Problem 11.2 Estimate the Doppler-broadened linewidth of a carbon dioxide laser system assuming a
temperature of 300 K.

Problem 11.3 Consider a He–Ne laser having a cavity length of 30 cm and oscillating over a bandwidth
of 1500 MHz. What will be the coherence length of the laser?

Problem 11.4 Compare the Doppler-broadened linewidth of the 632.8 and 3.39 mm emission lines of
He–Ne laser. Assume a temperature of 300 K.





Chapter 12
Doped Fiber Amplifiers and Lasers

12.1 Introduction

The most common solid-state lasers are Nd:YAG laser and Ti:sapphire laser and
are used extensively in various laboratories for R&D and also in many applications.
These lasers usually require laboratory-like environments and have a reasonably
high power consumption requiring maintenance. In this context, optical fiber lasers
in which the gain medium is in the form of an optical fiber are revolutionizing the
applications of solid-state lasers. Some of the most attractive features of fiber lasers
are the direct pumping using semiconductor lasers, high gain achievable with broad
bandwidths, and a laser beam with excellent beam quality. Using components devel-
oped specifically for the telecommunication application of fiber optics, fiber lasers
have seen an explosive growth in terms of high output powers, ultrashort pulses, and
extensive wavelength region. With developments in large mode area optical fibers,
photonic crystal fibers, etc., the field is continuing to grow. Figure 12.1 shows the
growth of fiber lasers during the last 15 years with a steep rise after 2002.

There are many important fiber lasers such as erbium-doped fiber laser (for oper-
ation at 1550 nm) and ytterbium-doped fiber laser (for operation at 1060 nm). They
are either three-level or four-level lasers and can be analyzed using the standard rate
equations. Compared to standard lasers, in the case of fiber lasers, the amplifying
medium is quite long and the signal and pump powers vary significantly over the
length of the fiber. Hence the analysis of fiber laser is somewhat different from stan-
dard lasers discussed in Chapter 5. As an example of a fiber laser, in Section 12.2,
we will consider an erbium-doped fiber laser in detail and obtain its characteristics.
Similar analysis can be performed for other fiber laser systems.

12.2 The Fiber Laser

In a fiber laser, the active medium providing optical amplification is an optical fiber
with its core doped with suitable dopants (more details on optical fibers and their
characteristics can be found in Chapter 16). When such a fiber is pumped by a
suitable light source (usually another laser), population inversion between two of
the energy levels is achieved, thus providing optical amplification. As discussed in

291K. Thyagarajan, A. Ghatak, Lasers, Graduate Texts in Physics,
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Fig. 12.1 Growth of fiber lasers since 1993 showing a steep rise after 2002. (Adapted with
permission from Limpert et al. (2007) © 2007 IEEE)

Chapter 4, by providing an optical feedback using mirrors at the end of the ampli-
fying fiber, it is possible to achieve laser oscillation leading to a fiber laser. As early
as 1961, Elias Snitzer wrapped a flashlamp around a glass fiber (having a 300-μm
core doped with Nd3+ ions clad in a lower index glass) and when suitable feedback
was applied, the first fiber laser was born. Thus, the fiber laser was fabricated within
a year of the demonstration of the first ever laser by Theodore Maiman.

Figure 12.2 shows a schematic of a fiber laser. As an example, let us consider
an erbium-doped fiber laser. Light from a pump laser emitting at 980 nm is coupled
into a short length of erbium-doped fiber using a wavelength division multiplexing
(WDM) coupler. The WDM coupler is a device which combines two different wave-
lengths from two different fibers into a single output fiber and acts like a dichroic
beam splitter. It can also be used to split light waves at two different wavelengths
propagating in the same fiber into two different fibers. The WDM coupler at the

Pump laser

Doped fiber

WDM WDM

Laser beam

Fig. 12.2 A schematic of an erbium-doped fiber laser
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output removes any unused pump laser power. To provide optical feedback, the
two ends of the signal ports of the WDM coupler are cut properly and coated to
have high reflectivity or have fiber Bragg gratings as reflectors. Since the gains pro-
vided by erbium ions are very large, even a small reflectivity is sufficient to satisfy
the condition for laser oscillation, namely compensation of loss by the gain pro-
vided by population inversion. This would result in an output laser beam from both
coupler ends. The wavelength of emission is usually determined by the wavelength
satisfying the maximum gain and minimum loss; this is around 1530 nm for erbium-
doped fibers. Figure 12.3 shows the output from an erbium-doped fiber laser as the
pumping in increased. Just before starting to lase, the pump power is insufficient to
overcome the losses in the cavity and thus the output is only amplified spontaneous
emission (lower curve in Fig. 12.3). As we increase the pump power, the erbium-
doped fiber starts to lase usually emitting multiple wavelengths seen as spikes in the
figure.

λ0  (nm)

Fig. 12.3 Lower curve
corresponds to the spectrum
at the output of the fiber laser
below the threshold and the
upper curve represents the
spectrum above the threshold
for laser oscillation

In case it is required to have the laser oscillate at a specific wavelength within
the gain bandwidth of the erbium ion, then this can be achieved by using a fiber
Bragg grating (FBG) at one end of the laser. Fiber Bragg gratings are periodic vari-
ations of refractive index within the core of an optical fiber. The periodic variations
cause a specific wavelength to be reflected back along the fiber; the wavelength of
peak reflection depends on the period of the grating and the optical fiber. With suf-
ficient length and refractive index modulation, reflectivities of more than 99% can
be achieved (see, e.g., Ghatak and Thyagarajan (1998)).

By placing an FBG at one end of the fiber laser, only the wavelength where
the FBG reflects strongly is fed back into the fiber cavity. This wavelength would
thus suffer much lower loss compared to other wavelengths. This would ensure that
the fiber laser oscillates at the frequency as determined by the FBG. The lasing
wavelength can be tuned by tuning the peak reflection wavelength of the FBG.



294 12 Doped Fiber Amplifiers and Lasers

Fiber lasers possess many interesting advantages vis-a-vis other laser systems.
In particular, since the laser beam is confined to a very small cross-sectional area
within the core of the fiber, large pump intensities can be achieved even with small
pump powers and thus leading to lower pump power thresholds. Since both the
pump and the laser beam are propagating within the fiber, they overlap very well
and this also adds to increased efficiency of the laser and efficiencies of 80% are
possible. Since the fiber guides the pump beam, one can use very long-length
cavities without bothering about the divergence of the pump laser beam. Since
the ratio of surface area to volume of fiber laser is very large, it does not suffer
from thermal problems and heat dissipation is much easier. The output beam is
of very good quality since it emerges as the fundamental mode of the fiber. Also
since the components in the laser are made up of fibers which are all spliced,
there are no mechanical perturbation problems such as in bulk lasers with separate
mirrors.

Fig. 12.4 D-shaped fiber
cladding of a doped fiber for
efficient pump utilization

Using conventional fibers with doped single-mode core and a cladding, the laser
power is restricted to about 1 W. To achieve higher output powers, fiber lasers use
double-clad fibers as the amplifying medium (see Fig. 12.4). In this fiber, the cen-
tral core guides the laser wavelength and is single moded at this wavelength. The
inner cladding is surrounded by an outer cladding and this region acts as a multi-
moded guide for the pump wavelength. The radius of the inner cladding is large
and so is the refractive index difference between the inner cladding and the outer
cladding. This ensures that power from large area diode lasers can be launched
into the fiber efficiently. At the same time, since the laser wavelength is propa-
gating as a fundamental mode in the inner core, the laser output would be single
moded. The pump power propagating in the inner cladding propagates in the form
of different rays (or modes). If the cladding is circular in cross section, then it is
possible that some of the rays (skew rays) propagating in the cladding would never
have an opportunity to cross the core and this portion of the pump would never be
used in creating inversion and thus leading to reduced conversion efficiencies. In
order that all the rays corresponding to the pump power propagating in the inner
cladding of the fiber cross the core, the inner cladding is made non-circular (see
Fig. 12.4). This type of design can lead to very much increased pump conversion
efficiencies.
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12.3 Basic Equations for Amplification in Erbium-Doped Fiber

Figure 12.5 shows the absorption spectrum of an erbium-doped fiber. Several
absorption peaks are apparent; these correspond to different pairs of energy lev-
els of erbium ion. The most important absorption peak correspond to 980 nm and
a broad absorption band around 1550 nm. Figure 12.6 shows a schematic of the
energy levels involved in the absorption process.
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Fig. 12.5 Typical absorption
spectrum of an erbium-doped
fiber

Pump: 980 nm
E1 to E3

Signal: 1550 nm
E2 to E1 Amplified

signal

E1

E2

E3

Fig. 12.6 Three lowest lying energy levels of erbium ions in silica matrix. Each level consists of
many sublevels

We will now derive expressions describing an erbium-doped fiber laser (EDFL).
We will consider the EDFL to be a three-level laser and assume that ions pumped
into level E3 by a 980-nm pump laser jump rapidly to level E2, which is the upper
laser level (see Fig. 12.6), and assume that ions pumped from level E1 to level E3
by a 980-nm pump laser jump rapidly to level E2, the upper laser level.

Let N1, N2, and Nt represent the erbium ion density (number of erbium ions per
unit volume) in energy levels E1 and E2 and the total erbium ion density, respec-
tively. Since we are assuming that ions relax rapidly from level E3, we have N3 ∼ 0
and
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Nt(r) = N1(r, z) + N2(r, z) (12.1)

Usually the entire fiber core of radius a is uniformly doped with erbium ions. Hence

Nt(r) = Nt; 0<r<a

= 0; r>a
(12.2)

By pumping appropriately it is possible to generate population inversion between
levels E2 and E1. In such a case, light at a frequency corresponding to (E2 − E1)/h
can get amplified as it propagates through the fiber. Such a device behaves as an
optical amplifier. Erbium-doped fiber amplifiers (EDFAs) based on erbium-doped
fibers are extremely important components in today’s long-distance fiber optical
communication systems. In such an amplifier, the pump is usually a 980-nm laser
diode and the amplification is provided over a large band of wavelengths around
1550 nm. We shall discuss the properties of EDFA in Section 12.5; here we analyze
an erbium-doped fiber laser.

Unlike an EDFA, in which the signal propagates only along one direction, in the
case of a laser, the signal will form a standing wave in the laser cavity. Hence there
would be signal beams propagating along both the +z- and the –z-directions. We
will assume the pump to be travelling along the +z-direction (see Fig. 12.7).

= 0 = L

Ps
+(0)

Pp(0)

Ps
–(L)

M1 M2

Fig. 12.7 Pump power travels along the fiber in the +z-direction, while the power at the lasing
wavelength travels in the +z- and –z-directions. M1 and M2 represent the two mirrors at the ends
of the fiber cavity; they could be just cleaved facets of the fiber

Recalling the discussion on rate equations in Chapter 5, we can write the rate
equation describing the time rate of change of erbium ion population density N2 in
level E2 as

dN2

dt
= − N2

τsp
+ σpIp

hνp
N1 − σseI+

s

hνs
N2 + σsaI+

s

hνs
N1 − σseI−

s

hνs
N2 + σsaI−

s

hνs
N1 (12.3)

On the right-hand side of Eq. (12.3)

• the first term represents spontaneous emission per unit time per unit volume with
τ sp representing the spontaneous lifetime of the level E2;

• the second term represents induced absorption per unit time per unit volume
due to the pump with Ip representing the pump intensity and σ p the absorption
cross section at the pump frequency νp (see Section 4.2.1 for the definition of
absorption and emission cross sections);
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• the third term represents stimulated emission per unit time per unit volume
induced by the signal of intensity I+

s travelling along the +z-direction and σ se
represents the emission cross section at the signal frequency νs;

• the fourth term represents induced absorption per unit time per unit volume due
to the signal frequency νs induced by signal of intensity I+

s travelling along the
+z-direction;

• the fifth and sixth terms represent stimulated emission and absorption per unit
time per unit volume induced by the signal of intensity I−

s travelling along the
–z-direction.

Unlike conventional lasers, the pump and signal waves travel as modes in the
fiber lasers. These modes are characterized by specific intensity distributions along
the transverse cross section of the fiber. Due to the guidance mechanism, unlike
conventional lasers where the laser light within the cavity will diffract, there would
be no diffraction of the waves in fiber lasers. In view of this we should describe the
propagation of pump and signal along the fiber length in terms of powers rather than
in terms of intensities. In order to do so, we introduce two new functions fp(r) and
fs(r) at the pump and signal frequencies as

Ip(r, z) = Pp(z) fp(r) (12.4)

and

I±
s (r, z) = P±

s (z) fs(r) (12.5)

Here Pp(z) and P±
s (z) represent the powers carried by the pump propagating along

the +z-direction and the signal propagating along the +z- and –z-directions, respec-
tively, and fp(r) and fs(r) represent the transverse dependence of the modal intensity
patterns at the pump and signal frequencies. Usually the pump and signal beams
travel as the fundamental modes of the fiber and thus we assume that the intensity
distributions at the pump and the signal are dependent only on the cylindrical radial
coordinate r and are independent of the azimuthal coordinate ϕ. By integrating Eqs.
(12.4) and (12.5) along the entire transverse cross section, we note that the functions
fp(r) and fs(r) satisfy the following normalization conditions:

2π

∞∫

0

fp(r)r dr = 1 (12.6)

and

2π

∞∫

0

fs(r)r dr = 1 (12.7)

Since the population of a level depends on the intensity of the interacting light wave
and the intensities at the pump and signal frequencies depend on the coordinate r, in
general the populations N1 and N2 also depend on r. In order to simplify the analysis
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we shall neglect this dependence and assume that N1 and N2 are independent of r
and depend only on the longitudinal coordinate z.

Integrating Eq. (12.3) over the transverse cross section and using Eqs. (12.4) and
(12.5) we obtain

dN2(z)

dt
A = − N2

τsp
A + σpPp

hνp
N12π

a∫

0

fp(r)r dr

− (σseN2 − σsaN1)

hνs

(
P+

s + P−
s

)
2π

a∫

0

fs(r)r dr

(12.8)

where A (= πa2) represents the area of cross section of the doped region of the
fiber. We now define

�p = 2π

a∫

0

fp(r)r dr; �s = 2π

a∫

0

fs(r)r dr (12.9)

which represent the fractional powers inside the core at the pump and signal
wavelengths, respectively. We also define the normalized population densities

Ñ1 = N1

Nt
; Ñ2 = N2

Nt
(12.10)

Using these definitions, Eq. (12.8) becomes

dÑ2

dt
= − Ñ2

τsp
+ σp�p

hνpA
PpÑ1 − (σseÑ2 − σsaÑ1)�s

hνsA
(P+

s + P−
s ) (12.11)

We now write for the equations describing the evolution of the pump and signal
powers along the fiber. In the case of pump, there are only transitions from level E1
to E3; thus the variation of pump intensity Ip along z would be given as

dIp

dz
= −σpN1Ip (12.12)

Now

dPp

dz
= d

dz

∫
Ip(r, z)r dr dϕ = −2πσpN1Pp

a∫

0

fp(r)r dr = −σp�pPpN1 (12.13)

Similarly the variation of signal intensity along +z is given as

dI+
s

dz
= σseI+

s (r, z)N2 − σsaI+
s (r, z)N1 (12.14)

The first term corresponds to stimulated emission and the second to stimulated
absorption. The contribution from spontaneous emission is neglected here since
spontaneous emission occurs over a large spectral bandwidth and in all directions.
The fraction of the spontaneous emission coupling into the forward direction in the
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mode and at the signal frequency is negligible. Of course, spontaneous emission is
necessary to start the laser oscillation.

Thus

dP+
s

dz
= d

dz

∫
I+
s (r, z)r dr dϕ = (σseN2 − σsaN1)P+

s �s (12.15)

Similarly for the signal propagating along the –z-direction

dP−
s

dz
= −(σseN2 − σsaN1)P−

s �s (12.16)

We can combine Eqs. (12.15) and (12.16) as

dP±
s

dz
= ±(σseN2 − σsaN1)P±

s �s (12.17)

We now define powers in terms of photon flux; thus the photon flux (i.e., the total
number of photons crossing per unit time across a plane perpendicular to the fiber
axis) at pump and signal wavelengths is denoted by np and n±

s , respectively, and is
given as

np = Pp

hνp
; n±

s = P±
s

hνs
(12.18)

Using these definitions Eqs. (12.13) and(12.17) can be written as

dnp

dz
= −σpNt�pÑ1np (12.19)

dn±
s

dz
= ±(σseÑ2 − σsaÑ1)Nt�sn

±
s

= ±[(σse + σsa)Ñ2 − σsa]Nt�sn
±
s

(12.20)

where we have used the fact that Ñ1 + Ñ2 = 1. Using Eqs. (12.18)–(12.20) in
Eq. (12.11), we obtain

dÑ2

dt
= − Ñ2

τsp
− 1

NtA

dnp

dz
− 1

NtA

(
dn+

s

dz
− dn−

s

dz

)
(12.21)

Equations (12.19)–(12.21) describe the evolution of population and pump and signal
powers along the length of the doped fiber. These equations can be solved to obtain
various parameters of the erbium-doped fiber amplifier and laser.
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12.3.1 Gaussian Approximation

The actual transverse intensity patterns fp(r) and fs(r) of a step-index single-mode
fiber are described in terms of Bessel functions. If the fiber has some other refractive
index variation in the transverse cross section, it is difficult to obtain an analytical
expression for the actual intensity pattern. However, since the fundamental mode
has a bell-shaped distribution, a very good approximation for the transverse intensity
variation is the Gaussian approximation. Under this approximation, we assume the
transverse intensity pattern to be given by the following variation:

f (r) = 1

π	2
e−r2/	2

(12.22)

where the quantity 	 also referred to as the spot size is determined by the fiber
parameters such as core radius, numerical aperture, and wavelength. An empirical
expression for 	 is given as (see Marcuse (1978))

	 = a√
2

(
0.65 + 1.619

V1.5
+ 2.879

V6

)
(12.23)

where

V = ak0

(
n2

1 − n2
2

)1/ 2
(12.24)

is the normalized V parameter of the fiber described in terms of the core radius a,
the free space wavelength λ0 (= 2π /k0), and the numerical aperture of the fiber(
n2

1 − n2
2

)1/ 2
. Since V value depends on the wavelength, the value of 	 at pump

wavelength and various signal wavelengths is different. The multiplicative factor in
Eq. (12.22) is to ensure that f(r) satisfies the normalization condition [Eqs. (12.6)
and (12.7)]

Example 12.1 When the pump power is small, then most of the erbium ions would be found in the ground
state and in such a case, Ñ1 ≈ 1. Equation (12.19) can then be integrated to give np(z) = np(0)e−σpNt�pz.
This implies that the pump gets absorbed as it propagates along the fiber and the corresponding absorption
coefficient is given as αp = σpNt�p. Note that the absorption coefficient depends on the absorption cross
section, the erbium ion population density, and the overlap factor �p. In a similar fashion, by putting
Ñ2 ≈ 0 in Eq. (12.20) we obtain the signal variation along z to be given as n+

s (z) = n+
s (0)e−σsaNt�sz

giving an absorption coefficient at the signal wavelength of αs = σsaNt�s. Greater the confinement of
the modes, closer the �p and �s to unity and larger the absorption coefficient.

Example 12.2 Consider step-index fiber with a core radius of 1.5 μm and an NA of 0.24. The V values at
the pump wavelength of 980 nm and at the signal wavelength of 1530 nm are 2.31 and 1.48, respectively.
Using Eq. (12.23) we can get the corresponding spot sizes as 1.2 and 1.93 μm, respectively. Note that
the spot size at the pump wavelength is smaller than that at the signal wavelength. This is due to greater
penetration of the field with increase in wavelength. In fact higher signal wavelengths would have even
larger spot sizes.

Example 12.3 Under the Gaussian approximation, we have for the pump and signal intensity patterns

fp(r) = 1

π	2
p

e−r2/	2
p
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and

fs(r) = 1

π	2
s

e−r2/	2
s

respectively, where 	p and 	s are the spot sizes at the pump and signal wavelengths, respectively. Using
these expressions we can immediately obtain the following:

�p = 1 − e−a2/	2
p ; (12.25)

�s = 1 − e−a2/	2
s ; (12.26)

For a doped fiber with a core radius of 1.5 μm and a numerical aperture of 0.24, from Eq. (12.23) we
have

	p ≈ 1.2μm, 	s ≈ 1.93μm

and �p ≈ 0.79, �s ≈ 0.45. Here we have neglected the wavelength dependence of the numerical
aperture of the fiber.

Example 12.4 For a pump power of 100 mW and a value of 	p = 1.35 μm, the peak intensity which
occurs along the fiber axis is given as

Ip = Pp

π	2
p

≈ 1.75 × 1010 W/m2

12.3.2 Gaussian Envelope Approximation

Instead of using Eq. (12.23) a more accurate expression can be obtained under
what is referred to as Gaussian envelope approximation. In this approximation, 	 is
given as

	 = a J0(U)
V

U

K1(W)

K0(W)
(12.27)

where

V = k0a
√(

n2
1 − n2

2

)
(12.28)

U = a
√(

k2
0n2

1 − β2
)

(12.29)

W = a
√(

β2 − k2
0n2

2

)
(12.30)

β is the propagation constant of the fundamental mode and J0, K0, and K1 are Bessel
functions. For a step-index fiber, W can be approximated as

W = 1.1428 V − 0.996 (12.31)

which is accurate in the range 1.5 < V < 2.5. Table 12.1 gives the values of 	

as predicted by Eq. (12.31). These values can be used to estimate the Gaussian
envelope parameters for a given erbium-doped fiber. Corresponding to pump and
signal wavelengths, one can obtain the values of V, U, and W and hence 	.
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Table 12.1 Gaussian spot
size of a single-mode fiber for
different V values

V 	/a

1.2 1.4709
1.25 1.3792
1.3 1.3032
1.35 1.2394
1.4 1.1851
1.45 1.1384
1.5 1.0979
1.55 1.0624
1.6 1.031
1.65 1.0032
1.7 0.97824
1.75 0.95582
1.8 0.93554
1.85 0.91712
1.9 0.90031
1.95 0.8849
2 0.87074
2.05 0.85766

12.3.3 Solutions Under Steady State

Under steady state, the time derivative is zero and hence from Eq. (12.21), we have

Ñ2 = − τsp

NtA

(
dnp

dz
+ dn+

s

dz
− dn−

s

dz

)
(12.32)

Substituting in Eq. (12.20) we have

dn±
s

n±
s

= ±Nt�s

[
− (σse + σsa)τsp

NtA

(
dnp

dz
+ dn+

s

dz
− dn−

s

dz

)
− σsa

]
dz

= ∓
[

Nt�sσsa + �sτsp(σse + σsa)

A

(
dnp

dz
+ dn+

s

dz
− dn−

s

dz

)]
dz

We define

αs = �sNtσsa (12.33)

nss = A

�sτsp(σse + σsa)
(12.34)

where αs is the signal absorption coefficient (see Example 12.1) and nss is referred
to as the intrinsic signal saturation photon number (hνsnss is the intrinsic signal
saturation power). Thus
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dn±
s

n±
s

= ∓
[
αs + 1

nss

(
dnp

dz
+ dn+

s

dz
− dn−

s

dz

)]
dz (12.35)

Similarly from Eq. (12.19) we have

dnp

np
= −σpNt�p(1 − Ñ2)dz

= −
[
αp + 1

nps

(
dnp

dz
+ dn+

s

dz
− dn−

s

dz

)]
dz

(12.36)

where

αp = σpNt�p (12.37)

and

nps = A

�pτspσp
(12.38)

represent the pump absorption coefficient and the intrinsic pump saturation photon
number, respectively (hνpnps is the intrinsic pump saturation power).

Equation (12.35) can be integrated from z = 0 to z = L to get the forward-
propagating signal photon number n+

s :

ln

(
n+

s (L)

n+
s (0)

)
= −αsL + 1

nss

(
npa + n+

sa + n−
sa

)
(12.39)

where

npa = np(0) − np(L);

n+
sa = n+

s (0) − n+
s (L);

n−
sa = n−

s (L) − n−
s (0)

(12.40)

represent the number of photons at pump and signal wavelengths propagating in
the forward and backward directions, respectively, that have been absorbed by the
doped fiber (negative value of the quantity would imply net emission rather than
absorption). Note that for signal propagating in the –z-direction, input photon flux
is n−

s (L) and output photon flux is n−
s (0). Thus

n+
s (L) = n+

s (0)e−αsLe(npa+n+
sa+n−

sa)/nss (12.41)

In a similar fashion we obtain

n−
s (0) = n−

s (L)e−αsLe(npa+n+
sa+n−

sa)/nss (12.42)

For the pump photon flux, we have from Eq. (12.36)
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np(L) = np(0)e−αpLe(npa+n+
sa+n−

sa)/nps (12.43)

The above equations can be used to study erbium-doped fiber amplifiers as well as
erbium-doped fiber lasers.

Example 12.5 Let the fiber described in Example 12.2 have an erbium concentration of 5.4 × 1024 m–3.
The absorption cross section at the pump and signal wavelengths are σ pa = 2.7 × 10–25 m2 and σ sa =
8.2 × 10–25 m–2. The absorption coefficients of the fiber at the pump and signal wavelengths are given by
Eqs. (12.37) and (12.33) and would be 1.15 and 1.99 m–1, respectively. These can be written in units of
decibel per meter by multiplying the quantity in m–1 by 4.34. Thus the fiber would have 5 and 8.64 dB/m
absorption at 980 and 1532 nm, respectively.

12.4 Fiber Lasers

We will now use the equations derived above to analyze the characteristics of
erbium-doped fiber lasers. In a fiber laser, the pump creates population inversion
in the doped fiber and a pair of reflectors on either end of the doped fiber provide for
optical feedback. If the cavity losses are compensated by the gain provided by the
doped fiber, then lasing begins. Thus unlike an optical amplifier, there is no signal
input into the doped fiber; signal light is generated by spontaneous emissions from
the excited-level erbium ions.

For steady-state lasing we require that the signal photon flux be the same after
one round-trip, i.e., the losses suffered by the signal photon flux in one round-trip
be compensated exactly by the gain from the inversion.

Let R1 and R2 represent the reflectivities of the two mirrors (see Fig. 12.7). Let
n+

s (0) represent the photon flux propagating to the right at z= 0, which is the left
end of the cavity. The photon flux at z = L incident on the mirror M2 would then be
[using Eq. (12.41)]

n+
s (L) = n+

s (0)e−αsLe(npa+n+
sa+n−

sa)/nss (12.44)

A fraction of these photons get reflected back by the mirror M2 with reflectivity R2
into the fiber giving for the photon flux propagating to the left at z = L:

n−
s (L) = R2n+

s (L) (12.45)

In propagating from z = L to z = 0, the photon flux becomes [using Eq. (12.42)]

n−
s (0) = n−

s (L)e−αsLe(npa+n+
sa+n−

sa)/nss (12.46)

A fraction of these photons are reflected by mirror M1 with reflectivity R1 into the
fiber giving for the photon flux propagating to the right at z = 0 as

n+
s1(0) = R1n−

s (0) (12.47)
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For laser oscillation we impose the condition that the signal photon flux after one
round-trip be the same as the starting flux. Hence

n+
s1(0) = n+

s (0) (12.48)

which using Eqs. (12.44)–(12.47) gives

R1R2 e−2αsLe2(npa+n+
sa+n−

sa)/nss = 1

or

(npa + n+
sa + n−

sa)

nss
= αsL − 1

2
ln(R1R2) (12.49)

We shall now discuss some general features from the set of equations obtained
above.

12.4.1 Minimum Required Doped Fiber Length

Since the pump power exiting the fiber must be less than the pump power entering
the fiber, npa must be a positive quantity. Now

npa = np(0) − np(L)

= np(0)
[
1 − e−αpLe(αsL− 1

2 ln R1R2)nss/ nps
] (12.50)

where we have used Eqs. (12.43) and (12.49). For npa to be positive, we must
have

e−αpLe(αsL− 1
2 ln R1R2)nss/ nps < 1

or

− αpL + nss

nps

(
αsL − 1

2
ln(R1R2)

)
< 0

which gives us a condition on the minimum length Lm of the doped fiber for laser
oscillation as

Lm = nss

2nps
ln

(
1

R1R2

)(
αp − nss

nps
αs

)−1

Using the expressions for nss, nps, αs, and αp, the above equation simplifies to

Lm = 1

2σseNt�s
ln

(
1

R1R2

)
(12.51)
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The minimum length requirement implies that for a given doped fiber and a cav-
ity with specific mirror reflectivities, no amount of pump power can lead to laser
oscillation if the doped fiber length is less than Lm given by Eq. (12.51). This is due
to the fact that for L < Lm, there are not enough erbium ions in the laser cavity to
provide sufficient gain to overcome the losses in the cavity.

We also note from Eq. (12.51) that cavities with larger mirror reflectivities would
require shorter fiber lengths for lasing. Also since largest value of σse occurs at about
1532 nm, lasing at this wavelength would require the shortest length.

Example 12.6 As an example we consider an erbium-doped fiber with a doping concentration of Nt =
5.4 × 1024 m–3 and �s = 0.54. At the wavelength of 1532 nm, σ se = 8.2 × 10–25 m2. If the doped fiber
ends are bare, then they would have an approximate reflectivity of 0.04. Using these values we obtain the
minimum length for the fiber to lase to be approximately 1.34 m.

Example 12.7 For the same values as in Example 12.6, if the mirror reflectivities are 0.9 each, then the
minimum length becomes 4.4 cm.

Problem 12.1 Consider a fiber laser with a doped fiber length of 1 m with mirror reflectivities of 0.9
each and an input pump power of 100 mW. Assuming the absorption coefficient at the pump and signal
wavelengths to be 1.4 and 0.9 m–1, obtain the amount of pump absorbed by the fiber when the laser is
oscillating, given nss = 2.35 × 1015s–1 and nps = 4.2 × 1015s–1.

Solution We can use Eq. (12.50) to obtain the absorbed pump power:

Ppa = Pp(0)

[
1 − e−αpLe(αsL− 1

2 ln R1R2)nss/ nps

]
≈ 57 mW

If in this problem, the reflectivity is reduced to 0.5 for each mirror, then the pump power absorbed would
be about 40 mW.

12.4.2 Threshold

We can estimate the threshold pump power required to start laser oscillation. We first
note that at threshold since the laser power is still small, we can put n+

sa ≈ n−
sa ≈ 0.

Thus from Eq. (12.49) we get

npa ≈
(
αsL − 1

2
ln R1R2

)
nss (12.52)

Using this value in Eq. (12.50) we get

np,th = np,th(0) =
nss

(
αsL − 1

2 ln R1R2

)
[
1 − e−αpLe(αsL− 1

2 ln R1R2)nss/ nps
] (12.53)

where np,th(0) is the input pump power at threshold. Thus the threshold pump power
would be
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Pp,th = hνpnp,th (12.54)

If most of the incident pump power is absorbed by the doped fiber, then np(L) <<
np(0) and npa ≈ np(0). In such a case, we obtain a simplified expression for Pp,th:

Pp,th = hνpnp(0) = hνpA

�sτsp(σse + σsa)

(
αsL − 1

2
ln R1R2

)
(12.55)

where we have substituted the expression for nss from Eq. (12.34).

Example 12.8 Using Eq. (12.55) we can estimate the threshold pump power required to start laser oscil-
lation in an erbium-doped fiber cavity. Taking typical parameter values of A = 7.1 μm2 (core radius of
1.5 μm), τ sp = 12 × 10–3 s, σ se = 8.2 × 10–25 m2, σ sa = 7.8 × 10–25 m2, R1 = R2 = 0.9, L = 10 m,

αs = 2.4 m–1, the threshold pump power comes out to be 3.3 mW.

12.4.3 Laser Output Power

We will now obtain an expression for the output power of the laser in terms of
various parameters of the fiber, cavity, and pump power.

The laser power exiting the fiber laser from mirror M2 is

Plaser = n+
s (L)(1 − R2)hνs (12.56)

which using Eqs. (12.44) and (12.49) gives

Plaser = n+
s (0)(1 − R2)hνs e− 1

2 ln R1R2 = (1 − R2)√
R1R2

n+
s (0)hνs (12.57)

We now need to obtain an expression for n+
s (0). Now

n+
sa = n+

s (0) − n+
s (L) = n+

s (0)

(
1 − 1√

R1R2

)

where we have used Eqs. (12.44) and (12.49). Similarly

n−
sa = n−

s (L) − n−
s (0) = n−

s (0)
(√

R1R2 − 1
)

= n+
s (0)

(√
R1R2 − 1

)

R1

where we have used Eqs. (12.47) and (12.49). Thus

n+
sa + n−

sa = n+
s (0)

[(
1 − 1√

R1R2

)
+

(√
R1R2 − 1

R1

)]
(12.58)

The pump power absorbed by the doped fiber is given by Eq. (12.50). Adding Eqs.
(12.58) and (12.50) and using Eq. (12.49), we obtain
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n+
s (0) =

[(
1√

R1R2
− 1

)
+

(
1 − √

R1R2
)

R1

]−1

[
np(0)

{
1 − e−αpLe(αsL− 1

2 ln R1R2)nss
/

nps
}

− nss

{
αsL − 1

2
ln(R1R2)

}] (12.59)

Using this value of n+
s (0) in Eq. (12.57) we can obtain the output power from the

laser.

Problem 12.2 Consider a fiber laser cavity with R1 = R2 = 0.9, L = 2 m, and input pump power = 20
mW. Assume nss = 2.35 × 1015s –1 and nps = 4.2 × 1015 s –1, αs = 0.9 m–1, and αp = 1.4 m–1. Obtain
the steady-state laser power exiting from the end of the fiber. [Ans: 0.8 mW.]

Problem 12.3 If in the above problem we take a length of 10 m for the doped fiber length, keeping all
other parameters the same, calculate the output laser power. [Ans. 5 mW.]

Figure 12.8 shows the variation of output laser power as a function of the input
pump power for the set of fiber parameters given in Table 12.2. For low input pump
powers, there is no output. After reaching threshold, the output laser power mono-
tonically increases with the input pump power. The figure corresponds to a slope
efficiency (the rate of increase of laser power with increase in pump power) of
31.5%. The slope efficiency depends on the fiber parameters as well as the cavity
parameters. Note that the maximum efficiency would correspond to a situation when
every pump photon is converted into a lasing photon. In such a case the maximum
efficiency would be 0.98/1.532 = 0.64. If the cavity has mirrors of equal reflectivity
on both sides, then half the output photons would be coming from each direction
and the maximum efficiency for one of the outputs would be about 32%.

Figure 12.9 shows a measured variation of laser power with the input pump
power. As can be seen, the threshold for this laser is less than about 10 mW and
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Table 12.2 Erbium-doped fiber parameters used in the simulations

Core diameter 3.5 μm

NA 0.23
Doping density 5.4 × 1024m−3

Pump wavelength 980 nm
Signal wavelength 1550 nm
αs 0.874 m-1

αp 1.14 m-1
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Fig. 12.9 A typical
measured variation of fiber
laser power with input pump
power. (Adapted from Zhu
et al. (2007))

the slope efficiency is about 35%. Beyond threshold the laser power increases lin-
early with the pump power. It is indeed possible to generate extremely high powers
from fiber lasers. Figure 12.10 shows the variation of output power with pump power
of a Ytterbium-doped, large-core fiber laser showing that it is possible to achieve a
continuous wave output power of 1.36 kW. There are efforts to achieve even larger
powers from fiber lasers and such high-power fiber lasers are expected to revolution-
ize the area of applications of lasers in industries. Figure 12.11 shows a photograph
demonstrating breakdown in atmospheric air by a pulsed fiber laser.

Fig. 12.10 Output laser power versus launched pump power of a very high-power fiber laser. The
spectrum of the output is shown in the right curve. (Adapted with permission from Jeong et al.
(2004) © 2004 OSA) Ref: Fiber output and input pump power curve and the laser output spectrum
at 1.36 kW; www.optics.rochester.edu/∼gweihua/hflaser.pdf
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Fig. 12.11 Spark in
atmospheric air produced by
a focused output from a fiber
laser. (Adapted with
permission from
Galvanauskas et al. (2007)
© 2007 IEEE)

With such high optical powers, optical fibers start to exhibit non-linear effects
which tend to degrade the performance of the fiber laser. Since the non-linear effects
are proportional to the intensity of the propagating radiation, one way to reduce the
non-linear effects is to increase the mode area so that for a given power the intensity
would be less. Using photonic microstructure fibers, it is possible to achieve single-
mode operation over a large wavelength range and also achieve large mode areas.
Figure 12.12 shows typical examples of large mode area fibers with a microstructure
cladding. These fibers have a very small numerical aperture of less than 0.03 and
core diameters larger than 60 μm leading to mode field diameters of about 50 μm.

Fig. 12.12 A large mode area fiber using microstructured cladding. (Adapted with permission
from Limpert et al. (2007) © 2007 IEEE)
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12.4.4 Slope Efficiency

Let us consider a fiber laser cavity with R1 = 1 and R2 = R. Using Eqs. (12.57) and
(12.59) we can obtain the following expression for the slope efficiency of the laser:

η = dPlaser

dPp(0)
= νs

νp

{
1 − e−αpLe(αsL− 1

2 ln R)nss/ nps
}

(12.60)

For long doped fiber lengths, the second term in the bracket is almost equal to zero
and the slope efficiency becomes νs / νp. This implies that beyond threshold, every
pump photon gets converted to signal photon.

12.5 Erbium-Doped Fiber Amplifier

In the earlier sections we discussed erbium-doped fiber lasers. The doped fiber
which is pumped by the laser amplifies the optical signal and the reflectors at either
end of the fiber provide for feedback converting the optical amplifier to a fiber laser.
In the absence of reflection from either side of the doped fiber, the pumped fiber
would behave as an optical amplifier. Such optical amplifiers are playing a very
important role in long-distance fiber optic communication systems (see Chapter 16).
The primary characteristics of an optical amplifier are the gain, the noise figure,
and the saturation behavior. The equations describing the amplifier are the same as
described earlier except for the fact that unlike a laser in an amplifier, there is a
signal input which propagates only along one direction through the fiber. Thus in
the case of codirectional pumping, the pump light and the signal light propagate
along the same direction, while in the case of contradirectional pumping, the pump
and the signal propagate along opposite directions. Here we will discuss an optical
amplifier operating in the codirectional configuration. Similar considerations can be
had for contradirectional pumping also.

We now consider an optical fiber amplifier with codirectional pumping and
assume that the pump and the signal propagate along the z-direction. Let np(0) and
ns(0) represent the input pump and signal photon fluxes at z = 0, the input to the
amplifier. (We are not putting any superscript on the signal photon flux since the
signal is propagating along only one direction.) In this case, we have n−

s = 0 and
n+

s = ns. We consider the amplifier to be operating in a steady state. Thus for the
case of amplifier, Eqs. (12.43) and (12.41) become

np(L) = np(0)e−αPLe(npa+nsa)/nps (12.61)

and

ns(L) = ns(0)e−αsLe(npa+nsa)/nss (12.62)
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with the same definitions of other quantities such as nsa, npa, nps, and nss. Thus the
change in signal and pump photon fluxes in propagating from z = 0 to z = L is given
as

nsa =ns(0) − ns(L)

= ns(0)
[
1 − e−αsLe(nsa+npa)/nss

] (12.63)

and

npa =np(0) − np(L)

= np(0)
[
1 − e−αpLe(nsa+npa)/nps

] (12.64)

Adding Eqs. (12.63) and (12.64), we obtain

nsa+npa = ns(0)
[
1 − e−αsLe(nsa+npa)/nss

]
+np(0)

[
1 − e−αpLe(nsa+npa)/nps

]
(12.65)

Writing

ς = nsa + npa (12.66)

Eq. (12.65) transforms to the following transcendental equation:

ς = ns(0)
[
1 − e−αsLeς/nss

] + np(0)
[
1 − e−αpLeς/nps

]
(12.67)

For a given doped fiber, αs, αp, nss, and nps are known. Thus taking a certain length
L of the doped fiber and assuming a given input pump power and signal power, np(0)
and ns(0) can be found out. Equation (12.67) can then be solved for ζ . Knowing the
value of ζ , we can immediately obtain the output signal and pump powers from the
following equations:

ns(L) = ns(0)e−αsLeς/nss

np(L) = np(0)e−αpLeς/nps
(12.68)

The amplifier gain is then given as

G = ns(L)

ns(0)
= e−αsLeς/nss (12.69)

which in decibel units becomes

G (dB) = 10 log

(
ns(L)

ns(0)

)
= 10 (ς/nss − αsL) log e (12.70)
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12.5.1 Transparency Power

From the above set of equations, we can obtain the pump power required for trans-
parency, i.e., the pump power required so that the output signal power equals the
input signal power. This will happen when

ς = nssαsL (12.71)

Since nsa=0, in such a case we have ζ = npa and using Eq. (12.67) we obtain the
pump power required for transparency as

Pp(0) = hνpnp(0) = hνpnssαsL(
1 − e−αpLeαsLnss/ nps

) (12.72)

Example 12.9 Consider the erbium-doped fiber mentioned in Problem 12.1 for which nss = 2.35 × 1015

s–1 and nps = 4.2 × 1015 s–1, αp = 1.4 m–1, and αs = 0.9 m–1. If we assume a fiber length of 10
m and a pump wavelength of 980 nm, the transparency pump power for such a doped fiber would be
approximately 4.3 mW.

If the fiber length and the input pump power are such that most of the pump gets
absorbed by the fiber and there is a reasonable gain in the fiber, we can assume
np(L)<<np(0), ns(L)>>ns(0). In such a case

ς = ns(0) − ns(L) + np(0) − np(L) ≈ np(0) − ns(L)

Hence using Eq. (12.62) we obtain

ns(L) = ns(0) e−αsLeς/nss ≈ ns(0) e−αsLe(np(0)−ns(L))/nss

which can be simplified to obtain

ns(L)ens(L)/nss = ns(0) e−αsLenp(0)/nss (12.73)

which is a much simplified transcendental equation to determine ns(L) and hence
the output power for a given input signal power Ps(0) = hνsns(0).

Figure 12.13 shows the variation of gain with the input pump power. As can
be seen, the gain increases with the input pump power and saturates at high pump
power. Pump saturation would occur when the pump has excited all the erbium ions
to the excited state and there are no more erbium ions available for increasing the
inversion. Figure 12.14 shows the variation of gain with the length of the fiber. As
the length increases, the gain increases first and then peaks for a given length and
then diminishes again. This happens due to the fact that as the pump propagates
through the fiber, it gets absorbed and when the pump power reaches a value suffi-
cient to cause equality of populations of the two levels, then at that length the gain
saturates. Any doped fiber beyond this point would not have any inversion and the
fiber would be absorbing. Thus for a given pump power, there is an optimum length
for maximum gain.
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Fig. 12.13 Simulated
variation of gain with input
pump power for an
erbium-doped fiber amplifier

Fig. 12.14 Simulated
variation of gain with fiber
length of an erbium-doped
fiber amplifier

Example 12.10 Consider the fiber described in Example 12.9 and assume an input pump power of 50 mW.
If the input signal power is 0.01 mW, then Eq. (12.74) can be solved to obtain an output signal power of
24.2 mW. This implies an optical gain of 10 log(24.2/.01) ∼34 dB.

12.6 Mode Locking in Fiber Lasers

As discussed in Chapter 7, mode locking is a technique used to generate ultrashort
pulses of light. As shown in Section 7.7.3, the broader the gain bandwidth of the
laser, the shorter the achievable pulse duration. With a gain bandwidth of 40 nm at
1550 nm, the corresponding spectral bandwidth is about 5 THz and if modes over
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this bandwidth are mode locked, then the pulse duration achievable is about 200 fs.
Thus fiber lasers are very interesting candidates for generation of ultrashort pulses
of a few hundred femtosecond duration.

There are many techniques used for mode locking of fiber lasers. Two important
methods are based on non-linear polarization rotation (NPR) and saturable absorp-
tion. In the former the non-linearity present in the optical fiber leads to a rotation
of the polarization state of the light beam and this effect is used to mode lock the
laser. In the latter case, saturable absorption in a semiconductor material is used for
mode locking. Here as an example we will discuss the phenomenon of non-linear
polarization rotation and how it can lead to the generation of ultrashort pulses of
light from fiber lasers.

12.6.1 Non-linear Polarization Rotation

This effect is a manifestation of the intrinsic non-linearity of an optical fiber. To
recall we note that when a light beam propagates through a fiber, for sufficiently
large intensities, the refractive index of the fiber changes due to the interaction of
the electric field of the light wave with the fiber medium. This change in refrac-
tive index in turn leads to a change of phase of the propagating light wave. This
leads to the phenomenon of self- phase modulation which is discussed in detail in
Chapter 17. Now, if we assume that we launch an elliptically polarized light beam
in an optical fiber and if the fiber has no birefringence, then the state of polarization
of the light wave will remain the same as it propagates through the fiber. Such an
elliptically polarized light can be considered as a superposition of two orthogonal
linearly polarized waves with different amplitudes and having a phase difference of
π /2 or equally as a superposition of a right circularly and a left circularly polarized
light wave with different amplitudes. Considering the latter description, if we now
include non-linearity in the fiber, then the amplitudes of the right circular and left
circular components change with propagation distance according to the following
equations:

∂A+
∂z

= 2

3
iγ

(
|A+|2 + 2 |A−|2

)
A+ (12.74)

and

∂A−
∂z

= 2

3
iγ

(
|A−|2 + 2 |A+|2

)
A− (12.75)

where A+ and A− represent the amplitudes of the right circular and left circular
polarization components of the elliptically polarized wave and γ represents the non-
linear coefficient. Equations (12.74) and (12.75) are derived in Appendix H.
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In order to integrate Eqs. (12.74) and (12.75), we substitute

A+(z) = Ã+(z)eiφ+(z) (12.76)

and

A−(z) = Ã_(z)eiφ_(z) (12.77)

where Ã+, Ã−,φ+,φ− are all real quantities. Substituting Eqs. (12.76) and (12.77)
in Eqs. (12.74) and (12.75) and equating real and imaginary parts on the left-hand
side and the right-hand side, we obtain the following equations:

∂Ã+
∂z

= 0; (12.78)

∂Ã−
∂z

= 0 (12.79)

dφ+
dz

= 2

3
γ (Ã2+ + 2Ã2−) (12.80)

and

dφ−
dz

= 2

3
γ (Ã2− + 2Ã2+) (12.81)

The first two equations give Ã+ = Ã+(0) = constant and Ã− = Ã−(0) = constant
using which Eqs. (12.80) and (12.81) can be solved to obtain

φ+(z) = φ+(0) + 2

3
γ (|A+|2 + 2|A−|2) (12.82)

and

φ−(z) = φ−(0) + 2

3
γ (|A−|2 + 2|A+|2) (12.83)

Thus due to non-linearity, the amplitudes of the right and left circular polariza-
tion components remain the same, while their phase changes in accordance with
the powers of the right and left circular components. Hence the change in phase
difference due to non-linearity after propagation through a length L of the fiber is

�φ(L) = 2

3
γ (|A−|2 − |A+|2) (12.84)

Example 12.11 We first consider the propagation of a linearly polarized light. A linearly polarized light
wave can be written as a superposition of a right circular and a left circular polarization having same
amplitude. Thus in such a case, |A−|2 = |A+|2 and hence �ø(L)=0. Thus the polarization state would
remain unaltered as it propagates through the fiber.



12.6 Mode Locking in Fiber Lasers 317

Example 12.12 We now consider the propagation of a right circularly polarized wave. In such a case, the
wave would remain in the same polarization state and there would again be no change in the polarization
state.

Example 12.13 If we consider an elliptically polarized wave and since an elliptically polarized wave is
a superposition of a right circular and a left circular polarization with unequal amplitude, in this case
the phase difference between the right and left circular components will change with propagation, while
the amplitudes of the two components will remain the same. Since the orientation of the ellipse of the
polarization state (orientation of the major and minor axes of the polarization) depends on the phase
difference between the right and left polarization components, in this case, the non-linearity would result
in a rotation of the orientation of the ellipse. In fact the angle of rotation is given as �φ(L) / 2. Thisis
referred to as non-linear polarization rotation (see Fig. 12.15).

Optical fiber

Low 

High 

No
rotation

Polarization
rotation

Fig. 12.15 Figure showing non-linear polarization rotation

The angle of rotation depends on the difference between the powers in the right
and left circular components which in turn depends on the power in the elliptical
polarization. Thus the higher the power, larger the rotation of the ellipse. It is this
principle that is used in mode locking using non-linear polarization rotation; this
will be discussed in the next section.

12.6.2 Mode Locking Using Non-linear Polarization Rotation

In this section we will describe how non-linear optical rotation can lead to gen-
eration of ultrashort pulses of light from the fiber laser. A typical ultrashort
erbium-doped fiber laser configuration (ring laser) is shown in Fig. 12.16. It consists
of a pump laser operating at 980 nm which is coupled into an erbium-doped fiber
through a WDM coupler. Within the ring there are two polarization controllers and a
Faraday isolator/ polarizer sandwiched in between the two polarization controllers.
By adjusting the polarization controller, it is possible to achieve any output polar-
ization state for any input polarization state. The polarizing isolator ensures that
only one polarization component is able to pass through it and in only one direction.
There is also an output coupler to couple out the laser light from within the ring. The
allowed longitudinal modes in such a cavity are those that have a phase shift which
is an integral multiple of 2π in one complete round-trip. Within the gain bandwidth
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Erbium doped
fiber

WDM coupler
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Polarization
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Polarization
controller 1

Faraday
isolator/polarizer

Pump laser (980 nm)Fig. 12.16 A ring laser
configuration of a fiber laser

of the erbium-doped fiber, there would be several longitudinal modes, while there
would be just one transverse mode configuration, namely the LP01 mode of the fiber.

The pump laser creates population inversion in the fiber. As soon as erbium ions
reach the excited state, some of them undergo spontaneous emission and a fraction
of this is guided by the erbium-doped fiber. Due to the presence of a large number
of longitudinal modes which have in general random phase relationships with each
other, the light intensity within the ring will have fluctuations. If we consider a por-
tion of the light as it starts from the polarizing isolator, it will be linearly polarized
and the polarization controller 1 will change this into some elliptical polarization
state. If we assume that the fibers within the ring maintain the polarization state,
then as it propagates through the ring, it will get amplified and after losing a fraction
of light at the output coupler enters the polarization controller 2. If the polariza-
tion controller 2 is adjusted so that it converts the incoming elliptically polarized
light into a linear state which can pass through the isolator/polarizer, then in such
a case, light wave corresponding to low intensity will have minimal loss in mak-
ing a round-trip. If the gain in the erbium-doped fiber is sufficient to overcome the
losses, then the laser would oscillate in a continuous wave. In such an arrangement,
any high-intensity fluctuation will not be able to survive since the portion having
high-intensity fluctuation would encounter non-linear polarization rotation with the
result that after it emerges from the polarization controller 2, its polarization state
would not match that of the isolator/polarizer and thus would suffer larger losses.

In the above discussion we have not considered the dispersion effects in the
fiber, which are very important in analyzing propagation of very short pulses. Now
consider a short pulse of high-intensity fluctuation arising out of the interference
between various longitudinal modes as it starts from the exit of polarization con-
troller 1. As it passes through the single-mode fiber, it will undergo anomalous
dispersion (since the wavelength is around 1550 nm and standard single-mode fibers
have anomalous dispersion at this wavelength) and get broadened and chirped with
higher frequencies in the leading edge and lower frequencies in the trailing edge. If
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the erbium-doped fiber has normal dispersion, then as this broadened pulse propa-
gates through the erbium-doped fiber, it will get compressed reaching a minimum
pulse width around the middle of the doped fiber. The latter half of the erbium-doped
fiber would again broaden the pulse which will then recompress itself as it propa-
gates through the single-mode fiber before reaching the polarization controller 2. By
adjusting the lengths of the doped fiber and the single-mode fiber, the net dispersion
in the ring can be made zero.

At the same time the pulse will also undergo non-linear polarization rotation.
The orientation of the two polarization controllers can be so adjusted that the high-
intensity portion of the pulse recovers its linear polarization state after exiting from
the polarization controller 2, which will imply low loss for the high-intensity por-
tion. At the same time, the low-intensity portions of the pulse will not undergo
polarization rotation and thus would be partially blocked by the isolator/polarizer
element. Hence the ring will exhibit low losses for high-intensity portion and high
losses for the low-intensity portions. This in turn will ensure that the high-intensity
portions grow in intensity, while the low-intensity portions die out resulting in the
generation of ultrashort pulses. Thus the phenomenon of non-linear polarization
rotation can lead to the generation of ultrashort pulses of light.

The ultimate pulse width of such a pulse would depend on the gain bandwidth
available. If we assume a gain bandwidth of 40 nm, then the pulse width achievable
is about 200 fs. Figure 12.17 shows the output from a typical femtosecond fiber laser
with output pulse width of about 160 fs.

Fig. 12.17 Output of a
femtosecond fiber laser

12.6.3 Semiconductor Saturable Absorbers

The other common technique used for mode locking of fiber lasers is based on sat-
urable absorption. A saturable absorber is a medium whose absorption decreases
with increase of light intensity. A saturable absorber is characterized by its wave-
length range of operation (where it absorbs), its dynamic response (i.e., how fast it
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recovers when the incident intensity changes), and the saturation intensity and flu-
ence (at what intensity it exhibits saturation). Semiconductor materials can absorb
over a broad range of wavelengths (from the visible to the mid-infrared) and can be
used as saturable absorbers.

The SESAM (semiconductor-saturable absorber mirror) is a saturable absorber
that operates in reflection. In the SESAM, a highly reflecting surface is covered by
the saturable absorber. At low intensities, the saturable absorber will absorb most of
the incident light and the reflectivity of the mirror is small. As the incident intensity
increases, the saturable absorber absorbs less and hence the reflectivity will increase.
If such a device is used as a mirror in a laser cavity, then high-intensity portions will
have a higher feedback compared to lower intensity portions, thus favoring high-
intensity pulse formation. In the case of fiber lasers, semiconductor-based saturable
absorbers based on InGaAsP or GaAs are typically used. They can be grown on
top of reflecting multi-layer structures and are then referred to as semiconductor-
saturable absorber mirror (SESAM). Using such saturable absorbing mirrors in the
fiber laser cavity makes the design very compact and stable. The response times
of such saturable absorbers are typically in the sub-picosecond range and require
typically a saturation fluence of Fs = 20 μJ/cm2. Assuming a fiber spot size of
5 mm, this corresponds to a saturation energy of Es = Fs × πw2 = 15 pJ.

Problems

Problem 12.4 Consider an erbium-doped fiber with a core radius of 1.6 μm and a numerical aperture of
0.23.

a) Will the fiber be single moded at 980 and 1550 nm?

b) Calculate the Gaussian spot size of the fiber mode at 980 and 1550 nm.

c) Assuming that the entire core of the fiber is doped with erbium ions with a concentration of 6 × 1024

m–3, obtain the absorption coefficient at 1530, 1550, and 1560 nm. The absorption cross sections at
these wavelengths are 5.27, 2.57 and 1.86 × 10–25 m2.

d) If 10 μW of power at each of these wavelengths is propagated through 5 m of the fiber, what is the
output power at each wavelength?

Solution

a) V value at 980 nm is

V = 2π

λ0
a NA = 2.36

Since for single-moded operation, V < 2.4048, the fiber would be single moded at 980 nm. It will
also be single moded at all wavelengths larger than 980 nm.

b) Gaussian spot sizes are defined in Eq. (12.23). V number at 980 nm is already calculated in part
(a). V number at 1550 nm would be 1.49. We have assumed that the numerical aperture is the same
at both the wavelengths. Substituting in Eq. (12.23) we obtain 	p = 1.26 μm and 	s = 2.04 μm.

c) The absorption coefficient is given by Eq. (12.37) and we need to have the values of the spot size
at the three wavelengths which can be obtained from Eq. (12.23). These are 1.99, 2.04, and 2.06 μm,
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respectively. The corresponding confinement factors of absorption coefficients are 0.476, 0.459, and
0.453, respectively. Hence the absorption coefficients are 1.5, 0.71 and 0.51 m–1, respectively.

d) The output power is given as
Pout = Pin e−αL

Using the values of absorption coefficient at each of the wavelengths, we obtain output
power as 0.027, 0.71, and 1.42 μW, respectively.

Problem 12.5 Consider propagation of pump and signal along the +z-direction. Under steady-state con-
ditions, i.e., d/dt = 0, solve Eqs. (12.11)–(12.14) and show that the normalized population in level E2 is
given as

Ñ2 =
Pp

Pp0
+ σsa

σse + σsa

Ps

Ps0

1 + Pp

Pp0
+ Ps

Ps0

where

Pp0 = hνpNtA

αpτsp
; Ps0 = hνsNtA

αs(1 + ηs)τsp
; ηs = σse

σsa

Problem 12.6 Consider an EDFA operating in steady state with codirectional pumping and signal trav-
elling along the +z-direction. Show that at any value of z within the doped fiber, for amplification, the
pump power at that point must satisfy the following equation:

Pp(z) >
σsa

σse
Pp0

Problem 12.7 Using the results of Problem 12.3, calculate the value of z up to which signal amplification
will take place for a pump wavelength of 980 nm, with an input pump power of 20 mW, A = 7.1 μm2,
αp = 1.15 m–1 Nt = 5.4 × 1024m–3, τ sp = 12 × 10 –3s for signal wavelength of 1550 nm for which

σ sa = 2.545 × 10–25m2, σ se = 3.41 × 10–25m2. [Ans: Pp0= 0.56 mW and Pp (L) > 0.42 mW, which
gives L = 3.3 m.]

Problem 12.8 Consider the propagation of only the pump through a doped fiber. In such a case P s(z) =
0 and Eq. (12.19) can be written as

dnp

np
= − αp

1 + Pp

Pp0

dz = − αp

1 + np

np0

dz

Obtain the solution of the above equation when Pp<< Pp0 and Pp>> Pp0; Pp = np hνp and Pp0 = np0hνp.

[Ans: For Pp<< Pp0, np(z) = np(0)e−αpz ; for Pp>> Pp0, np(z) = np(0) − αpnp0z .]

Problem 12.9 Assuming that an EDFA can be described as a two-level system, write down the equations
describing the time variation of the population of the lower and upper energy levels. Under steady-state
conditions, obtain the threshold pump intensity to achieve amplification at any value of z. Using the table
given below, show that the threshold intensity required to achieve amplification at 1580 nm is lower than
that at 1550 nm

Wavelength (nm) σ a(m2) σ e(m2)

1550 2.55 × 10–25 3.41 × 10–25

1580 0.65 × 10–25 1.13 × 10–25





Chapter 13
Semiconductor Lasers

13.1 Introduction

Semiconductor-based light sources such as light-emitting diodes (LED) and laser
diodes have revolutionized the application of photonic components in science, engi-
neering, and technology. They have become ubiquitous components and are found
in most places, be it markets where they are used as scanners for products, at home
where they are found in CD and DVD readers or laser printers, in communica-
tion systems as sources, etc. Unlike the lasers discussed earlier, laser diodes are
based on semiconductors such as gallium arsenide (GaAs), gallium indium arsenide
(GaInAs), gallium nitride (GaN), etc. They cover the range of wavelengths from the
blue region to the infrared.

As compared to other laser systems, semiconductor lasers have some very attrac-
tive characteristics: they are very small in size, can be directly modulated by varying
the drive current, are very efficient converters of electrical energy to light, can be
designed to emit a broad range of wavelengths, etc.

In this chapter, we will discuss the basic principle of operation of semiconductor
laser diodes and some of their important properties that lead to their widespread
applications.

13.2 Some Basics of Semiconductors

The primary difference between electrons in semiconductors and other laser media
is that in semiconductors, all the electrons occupy and share the entire volume of the
crystal, while in the case of other laser systems such as neodymium:YAG laser and
ruby laser, the lasing atoms are spaced far apart and the electrons are localized to
their respective ions with very little interaction with other ions. Thus in a semicon-
ductor, the quantum mechanical wave functions of all electrons overlap with each
other and according to Pauli exclusion principle cannot occupy the same quantum
state. Thus each electron in the crystal must be associated with a unique quantum
state.

The atoms comprising the semiconductor when isolated have the same elec-
tron configuration. Thus electrons belonging to different atoms may be in the same
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Valence band

Conduction band
Fig. 13.1 Schematic diagram
showing energy band diagram
in a solid; each horizontal
line corresponds to an energy
level and filled circles
represent electrons occupying
the levels

energy state. However, when the atoms are brought close together to form the solid,
interactions among the atoms lead to a splitting of the energy levels and this leads to
the formation of energy bands which are separated by forbidden regions of energy.
Figure 13.1 shows a schematic diagram in which each energy level is represented
by a horizontal line; in each band formed by a group of energy levels, there are as
many sublevels as there are atoms in the crystal. Since the number of atoms is very
large, within each band, the allowed energy values are almost continuous. The high-
est energy band in a solid that is completely filled or occupied by electrons at 0 K is
known as the valence band and the next higher band that is either vacant or partially
occupied is known as the conduction band.

If the energy gap between the valence band and the conduction band is large,
say > 3 eV, then thermal excitation from the valence band to the conduction band is
very rare (thermal energy at room temperature of 300 K is about 25 meV). In such
a case the medium behaves like an insulator. If the gap is smaller (< 2 eV), then
electrons can get thermally excited from the valence band to the conduction band
and they exhibit a finite electrical conductivity at temperatures higher than 0 K,
which increases with temperature. Such media are referred to as semiconductors.

13.2.1 E Versus k

The wave function of an electron in a semiconductor can be written in the form of a
Bloch wave function:

ψ(r) = uk(r) eik.r (13.1)

with uk(r) having the periodicity of the lattice of atoms. The solution given by
Eq. (13.1) is similar to a plane wave with an amplitude function which is not
constant but has space dependence with a specific periodicity. Substituting in the
Schrodinger equation leads to a relationship between the energy value and k within
the allowed energy bands. The application of periodic boundary conditions (i.e., the
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wave function must remain unaltered by a displacement equal to the crystal dimen-
sion along the x-, y-, and z-directions) leads to the condition that k cannot take
arbitrary values but only a prescribed set of values. Thus if Lx, Ly, and Lz are the
dimensions of the crystal along the x-, y-, and z-directions, respectively, then

kx = p
2π

Lx
; ky = q

2π

Ly
; kz = r

2π

Lz
, p, q, r = 1, 2, 3, . . . . (13.2)

where kx, ky, and kz are the components of the vector k.
Usually the energy depends not only on the magnitude of k but also on its

direction. As a simplification, we will assume that the energy depends only on the
magnitude of k of the electron propagation vector and is independent of its direction.
We also assume that Lx = Ly = Lz = L.

Now for a free particle (inside a box), the relationship between the energy E and
k is given as (see, e.g., Chapter 6 of Ghatak and Lokanathan (2004))

E = �
2 k2

2m
= �

2

2m

(
k2

x + k2
y + k2

z

)

where kx, ky, and kz would be given by Eq. (13.2). We assume that the energy in the
conduction band can be written approximately as (see Fig. 13.2)

E = Ec + �
2 k2

2mc
(13.3)

where Ec is the energy at the bottom of the conduction band, k2 = k2
x + k2

y + k2
z , and

mc is referred to as the effective mass of the electron in the conduction band and is
given as

mc = �
2

(
d2E

dk2

)−1

k=0

(13.4)

Equation (13.3) is known as the “parabolic band approximation” and is valid
because the electrons in the conduction band can be assumed to be almost free.

Similarly the relationship of energy to the electron propagation vector k in the
valence band is given as (see Fig. 13.2)

E = Ev − �
2 k2

2mv
(13.5)

where Ev is the energy at the top of the valence band and mv is the effective mass of
the hole in the valence band and is given as

mv = −�
2

(
d2E

dk2

)−1

k=0

(13.6)



326 13 Semiconductor Lasers

E

k

Conduction
band

Valence
band

(a) (b)

2π/L 2π/L

Ec

Ev

k

Ec

Ev

E
Conduction

band

Valence
band

Fig. 13.2 Energy band diagram showing the variation of energy in the conduction band and the
valence band with the k value (momentum) of the electron. The plot corresponds to the parabolic
approximation. Ec is the energy at the bottom of the conduction band and Ev is the energy at the top
of the valence band. The allowed energy states are equally separated in their k values. Open circles
correspond to vacant states (states that are not occupied by electrons) and filled circles correspond
to states occupied by electrons. (a) At 0 K in a semiconductor, all the states in the valence band are
full, while all the states in the conduction band are empty. (b) At a finite temperature, some states
at the top of the valence band are empty, while some states in the bottom of the conduction band
are filled

with E given by Eq. (13.5). The effective mass of the electron in the valence band is
equal to –mv.

Typical values of effective mass of electrons in GaAs are mc = 0.067m0, mv =
0.47m0, where m0 (=9.109 × 10–31 kg) is the rest mass of the electron.

The energy gap between the top of the valence band and the bottom of the
conduction band is the bandgap and is given as

Eg = Ec − Ev (13.7)

Figure 13.2a shows a typical energy band structure for a semiconductor such as
GaAs. The dots correspond to the allowed values of k and hence by Eqs. (13.3) and
(13.5) the allowed values of energy E. The filled circles represent states occupied
by electrons and the open circles represent empty states. Note that the states are
equally spaced along the k-axis, the spacing being 2π /L, but are not equally spaced
in the energy axis. The figure also shows that all states in the valence band are
filled, while all states in the conduction band are empty. This situation corresponds
to an intrinsic semiconductor at T = 0 K. If the temperature rises, then some of
the electrons from the valence band can get excited to the conduction band and we
will have a figure like the one shown in Fig. 13.2b with vacant states (holes) at the
top of the valence band and electron filling states at the bottom of the conduction
band. Note that in such media, the bottom of the conduction band and the top of
the valence band occur at the same value of k. Such semiconductors are referred to
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as direct bandgap semiconductors. In semiconductors such as silicon, the bottom
of the conduction band and the top of the valence band occur for different k values
and such semiconductors are referred to as indirect bandgap semiconductors. Light
emission is highly probable in direct bandgap semiconductors, while in indirect
bandgap semiconductors, light emission is highly improbable.

13.3 Optical Gain in Semiconductors

In this section we will obtain the condition for achieving optical gain in a semicon-
ductor. In order to do this, we need to introduce the concept of density of states and
the occupation probability of electrons in conduction and valence bands.

13.3.1 Density of States

In Appendix E, we have calculated the number of electromagnetic modes per unit
volume lying between wave vector magnitudes k and k+ dk to be given as

p(k) dk = k2

π2
dk (13.8)

An exactly similar analysis can be performed to evaluate the number of available
energy states per unit volume (density of states), with electron wavenumbers lying
between k and k + dk to be again given by Eq. (13.8). In the case of electromagnetic
modes, we had multiplied by a factor of 2 to account for two independent states of
polarization. In the case of electron waves, we have again a factor of 2 to account
for the two independent spin states of the electron.

Using the relationship between energy E and k for electrons lying in the conduc-
tion band and the valence band, we can convert the density of states expression in
terms of k to an expression giving the density of states lying between energy values
E and E + dE by using the fact that p(E)dE = p(k) dk and thus

p(E) = p(k)

(
dE

dk

)−1

(13.9)

Using the relationships between E and k in the conduction band and the valence

band [Eqs. (13.3) and (13.5)], we can evaluate
(

dE
dk

)−1
for the two bands and we

get the following expressions for the density of states lying between E and E + dE
in the conduction band and the valence band as

pc(E) = (2mc)
3/2

2π2�3 (E − Ec)
1/2 , E > Ec (13.10)

and

pv(E) = (2mv)
3/2

2π2�3 (Ev − E)1/2 , E < Ev (13.11)



328 13 Semiconductor Lasers

The density of states is a very important quantity as it specifies the number of energy
states per unit volume that are available for the electrons to occupy.

Note that in the conduction band, as E increases, the density of available energy
states increases. Similarly as E decreases in the valence band, the density of avail-
able energy states increases. However, the density of states alone would not decide
the electron population in the two bands; the probability of occupancy of the states
along with the density of states would finally decide the electron population.

13.3.2 Probability of Occupancy of States

The density of states gives us the states that are available for occupation. In order
to find the density of electrons that are actually occupying those energy states, we
need to know the probability of occupancy of the states. Thus the probability that
a state of energy E is occupied by an electron is given by the Fermi Dirac function
(see, e.g., Saha and Srivastava (1973))

f (E) = 1

e(E−EF)/kBT + 1
(13.12)

where EF is the Fermi energy, T is the absolute temperature, and kB is the Boltzmann
constant. It can be seen from Eq. (13.12) that at T = 0 K, all energy states below EF
are occupied, while all energy states above EF are empty. At higher temperatures, the
probability of having electrons above the Fermi level is finite. In fact at the energy E
= EF, the probability of occupation is exactly 0.5 irrespective of the temperature (in
general, the Fermi energy EF depends on the temperature). Of course it is possible
that there are no energy states at EF in which case there would be no electrons with
this energy.

At thermal equilibrium, the distribution given by Eq. (13.12) describes the elec-
tron occupation probability for the conduction band as well as the valence band.
When thermal equilibrium is disturbed, for example, by passing a current through
a p–n junction or illuminating the semiconductor with a light beam of appropriate
wavelength, then in this state we can define the probability of occupation in the con-
duction band and the valence band by two separate Fermi Dirac distributions, by
defining two quasi-Fermi levels EFc and EFv (see Fig. 13.3):

E

k

EFc

EFv

Fig. 13.3 Quasi-Fermi levels
in the conduction band and
the valence band. At 0 K, all
states below the quasi-Fermi
level in the conduction band
are filled, while all states
above are empty. Similarly all
states above the quasi-Fermi
level in the valence band are
empty, while all states below
the level are filled
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fc(E) = 1

e(E−EFc)/kBT + 1
(13.13)

fv(E) = 1

e(E−EFv)/kBT + 1
(13.14)

In writing Eqs. (13.13) and (13.14), it is assumed that the electrons in the conduction
band and in the valence band come to a quasi-equilibrium within the bands very
rapidly (typically within 10–12 s), while the transitions of electrons between the
conduction band and the valence band take much longer, about 10–9 s.

13.3.3 Interaction with Light

Like in the case of atoms and molecules, electrons in the conduction band and
holes in the valence band can interact with incident photons via three different
mechanisms:

Absorption: An electron in the valence band can absorb a photon and get excited
to the conduction band. Since there are no energy levels within the energy gap, the
incident photon has to have a minimum amount of energy for this process to take
place. If Eg (=Ec – Ev) represents the energy gap, then the photon frequency must be
greater than Eg/h. This process of absorption leads to the generation of electron–hole
pairs (see Fig. 13.4a).

E

k

E2

E1

E

k

E

(a)

(c)

(b)

k

Fig. 13.4 (a) In the absorption process, an electron occupying a state in the valence band can
absorb a photon of appropriate energy and get excited to a vacant state in the conduction band.
(b) In the spontaneous emission process, an electron occupying a state in the conduction band can
emit a photon of appropriate energy and get de-excited to a vacant state in the valence band. (c) In
the case of stimulated emission, an incident photon of appropriate energy can stimulate an electron
to make a transition from the conduction band to the valence band



330 13 Semiconductor Lasers

Spontaneous emission: An electron in the conduction band can combine with
a hole in the valence band (i.e., an electron can jump from the conduction band
to a vacant state in the valence band) and release a photon of energy equal to
the difference in the energies of the electron before and after the emission pro-
cess. The photon frequency would be larger than Eg/h. This process takes place
even in the absence of any photons and is termed spontaneous emission. The pro-
cess of spontaneous emission is random and the emitted photon can appear in any
direction. Light-emitting diodes are based on spontaneous emission arising out of
electron–hole recombination (see Fig. 13.4b).

Stimulated emission: Just like in atomic systems, an incident photon having a fre-
quency greater than Eg/h can induce a de-excitation of electron from the conduction
band to the valence band (electron–hole recombination) and the emitted radiation
is coherent with respect to the incident radiation. It is this process which is used in
semiconductor lasers (see Fig. 13.4c).

Certain conditions are required for the above processes to take place. For absorp-
tion of an incident photon, it is essential that there be an electron available in the
valence band and a vacant state be available in the conduction band at an energy
difference corresponding to the energy of the photon (see Fig. 13.4a). Thus if ν is
the frequency of the incident photon, then an electron having an energy E1 lying
in the valence band can absorb this photon and get excited to a vacant energy state
with energy E2 lying in the conduction band such that

E2 − E1 = hν (13.15)

Similarly for the spontaneous emission of a photon of energy hν, an electron occu-
pying an energy level with energy E2 can jump down to a vacant state (hole) with
energy E1 lying in the valence band and lead to a photon of energy (E2 – E1). This is
also termed electron–hole recombination. For stimulated emission the condition is
the same as spontaneous emission with the emitted light being completely coherent
with the incident light.

Apart from energy conservation described above, the processes of absorption and
emission should also satisfy another condition on the wave vector �k of the electron
before and after the transition and the propagation vector of the photon. In fact the
transition probability depends on a matrix element containing an integral over the
volume of the crystal with an integrand having a term of the form ei(k1−k2+kop).r,
where k1 represents the k corresponding to the electron in the valence band, k2
represents the k of the electron in the conduction band, and kop is the propagation
vector of the optical radiation interacting with the semiconductor. Since the expo-
nential term oscillates rapidly with position r, the integral and hence the transition
probability vanishes unless (k1 − k2 + kop) = 0, i.e., the transition process needs to
satisfy the following equation:

(k1 − k2 − kop) = 0 (13.16)

The above condition can also be interpreted as a condition on the conservation of
momentum in the interaction process. The momentum of the electron belonging to
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the conduction band is �k2 and if it jumps to a state in the valence band with a
momentum �k1, then conservation of momentum implies that

�k2 − �k1 = �kop = hν

c
(13.17)

where the right-hand side of Eq. (13.17) corresponds to the momentum of the emit-
ted photon and we have replaced the vector momentum by the magnitude. The
momentum of the electron in the conduction band and the valence band is much
larger than that of the photon. Typically if a is the interatomic spacing, then the
magnitude of the electron wave vector is comparable to 2π /a, while that of the
photon is of the order of 2π /λ. Since a << λ, the electron possesses much larger
momentum compared to the photon. Hence Eq. (13.17) essentially implies that the
momentum of the electron before and after the transition must be almost equal, i.e.

k2 ≈ k1 (13.18)

This is also referred to as the k-selection rule. In the energy versus momentum
diagram, this process corresponds to almost “vertical transition” (see Fig. 13.4).

13.3.4 Joint Density of States

Let us consider the interaction of a photon of frequency ν with an electron and a
hole with the electron having an energy E2 and lying in the conduction band and a
hole having an energy E1 and lying in the valence band. From energy conservation
we have

E2 − E1 = hν

Now using Eqs. (13.3) and (13.5) we can write

E2 = Ec + �
2 k2

2mc
(13.19)

and

E1 = Ev − �
2 k2

2mv
(13.20)

where we have assumed the k value of the electron and the hole to be the same as
per the k-selection rule. Hence we have

hν = (Ec − Ev) + �
2 k2

2

(
1

mc
+ 1

mv

)

= Eg + �
2 k2

2mr

(13.21)
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where

1

mr
=

(
1

mc
+ 1

mv

)
(13.22)

is referred to as the reduced effective mass.
Equation (13.21) can be rewritten as

k2 = 2mr

�2

(
hν − Eg

)
(13.23)

Using this expression for k2 in Eqs. (13.19) and (13.20) we obtain

E2 = Ec + mr

mc

(
hν − Eg

)
(13.24)

and

E1 = Ev − mr

mv

(
hν − Eg

)
(13.25)

The above equations show that there is a one-to-one correspondence between the
incident photon frequency ν and E2 or ν and E1, i.e., photons of a given frequency
ν will interact primarily with electrons and holes with energy values given by Eqs.
(13.24) and (13.25). Thus we can write

pc(E2)dE2 = p(ν)dν = pv(E1)dE1 (13.26)

where p(ν) is the joint density of states. Using the above equations we can now
calculate the joint density of states as follows:

p(ν) = pc(E2)
dE2

dν
= hmr

mc
pc(E2) (13.27)

pc(E2) is given by Eq. (13.10) with E replaced by E2. Using Eqs. (13.10) and (13.21)
we obtain the following expression for the joint density of states:

p(ν) = (2mr)
3/2

π�2

(
hν − Eg

)1/2 , hν > Eg (13.28)

We could also have used Eq. (13.11) to obtain the same expression for the joint
density of states given by Eq. (13.28). The joint density of states gives us an expres-
sion for the number of states available for an interaction (absorption or emission) to
occur with a photon of energy hν. The quantity p(ν)dν includes all possible pairs
of energy states per unit volume lying in the conduction band and the valence band
with an energy difference between hν and h(ν+dν).
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13.3.5 Absorption and Emission Rates

The rate of absorption of a photon of frequency ν would depend on the following
factors:

• The probability that an electron exists in the valence band at an energy value E1
given by Eq. (13.25) and a vacant energy state exists in the conduction band at an
energy value E2 given by Eq. (13.24).

• The joint density of states at the corresponding energy difference or equivalently
at the corresponding frequency ν.

Let us assume that an electron with an energy E1 lying in the valence band
absorbs a photon and gets excited to a vacant state with an energy E2 (=E1 + hν)
lying in the conduction band. The probability that an electron is available at an
energy E1 in the valence band is obtained from Eq. (13.14) by replacing E by E1:

fv(E1) = 1

e(E1−EFv)/kBT + 1
(13.29)

The probability that a vacant state with energy E2 exists in the conduction band can
be obtained from Eq. (13.13) by noting that since fc(E) is the probability that an
electron with energy E is available in the conduction band, the probability that the
energy state is not occupied (i.e., is vacant) is simply given by (1–fc(E)). Hence the
probability that a vacant state of energy E2 is available in the conduction band is
given as

1 − fc(E2) = 1 − 1

1 + e(E2−EFc)/kBT
= 1

e−(E2−EFc)/kBT + 1
(13.30)

Hence the probability of absorption, which is equal to the probability that an electron
of energy E1 is available in the valence band and simultaneously a vacant state of
energy E2 (= E1 + hν) is available in the conduction band, is given as

fa(ν) = fv(E1) (1 − fc(E2)) (13.31)

Similarly the emission of a photon of energy hν depends on the availability of an
electron of energy E2 in the conduction band and simultaneously a vacant state
(hole) of energy E1 (= E2 – hν) in the valence band; thus the probability of emission
is given as

fe(ν) = fc(E2) (1 − fv(E1)) (13.32)

Let us consider the propagation of a light wave of frequency ν through the semi-
conductor; let φν be the corresponding photon flux (i.e., φν represents the number
of photons crossing per unit time per unit area perpendicular to the direction of
propagation). These photons will induce absorptions from the valence band to the
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conduction band and also stimulate emissions from the conduction band to the
valence band. As discussed earlier, the transitions involving photons between the
conduction and the valence bands take place primarily between electron levels that
have the same value of k; the pairs of levels involved in the transition will be charac-
terized by a specific value of k (see Fig. 13.4a). Due to inherent broadening, a group
of levels with almost the same k value will be taking part in the transitions. This
small range of k values would correspond to a small range of energy values within
the valence and conduction bands.

Now, the rate of absorption of the photons would be proportional to (a) the photon
flux φν , (b) the probability of finding an electron in the valence band at energy E1
and a vacant site in the conduction band with energy E2, and (c) the joint density
of states corresponding to this pair of levels. If we denote Bvc as the proportionality
constant, then we can write the rate of absorption of incident photons as

Ra dν′ = Bvcφνp(ν′)fv(E1) (1 − fc(E2)) dν′ (13.33)

where the range of frequency dν′ is included to account for the fact that a small
range of energy states around the k value would take part in the absorption process.

Similarly the rate of stimulated emission by an electron making a transition from
the conduction band to the valence band is given as

Re dν′ = Bcvφνp(ν′)fc(E2) (1 − fv(E1)) dν′ (13.34)

where Bcv is the constant of proportionality.
Exactly similar to the case of atomic systems where we found B12 = B21, i.e.,

the constant of proportionality determining the absorption and stimulated emission
was the same, here too the absorption and emission probabilities are the same, i.e.,
Bvc = Bcv.

13.3.6 Light Amplification

For light amplification we would require the rate of stimulated emission to exceed
the rate of absorption. Thus from Eqs. (13.33) and (13.34) it follows that light
amplification will take place if

fc(E2) (1 − fv(E1)) > fv(E1) (1 − fc(E2))

Substituting the expressions for fc(E2) and fv(E1) we get

EFc − EFv > E2 − E1 = hν (13.35)

The above condition implies that for optical amplification by the semiconductor,
the energy difference between the quasi-Fermi levels in the conduction band and
the valence band must be larger than the energy of the photon. The positions of
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the quasi-Fermi levels in the conduction band and the valence band depend on the
quasi-equilibrium population of electrons and holes in the conduction band and the
valence band, respectively (see Fig. 13.3). This in turn would depend on the creation
of electron and hole populations in the conduction band and the valence band by
means of mechanisms like an external current source or an external illumination.
The condition given by Eq. (13.35) is equivalent to the requirement of population
inversion to achieve optical amplification in an atomic system.

The condition given by Eq. (13.35) can be understood graphically by considering
the case at T = 0 K. If we assume that electrons are injected from the valence
band into the conduction band, then since we are assuming T = 0 K, the energy
states from Ec to Efc will be filled in the conduction band and similarly the energy
states from Ev to Efv will be empty (see Fig. 13.3). Now consider a photon with
an energy lying between Eg and Efc – Efv to be incident. Due to the distribution
of electrons in the conduction and the valence bands, there would be no electron
in the valence band that would be capable of absorbing the photon, while electrons
in the conduction band can be stimulated to make a transition to the valence band
and with a consequent stimulated emission process leading to amplification. In this
example, photons with frequency lying between Eg/h and (EFc –EFv)/h will undergo
amplification, while photons with frequency greater than (EFc –EFv)/h will undergo
absorption. What would happen to photons with frequency less than Eg/h?

Although our discussion of Eq. (13.35) has been carried out at T = 0 K, the
condition given by Eq. (13.35) is valid at all temperatures. We recall from Chapter
4 that the rate of absorption in the case of an atomic system is given as

Ra = σaφνN1 (13.36)

where N1 is the density of atoms in the lower energy state, φν is the photon flux, and
σ a is the absorption cross section given as

σa = c2

8πn2
0ν

2tsp
g(ν) (13.37)

where n0 is the refractive index of the medium, tsp is the spontaneous lifetime of the
upper level, and g(ν) is the lineshape function. For a given pair of nondegenerate
energy levels, the absorption cross section σ a and the emission cross section σ e are
equal.

In the case of semiconductors, the quantity N1 gets replaced by the product of the
joint density of states and the probability of finding an electron in the valence band
and simultaneously a vacant state in the conduction band with appropriate energy.
The constant of proportionality Bvc is then given as

Bvc = c2

8πn2
0ν

2τr
g(ν) (13.38)



336 13 Semiconductor Lasers

where the spontaneous lifetime in the case of the atomic system gets replaced by τ r,
the radiative recombination time of the electron.

Thus Eq. (13.33) becomes

Ra dν′ = c2

8πn2
0ν

′2τr
g(ν′)φνp(ν′)fv(E1) (1 − fc(E2)) dν′

and the total rate of absorption is given as

Rab =
∫

Ra dν′ =
∫

c2

8πn2
0ν

′2τr
g(ν′)φνp(ν′)fv(E1) (1 − fc(E2)) dν′ (13.39)

The line-broadening mechanism in semiconductors that leads to the lineshape func-
tion g(ν) is primarily due to photon–phonon collisions. Typical collision times τ c
are about 10–12 s and thus this leads to a linewidth of about 300 GHz. This is
very narrow compared to the frequency width of the other terms within the inte-
gral in Eq. (13.39) and hence for all practical purposes, g(ν′) = δ(ν′ − ν). Thus we
obtain

Rab = c2

8πn2
0ν

2τr
φνp(ν)fv(E1) (1 − fc(E2)) (13.40)

which gives the total rate of absorption of photons incident at frequency ν and flux
φν . In Eq. (13.40), E2 and E1 are given by Eqs. (13.24) and (13.25), respectively,
with E2 –E1 = hν.

Similarly the rate of stimulated emission due to the incident photons is
given as

Rst = c2

8πn2
0ν

2τr
φνp(ν)fc(E2) (1 − fv(E1)) (13.41)

The rate of spontaneous emission depends only on the density of states and the
occupation probability that an electron exists in the conduction band and a hole
exists at the required energy in the valence band. Hence we can write for the rate of
spontaneous emissions as

Rsp = 1

τr
p(ν)fc(E2) (1 − fv(E1)) (13.42)

13.4 Gain Coefficient

We will now calculate the gain coefficient of a semiconductor under quasi-
equilibrium. The procedure is exactly the same as was followed in Chapter 4. As
light propagates through the medium, it induces absorption and stimulated emis-
sions. Thus if we consider a plane P1 at z and another plane P2 at z + dz with z
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+ dz

S

Fig. 13.5 Intensity of light
entering the plane at z is I(z),
while that at z + dz is I(z+dz)

being the direction of propagation of the light wave (see Fig. 13.5) and if the area of
cross section is S, then the net number of photons entering the volume between P1
and P2 per unit time is given as

[φν(z) − φν(z + dz)] S = −dφν
dz

S dz (13.43)

This must be equal to the net rate of absorption of photons within the volume
which is given as

(Rab − Rst)S dz

Substituting the values of Rab and Rst from Eqs. (13.40) and (13.41), respectively,
and using Eq. (13.43) we obtain

dφν
dz

= − c2

8πn2
0ν

2τr
φνp(ν)

[
fv(E1) − fc(E2)

]
(13.44)

Thus if

E2 − E1 > EFc − EFv

then the right-hand side of Eq. (13.44) is negative and there is net absorption by the
semiconductor. On the other hand if

E2 − E1 < EFc − EFv

then the right-hand side of Eq. (13.44) becomes positive and in such a case, there
would be net amplification. The gain coefficient is given as

γν = c2

8πn2
0ν

2τr
p(ν)

[
fc(E2) − fv(E1)

]
(13.45)

Hence for amplification the condition specified by Eq. (13.35) needs to be satisfied
and this is usually accomplished by passing enough current through a p–n junction
so as to create appropriate electron–hole population in the depletion region. This
will be discussed in Section 13.4.1.
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We can substitute for p(ν), fv(E1), and fc(E2) from Eqs. (13.28), (13.29), and
(13.30), respectively, to obtain the following expression for the gain coefficient:

γν = c2

8πn2
0ν

2τr

(2mr)
3/2

π�2

(
hν − Eg

)1/2
[

1

e(E2−EFc)/kBT + 1
− 1

e(E1−EFv)/kBT + 1

]

(13.46)

When electrons are injected into the conduction band from the valence band by
an external mechanism such as a current or illumination, the electrons in the con-
duction band and the valence band come to quasi-equilibrium within the bands.
Depending on the corresponding values of the quasi-Fermi energy values, for a
given photon energy or frequency, the quantity γν will be positive or negative cor-
responding to amplification or attenuation. In order to find this out, we first need to
estimate the electron population in the conduction band and the hole population in
the valence band from which we can estimate the energy of the quasi-Fermi levels
in the conduction band and the valence band. Knowing this, it is then possible to
calculate the frequency dependence of gain in the semiconductor from Eq. (13.46)
knowing all the other parameters. Note that the energy values E2 and E1 are related
to the frequency through Eqs. (13.24) and (13.25).

Figure 13.6 shows a schematic variation of p(ν), fc(E2) – fv(E1), and their prod-
uct as a function of photon energy (=E2–E1) for a typical case. It can be seen that
the product p(ν) [fc(E2) – fv(E1)] is positive only in a certain range of photon ener-
gies. In this range of photon energies, the semiconductor will exhibit gain and the
figure shows a typical spectral variation of gain. If the electron–hole population is
increased, then the quasi-Fermi levels would move up in the conduction band and
down in the valence band, thus shifting the gain curve up and also the peak would
shift to larger photon energies.
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Fig. 13.7 Variation of gain
coefficient with photon
energy for different electron
concentrations for a GaAs
device. (Source: Yariv (1977),
reprinted with permission)

Figure 13.7 shows a typical plot of the gain coefficient versus the energy of
the photon for different injected carrier density in a GaAs device. Negative gain
corresponds to absorption. Thus we see that for a given carrier concentration, the
semiconductor exhibits gain over a band of photon energies or wavelengths and
as the carrier concentration increases, the peak gain coefficient increases and so
does the bandwidth over which gain is available. Also as the carrier concentration
increases, the frequency at which the gain peaks increases, i.e., the wavelength at
which the gain peaks will decrease. The increase in the bandwidth is primarily due
to the shifting of the quasi-Fermi levels from the band edges with the increase in
the electron–hole concentration. Note that the energy values of 1.424 and 1.50 eV
correspond to photon wavelengths of 870 and 827 nm, respectively.

Figure 13.8 shows the variation of the peak gain coefficient with the carrier con-
centration. For a typical range of gain values, the curve can be approximated by a
linear curve and we can express the gain coefficient as

γ = σ (nc − ntr) (13.47)

where ntr is the carrier concentration for transparency when the semiconduc-
tor becomes transparent, i.e., γ = α = 0. The figure gives the required carrier
concentration to achieve a certain gain coefficient.

Example 13.1 If we consider a semiconductor in overall thermal equilibrium at T = 0 K, then the two
quasi-Fermi levels coincide with the Fermi level and if this level is within the energy gap, fv(E1)=1 and
fc(E2)=0 and we would have from Eq. (13.46)
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γν = −αν = − c2

8πn2
0ν

2τr

(2mr)
3/2

π�2

(
hν − Eg

)1/2 , hν > Eg (13.48)

Here αν represents the absorption coefficient. The above expression gives an approximate expression
for the absorption coefficient and its frequency dependence.

Example 13.2 Consider GaAs for which mc = 0.067m0, mv= 0.46m0 giving mr = 0.059m0. The
bandgap energy is Eg = 1.424 eV, which corresponds to a frequency ν = ν0 = Eg/h = 3.43 ×
1014 Hz or a free space wavelength of 875 nm. The values of other constants are n0 = 3.64 and
τ r = 4.6 ns. Thus the absorption coefficient at 800 nm is approximately 8000 cm–1 showing a very
strong absorption. If we take 10 μm of such a crystal, the fraction of light transmitted would be about
3.3 × 10–4.

13.4.1 Electron–Hole Population and Quasi-Fermi Levels

When electrons are injected into the conduction band, they can make spontaneous
transitions to the valence band if there are vacant states and in the process emit radi-
ation. This is the radiation emitted by a light-emitting diode. In order to obtain this
we need to calculate the electron and hole populations in the conduction band and
the valence band, respectively. The electron population density in the conduction
band between energy values E2 and E2 + dE2 is given as

dnc = pc(E2)fc(E2)dE2 (13.49)
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where pc(E2) is the density of states in the conduction band and fc(E2) is the occu-
pation probability in the conduction band. Hence the total electron density in the
conduction band is

nc =
∫

dnc =
∞∫

Ec

pc(E2)fc(E2)dE2 (13.50)

Using Eqs. (13.10) and (13.13), we obtain

nc = (2mc)
3/2

2π2�3

∞∫

Ec

(E2 − Ec)
1/2 1

e(E2−EFc)/kBT + 1
dE2 (13.51)

The above equation relates the electron concentration to the quasi-Fermi energy EFc.
In a similar fashion the hole concentration in the valence band and the quasi-

Fermi energy in the valence band are related as

nv = (2mv)
3/2

2π2�3

Ev∫

−∞
(Ev − E1)

1/2 1

e−(E1−EFv)/kBT + 1
dE1 (13.52)

The integrals in Eqs. (13.51) and (13.52) have to be evaluated numerically since
they cannot be analytically evaluated. A useful approximate expression relating the
carrier concentration and quasi-Fermi energies is the Joyce–Dixon approximation
given as

EFc = Ec + kBT

[
ln

(
n

Nc

)
+ 1√

8

n

Nc

]
;

EFv = Ev − kBT

[
ln

(
p

Nv

)
+ 1√

8

p

Nv

] (13.53)

where n is the electron concentration and p is the hole concentration and

Nc = 2

(
mckBT

2π�2

)3/2
;

Nv = 2

(
mvkBT

2π�2

)3/2
(13.54)

Figure 13.9 shows a normalized plot of (EFc – Ec)/kBT versus n/Nc as given by
Eq. (13.53). The variation of (Ev–EFv)/kBT with p/Nv will be the same. From
Eq. (13.53) it follows that for n << Nc, p << Np, we can neglect the second terms in
the brackets and obtain an approximate form
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n = Nc exp

(
EFc − Ec

kBT

)
; p = Nv exp

(
Ev − EFv

kBT

)
(13.55)

which are referred to as Boltzmann approximations.
As an example we consider GaAs for which mc = 0.0678m0, mv = 0.47m0. Thus

at 300 K, we obtain

Nc ≈ 4.3 × 1023 m−3 and Nv ≈ 8 × 1024 m−3

Equation (13.53) can be used to estimate the values of EFc and EFv for a given
electron concentration and hole concentration or conversely estimate the electron
and hole concentrations required for a given value of the quasi-Fermi energies.

Example 13.3 We now obtain the electron concentration required for transparency condition in GaAs for
photon energy corresponding to the bandgap at 300 K.

For transparency, γν = 0 and Eq. (13.48) gives us

hν = E2 − E1 = EFc − EFv

We can use Eq. (13.53) for relating EFc and EFv to the electron and hole concentrations. For injection of
equal number of electrons and holes as is the case with semiconductor lasers, we have

hν = Ec − Ev + kBT

[
ln

(
n

Nc

)
+ 1√

8

n

Nc
+ ln

(
p

Nv

)
+ 1√

8

p

Nv

]

Since Ec–Ev=Eg=hν and n = p, the condition implies

ln

(
n2

NcNv

)
+ n√

8

(
1

Nc
+ 1

Nv

)
= 0
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which is a transcendental equation for electron density. Using the values of Nc and Nv obtained earlier
for T = 300 K, we can solve the above equation and obtain

n = p ≈ 1.2 × 1024 m−3

At this electron population density in the conduction band and an equal hole population in the valence
band, the semiconductor is transparent for a photon energy equal to the bandgap energy. For photon
energies larger than this (wavelengths shorter than corresponding to this wavelength), the semiconductor
would be absorbing.

13.4.2 Gain in a Forward-Biased p–n Junction

Consider a p–n junction formed between a p-doped and an n-doped semiconductor
as shown in Fig. 13.10a. Because of different carrier concentrations of electrons and
holes in the p and n regions, electrons from the n region diffuse into the p region
and holes from the p region diffuse into the n region. The diffusion of these carriers
across the junction leads to a built-in potential difference between the positively
charged immobile ions in the n side and the negatively charge immobile ions in
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eVb

+–
–
–

p

(a)

n+
+
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e(Vb-V)

p n

Ec

EFc

EFvEv

(b)p+
n+
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Ec
EFc

EFv

Ev

(c)

Fig. 13.10 (a) Unbiased p–n junction and (b) forward-biased p–n junction. When the p–n junction
is forward biased, we can create a situation satisfying Eq. (13.35) in the depletion region and thus
achieve optical amplification over a certain range of photon energies. (c) Forward-biased, heavily
doped p–n junction
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the p side of the junction. This built-in potential Vb lowers the potential energy of
the electrons in the n side with respect to the potential energy of electrons in the p
side, which is represented by “bending of energy bands” near the p–n junction as
shown in Fig. 13.10a. Note that the Fermi levels on both sides of the p–n junction
are aligned at the same energy value. This is necessary because, in the absence of
any applied external energy source, the charge neutrality in the material requires that
the probability of finding an electron should be the same everywhere and therefore
only one Fermi function should be described the carrier distribution. In this case,
there will be no net current in the medium.

If we forward bias the p–n junction by means of an external supply voltage V,
then the potential energy of electrons in the n side increases and the band moves up.
The band offset decreases and the Fermi levels separate out as shown in Fig. 13.10b.
The increased potential energy of the carriers brings them into the depletion region,
where they recombine constituting a forward current through the junction. The
forward biasing leads to injection of electrons and holes into the junction region,
where they recombine generating photons via spontaneous emission process. This
phenomenon is also referred to as injection luminescence. Note that even though the
separation between the quasi-Fermi levels is less than the bandgap energy Eg, there
would be light emission because of a forward current through the device. This is the
basis of operation of light-emitting diodes (LEDs) and the device therefore does not
have any threshold value for the forward current to start emitting light. However, for
amplification by stimulated emission, as we saw earlier, the quasi-Fermi levels have
to satisfy Eq. (13.35).

It is usually not possible to satisfy Eq. (13.35) in p–n junctions formed between
moderately doped p- and n-type semiconductors. However, if one starts with a p–n
junction formed by highly doped p- and n-type semiconductors, in which the Fermi
levels are located inside the respective bands, application of a strong bias can lead to
the gain condition (see Fig. 13.10c). Indeed this is the basis of operation of injection
laser diode.

As mentioned earlier, a laser diode consists basically of a forward biased p–n
junction of a suitably doped direct bandgap semiconductor material. Two ends of
the substrate chip are cleaved to form mirror-like end faces, while the other two
ends are saw cut so that the optical resonator is formed in the direction of the
cleaved ends only. The large refractive index difference at the semiconductor–air
interface provides a reflectance of about 30%, which is good enough to sustain laser
oscillations in most semiconductor diodes. This is primarily due to the large gain
coefficients that are available in semiconductors (see Fig. 13.7).

At steady state, the rate at which excess carriers are being injected into the
junction must equal the rate of recombination. At threshold this rate is just the
spontaneous recombination rate which is given as

Rsp = �nAd

τr
(13.56)

where �n is the excess carrier density, A is the area of cross section, and d is the
thickness of the gain region. If J represents the current density, then the rate of
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injection is JA
/

e, where e is the electron charge. Thus we get

J = �ned

τr
(13.57)

Typically d ∼0.1 μm (for heterostructure lasers) and τ r ∼4 ns. Thus the threshold
current density is

Jth ≈ 808 A/cm2

Note that it is due to the small value of d in heterostructure lasers that we obtain a
much smaller threshold current density compared to a homojunction laser wherein
there is no potential step for the electrons and they diffuse away leading to a much
larger value of d.

13.4.3 Laser Oscillation

We have seen earlier that the gain is approximately proportional to the excess carrier
concentration [see Eq. (13.47)]. Thus we can write for the gain variation with the
excess carrier concentration

γp = αa

(
�n

�ntr
− 1

)
(13.58)

where αa is the absorption coefficient of the material in the absence of current injec-
tion, �n is the excess carrier concentration in the active region due to the injection
current, and �ntr is the excess carrier concentration corresponding to the condition
when the gain becomes zero. At this value the medium neither absorbs nor provides
gain and becomes transparent. Thus this is referred to as the transparency current
density.

Using Eq. (13.57), Eq. (13.58) can be written in an alternative form in terms of
current:

γp = αa

(
J

Jtr
− 1

)
= αa

(
I

Itr
− 1

)
(13.59)

where the subscript tr refers to transparency condition. Thus the medium will exhibit
gain only if the current is greater than Itr. However, this may not be sufficient for
laser oscillation since for laser oscillation the gain should be able to compensate all
losses in the cavity.

If α represents the intrinsic loss coefficient in the medium (primarily due to scat-
tering) and if R1 and R2 represent the reflectivities of the ends of the cavity, then the
total loss coefficient is given as [see Section 4.4]

αtot = α − 1

2L
ln(R1R2) (13.60)

where L is the length of the cavity. In order for lasing action to begin, the gain
provided by the active medium must equal the loss. The gain depends on the position
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of the quasi-Fermi levels in the conduction band and the valence band which in
turn depends on the electron–hole concentration. By injecting an external current,
electron–hole population is created in the lasing region; thus a minimum current
would be required for the laser action to begin.

A minimum value of excess carrier concentration �n is needed for laser action,
and for a given current, �n depends inversely on the thickness of the active region.
Typical values of d in a homojunction (a junction made up of same semiconduc-
tor material on both sides of the junction) are a micrometer or more depending
on the dopant concentration on the p and n sides. The corresponding values for
transparency current densities and hence threshold current density for laser oscilla-
tion are of the order of kiloampere per square centimeter. If d can be reduced to a
much smaller value, then this would lead to a smaller value for the threshold current
density. This is achieved in practice by using heterostructures.

13.4.4 Heterostructure Lasers

The basic laser structure shown in Fig. 13.10 is referred to as homojunction laser and
was invented in 1962. In this device the p–n junction is formed by using the same
semiconductor material on both sides of the junction. In such lasers the carriers drift
from the junction region and occupy a larger volume and also the generated light is
not confined, thus leading to reduced overlap between the electron and holes and the
light radiation. Lasing in these devices can be achieved only in pulsed mode since
the threshold current densities are in the range of a few amperes to tens of amperes.
Such large currents can easily lead to catastrophic damage of the laser if operated
continuously.

The basic configuration of the heterostructure laser is shown in Fig. 13.11. In
this a thin layer of a suitable semiconductor material (such as GaAs) is sandwiched
between two layers of a different semiconductor exhibiting a larger bandgap (such
as AlxGa1–xAs). Thus inner layer forms two heterojunctions at the two interfaces
between the semiconductors. The bandgap energy of AlxGa1–xAs depends on the
value of x and for x <0.42, the bandgap energy can be approximated as

Eg = (1.424 + 1.266x) eV (13.61)

p-AlGaAs

n-AlGaAs

GaAs

Fig. 13.11 A
double-heterostructure laser
with a lower bandgap
semiconductor (GaAs)
surrounded on either side by a
higher bandgap
semiconductor (AlGaAs)
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The increase in bandwidth with x is distributed unequally between the conduction
band and the valence band according to the following approximate expressions:

�Ec ≈ 0.67 × 1.266x

�Ev ≈ 0.33 × 1.266x
(13.62)

Since the inner layer made up of GaAs has a smaller bandgap than the surrounding
semiconducting materials on either side, carriers injected into the inner layer get
confined due to the potential barrier for electrons and holes present at the two junc-
tions. Interestingly the larger bandgap semiconductor also has a smaller refractive
index than does the smaller bandgap semiconductor (�n ∼–0.7x) and thus the inner
layer of the semiconductor forms an optical waveguide confining the emitted radia-
tion by the phenomenon of total internal reflection. The confinement of carriers by
potential step and the confinement of optical radiation by refractive index steps lead
to a drastic reduction in the threshold current density for laser operation in these
devices.

Consider a heterostructure formed by a thin layer of GaAs sandwiched between
two layers of AlxGa1–xAs as shown in Fig. 13.12. The bandgap of GaAs is 1.424 eV
at room temperature, whereas that of AlxGa1–xAs increases from 1.424 eV for x = 0
with increasing fraction of Al as discussed earlier. Figure 13.12a shows the energy
band diagram corresponding to the three regions when they are not in contact.
Figure 13.12b and c shows the energy band diagrams of the composite before and
after forward biasing, respectively. As can be seen from the figure, the potential bar-
riers at the two junctions restrict the flow of electrons from the n-AlGaAs to the
p-AlGaAs and of holes from the p-AlGaAs to the n-AlGaAs layers. This results in a
large concentration of accumulated charge carriers in the thin GaAs layer and leads
to a quasi-equilibrium with quasi-Fermi levels which satisfy the condition for gain
as given by Eq. (13.35), thus leading to amplification of light. Note that the energy
of the emitted photons will be around the bandgap energy of GaAs, which is smaller
than that of AlGaAs, and therefore these photons will not be absorbed by the two
AlGaAs layers as they have higher bandgaps.

As mentioned earlier, the lower bandgap GaAs has a higher refractive index than
does AlGaAs, a typical index difference of about 0.2 around 800 nm wavelength.
Thus the thin GaAs layer behaves like an optical waveguide confining the optical
radiation within the region (see Fig. 13.13).

Due to the planar geometry of the thin GaAs layer, this corresponds to a planar
optical waveguide. Although the structure will confine the light wave in the direction
perpendicular to the junctions, there would be diffraction in the plane of the junc-
tion. Because of this spreading, the threshold currents can be large and the emission
pattern may also not be stable with variation in current. To overcome these effects
laterally confined semiconductor lasers have been developed. In these lasers in addi-
tion to confinement perpendicular to the junction, optical guidance is also provided
in the plane of the junction by having a lower refractive index region surrounding
the active region.
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(a)

(b)

(c)

Fig. 13.12 Energy band
diagram corresponding to the
three regions of a
double-heterostructure laser
(a) when they are not in
contact, (b) when they are in
contact with no bias, and (c)
under forward bias
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Fig. 13.13 The double heterostructure leads to optical confinement due to the formation of an
optical waveguide. The lower bandgap material has a higher refractive index compared to the
higher bandgap material. n(x) represents the refractive index profile and ψ(x) represents the electric
field profile of the propagating mode
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There are two types of lateral confinement; one is gain guidance and the other
is index guidance. In the case of gain-guided diode lasers, the current injected into
the device is restricted over a narrow stripe (see Fig. 13.14a). This can be accom-
plished by coating the uppermost semiconductor layer with an insulator such as
silicon dioxide leaving a narrow opening for current injection. Due to this kind of
injection, the carrier density is largest just under the opening and decreases as we
move away from it in a direction parallel to the junction. Because of this, the gain
is also a function of lateral position and this gain variation leads to confinement of
optical energy in the lateral direction as well. Such lasers are hence referred to as
gain-guided lasers. Since the gain distribution changes with change in current, the
transverse mode profile of the laser is not very stable with changing current.

Dielectricp-InGaAsP

p-InP

InGaAsPn-InP

n+-InP (Substrate)

(a) (b)

n- InP

p- InP

n- InPInGaAsP (active)

Contact

Fig. 13.14 (a) Gain-guided and (b) buried heterostructure index-guided laser structures

In the index-guided lasers, a real refractive index step is provided in the lat-
eral direction as well. Figure 13.14b shows a typical buried heterostructure laser
in which strong lateral confinement is provided by having a lower index region
surrounding the gain region. In such BH lasers, the active region has typical dimen-
sions of 0.1 μm × 1 μm with typical refractive index steps of 0.2–0.3. Because of
the strong optical confinement provided by the refractive index steps, the output is a
single transverse mode and is very stable with changes in current. Most fiber-optic
communication systems employ BH lasers.

The combined effects of carrier confinement, optical confinement, and lower
absorption losses lead to low threshold current in the range of tens of milliamperes
and high overall efficiency of the laser.

13.5 Quantum Well Lasers

Quantum well semiconductor lasers consist of a very thin (about 10 nm or so) active
semiconductor layer such as GaAs sandwiched between layers of a higher bandgap
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semiconductor such as AlGaAs. The active region may be made of only one quan-
tum well resulting in what is referred to as a single quantum well laser or consist
of multiple quantum wells separated by enough distance to avoid mutual interaction
and electron tunneling, resulting in multiple quantum well lasers. The low bandgap
semiconductor surrounded by higher bandgap semiconductor leads to the formation
of a potential well that can trap electrons and holes. Also since the dimensions of the
well are comparable to the de Broglie wavelength of electrons, quantum size effects
become very important and this has a strong influence on the allowed energy values
of electrons and holes in the semiconductor.

In order to calculate the density of states in a quantum well, we consider a GaAs
quantum well of thickness Lz (typically 10 nm) in the z-direction surrounded by
AlGaAs which has a higher bandgap (see Fig. 13.15). In order to estimate the
allowed energy values of electrons in the conduction band and the valence band,
we will approximate the potential well as an infinite potential well. In view of the
assumed infinite potential barriers at z = 0 and Lz, the electron wave function should
become zero at z = 0 and Lz. Thus the z-dependence of the electron wave function
would be of the form (see Chapter 3)

sin

(
pπz

Lz

)
, p = 1, 2, 3, . . . .

Since the width of the semiconductor along the x- and y-directions assumed to
be Lx and Ly is much greater than the electron de Broglie wavelength, we can write
the complete electron wave function as

ψ(r) = uk⊥ (r⊥)eik⊥.r⊥sin

(
pπz

Lz

)
(13.63)

where k⊥ = x̂kx + ŷky is the transverse component of the k of the electron,
r⊥ = x̂x + ŷy is the transverse position vector, and uk⊥ (r⊥) is the Bloch wave func-

E

AlGaAs AlGaAs
GaAs

~ 10 nm

Fig. 13.15 The structure of a
quantum well laser in which a
thin (10 nm) GaAs layer is
sandwiched between two
higher bandgap materials.
The width of the well is
comparable to the de Broglie
wavelength of the electron
and quantum effects become
very important
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tion having the periodicity of the lattice in the x–y plane. Using periodic boundary
conditions along x- and y-directions, as before, gives us

kx = 2πm

Lx
, m = ±1, ±2, ±3, . . .

ky = 2πn

Ly
, n = ±1, ±2, ±3, . . . .

(13.64)

In the earlier discussion on bulk semiconductors, in the parabolic approximation,
the energy was taken to be proportional to k2 = k2

x +k2
y +k2

z . In the case of quantum
well, the existence of boundaries at z = 0 and Lz modifies this relationship.

If we consider an infinite potential well of width Lz, then the allowed energy
values in the conduction band due to motion along the z-direction are

Ẽ1 = Ec + p2 π2
�

2

2mcL2
z

, p = 1, 2, 3, . . . (13.65)

where mc is the effective mass of the hole in the conduction band and Ec is the
energy at the bottom of the conduction band. Thus unlike the case of bulk semi-
conductor, the lowest allowed energy for the electrons in the conduction band of a
quantum well is (corresponding to p = 1, kx = 0, ky = 0)

Ẽ1 = Ec + π2
�

2

2mcL2
z

where the lowest energy value in the conduction band is Ec. Since the electrons
are free to move in the plane perpendicular to the quantum well (i.e., along the x–y
plane), the contribution to the energy from this motion would be

Ẽ2 = �
2k2

x

2mc
+ �

2k2
y

2mc
= �

2k2⊥
2mc

(13.66)

Thus the total energy of the electron in the conduction band would be

E = Ec + �
2k2⊥

2mc
+ p2 π2

�
2

2mcL2
z

(13.67)

In order to calculate the density of states, i.e., the number of energy states per unit
volume lying between energy values E and E+dE, let us first consider electrons
lying in the lowest energy level corresponding to p = 1. Thus in this case

E = Ec +
�

2
(

k2
x + k2

y

)

2mc
+ π2

�
2

2mcL2
z

(13.68)

The different states corresponding to the allowed values of kx and ky are given by
Eq. (13.64); this can be represented as points in the kx–ky space (see Fig. 13.16). The
area of each rectangle is 4π2

/
LxLy. In the kx–ky space, the area occupied between
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kx

ky

kz

p =1

Fig. 13.16 Due to the
quantum well along the
z-direction, the allowed
values of kz are quantized.
For a given value of kz
(corresponding to p = 1) in
the figure, kx and ky can take
on discrete values. Each filled
circle corresponds to an
available value of (kx, ky, kz)

circles of radii k⊥ =
√

k2
x + k2

y and k⊥ + dk⊥ =
√

(kx + dkx)2 + (ky + dky)2 is

π (k⊥ + dk⊥)2 − πk2⊥ ≈ 2πk⊥ dk⊥

Thus the number of states within the area would be

N(k⊥)dk⊥ = 2πk⊥ dk⊥
4π2

/
LxLy

× 2 = LxLyk⊥ dk⊥
π

(13.69)

where the factor 2 accounts for the two possible spin states of the electron. Now
using Eq. (13.67) we have

dE = �
2

2mc
2k⊥ dk⊥ (13.70)

Using this relationship in Eq. (13.69) we obtain

N(E)dE = N(k⊥)dk⊥ = mc

π�2
LxLy dE (13.71)

Hence the number of allowed energy states per unit area between E and E + dE
would be

p(E)dE = mc

π�2
dE (13.72)

Since the width of the quantum well is Lz, the density of states, i.e., the number
of energy states per unit volume per unit energy interval in the conduction band,
would be

pc(E) = mc

π�2Lz
(13.73)

Note that unlike the bulk case, here in the case of quantum well, the density of state
is independent of energy. Of course we are considering the states lying in the lowest
energy value of the quantum well.
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Fig. 13.17 Variation of
density of states with energy
for the bulk case (dotted line)
and the quantum well (solid
line)

As the energy increases, we will reach the second allowed energy level corre-
sponding to p = 2 in Eq. (13.67). The state p = 2 would have the same energy
density as given by Eq. (13.73) and now since the electrons can occupy either the
p = 1 state or the p = 2 state, the density of states for the energy value lying between
p = 1 and p = 2 would be 2mc/π�

2Lz. Every time the energy value increases to
accommodate the next higher value of p, the density of states would increase by
mc/π�

2Lz. This is shown in Fig. 13.17 along with a comparison with the density
of states for a bulk semiconductor. The density of states function has a jump every
time the energy equals a discrete energy level of the quantum well.

In an identical fashion we can obtain the density of states in the valence band for
the energy lying between the p = 1 and p = 2 quantum levels in the valence band;
this would be given as

pv(E) = mv

π�2Lz
(13.74)

where mv is the effective mass of the hole in the valence band. Just like in the
conduction band, every time the energy value crosses an energy level corresponding
to the quantum well in the valence band, the density of states would increase by
mv/π�

2Lz. Note that in the case of valence band, the energy of the electrons is
given as

E = Ev −
�

2
(

k2
x + k2

y

)

2mv
− p2 π2

�
2

2mvL2
z

, p = 1, 2, 3, . . . (13.75)

13.5.1 Joint Density of States

Just like for the bulk case, we can define a joint density of states between the conduc-
tion band and the valence band. Let E1 and E2 represent the energy of the electron in
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the valence band and the conduction band, respectively, that interacts with a photon
of energy hν. Now

E1 = Ev − �
2k2⊥

2mv
− π2

�
2

2mvL2
z

(13.76)

E2 = Ec + �
2k2⊥

2mc
+ π2

�
2

2mcL2
z

(13.77)

where we have assumed that the energy in the conduction and the valence band lies
between the energy values corresponding to p = 1 and 2 states of the quantum well.
Since the photon energy is hν, we have

hν = E2 − E1 = Eg + �
2k2⊥

2mr
+ π2

�
2

2mrL2
z

(13.78)

where mr is the reduced effective electron mass defined by Eq. (13.22). Thus

k2⊥ = 2mr

�2

(
hν − Eg − π2

�
2

2mrL2
z

)
(13.79)

Using this value of k⊥ in Eqs. (13.76) and (13.77), we obtain

E2 = Ec + mr

mc

(
hν − Eg

)
;

E1 = Ev − mr

mv

(
hν − Eg

) (13.80)

Now, the joint density of states is the density of states capable of interacting with a
photon of frequency ν and is given as

p(ν)dν = p(E2)dE2

which can be written as

p(ν) = p(E2)
dE2

dν
(13.81)

If we replace E by E2 in Eq. (13.73), we would obtain p(E2). Using Eqs. (13.73),
(13.80), and (13.81), we obtain

p(ν) = 4πmr

hLz
(13.82)

Note that unlike the bulk case, the joint density of states is constant in the range of
energies below the second discrete level of the quantum well.
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Proceeding in a manner identical to the bulk case, we obtain the following
expression for the gain coefficient:

γν = c2mr

2n2
0ν

2τrhLz

[
fc(E2) − fv(E1)

]
(13.83)

Since the maximum value of the bracketed term is unity, the maximum gain
coefficient that is achievable in a quantum well is given as

γ0 = c2mr

2n2
0ν

2τrhLz
(13.84)

For typical values λ0 = 850 nm, mr = 5.37 × 10–32 kg, n0 = 3.64, τ r = 4.6 ns, and
Lz = 10 nm, we obtain a gain coefficient of 4.8 × 104 m–1.

We rewrite Eq. (13.57) relating the current density and the electron concentra-
tion as

J = �ned

τr

The quantum well laser requires similar electron density in the conduction band and
holes in the valence band as the heterostructure since the relationships of gain are
very similar and the density of states in the quantum well is also very close to that
of heterostructures (see Fig. 13.17). At the same time, since the value of d for a
quantum well is much smaller than that for a heterostructure, the threshold current
density is much smaller in the case of quantum well. If the width of the quantum
well is 10 nm and that of the heterostructure is about 100 nm, the current density
required for a given gain should be about 10 times smaller in the case of quantum
well laser. This is usually not so since although the electrons and holes are confined
to within the quantum well width of 10 nm, the optical radiation extends much
beyond the quantum well. In fact the well of 10 nm width cannot efficiently guide
the optical wave since the corresponding V (normalized frequency – see Chapter 16)
number comes out to be about 0.2 assuming an index step of 0.3 and a well width
of 10 nm. At this value of V, the optical field will spread deep into the surrounding
AlGaAs region, thus reducing significantly the overlap of the optical fields with the
electrons and holes. This would result in a drastic reduction of gain.

In order to overcome this, a separate structure for optical confinement (separate
confinement heterostructure, SCH) is provided outside the quantum well. In partic-
ular graded refractive index SCH (GRIN-SCH), structures have provided some of
the lowest threshold current densities. Figure 13.18 shows two examples in which
surrounding the quantum well of width about 10 nm, two inner barrier layers of
typical thickness of about 0.1 μm each are provided which are then surrounded by
thick (about 1 μm) cladding layers. The inner barrier layers are chosen to have a
refractive index higher than the cladding layers so that they can provide for opti-
cal confinement. For example, the refractive index of GaAs is about 3.6, that of
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Fig. 13.18 Schematic of
energy variation of the
conduction band and the
valence band edge with
position in separate
confinement heterostructures

Al0.2Ga0.8As is about 3.48, and that of Al0.6Ga0.4As is 3.23. The optical waveguide
formed by the barrier layers has a V value of 1.8 and thus can provide for good
optical guidance. Of course even in this case the optical wave almost fills the barrier
region of width 0.1 μm and the quantum well occupies only a portion, 10 nm within
the barrier region. The overlap between the optical mode and the electrons and holes
would determine the reduction in threshold current density for achieving a gain.

Typically the required threshold current for lasing in the case of quantum well
lasers is about a factor of 4 lower than that of heterostructure lasers. Thus if a het-
erostructure laser requires threshold currents of about 20 mA for laser action, a
quantum well laser would have a threshold of a few milliamperes.

Figure 13.19 shows a typical current versus output power characteristic of a
quantum well laser.
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Fig. 13.19 Variation of laser
output power with current in
the case of a quantum well
laser at different
temperatures. (Source: Liu
et al. (2005))

13.6 Materials

Most semiconductor lasers operate either in the 0.8–0.9 μm or in the 1–1.7 μm
wavelength region. Since the wavelength of emission is determined by the bandgap,
different semiconductor materials are used for the two different wavelength regions.
Lasers operating in the 0.8–0.9 μm spectral region are based on gallium arsenide. By
replacing a fraction of gallium atoms by aluminum, the bandgap can be increased.
Thus one can form heterojunctions by proper combinations of GaAlAs and GaAs,
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which can provide both carrier confinement and optical wave guidance. For exam-
ple, the bandgap of GaAs is 1.424 eV and that of Ga0.7A10.3As is ≈1.798 eV; the
corresponding refractive index difference is about 0.19. Thus by surrounding the
GaAs layer on either side with Ga0.7A10.3As, one can achieve confinement of both
carriers and light waves. For lasers operating in the 1.0–1.7 μm wavelength band,
the semiconductor material is InP with gallium and arsenic used to replace frac-
tions of indium and phosphorous, respectively, to give lasers based on InGaAsP.
The above wavelength region is extremely important in connection with fiber-optic
communication since silica-based optical fibers exhibit both low loss and very high
bandwidth around 1.55 μm (see Chapter 16). Recently lasers have been realized
in a large bandgap material like GaN (Eg ∼3.44 eV). Due to the large bandgap,
such lasers emit in the blue region of the spectrum and have wide applications in
high-density data storage, displays, etc.

13.7 Laser Diode Characteristics

Figure 13.20 shows a typical light output versus current characteristic of a GaAs
semiconductor laser. As can be seen, the output optical power starts to increase
very rapidly around a threshold current, which essentially represents the beginning
of laser oscillation. Below the threshold, the emission is primarily by spontaneous
transitions and the emission is broadband and incoherent. On crossing the threshold,
the emission becomes coherent, the linewidth reduces significantly, and the output
power increases rapidly with the current.

An important property specifying a laser diode is the slope efficiency which is the
slope of the light output versus current characteristic above the threshold region. Let
dI represent the increase in forward current and let dP represent the corresponding
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Fig. 13.20 Output power
versus current characteristic
of a typical laser diode. Dots
represent experimental data
and lines represent simulation
results. (Source: Li and
Piprek (2000), reprinted with
permission)
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increase in the output laser power. For a current increase of dI, the number of elec-
trons being injected into the laser per unit time is dI/e, where e is the electron charge.
Similarly a laser output power increase of dP would correspond to an increase in
the output photon flux of dP/hν. We define the external quantum efficiency of the
laser as

ηD = dP
/

hν

dI
/

e
= e

hν

dP

dI
(13.85)

Typical continuous wave operating laser diodes have an ηD lying between 0.25 and
0.6. The quantity dP/dI is referred to as slope efficiency and is specified in milliwatts
per milliampere.

For digital modulation of the laser diodes, they are biased at slightly above the
threshold and on this bias is superposed current pulses corresponding to the digi-
tal data. Thus the electrical signal can be directly encoded into an optical signal.
Biasing the laser diode near the threshold helps in turning on and off the laser at
high speeds. For analog modulation the laser is usually biased above threshold and
the analog signal is fed in the form of current variations. Lasers with modulation
bandwidths greater than 6 GHz are commercially available.

An important characteristic of a laser diode is the spectral width of emission.
In the case of laser diodes the gain bandwidth is usually quite large and thus the
laser can oscillate in multiple longitudinal modes giving a multi-mode output (see
Fig. 13.21).

In a multi-longitudinal mode laser, the output spectrum consists of a series of
wavelengths. The oscillating wavelengths are determined by the cavity resonances
given as

ν = q
c

2n(ν)L
, q = 1, 2, 3, . . . (13.86)

Fig. 13.21 Output spectrum
of a typical semiconductor
laser. The cavity is made up
of two end mirrors and such
lasers are referred to as
Fabry–Perot lasers
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where n(ν) is the refractive index of the semiconductor material at a frequency ν. If
ν and ν +�ν correspond to adjacent oscillating frequencies, then we can write

ν = q
c

2n(ν)L

ν + �ν = (q + 1)
c

2n(ν + �ν)L

(13.87)

For �ν << ν, we can make a Taylor series expansion of n(ν+�ν) and obtain the
following expression for the intermodal spacing:

�ν = c

2n(ν)L

(
1 + ν

n

dn

dν

)−1

(13.88)

Typically n = 3.6, L = 250 μm, ν
n

dn
dν ≈ 0.38, and the intermode spacing comes out

to be about 125 GHz. At a wavelength of 850 nm, this corresponds to a wavelength
spacing of 0.3 nm. If the gain bandwidth is 3 nm, then there would be about 10
different frequencies at the output of the laser.

In some applications (for example, in fiber-optic communications) one would
like to have single longitudinal mode oscillation of the laser so that its spectral
width is �λ<< 0.1 nm.

One can achieve this either by using a cleaved coupled cavity configuration or by
using distributed feedback. In the former case, the laser device essentially consists of
two independent cavities which are optically coupled. The mode which can oscillate
is the one which is a mode of either of the cavities and also has the lowest loss.

The second concept uses a periodic variation of the thickness of the layer sur-
rounding the active region of the laser. Periodic variation of the thickness of the
layer results in a feedback which is very strongly wavelength dependent. Such a
periodic variation essentially acts as a Bragg reflector which is highly wavelength
selective. Thus it is possible to ensure that only one of the longitudinal modes has a
feedback and can oscillate. The periodic variation can be provided at the two ends
of the active region and this results in what is known as distributed Bragg reflector
lasers (see Fig. 13.22). If the feedback is provided throughout the cavity, then this is
referred to as distributed feedback laser (see Fig. 13.23). The end facets are usually
coated with anti-reflection films to avoid any formation of cavity.

p-type

n-type Active region

Bragg grating

Fig. 13.22 Distributed Bragg reflector (DBR) laser
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Fig. 13.23 Distributed feedback (DFB) laser

Fig. 13.24 A typical
spectrum of a DFB laser.
Note the very sharp spectrum.
(Source: Eblana Photonics
White Paper “Discrete Mode
Laser Diodes with Ultra
Narrow Linewidth Emission”;
http://www.eblanaphotonics.
com/)

If neff represents the effective index of the propagating mode in the waveguide
forming the laser, then for efficient Bragg reflection we must have (see, e.g., Ghatak
and Thyagarajan, 1998)

2
2π

λB
neff = 2π

�
(13.89)

where � is the period of the grating and λB satisfying the above equation is known
as the Bragg wavelength. If the periodic modulation with the period given by
Eq. (13.89) is provided, then the reflectivity is strongest for the wavelength λB and
the periodic structure acts like a highly wavelength-selective mirror. For a wave-
length of 1550 nm, assuming neff = 3.5, the required period comes out to be 221 nm.
Gratings with short period are usually fabricated using holographic techniques.

For wavelengths away from λB the reflectivity drops very sharply and thus such
gratings act as highly wavelength-selective mirrors.

Figure 13.24 shows a typical spectrum from a DFB laser operating at the telecom-
munication wavelength. Such lasers can provide extremely narrow emission lines
and are the preferred lasers in fiber-optic communications.

13.8 Vertical Cavity Surface-Emitting Lasers (VCSELs)

The laser structures that we have discussed are all edge-emitting lasers wherein
the laser beam comes out of the edge of the substrate. There is a new class of lasers
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Fig. 13.25 A schematic of
VCSEL structure

called vertical cavity surface-emitting lasers (VCSELs) pronounced as “vicsels” that
emit light vertically from the surface. The laser cavity is vertical instead of being
horizontal as in conventional laser diodes. Figure 13.25 shows a typical structure of
a VCSEL wherein the active region is sandwiched between two multi-layer mirrors
which could contain as many as many as 120 mirror layers. The multi-layer mirrors
act like a Bragg grating and reflect only a narrow range of wavelengths back into
the cavity causing emission at a single wavelength. Compared to conventional edge-
emitting laser diodes it is possible to realize an array or VCSELs on a surface and
they are also very small in size and have threshold currents below 1 mA.

Since the length of the laser cavity is very small (a few tens of nanometers), the
inter mode spacing is very large and thus single-mode oscillation is easily possible.
At the same time the gain per round-trip is also much reduced leading to increased
threshold current densities. With very high reflectivity (>99.8 %) dielectric mirrors
on both sides of the cavity, very high reflection into the cavity can be achieved
resulting in very small losses in the cavity, thus reducing the threshold current sig-
nificantly. Figure 13.26 shows a photograph of the multi-layer structure of a VCSEL
and Fig. 13.27 shows a typical output power versus current characteristic.

Fig. 13.26 Photograph
showing the multi-layer
structure of a VCSEL
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Fig. 13.27 Typical laser
power versus current
characteristic of a VCSEL.
Note the very low threshold
current. (Source: Ref.
http://www.vertilas.com/pdf/
Telecom_rev20.pdf)

Problems

Problem 13.1 Consider absorption of photons by GaAs whose bandgap energy is 1.424 eV. The effective
electron masses in the conduction band and the valence band are 0.067m0 and 0.46m0, respectively,
where m0 is the electron rest mass. If the incident photon wavelength is 850 nm, obtain the energy of the
electron and hole generated by the absorption process.

Problem 13.2 Consider GaAs and assume that electrons are excited from the valence band to the con-
duction band to produce an electron concentration of 1.6 × 1024m–3 in the conduction band. Obtain EFc
and EFv and calculate the wavelength range over which gain can be achieved.

Problem 13.3 Consider GaAs which has a bandgap of 1.424 eV. If photons of energy 1.46 eV are inci-
dent, obtain the energy values of the electrons in the conduction band and the valence band with which
the photons will interact. Also obtain the corresponding k values.

Problem 13.4 Assuming a carrier density of 2 × 1024m–3, in the conduction band in GaAs, obtain the
gain coefficient of an optical wave at an energy of 1.46 eV.

Problem 13.5 Show that the joint density of states for a bulk semiconductor given by Eq. (13.28 ) and
that for a quantum well given by Eq. (13.82) become equal at the quantized energy values corresponding
to electrons and holes in the lowest level.

Problem 13.6 Consider the interaction of photons at a wavelength of 800 nm interacting with GaAs.
Obtain the energy values of electrons in the conduction band and the valence band taking part in the
interaction process.



Chapter 14
Optical Parametric Oscillators

14.1 Introduction

The lasers that we have discussed until now are based on amplification brought
about by stimulated emission. In this scheme, population inversion is achieved
between two energy levels of an atomic system and this inversion is used for ampli-
fication of light. In contrast an optical parametric oscillator (OPO) is a coherent
source of light like a laser but uses the process of optical amplification brought
about by the phenomenon of non-linear interaction in a crystal. Since no energy lev-
els are involved in the amplification process it is possible to tune these lasers over a
very broad range of wavelengths. In OPOs the pump is another laser which is used
to pump a non-linear crystal within a resonant cavity and the non-linear interaction
in the crystal leads to the conversion of the pump laser into two waves (called signal
and idler) at new wavelengths. For energy conservation the sum of the frequencies
of signal and idler must equal the frequency of the pump. Thus the signal and idler
have wavelengths that are larger than the wavelength of the pump. The main attrac-
tion in an OPO is the possibility of achieving a tunable output. Thus starting from
a laser which emits in the visible spectrum, using an OPO, it is possible to gener-
ate a tunable output in the infrared region of the spectrum (see Fig. 14.1). OPOs
offer a very wide tuning range and are a primary laser source in many applications
such as spectroscopy and optical amplification requiring tunability of the laser. The
first successful operation of an OPO was demonstrated by Giordmaine and Miller
in 1965 and ever since optical parametric processes have generated a great deal of
interest and have become a powerful technique to obtain coherent sources of light
with wide tunability from UV to mid-IR.

In this chapter we will discuss the process of amplification and oscillation using
the non-linear characteristic of a crystal.

14.2 Optical Non-linearity

Usually the optical property of a medium is independent of the electric field ampli-
tude of the propagating light wave. However, at large optical power densities, matter
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Fig. 14.1 Ultrawide tunability offered by optical parametric oscillators. (a) Frequency-doubled
idler, (b) signal, and (c) idler power versus wavelength. Left, periodically poled lithium niobate
(PPLN) with and without etalon; right, periodically poled potassium titanyl phosphate (PPKTP)
without etalon. Shaded areas correspond to the measured powers and the curves to conservative
estimates of power expected. (After Ströβner et al. (2002); © 2002 OSA)

behaves in a non-linear fashion and we come across new optical phenomena such
as second harmonic generation (SHG), sum and difference frequency generation,
intensity-dependent refractive index and mixing of various frequencies. In SHG, an
incident light beam at frequency ω interacts with the medium and generates a new
light wave at frequency 2ω. Thus a red light beam (∼ 800 nm) entering the crystal
can get converted into a blue beam (∼400 nm) as it comes out of the crystal (see
Fig. 18.4). In sum and difference frequency generation, two incident beams at fre-
quencies ω1 and ω2 mix with each other producing sum (ω1 + ω2) and difference
(ω1 – ω2) frequencies at the output. In parametric fluorescence an input light wave
at a frequency ωp splits spontaneously into light waves at new frequencies ωs and ωi
satisfying the energy conservation condition: ωp = ωs +ωi. We will now discuss the
non-linear effect that leads to this phenomenon and detail how this process can be
used for optical amplification and to realize a coherent source of tunable radiation.

Non-linear Polarization
In a linear medium, the electric polarization P is assumed to be a linear function

of the electric field E :

P = ε0χ E (14.1)

where for simplicity a scalar relation has been written. The quantity χ is termed
as linear dielectric susceptibility. At high optical intensities (which corresponds to
high electric fields), all media behave in a non-linear fashion. Thus Eq. (14.1) gets
modified to1

1In actual practice electric field and polarization are vector quantities and Eq. (14.2) is a simplified
scalar representation. The ith component of the polarization is given by

Pi = ε0χijEj + ε0χ
(2)
ijk EjEk + ε0χ

(3)
ijklEjEkEl + . . .

where χij, χ
(2)
ijk , χ (3)

ijkl, etc. are tensors and repeated indices on the right-hand side are summed over
1 to 3. For a given non-linear medium and given components of the electric fields of the interacting
waves, the component equation can be used to obtain Eq. (14.2) where χ(2) will be an effective
second-order susceptibility.
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P = ε0(χ E + χ (2) E 2 + χ (3) E 3 + . . .) (14.2)

where χ (2), χ (3), ... are higher order susceptibilities giving rise to the non-linear
terms. The second term on the right-hand side is responsible for second har-
monic generation (SHG), sum and difference frequency generation, parametric
interactions, etc., while the third term is responsible for third harmonic generation,
intensity-dependent refractive index, self-phase modulation, four wave mixing, etc.
For media possessing inversion symmetry, χ (2) is zero and there is no second-order
non-linear effect. Thus silica optical fibers, which form the heart of today’s com-
munication networks, do not posses the second-order non-linearity. Second-order
non-linearity is exhibited by crystals which do not possess a center of inversion sym-
metry like lithium niobate (LiNbO3), lithium tantalite (LiTaO3), potassium titanyl
phosphate (KTiPO4), and potassium dihydrogen phosphate (KH2PO4). The para-
metric oscillator uses the second-order non-linearity for optical amplification and
oscillation.

Since the parametric process mixes waves at frequencies ωp, ωS, and ωi, we first
write for the electric field distributions of the waves at these frequencies as

Ep = 1

2

(
Epei(ωpt−kpz ) + c.c

)
(14.3)

Es = 1

2

(
Ese

i(ωst−ksz ) + c.c
)

(14.4)

Ei = 1

2

(
Eie

i(ωit−kiz ) + c.c
)

(14.5)

where each of the waves is assumed to be a plane wave; Ep, Es, and Ei are
the complex electric field amplitudes of the waves; and kp, ks, and ki represent
the propagation constants of the waves at the pump, signal, and idler frequen-
cies, respectively. In the above expressions c.c. implies complex conjugate of the
earlier term. Since we are dealing with non-linear effects it is important to con-
sider real electric fields and hence the complex conjugate term in each of the
expressions.

At any point in the medium the existence of waves at these frequencies implies
that the total electric field at any point will be given by

E = Ep + Es + Ei (14.6)

This electric field will generate a non-linear polarization given by

Pnl = 2ε0dE2 = 2ε0d(Ep + Es + Ei)
2 (14.7)

where we have replaced χ (2) by 2d. We now substitute the expressions for the
electric fields at the pump, signal, and idler frequencies in Eq. (14.7), collect
the non-linear polarization terms that have frequencies of ωp, ωs and ωi and
obtain
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P (ωp)
nl = 1

2

(
P

(ωp)
nl ei(ωpt−(ks+ki)z) + c.c.

)
(14.8)

P (ωs)
nl = 1

2

(
P(ωs)

nl ei(ωst−(kp−ki)z) + c.c.
)

(14.9)

P (ωi)
nl = 1

2

(
P(ωi)

nl ei(ωit−(kp−ks)z) + c.c.
)

(14.10)

where

P
(ωp)
nl = 2ε0dEsEi (14.11)

P(ωs)
nl = 2ε0dEpE∗

i (14.12)

P(ωt)
nl = 2ε0dEp E∗

s (14.13)

It is the non-linear polarization that is responsible for the conversion of power from
one frequency to the other.

In order to study how the non-linear polarization affects the generation and prop-
agation of new frequencies we need to first derive the wave equation describing the
propagation of the waves. We first recall Maxwell’s equations from Chapter 2

∇.D = 0

∇.B = 0

∇ × E = −∂B
∂t

∇ × H = ∂D
∂t

(14.14)

where we have assumed absence of any free charges and free currents, and E ,D,B
and H represent, respectively, the electric field, electric displacement vector, mag-
netic field, and magnetic H vector. The displacement vector and the electric field
vector are related through the following equation:

D = ε0E + P = ε0E + P1 + Pnl = εE + Pnl (14.15)

where the polarization has been split into a linear part �Pl and a non-linear part �Pnl
and ε represents the linear dielectric permittivity of the medium.

Taking curl of the third equation in Eq. (14.14) we get

∇ × ∇ × E = −∂∇ × B
∂t

= −μ0
∂2 D
∂t2

or

∇(∇.E) − ∇2E = −μ0 ε
∂2 E
∂t2

− μ0
∂2 Pnl

∂t2
(14.16)
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Assuming E is transverse to the propagation direction we can put ∇.E = 0 and thus
Eq. (14.16) becomes

∇2E − μ0 ε
∂2 E
∂t2

= μ0
∂2 Pnl

∂t2
(14.17)

which is the wave equation describing the propagation of the electromagnetic wave
in the presence of the non-linear polarization.

In order to simplify the analysis we will assume that the directions of the electric
field and the non-linear polarization are the same and consider the following scalar
wave equation instead of the vector wave equation described by Eq. (14.17):

∇2E − μ0 ε
∂2E
∂t2

= μ0
∂2Pnl

∂t2
(14.18)

The above equation is the wave equation describing the propagation of each of the
frequencies through the non-linear medium. Thus the propagation of the wave at
frequency ωp is described by the following equation:

∇2Ep − μ0 ε(ωp)
∂2Ep

∂t2
= μ0

∂2P (ωp)
nl

∂t2
(14.19)

where ε(ωp) is the dielectric permittivity of the medium at the pump frequency ωp.
Similarly the electric fields corresponding to the signal at frequency ωs and idler
at frequency ωi will satisfy the corresponding wave equations with Ep replaced by
Es and Ei, ε(ωp) replaced by ε(ωs) and ε(ωi) and Pnl(ωp) replaced by Pnl(ωS) and
Pnl(ωi) respectively.

In the presence of non-linearity, the electric field amplitudes Ep, Es, and Ei will
become functions of z, the propagation direction of the waves. Also since we are
considering plane waves, the amplitudes are independent of the transverse coordi-
nates x and y. Substituting for Ep and Pnl(ωp) from Eqs. (14.3) and (14.8), we obtain

∂2

∂z2

(
Epei(ωpt−kpz) + c.c

)
− μ0ε(ωp)

∂2
(
Epei(ωpt−kpz) + c.c

)

∂t2

= μ0

∂2
(

P
(ωp)
nl ei(ωpt−(ks+ki)z + c.c.

)

∂t2

Opening up the differentials and equating the coefficients of eiωpt on both sides we
obtain

(
d2Ep

dz2
− 2ikp

dEp

dz
− k2

pEp

)
+ μ0ω

2
pε(ωp)Ep = −μ0ω

2
p2ε0dEsEie

i[kp−(ks+ki)]z

(14.20)
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Assuming that the fractional change in the electric field amplitudes of the waves is
negligible in distances of the order of wavelengths, we can neglect the second dif-
ferential in Eq. (14.20). Also the propagation constant and the frequency are related
through the following equation:

k2
p = μ0ω

2
pε(ωp) (14.21)

Thus Eq. (14.20) becomes

dEp

dz
= −iκpEsEie

i�kz (14.22)

where

κp = ωpd

cnp
(14.23)

where we have used the fact that

kp = ωp

c
np (14.24)

where np is the refractive index of the medium at the frequency ωp and

�k = kp − (ks + ki) (14.25)

is referred to as the phase mismatch.
Equation (14.22) describes the change in the amplitude of the electric field of

the pump due to non-linear effects as it propagates through the medium. In a sim-
ilar fashion we can obtain the equations describing the change of the electric field
amplitudes of the signal and idler waves which are given by

dEs

dz
= −iκsEpE∗

i e−i�kz (14.26)

dEi

dz
= −iκiEpE∗

s e−i�kz (14.27)

where

κs = ωsd

cns
(14.28)

κi = ωid

cni
(14.29)

with ns and ni representing the refractive indices of the medium at the signal
frequency ωs and idler frequency ω, respectively.

Equations (14.22), (14.26), and (14.27) represent the three coupled equations
describing the evolution of pump, signal, and idler wave amplitudes as they
propagate through the non-linear medium.
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14.3 Parametric Amplification

In this section we will show that it is possible to amplify the signal wave through
the non-linear interaction with the pump wave. In order to show this we consider
the incidence of a strong pump wave at frequency ωp and a weak signal wave at
frequency ωs on a non-linear medium (see Fig. 14.2). We will assume the pump to
be strong and neglect the changes in the pump amplitude due to the non-linear inter-
action. Thus we assume the electric field Ep(z) = Ep(0) at the pump frequency to be
a constant and independent of z. This is also referred to as the no pump depletion
approximation. Since we are assuming Ep to be a constant, we need to solve only
the equations for the signal and idler [Eqs. (14.26) and (14.27)]. Using the fact that
Ep is a constant we differentiate Eq. (14.26) with respect to z and get

d2Es

dz2
= −iκsEp

(
dE∗

i

dz
− i�k E∗

i

)
e−i�kz

which using Eq. (14.27) becomes

d2Es

dz2
= −iκsEp

(
iκiE

∗
pEse

i�kz − i�k

(
1

−iκsEp
ei�kz dEs

dz

))
e−i�kz

= −i�k
dEs

dz
+ κsκi

∣∣Ep
∣∣2 Es

or

d2Es

dz2
+ i�k

dEs

dz
− κsκi

∣∣Ep
∣∣2 Es = 0 (14.30)

The above equation can be easily solved to obtain the following solution

Es(z) = (
Ae�z + Be−�z) e−i�kz/2 (14.31)

where

� =
(

g2 − (�k)2

4

)1/2

(14.32)

g2 = κsκi
∣∣Ep

∣∣2 (14.33)

Strong pump at ωp

Nonlinear crystal

Weak signal at ωs

Fig. 14.2 In a parametric process, a pump at the frequency wp interacts with a signal at a frequency
ws in a non-linear crystal and amplifies the signal wave if certain conditions are satisfied. This
amplification process can be used to achieve a source of coherent radiation
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Substituting the solution for Es(z) in Eq. (14.26) we obtain the solution for the
variation of Ei with z:

Ei(z) = i

κsEp

({
� − i

�k

2

}
Ae�z −

{
� + i

�k

2

}
Be−�z

)
e−i�kz/2 (14.34)

Equations (14.31) and (14.34) describe the evolution of the signal and idler waves
as they propagate through the non-linear medium. The constants A and B are to be
determined from the initial conditions at z = 0.

From the solutions we can make the following observations:
1. From Eq. (14.31) we see that for signal amplification � should be real (if � is

imaginary the solution would be oscillatory rather than amplifying) which implies
that g > �k

2 . This implies

∣∣Ep
∣∣2 >

(�k)2

4κsκ i
(14.35)

which gives the threshold value of pump electric field required to achieve amplifi-
cation for a given �k. From this we can obtain the threshold value for the intensity
of the pump wave for amplification as

Ip,th = np

2cμ0

∣∣Ep
∣∣2 = np

2cμ0

(�k)2

4κsκ i
(14.36)

Substituting the values of κs and κi in the above equation gives us the threshold
intensity for amplification as

Ip,th = cnpnsni

8ωsωid2μ0
(�k)2 (14.37)

This implies that for a given value of �k, there is a minimum value of pump intensity
to achieve amplification of the signal. If �k = 0 then the signal will get amplified
for any non-zero value of pump intensity.

2. Maximum gain is achieved when �k = 0 which implies

kp = (ks + ki) (14.38)

The above condition is referred to as the phase matching condition. We shall discuss
about this condition in more detail later. This equation can be written in terms of
frequencies as

ωpnp = ωsns + ωini (14.39)

As we have seen earlier, the frequencies ωp, ωs, and ωi also have to satisfy the
following equation:

ωp = ωs + ωi (14.40)

For a given ωp, Eqs. (14.39) and (14.40) give a unique set of signal and idler
frequencies that would take part in the non-linear interaction process.
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Another way of looking at the parametric process is to identify Eq. (14.40)
as the energy conservation equation corresponding to the splitting of a photon of
energy �ωp into two photons, a signal photon of energy �ωs and an idler photon
of energy �ωi. Similarly Eq. (14.38) can be interpreted as the momentum con-
servation equation for the photon splitting process. Thus in this picture the phase
matching condition is nothing but the conservation of momentum for the non-linear
process.

It may happen that for a given pump wavelength and a material, it may not be
possible to satisfy the two conditions [Eqs. (14.39) and (14.40)] simultaneously. In
this case the parametric amplification will not take place. In order to satisfy the two
equations simultaneously different techniques of phase matching have been devel-
oped which includes the birefringence phase matching and quasi phase matching. In
birefringence phase matching the anisotropic property of the crystal is used to satisfy
the two conditions simultaneously. For example, lithium niobate is an anisotropic
(uniaxial) crystal with two refractive indices, namely ordinary refractive index and
extraordinary refractive index. In such a crystal for any given direction of propa-
gation, the propagation constant of the wave depends on the polarization state of
the light wave. By choosing appropriate polarization states of the pump, signal, and
idler it is possible to satisfy the two conditions simultaneously. Figure 14.3 shows
the dependence of the signal and idler wavelengths as a function of direction of
propagation (with respect to a special direction called the optic axis) in the crystal
for a pump wavelength of 1064 nm (Nd:YAG laser). For a given direction of propa-
gation if we draw a vertical line at the corresponding angle of propagation, the line
would intersect the curve at two points corresponding to the signal (lower wave-
length) and the idler wavelengths. As the angle is varied, the pair of signal and idler
wavelengths satisfying the two conditions varies. This gives the device tunability.
Also note that below a certain angle there are no solutions to the simultaneous equa-
tions implying that this process will not take place for those propagation directions
for the given pump wavelength.
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Fig. 14.3 Phase matching
curve for LiNbO3 for a pump
wavelength of 1064 nm.
[Source:
http://www2.foi.se/rapp/
foir0536.pdf]
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3. We now assume that phase matching condition is satisfied and obtain the gain
coefficient of the amplifier. Also let us assume that at z = 0, the signal and idler
fields are given by

Es(z = 0) = Es0

Ei(z = 0) = Ei0
(14.41)

Using these conditions in Eqs. (14.31) and (14.34), we can obtain the values of the
constants A and B. Thus we get the solutions as

Es(z) = Es0 cosh gz − i

√
ωsni

ωins
E∗

i0 sinh gz (14.42)

E∗
i (z) = i

√
ωins

ωsni
Es0 sinh gz + E∗

i0 cosh gz (14.43)

In obtaining these equation we have assumed the pump field to be real. The above
two equations can be written in a matrix form as

(
Es(z)
E∗

i (z)

)
=

⎛
⎝ cosh gz −i

√
ωsni
ωins

sinh gz

i
√

ωins
ωsni

sinh gz cosh gz

⎞
⎠

(
Es0
E∗

i0

)
(14.44)

Equation (14.44) describes the evolution of the signal and idler electric field
amplitudes due to the nonlinear interactions in the medium.

If at the input only the pump and signal fields are present, then Ei0 = 0 and
Eq. (14.42) gives

Es(z) = Es0 cosh gz (14.45)

Since cosh is a function which increases monotonically with the increase of its argu-
ment, Eq. (14.45) implies that as the signal propagates through the crystal it gets
amplified by drawing energy from the pump. For large values of gz, Eq. (14.45) can
be written as

Es(z) = 1

2
Es0 eg z (14.46)

showing an exponentially growing signal with g being the gain coefficient.
From Eq. (14.43) we also obtain

E∗
i (z) = i

√
ωins

ωsni
Es0 sinh gz (14.47)

showing the generation of the idler along with the amplification of the signal. Thus
in this case the amplification of the signal is accompanied by the generation of the
idler wave. This is also expected from the discussion above wherein we interpret
this process as a process in which a pump photon splits into a signal photon and
an idler photon. Every time a signal photon is generated necessarily an idler photon
should have been generated. Thus amplification of the signal will be accompanied
by the generation of the idler wave.
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Apart from the change of amplitudes, the fields also suffer a phase change as
given by the terms e−iksz and e−ikiz in Eqs. (14.4) and (14.5) due to propagation over
a distance z.

14.4 Singly Resonant Oscillator

We first consider a singly resonant parametric oscillator as shown in Fig. 14.4. It
consists of the non-linear crystal placed inside an optical resonator. The crystal is
pumped by a pump laser at the frequency ωp. The resonator mirrors are such that
both of them have high transmittivity at the pump and idler wavelengths while they
have high reflectivity at the signal wavelength. Thus the resonator provides for feed-
back only at the signal wavelength and it is the signal wavelength which can oscillate
within the cavity provided the loss in the signal wave is compensated by the gain in
the signal wave due to non-linear interaction.

Pump at λp

M2M1

Nonlinear
crystal

Oscillating signal
frequency

Output coherent
signal

Fig. 14.4 A singly resonant
oscillator (SRO) in which the
resonator is formed by two
mirrors which have high
reflectivity at the signal
wavelength and are
transmitting at the pump and
idler wavelengths

Now when the crystal is pumped by the external laser, then initially spontaneous
parametric fluorescence (i.e., spontaneous generation of signal and idler photons
from the pump photon) takes place and if phase matching condition is satisfied
then this leads to spontaneous generation of light at frequencies ωs and ωi. This
is similar to spontaneous emission in a laser cavity that initiates laser oscillation.
The spontaneously emitted signal and idler waves propagate through the crystal and
their amplitude changes as given by Eq. (14.44). When the waves reach the mirror,
then the mirror only reflects the signal wave and transmits both the pump and the
idler waves. Now when the signal is propagating in the reverse direction (opposite to
the direction of the pump wave) then the phase matching condition is not satisfied
and the signal suffers loss (if there are any internal losses) and no gain. When it
reaches the first mirror then it gets partially reflected and the reflected signal wave
again undergoes non-linear interaction and its amplitude changes. For such a singly
resonant oscillator, the idler amplitude does not build up within the cavity and hence
its amplitude can be neglected. Thus the signal amplitude changes within the cavity
according to the formula

Es(z) = Es0 cosh gz (14.48)
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Now since it is only the signal which is resonating within the cavity, only the signal
wave has to satisfy the condition of standing waves within the cavity. If the cavity
length is l, then assuming that the mirrors do not introduce any phase changes, the
signal frequency must satisfy the following condition:

ωs = m
π c

nsl
, m = 1, 2, 3 . . . (14.49)

where we have assumed that the crystal occupies the entire length of the resonator.
Thus only signal frequencies satisfying Eq. (14.49) would be able to oscillate within
the cavity.

In order for oscillation, the gain per round trip must be equal to the loss per round
trip. Let R1 and R2 represent the energy reflectivities of the two mirrors at the signal
wavelength. For simplicity we will assume that there are no other losses within the
cavity.

Let Es(0) be the amplitude of the signal at the mirror M1. As it propagates to
mirror M2, the amplitude changes to

Es1(l) = Es(0) cosh gl

A fraction of this wave is reflected by mirror M2. Assuming that the mirrors do not
introduce any phase changes, the amplitude reflectivity of the mirror M2 would be√

R2. Thus the amplitude of the reflected signal wave on mirror M2 and travelling
toward mirror M1 would be

Es2(l) = √
R2 Es(0) cosh gl (14.50)

We neglect all other losses such as scattering loss etc. While the signal wave trav-
els toward mirror M1, the wave would not undergo any amplification as the phase
matching condition would not be satisfied. Thus the amplitude of the signal wave
as it arrives on mirror M1 would be given by Eq. (14.50). Now mirror M1 reflects
a fraction of the signal wave and the signal wave after reflection from mirror M1
would be

Es3(0) = √
R1R2 Es(0) cosh gl (14.51)

For oscillation the signal amplitude should repeat itself after one round trip. Thus
Es3(0) = Es(0) and Eq. (14.51) gives us the following condition:

√
R1R2 cosh gthl = 1 (14.52)

where gth is the threshold gain coefficient. Since in the case of parametric gain, the
quantity gthl is very small we can expand the cosh term in Eq. (14.52) and write

1 + (gthl)2

2
= 1√

R1R2
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which gives us the following expression for the threshold gain coefficient required
for a singly resonant parametric oscillator

gth =
√

2

l

(
1√

R1R2
− 1

)1/2
(14.53)

If the reflectivities of the two mirrors are equal (R1 = R2 = R) and close to unity,
then the above expression can be approximated by

gth =
√

2 (1 − R)

l
(14.54)

Since the gain coefficient is related to the pump intensity [see Eq. (14.33)], Eq.
(14.54) can be used to obtain an expression for the threshold pump intensity Ip,th
required for parametric oscillation. Thus

g2
th = κsκi

∣∣Ep,th
∣∣2 = ωsωid2

c2nsni

2cμ0

np
Ip,th (14.55)

where we have used Eqs. (14.28) and (14.29). Using Eqs. (14.55) and (14.54), we
obtain an expression for the threshold pump intensity required for a singly resonant
parametric oscillator as

Ip,th = cnsninp

μ0ωsωid2 l2
(1 − R) (14.56)

As an example we take typical values corresponding to a lithium niobate non-linear
crystal for which d ∼ 30 × 10–12 m/V and np ∼ ns ∼ ni = 2. If we assume the pump
wavelength to be 500 nm and the signal wavelength to be 900 nm, then using energy
conservation equation [Eq. (14.40)] the corresponding idler wavelength would be
1125 nm. Assuming the reflectivity of the mirror to be 98% each at the signal wave-
length and the length of the crystal to be 5 cm, substituting these values in Eq.
(14.56) we obtain for the threshold pump intensity as 4.8 × 106 W/m2. If we assume
the beam to have a cross-sectional area of π mm2 (i.e., transverse radius of 1 mm)
then this corresponds to a pump power of about 14.5 W.

14.5 Doubly Resonant Oscillator

In the case of a doubly resonant oscillator, both the mirrors have high reflectivity
at both the idler and the signal wavelengths and thus both are resonant within the
cavity. This gives us the following two conditions:

ωs = m
π c

nsl
, m = 1, 2, 3 . . . (14.57)
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and

ωi = p
π c

nil
, p = 1, 2, 3 . . . (14.58)

In this case we have to consider both the equations for the signal and the idler as they
would both resonate within the resonator and would both have large amplitudes.

Now, if Es(0) and Ei(0) are the amplitudes of the signal and idler as they leave
mirror M1, then as they reach mirror M2 placed at a distance l, their amplitudes
would become [see Eq. (14.44)]

(
Es1(l)
E∗

i1(l)

)
=

⎛
⎝ cosh gl −i

√
ωsni
ωins

sinh gl

i
√

ωins
ωsni

sinh gl cosh gl

⎞
⎠

(
Es(0)
E∗

i (0)

)
(14.59)

For simplicity we assume that both mirrors are identical and have reflectivities of Rs
and Ri at the signal and idler frequencies, respectively. As before we also neglect all
other losses in the cavity and also assume that the mirrors do not generate any phase
changes on reflection. Thus the amplitudes at the signal and idler frequencies after
reflection from mirror M2 would be

(
Es2(l)
E∗

i2(l)

)
=

(√
Rs 0
0

√
Ri

)(
Es1(l)
E∗

i1(l)

)

=
(√

Rs 0
0

√
Ri

)⎛
⎝ cosh gl −i

√
ωsni
ωins

sinh gl

i
√

ωins
ωsni

sinh gl cosh gl

⎞
⎠

(
Es(0)
E∗

i (0)

) (14.60)

Now as before there would be no amplification as the waves travel from right to left
and after reflection from mirror M1 the fields would be

(
Es3(0)
E∗

i3(0)

)
=

(√
Rs 0
0

√
Ri

)(
Es2(l)
E∗

i2(l)

)
(14.61)

For oscillation the field amplitudes after one round trip must be the same as at the
start. Thus we obtain the condition for oscillation as

(
Es3(0)
E∗

i3(0)

)
=

(
Es(0)
E∗

i (0)

)
(14.62)

Using Eqs. (14.60), (14.61), and (14.62), we obtain

(√
Rs 0
0

√
Ri

)(√
Rs 0
0

√
Ri

)⎛
⎝ cosh gthl −i

√
ωsni
ωins

sinh gthl

i
√

ωins
ωsni

sinh gthl cosh gthl

⎞
⎠

(
Es(0)
E∗

i (0)

)
=

(
Es(0)
E∗

i (0)

) (14.63)
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which gives us

⎛
⎝ Rs cosh gthl − 1 −iRs

√
ωsni
ωins

sinh gthl

iRi

√
ωins
ωsni

sinh gthl Ri cosh gthl − 1

⎞
⎠

(
Es(0)
E∗

i (0)

)
= 0 (14.64)

Here gth is the threshold gain coefficient required for oscillation. For a non-trivial
solution the following determinant

∣∣∣∣∣∣
Rs cosh gthl − 1 −iRs

√
ωsni
ωins

sinh gthl

iRi

√
ωins
ωsni

sinh gthl Ri cosh gthl − 1

∣∣∣∣∣∣
must be zero, which gives us the following condition:

(Rs cosh gthl − 1) (Ri cosh gthl − 1) − RsRi sinh2 gthl = 0

which on simplification gives us

cosh gthl = 1 + RsRi

Rs + Ri
(14.65)

Since the reflectivities are usually quite close to unity, the right-hand side of Eq.
(14.65) is almost equal to unity. This implies that gthl is small and in such a case we
can expand the cosh term and obtain the following approximate expression for the
threshold gain coefficient:

gth =
√
(1 − Rs) (1 − Ri)

l
(14.66)

As before using the expressions for the gain coefficient, the corresponding threshold
pump intensity comes out to be

Ip,th = cnsninp

2μ0ωsωid2 l2
(1 − Rs)(1 − Ri) (14.67)

Compared to Eq. (14.56) which gives the threshold pump intensity in the case of
singly resonant oscillator, the threshold intensity for doubly resonant oscillator is
less by a factor (

Ip,th
)

dr(
Ip,th

)
sr

= (1 − Ri)

2
(14.68)

If Ri = 0.98, then the threshold pump intensity for the doubly resonant oscillator is
less by a factor 0.01. If we use the same parameters as used earlier, the threshold
pump intensity in this case would be 4.8 × 104 W/m2. If the radius of the pump
beam inside the crystal is 1 mm then the required threshold pump power is

Pp,th = Ip,th × π × a2 ≈ 150 mW
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If the same crystal is made to oscillate as a singly resonant oscillator, then the thresh-
old power would be 15 W showing the drastic reduction in threshold pump power
requirement for a doubly resonant oscillator in comparison to a singly resonant
oscillator.

Although the threshold pump power levels for a doubly resonant oscillator are
very less compared to the singly resonant case, the need to satisfy various conditions
on the signal and idler frequencies leads to instabilities in oscillation. Thus in a
doubly resonant oscillator, the signal and idler have to simultaneously satisfy all the
following equations:

ωp = ωs + ωi (14.69)

ωpnp = ωsns + ωini (14.70)

ωs = m
π c

nsl
, m = 1, 2, 3 . . . (14.71)

ωi = p
π c

nil
, p = 1, 2, 3 . . . (14.72)

Satisfying all these conditions simultaneously puts severe requirements on the sta-
bility of the resonator. Since in singly resonant oscillators the equation for ωi is
not a requirement, the singly resonant oscillator is much more stable; of course the
threshold pump power required in this case is much higher.

14.6 Frequency Tuning

One of the greatest advantages of the parametric oscillator is the ability to tune the
wavelength of laser oscillation. For a given pump frequency, the signal and idler
frequency that will get amplified are determined by the phase matching condition.
Since the phase matching condition depends on the refractive index of the medium
at the three frequencies, any parameter that can change the indices can be used to
tune the frequency of oscillation. Thus by changing the temperature, or applying
an external electric field which changes the indices by electro optic effect or by
changing the orientation of the crystal (in the case of anisotropic crystals) if one of
the waves is an extraordinary wave, it is possible to tune the frequency of oscillation.

Figure 14.5 shows a typical tuning curve of an OPO in which tuning is achieved
by changing the pump wavelength. The signal and idler wavelengths span from 2 to
11 μm. Figure 14.6 shows the tunability of a commercially available OPO.

14.7 Phase Matching

For achieving efficient non-linear interaction, the phase matching condition given
by Eq. (14.38) must be satisfied. Physically the condition comes about due to the
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Fig. 14.5 In a tunable OPO,
by changing the pump
wavelength, the output signal
and idler frequencies can be
changed. Note that the signal
and idler wavelengths
together cover the range from
about 2 μm to 11 μm. [After
Henderson et al. (2008);
reprinted with permission]
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Fig. 14.6 The range of
output wavelengths available
from an OPO showing the
wide tunability of the laser.
The spectrum is of a
commercially available OPO.
The three curves correspond
to models with different
powers. (Mira OPO from
Coherent, USA)

difference in speeds of the non-linear polarization that is a source of the electromag-
netic wave at the new frequency that it is trying to generate and the electromagnetic
wave that it is generating. Thus the non-linear polarization at the signal frequency
ωs propagates with a velocity [see Eq. (14.9)]

vpol,s = ωs

kp − ki
(14.73)

At the same time, the electromagnetic wave at frequency ωs travels with a velocity
[see Eq. (14.4)]

vem,s = ωs

ks
(14.74)
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For efficient generation of the signal wave the source (non-linear polarization) and
the wave that it is generating must travel at the same velocity. Thus from Eqs. (14.73)
and (14.74) we see that this requires satisfying the phase matching condition.

There are two primary techniques used to achieve this. One of them is referred to
as birefringence phase matching and the other is referred to as quasi phase matching.

Birefringence Phase Matching
In birefringence phase matching, the anisotropy of the crystal is used in achiev-

ing the phase matching condition. In anisotropic crystals for any given direction of
propagation, there are two linearly orthogonal polarization states that travel as eigen-
modes without any change in their polarization states and with different velocities.
In uniaxial crystals one of the waves referred to as ordinary wave has the same veloc-
ity for all directions of propagation while the velocity of the other wave referred to
as the extraordinary wave changes with the direction of propagation. Thus by appro-
priately choosing the polarization states of the pump, signal, and idler to correspond
to ordinary or extraordinary waves it is possible to choose an appropriate direction
of propagation within the crystal to achieve phase matching. If the direction of prop-
agation is changed, then the refractive index seen by the extraordinary wave would
change resulting in a change of the corresponding signal and idler frequencies satis-
fying the phase matching condition. Thus by changing the direction of propagation
within the crystal it is possible to tune the signal and idler wavelength.

Quasi Phase Matching
In the alternative technique referred to as quasi phase matching, the non-linear

coefficient of the crystal is modulated periodically along the direction of propa-
gation. As discussed earlier when phase matching condition is not satisfied then
after a distance equal to the coherence length non-linear polarization and the elec-
tromagnetic wave get out of phase. Now if the non-linear coefficient changes sign
at this distance, then since the non-linear polarization is proportional to the non-
linear coefficient, the phase of the non-linear coefficient would change by π bringing
back the non-linear polarization and the electromagnetic wave back into phase. This
would ensure that the non-linear polarization feeds energy into the signal wave in a
constructive fashion. Again after propagation through a distance Lc, the non-linear
polarization and the electromagnetic wave would develop a phase difference of π
and if we again change the sign of the non-linear coefficient, then the non-linear
polarization and the electromagnetic wave can be brought back in phase. Thus if
the non-linear coefficient is periodically modulated in sign with a spatial period
2Lc, then this would result in the growth of signal wave as it propagates along the
medium. This is the basic principle of quasi phase matching.

In order to analyze parametric amplification in a periodically poled material, let
us assume that the non-linear coefficient d varies sinusoidally with a period �. In
such a case we have

d = d0 sin(Kz) (14.75)

where d0 is the amplitude of modulation of the non-linear coefficient and K (=
2π /�) represents the spatial frequency of the periodic modulation. For easier
understanding we are assuming the modulation to be sinusoidal; in general, the
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modulation will be periodic but not sinusoidal. Any periodic modulation can be writ-
ten as a superposition of sinusoidal and cosinusoidal variations. Thus our discussion
is valid for one of the Fourier components of the variation.

By using Eq. (14.76), Eqs. (14.26) and (14.27) become

dEs

dz
= −i

ωs

cns
d0 sin Kz EpE∗

i e−i�kz

= − ωs

2cns
d0EpE∗

i

(
e−i(�k−K)z − e−i(�k+K)z

) (14.76)

dEi

dz
= −i

ωi

cni
d0 sin Kz EpE∗

s e−i�kz

= − ωi

2cni
d0EpE∗

s

(
e−i(�k−K)z − e−i(�k+K)z

) (14.77)

Using similar arguments as earlier, it can be shown that if �k−K ≈ 0, then only the
first term within the brackets in Eqs. (14.76) and (14.77) contribute to the non-linear
amplification, and similarly if �k + K ≈ 0, then only the second term within the
brackets contribute to the non-linear amplification.

The first condition implies that

kp = ks + ki + K (14.78)

If � (= 2π /K) represents the spatial period of the modulation of the non-linear
coefficient, and λ0 is the wavelength of the fundamental, then the modulation period
� required for QPM parametric amplification is

� = 2π(
kp − ks − ki

) . (14.79)

Thus any phase mismatch due to a finite value of �k can be compensated by an
appropriate value of the period � of the quasi phase matching.

In general, the spatial variation of the non-linear grating is not sinusoidal. In
this case the efficiency of interaction would be determined by the Fourier compo-
nent of the spatial variation at the spatial frequency corresponding to the period
given by Eq. (14.79). It is also possible to use a higher spatial period of modulation
and use one of the Fourier components for the non-linear interaction process. Thus
in the case of periodic reversal of the non-linear coefficient with a spatial period
given by

�g = m
2π(

kp − ks − ki
) , m = 1, 3, 5, . . . (14.80)

which happens to be the mth harmonic of the fundamental spatial frequency required
for QPM, the corresponding non-linear coefficient that would be responsible for
parametric amplification would be the Fourier amplitude at that spatial frequency.
This can be taken into account by defining an effective non-linear coefficient
(assuming a duty cycle of periodic reversal of 0.5):

dQPM = 2d0

mπ
(14.81)
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Λ

Fig. 14.7 Principle of quasi
phase matching. In this
method the direction of the
optic axis direction is
reversed every coherence
length

Of course the largest effective non-linear coefficient is achieved by using the funda-
mental frequency with m = 1. Higher spatial periods are easier to fabricate but
would lead to reduced non-linear efficiencies using the fundamental spatial fre-
quency, it can be seen that the effective nonlinear coefficient is reduced by a factor
of 2/π and since the efficiency depends on the square of the nonlinear coefficient,
this would result in a reduction of efficiency 4/π2 as compared to the case of perfect
phase matching.

In a ferroelectric material such as lithium niobate, the signs of the non-linear
coefficients are linked to the direction of the spontaneous polarization. Thus a peri-
odic reversal of the domains of the crystal can be used for achieving QPM (see
Fig. 14.7). This is the currently used technique to obtain high-efficiency SHG and
other non-linear interactions in LiNbO3, LiTaO3, and KTP. The most popular tech-
nique today to achieve periodic domain reversal in LiNbO3 is the technique of
electric field poling (Yamada et al. (1993), Myers and Bosenberg (1997)). In this
method a high electric field pulse is applied to properly oriented lithium niobate
crystal using lithographically defined electrode patterns to produce a permanent
periodic domain reversed pattern. Such a periodically domain reversed LiNbO3
crystal with the periodically reversed domains going through the entire depth of
the crystal is also referred to as PPLN (pronounced piplin). For typical crystals such
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Fig. 14.8 Tunable output
wavelengths achievable using
quasi phase matching in
GaAs (orientation patterned).
(Adapted from Faye et al.
(2008))
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as lithium niobate the required period is of the order of 25–30 μm; such crystals are
now commercially available.

Figure 14.8 shows the tuning curves of a quasi phase-matched interaction in
GaAs.

Quasi phase matching offers many advantages vis a vis birefringence phase
matching. Birefringence phase matching can be used only in the case of anisotropic
crystals while quasi phase matching can be used even in the case of isotropic crys-
tals. Apart from this in the case of quasi phase matching it is possible to choose the
polarization states of all the interacting waves to be the same; this allows the use of
the largest non-linear coefficient of the crystal. By choosing appropriate period of
periodic poling quasi phase matching can be used for any set of wavelengths.

Problems

Problem 14.1 The threshold condition of a parametric oscillator is given by

cosh gthL = 1 + RsRi

Rs + Ri

where symbols have their usual meaning. Show that the threshold gain required for a singly resonant
OPO is much higher than that of a doubly resonant OPO.

Problem 14.2 I wish to achieve parametric amplification with signal (1.2 μm) and pump (0.8 μm)
traveling along the same direction and the idler (λi) traveling in the reverse direction. If the refractive
indices at the pump, signal and idler are 2.17, 2.15, and 2.11, respectively, calculate the period required
for first-order QPM.

Problem 14.3 From the differential equations describing parametric process, show that the number of
signal photons generated is equal to the number of pump photons annihilated. Assume perfect phase
matching.

Problem 14.4 Consider parametric amplification of a signal at ωs by a strong pump at ωp. Show that
even if phase matching is not exactly satisfied, it is possible to achieve amplification provided �k satisfies
some condition and obtain this condition. Neglect pump depletion.

Problem 14.5 Consider a parametric oscillator with mirrors of intensity reflection coefficients at ωp, ωs,
and ωi as follows:

ωp

M2M1

Mirror M1 : R1(ωp) = 0; R1(ωs) = Rs ∼ 1; R1(ωi) = 0

Mirror M2 : R2(ωp) = 1; R2(ωs) = Rs ∼ 1; R2(ωi) = 0
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i.e., mirrors are highly reflecting at signal, transparent at idler, and mirror M1 is transparent to pump
while M2 is fully reflecting at pump. Obtain the threshold value of gain coefficient g for oscillation to
begin. Neglect pump depletion.

Problem 14.6 A parametric amplifier operates with a pump wavelength of 1 μm and a signal wavelength
of 1.5 μm.

a) Obtain the wavelength of the idler.

b) If the input pump power is 1 W and an input signal power of 1 mW is converted to 1.5 mW at the
output, obtain the output power at the idler frequency.

Problem 14.7 Consider a phase-matched parametric amplifier with pump ωp, signal ωs, and idler ωi.

(a) Starting from the coupled equations for perfectly phase-matched interaction, obtain expressions for

1

�ωp

dPp

dz
and

1

�ωs

dPs

dz

Compare these expressions and physically interpret their relationship.

(b) Neglecting pump depletion and assuming perfect phase matching, obtain their solutions for the
input condition

Ep(0) = up0, Es(0) = us0, Ei(0) = +i

√
ωins

ωsni
us0,

where up0 and us0 are real quantities. Determine whether the wave at ωs gets amplified or
attenuated during the non-linear interaction.

Problem 14.8 The equation describing the wavelength variation of the extraordinary refractive index of
lithium niobate is given by

n2
e (λ) = 4.5469 + 0.094779

λ2 − 0.04439
− 0.026721 λ2

a) Write down the phase matching condition corresponding to parametric interaction (three wave
interaction) using QPM assuming the waves at pump, signal, and idler to be extraordinary waves.

b) Assuming a QPM period of 20 μm, plot the variation of the signal wavelength (λs) and the idler
wavelength (λi) as the pump wavelength (λp) is varied from 760 to 840 nm.

Problem 14.9 A pump wave at 1 μm and having a power of 1 W and a signal wave at 1.5 μm with
a power of 1 mW are simultaneously incident on a non-linear crystal. If phase matching condition for
difference frequency generation is satisfied, (a) what is the wavelength of the difference frequency and
(b) if the power of the 1.5 μm wave increases to 1.1 mW what is the power exiting at the difference
wavelength?

Problem 14.10 Using the expression for the parametric gain show that maximum gain is achieved at
degeneracy, i.e., when the signal and idler wavelengths are equal. Neglect the frequency dependence of
the refractive indices.
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Problem 14.11 Two extraordinarily polarized plane waves at wavelengths of 1000 nm (power = 1 W)
and 1500 nm (power = 1 mW) are incident along the y-direction in lithium niobate that is periodically
poled with a spatial period of 10.34 μm. Which new wavelength will be generated most efficiently at the
output of the crystal and why? Use the refractive indices of lithium niobate given below.

Extraordinary wave refractive indices of lithium niobate at different wavelengths

λ (nm) ne
500 2.25
600 2.21
750 2.18
1000 2.16
1500 2.14
2000 2.13
3000 2.11





Part II
Some Important Applications of Lasers





Chapter 15
Spatial Frequency Filtering and Holography

15.1 Introduction

One of the most interesting and exciting applications of lasers lies in the fields
of spatial frequency filtering and holography. In this chapter, we briefly outline
the principle behind spatial frequency filtering and holography and discuss their
applications.

15.2 Spatial Frequency Filtering

Just as the Fourier transform of a time-varying signal gives its temporal frequency
spectrum, similarly the spatial Fourier transform of a spatially varying function (like
the transmittance of an object) gives the spatial frequency spectrum of the function
(see Appendix F). It can indeed be shown that the field distribution produced at
the back focal plane of an aberrationless converging lens is the two-dimensional
Fourier transform of the field distribution in the front focal plane of the lens (see,
e.g., Ghatak and Thyagarajan (1978)). Thus, if f (x, y) represents the object distri-
bution in the front focal plane of an aberrationless converging lens (see Fig. 15.1),
then the field distribution in the back focal plane is given as (see Appendix F)

g (x, y) = i

λf

∫∫
f
(
x′, y′) exp

[
2π i

λf

(
xx′ + yy′)

]
dx′ dy′

= i

λf
F

(
x

λf
,

y

λf

) (15.1)

where F
(
x
/
λf , y

/
λf

)
represents the Fourier transform of f (x, y) evaluated at the

spatial frequencies
(
x
/
λf , y

/
λf

)
– see Appendix G, f represents the focal length

of the lens, and λ is the wavelength of illumination. (For ease of notation, in this
chapter, we are representing free space wavelength by λ instead of λ0). Thus if on
the front focal plane is placed an object with a transmittance of the form

389K. Thyagarajan, A. Ghatak, Lasers, Graduate Texts in Physics,
DOI 10.1007/978-1-4419-6442-7_15, C© Springer Science+Business Media, LLC 2010
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f (x, y) = A cos

(
2πx

a

)
= A

2

[
exp

(
2π ix

a

)
+ exp

(
−2π ix

a

)]
(15.2)

then on the back focal plane one would obtain a field distribution given as

g (x, y) = Ai

2λf

[
δ

(
x

λf
+ 1

a

)
+ δ

(
x

λf
− 1

a

)]
δ(y) (15.3)

where we have used the fact that the Fourier transform of exp
(
2π ix

/
a
)

is
δ
(
u + 1

/
a
)
, where u is the spatial frequency, which in the present case is

x
/
λf . Equation (15.3) represents the field corresponding to two bright dots at(

x = λf
/

a, y = 0
)

and
(
x = −λf

/
a, y = 0

)
on the back focal plane of lens L1 (see

Fig. 15.1).
Now, the Fourier transform of the Fourier transform of a function is the original

function itself except for an inversion, i.e.

F [F {f (x)}] = f (−x) (15.4)

where the symbol F [ ] stands for the Fourier transform of []. Thus if another con-
verging lens L2 is placed such that the back focal plane of the first lens L1 is the
front focal plane of the second lens (see Fig. 15.1), then on the back focal plane
of L2 one would obtain the original object distribution except for an inversion. The
resultant field distribution on the plane P3 can be controlled by suitably placing
apertures on the back focal plane P2 and thus performing operations on the spatial
frequency spectrum of the object. The various apertures, stops, etc. that are placed
in the plane P2 are referred to as filters. Thus, for example, a low-pass filter would
be one which allows low spatial frequencies to pass through while blocking the high

Image
plane

x

Spatial
Frequency

plane

PI L1 P2 L2 P3

x

Object
plane

y

f ff f

Fig. 15.1 When an object transparency is placed in the front focal plane P1 of an aberrationless
converging lens L1 and illuminated by a parallel beam of light, then on the back focal plane P2, one
obtains a spectrum of the spatial frequency components present in the object. If a second lens L2 is
placed such that the plane P2 coincides with its front focal plane, then in the back focal plane P3 of
L2, one obtains the image pattern corresponding to the spatial frequency spectrum in the plane P2.
One can indeed control the spatial frequency spectrum that is responsible for forming the image
on the plane P3 by placing filters on the plane P2
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spatial frequencies. This could, for example, be a screen with a small hole at the axis
of the system. Similarly, a high-pass filter would transmit all high spatial frequen-
cies while blocking the low frequencies. One could also have complex filters which
alter both the amplitude and the phase of the various spatial frequency components
of the image.

As an example, let us consider an object with an amplitude variation of the form

f (x) = A cos (2παx) + B cos (2πβx) (15.5)

The object represented by Eq. (15.5) has two spatial frequencies α and β. If such
an object is placed in the plane P1 and illuminated by a coherent beam of light, then
in the plane P2, one would obtain four spots at distances x = +λfα, +λfβ, −λfα,
and −λfβ as shown in Fig. 15.2. If we do not place any obstructions on the plane P2,
then both the spatial frequencies contribute in forming the image in the plane P3 and
one obtains in the plane P3 the same amplitude distribution as that in the plane P1.
Now, consider placing two stops at the points x = +λfα and x = −λfα on the y-axis
in the plane P2. Thus, no light from these points is allowed to reach the lens L2. The
lens L2 receives light only from the spots corresponding to the spatial frequency
β. Hence it follows that the image pattern in the plane P3 will be proportional to
cos (2πβx). Thus, by placing stops in the plane P2, we have been able to filter out
the frequency component α. This is the basic principle behind spatial frequency
filtering. As a corollary, we may mention that if we put a stop on the axis, then it
will filter out the low-frequency components. This can also be seen from the fact
that if a plane wave propagating parallel to the axis (which is associated with zero
spatial frequency) falls on a lens, it gets focused to the axis on the plane P2 and if
we put a small stop on the axis in the plane P2, then there will be no light reaching
the lens L2.

Spatial frequency filtering finds widespread applications in various fields; we will
discuss briefly some of these applications.

−λfβ

−λfα

+λfβ

+λfα

L2L1

Object
plane

Image
plane

Spatial frequency
plane

Stops

P1 P2 P3

f f ff

Fig. 15.2 If we place an
object with a transmittance
proportional to Eq. (15.5) on
the plane P1, then in the plane
P2, we will obtain four spots
(on the y-axis) at x = ±λfα
and ±λfβ. If we place two
stops behind the spots at
x = ±λfα, then in the plane
P3 we would obtain an image
pattern represented by
cos (2πβx) . Thus the
frequency component α has
been filtered out
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Fig. 15.3 (a) A photograph consisting of regularly spaced array of black and white squares. (b)
The corresponding spatial frequency spectrum which appears on the plane P2. If a pinhole is placed
in the back focal plane P2 to block off the high-frequency components, then an image of the form
shown in (c) is obtained. Note that in the image, shades of grey as well as details such as the missing
part of the eyeglass frame appear. (Reprinted from R.A. Philips, spatial filtering experiments for
undergraduate laboratories, Am. J. Phys. 37 (1969) 536. © 1969 American Association of Physics
Teachers; photographs courtesy: Dr. R.A. Philips)

If one looks closely at a newspaper photograph, one can immediately see that the
image is in fact made up of a large number of closely arranged dots. These closely
arranged dots represent a high spatial frequency, while the general image formed
by these dots represents low-frequency components. Thus, these dots can be got
rid of by spatial frequency filtering. For example, Fig. 15.3a shows a photograph
which consists of regularly spaced black and white squares. The spatial frequency
spectrum of the object is shown in Fig. 15.3b. If we place a screen with a small hole
at the center on the back focal plane, then the image produced is devoid of these dot
patterns (see Fig. 15.3c). By placing a small hole on the axis, one has essentially
filtered out the high-frequency components in the object.

Another application of spatial frequency filtering is in contrast enhancement.
When there is a large amount of background light in an image, the contrast in the
image is poor. Since the background light represents a distribution of zero spatial
frequency, if we place the object in the front focal plane and put a small stop on
the axis in the back focal plane (which cuts off the low-frequency components),
then since the stop removes the low-frequency, one would obtain an image with a
much better contrast on the back focal plane of L2. Such a process is termed contrast
enhancement.

Spatial frequency filtering can also be used for detecting non-periodic (i.e., ran-
dom) errors in a periodic structure. Thus one could either transmit all the spatial
frequencies corresponding to the periodic array and stop most of the light from
the random noise or block the light corresponding to the periodic array frequencies
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and transmit most of the light corresponding to the defects. Such techniques have
indeed been used in photo mask inspection, electron tube grid inspection, etc. (see,
e.g., Gagliano et al. (1969)).

Another important application of spatial frequency filtering is in character recog-
nition problems where it is necessary to detect the presence of certain characters
in an optical image. Here the filter is a complex filter produced using holographic
principles and the output from the optical system is such that corresponding to the
positions where the object contains the desired character, one obtains bright spots
of light in the image.1 As an example we show the identification of a fingerprint by
this technique in Fig. 15.4. In the top portion, the fingerprints are matched and one
obtains a bright spot of light; when the two fingerprints do not match (lower por-
tion), there is no appearance of a bright spot but only a smear. Character recognition
problems will also find application in military defense, where it might be necessary
to identify certain objects of interest. For further details on optical data processing,
one may look up Casasent (1978).

Fig. 15.4 Fingerprint
identification using optical
cross correlation. In the upper
part, the two fingerprints are
matched, which results in the
appearance of a bright spot of
light. In the lower part, the
two fingerprints do not match
and the resulting image is a
smear. (Source: Tsujiuchi
et al. (1971))

1For a detailed theoretical analysis of the character recognition problem, see, e.g., Ghatak and
Thyagarajan (1978).
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Image deblurring is another very interesting application of spatial frequency fil-
tering. Let f(x,y) represent the image of an object. If during exposure of the film, the
camera moves or is out of focus, then instead of the image f(x,y) we will obtain a
modified image g(x,y), which is the blurred image corresponding to f(x,y). We shall
now show how the blurring can be partially compensated, i.e., the image can be
deblurred from the blurred image.

If h(x,y) represents the intensity distribution of the blurred image of a point
object, then the intensity distribution of the blurred image can be written as

g(x, y) =
∫∫

f (x′, y′)h(x − x′, y − y′)dx′dy′

= f (x, y)∗h(x, y)
(15.6)

where ∗ represents convolution. If we assume that the transmittance of the exposed
film is proportional to g(x,y), then the amplitude transmittance of the recorded film
would be proportional to g(x,y). If we place this film in the front focal plane of a lens
and illuminate by a normally incident laser beam, then the amplitude distribution on
the back focal plane would be the Fourier transform of g(x,y). Using the fact that the
Fourier transform of the convolution of two functions is the product of their Fourier
transforms, the amplitude distribution on the back focal plane would be

G(u, v) = F(u, v)H(u, v) (15.7)

Fig. 15.5 Image deblurring
using spatial frequency
filtering. (a) shows a blurred
photograph and (b) shows the
deblurred image [After Stroke
et al. (1975)]
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Fig. 15.6 The figure shows
an arrangement for the
recording of a hologram. The
beam from a laser is split up
into two portions: one part is
used to illuminate the object
and the other part is used as a
reference beam. The waves
scattered from the object
interfere with the reference
wave to form the hologram

where u =x/λf, v =y/λf, and G, F, and H are the Fourier transforms of g, f, and h,
respectively. If we place a filter whose transmittance is proportional to 1/H(u,v) on
the back focal plane of the lens, then the filtered spectrum would be

G(u, v)
1

H(u, v)
= F(u, v) (15.8)

A second lens can Fourier transform the filtered spectrum further to produce
the deblurred image f(x,y). The filter 1/H(u,v) can be generated approximately
using holographic principles. Figure 15.5 shows an example of image deblurring;
the upper figure on the shows the blurred image and the lower figure shows the
deblurred image after optical deblurring.

15.3 Holography

An ordinary photograph represents a two-dimensional recording of a three-
dimensional scene. The emulsion on the photographic plate is sensitive only to the
intensity variations, and hence while a photograph is recorded, the phase distribu-
tion which prevailed at the plane of the photograph is lost. Since only the intensity
pattern has been recorded, the three-dimensional character (e.g., parallax) of the
object scene is lost.

It was in the year 1948 that Dennis Gabor conceived of an entirely new idea
and proposed a method of recording not only the amplitude but also the phase of
the wave. The principle behind the method is the following: During the recording
process, one superimposes on the wave (emanating from the object) another coher-
ent wave called the reference wave (see Fig 15.6). The two waves interfere in the
plane of the recording medium and produce interference fringes. This is known as
the recording process. The interference fringes are characteristic of the object and
the recording medium records the intensity distribution in the interference pattern.
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This interference pattern has recorded in it not only the amplitude distribution but
also the plane of the object wave. Thus, let

O (x, y) = O0 (x, y) eiφ(x,y) (15.9)

represent the field produced due to the object wave at the plane of the recording
medium; O0 (x, y) is the amplitude part and φ (x, y) the phase part. Similarly, let

R (x, y) = A eiψ(x,y) (15.10)

represent the field produced due to the reference wave at the recording medium.
Usually the reference wave is an obliquely incident plane wave, in which case A is
a constant. The total field produced at the recording medium is

U (x, y) = O0 (x, y) eiφ(x,y) + A eiψ(x,y) (15.11)

and the intensity pattern recorded by the recording medium would be

I (x, y) = |U (x, y)|2 = O2
0 (x, y) + A2 + O0 (x, y)A exp

{
i
[
φ (x, y) − ψ

]}

+ O0 (x, y)A exp
{−i

[
φ (x, y) − ψ (x, y)

]}
(15.12)

where we have omitted a constant of proportionality and have carried out a time
averaging.2 It can immediately be seen from the above that the recorded inten-
sity distribution has the phase of the object wave φ (x, y) embedded in it. Since
the recorded intensity pattern has both the amplitude and the phase recorded in it,
Gabor called the recording a hologram (holos in Greek means “whole”).

This hologram has little resemblance to the object. It has in it a coded form of
the object wave. The technique by which one reproduces the image is termed recon-
struction. In the reconstruction process, the hologram is illuminated by a wave called
the reconstruction wave; this reconstruction wave in most cases is similar to the ref-
erence wave used for recording the hologram (see Fig 15.7). When the hologram
is illuminated by the reconstruction wave, various wave components emerge from
the hologram, one of which is the object wave itself. In order to show this, we see
that when the exposed recording medium is developed, then one, in general, gets a
transparency, with a certain transmittance. Under proper conditions, the amplitude
transmittance of the hologram can be made to be linearly proportional to I (x, y).
Thus apart from some constants, one can write for the amplitude transmittance of
the hologram

2We are assuming the fields to be monochromatic with a time dependence of the form eiωt. Now,
for two functions f and g with time variations of the form eiωt

〈Re f Re g〉 = 1

2

〈
Re f ∗g

〉

where angular brackets denote time averaging and Re f stands for the real part of the function f.
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Fig. 15.7 In the
reconstruction process, the
hologram is illuminated by a
reconstruction wave, which in
most cases is identical to the
reference wave used for
forming the hologram. The
reconstruction wave after
passing through the hologram
produces a real and a virtual
image. The virtual image can
be viewed and exhibits all the
true three-dimensional
characteristics like parallax
and depth.

t (x, y) = I (x, y) (15.13)

If this transparency is illuminated with the reconstruction wave, the emerging
wave would be given as

t (x, y)A exp
[
iψ (x, y)

] =
[
O2

0 (x, y) + A2
]

A exp
[
iψ (x, y)

]

+ O0 (x, y)A2 exp
[
iφ (x, y)

]

+ A2O0 (x, y) exp
{−i

[
φ (x, y) − 2ψ (x, y)

]}
(15.14)

The second term indeed represents the original object wave apart from the con-
stant multiplicative factor A2. The first term represents the reconstruction wave itself
but which has been modulated in amplitude. The last term represents the complex
conjugate of the object wave. The three wave components can be spatially separated
by a proper choice of the reference wave.

The second term, which represents a reproduction of the object wave (as opposed
to an image of the object), is identical to the wave that was emanating from the
object when its hologram was being recorded. Thus, when one views this wave
(emerging from the hologram), then one sees a reconstructed image of the object
in its true three-dimensional form (see Fig. 15.7). Thus, as with the original object,
one can move one’s viewing position and look around the object. If the hologram
has recorded in it sufficient depth of field, one has to refocus one’s eyes to be able to
see distinctly the objects which are far away. One can even place a lens on the path
of the reconstructed wave and form an image of the object on a screen.

In addition to the virtual image, the reconstruction process generates another
image, which is a real image; this is represented by the third term in Eq. (15.14).
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Fig. 15.8 The in-line
holography technique in
which the object wave and the
reference wave are traveling
almost parallel to each other.
During reconstruction, both
the waves producing the
virtual and real images are
traveling approximately in the
same direction; this produces
some difficulties while
viewing the images

This real image can indeed be photographed by placing a suitable light-sensitive
medium (like a photographic plate) at the position where the real image is formed.

Although the principle of holography was laid down by Gabor in 1948, it was
not until the lasers arrived in 1960 that holography attained practical importance.
Before the advent of the laser, one had to employ the method of in-line holography
(as proposed by Gabor), in which the reference beam is approximately parallel to the
object wave and the paths traversed by both the object wave and the reference wave
are almost equal (see Fig. 15.8); this was required because the existing sources like
mercury discharge lamps had only small coherence lengths.3 The in-line technique
has associated with it the disadvantage that the waves that form the virtual and real
images travel along the same direction. Thus, while viewing the virtual image, one
is faced with an unfocused real image and conversely. The early work on holography
was in fact on the removal of this problem associated with geometry of recording.

3The high-pressure mercury arc lamp emits a green line at 5461 Å. The coherence length of this
line is, in fact, only about 10 μm. (The width of the line at 5461 Å is about 5 × 1012 Hz.) On the
other hand, the 6058-Å line emitted by krypton has a coherence length of ∼20 cm, but the power
output per unit area of this source is very low. When one tries to increase the source area, one loses
spatial coherence. The notion of coherence length has been discussed in Chapter 9.
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It was in the year 1962 that Leith and Upatneiks introduced the technique of
“off-axis holography,” which overcame the difficulty associated with the in-line
technique. In the technique proposed by Leith and Upatneiks, one uses a reference
beam which falls obliquely on the photographic plate (see Figs. 15.6 and 15.7).
Using such technique in the reconstruction process, one obtains well-separated vir-
tual and real images. The use of such a technique was made possible by the large
coherence length of the laser.4 The importance of coherence can be seen from the
fact that holography is essentially an interference phenomenon. Thus it is essential
that the illuminating wave possesses sufficient spatial coherence so that the wave
from every object point may interfere with the reference wave. We can obtain a
wave with sufficient spatial coherence by making use of pinholes for illuminating.
Alternatively, one could move the source far enough from the scene. But both the
above methods essentially decrease the available power. The arrival of lasers over-
came this difficulty. Further, in order that stable interference fringes be formed in
the hologram of the complete object scene to be recorded, the maximum path dif-
ference between the reference wave and the wave from the object must be less than
the coherence length.

Holograms exhibit very interesting properties. For example, when one records
the hologram of a diffusely reflecting object, each point on the object scatters light
on the complete surface of the hologram. Thus, every part of the hologram receives
light from all parts of the object. Hence even if one breaks the recorded hologram
into various parts, each part is capable of reconstructing the entire object; the resolu-
tion in the image decreases as the size of the hologram decreases. In fact, when one
records holograms of transparencies, one often uses a ground glass screen which
enables the hologram to receive light from all parts of the transparency.

The principle of holography finds applications in many diverse fields. We will
discuss a few of them here.

We had observed that information about depth can also be stored in a hologram.
Consider the problem of locating a transient event concerning a microscopic particle
in a certain volume and studying it. If one uses an ordinary microscope, then since
the event is transient, it is, in general, difficult to first locate the particle and study it.
On the other hand, if one makes a holographic record of the complete volume, then
one can “freeze” the event in the hologram. On reconstruction, there would emerge
from the hologram the same wave with the difference that it is now not transient. If
one now uses a microscope, one can easily locate the particle and study it at leisure.

One of the most important applications of holography has been in interferometry.
In a technique called double-exposure holographic interferometry, one first partially
exposes an object to the photographic plate with a reference wave. Now, the object
is stressed, and one makes another exposure along with the same reference wave.
If the resulting hologram is developed and illuminated by a reconstruction wave,
then there would emerge from the hologram two object waves, one corresponding

4For further discussion on off-axis holography, the reader is referred to Collier et al. (1971), Ghatak
and Thyagarajan (1978), and the Nobel Lecture by Gabor.
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Fig. 15.9 Outline of footprint on a carpet not visible to the naked eye is revealed using holography

to the unstressed object and the other corresponding to the stressed object. These
two object waves would interfere to produce interference fringes. Thus, on viewing
through the hologram, one finds a reconstruction of the object superimposed with
fringes. The shape and the number of fringes give one the distribution of strain in
the object. One can employ the above technique in non-destructive testing of objects
(see also Section 19.7).

As an example, Fig. 15.9 shows a double-exposure interferogram of a carpet
on which a person had walked. Since the fibers in the carpet relax slowly, if two
identical holograms are taken with a reasonable time interval between them, then the
movement of the carpet surface is obvious from the interferogram. Visual inspection
of the carpet would not yield any foot print!

Problems

Problem 15.1 The field variation on the front focal plane of a lens of focal length 20 cm is given as

g(x, y) = A + B cos 6πx + C cos 12πy (x, y in millimeters)

a) What are the spatial frequencies present in the field?

b) What pattern would you observe at the back focal plane of the lens? Assume a wavelength of
600 nm.

Problem 15.2 On plane P1 (see figure below) the field distribution is given as g(x) = A + B cos 40πx +
C sin 25πx, where x is measured in millimeters. A circular aperture of radius 1 mm is placed (with its
center on the axis) on the back focal plane (P2) of the lens. What field distribution would be obtained on
the plane P3, given that f = 20 cm and wavelength = 500 nm?

f

P3P2P1

f f f
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Problem 15.3 If the field distribution on the front focal plane of a lens of focal length 50 cm is given
as g(x, y) = 2 + cos2 10x (with x in centimeters), how many spots would be observed on the back focal
plane? What would be their positions and relative intensities? Wavelength is 500 nm.

Problem 15.4 Consider an object distribution

f (x) = a + b cos(20x + π/3) + c sin(10x)

where x is in centimeters.

a) What are the spatial frequencies present in the object?

b) Consider an optical arrangement shown in Fig. 15.2. The amplitude distribution on plane P1 is given
as

g(x) = a + b cos
2πx

a

On the plane P2 is placed a filter having a transmittance

T(x) = 1 for x < 0

= 0 for x > 0

Obtain the intensity distribution on the plane P3.

Problem 15.5 Consider an object distribution of the form given below placed in the front focal plane of
a lens of focal length 10 cm:

g(x) = (1 + 0.1 cos (20π x)]e−x2

where x is measured in millimeters. Plot this function. This could correspond to a case of a laser beam
with spatial noise. What pattern do you expect to observe at the back focal plane of the lens? Find out
how you can clean up the beam by spatial frequency filtering.

Problem 15.6 Consider an object distribution of the form

f (x, y) = 1 + 0.2 cos
(

20x + π

5

)
+ 0.3 sin

(
50y + π

8

)

where x and y are in millimeters. (a) What are the spatial frequencies present in the object? (b) If the
above object is placed in the front focal plane of a lens of focal length 20 cm and illuminated normally
by a plane wave of wavelength 1 μm, show schematically what would be observed on the back focal
plane of the lens.

Problem 15.7 A circular aperture of radius a is placed (with its center on the axis) on the back focal plane
of a lens of focal length f. What is the range of spatial frequencies that will be passed by the aperture?

Problem 15.8 What is the effect of placing a filter of the form h(x) = px, where p is a constant placed in
spatial frequency plane of a spatial frequency filtering set up?

Problem 15.9 Show that a spatial frequency filter of the form T(x) = αx placed in the spatial frequency
plane yields in the image plane a differential of the object amplitude distribution placed in the front focal
plane.
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Problem 15.10 Show that a spatial frequency filter of the form T(x) = α/x placed in the spatial frequency
plane yields in the image plane an integral of the object amplitude distribution placed in the front focal
plane.

Problem 15.11 Consider two plane waves travelling in the x–z-plane making angles θ1 and θ2 with the
z-axis. A photographic plate is kept on the plane z = 0. Obtain the interference pattern obtained on the
plane. What would be the fringe width?

Problem 15.12 Consider a plane wave propagating along the z-axis and a spherical wave emerging from
a point source placed on the axis at a point z = –d. A photographic plate is kept on the plane z = 0.
Obtain the shape of the fringes obtained.

Problem 15.13 The photographic plate in Problem 15.12 is developed and made into a hologram. If this
is normally illuminated by a plane wave, what would be the output waves? If the hologram is illuminated
by a spherical wave from a point source placed at z = –d, what would be the output from the hologram?



Chapter 16
Laser-Induced Fusion

16.1 Introduction

It is well known that the enormous energy released from the sun and the stars is
due to thermonuclear fusion reactions, and scientists have been working for over 40
years to devise methods to generate fusion energy in a controlled manner. Once this
is achieved, one will have an almost inexhaustible supply of relatively pollution-
free energy. A thermonuclear reactor based on laser-induced fusion offers great
promise for the future. With the tremendous effort being expended on fabrication
of extremely high-power lasers, the goal appears to be not too far away, and once it
is practically achieved, it would lead to the most important application of the laser.

In the next section, we discuss the basic physics behind the energy released in
a fusion reaction; in Section 16.3 we discuss the laser energy requirements; and in
Section 16.4 we briefly describe the laser-induced fusion reactor and some of the
practical difficulties.

16.2 The Fusion Process

A nucleus of an atom consists of protons and neutrons which are nearly of the
same mass. The proton has a positive electrical charge and the neutron, as the name
implies, is electrically neutral. Because neutrons and protons are the essential con-
stituents of atomic nuclei, neutrons and protons are usually referred to by the general
name “nucleon.” If one assumes that the forces between the nucleons are of the
Coulomb type, then the nucleons would have flown apart because of the repulsion
between two protons and also because no Coulomb-type forces exist between two
neutrons and between a neutron and a proton. Since the nucleons are held together
in the nucleus, there must be a short-range attractive force between them. Indeed, it
is believed that at short distances

(≤ 10−13 cm
)
, very strong attractive forces exist

between the nucleons1 and this force is independent of the charge of the nucleons,

1Beyond the range of this short-range force, the forces are of Coulomb type.
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i.e., the force between two protons or two neutrons or between a proton and a
neutron is essentially similar. Because of the strong attractive forces between the
nucleons, a certain amount of energy has to be supplied to split a nucleus into its
constituent nucleons; this is known as the binding energy2 of the nucleus.

Consider a nuclear reaction in which the two deuterons react to form a tritium
nucleus and a proton:

D + D → T (1.01 MeV) + H (3.01 MeV) (16.1)

The binding energy of each of the deuterium nuclei is 2.23 MeV and the total
binding energy of the tritium nucleus is 8.48 MeV. Thus, there is a net gain in the
binding energy, which is 8.48 – 2 × 2.23 = 4.02 MeV. Physically, a loosely bound
system goes over to a tightly bound system resulting in the liberation of energy; this
energy appears in the form of kinetic energies of tritium and proton, which are given
in parentheses in Eq. (16.1). Nuclear reactions such as that represented by Eq. (16.1)
in which two loosely bound light nuclei produce a heavier tightly bound nucleus are
known as fusion reactions.3

Since both deuterium and tritium are isotopes of hydrogen with mass numbers
2 and 3, the nuclear reaction expressed by Eq. (16.1) is often written in the form4

1H2 + 1H2 → 1H3 + 1H1 (16.2)

2The binding energy is calculated using the famous Einstein mass–energy relation: E = mc2 where
c
(≈ 3 × 1010cm/s

)
is the speed of light in free space. If Z and N represent the number of protons

and of neutrons, respectively, inside the nucleus, then the total binding energy � will be given as

� = (
Zmp + Nmn − MA

)
c2

where mn, mp, and MA represent the masses of the neutron, the proton, and the atomic nucleus,
respectively. For example, the nucleus of the deuterium atom (which is known as the deuteron)
has a mass of 2.01356 amu (1 amu ≈ 1.661 × 10–24 g, which is equivalent to 931.5 MeV). Since
deuteron consists of one proton and one neutron, one obtains

� = (1.00728 + 1.00866 − 2.01356) × 1.661 × 10−24 × (
3 × 1010

)2
erg

= 3.56 × 10−6 × (
1.6 × 10−12

)−1 × 10−6 MeV
≈ 2.23 MeV

which represents the binding energy of the deuteron. In the above equation, we have used 1.00728
and 1.00866 amu to represent the masses of proton and neutron, respectively.
3On the other hand, in a fission process, a loosely bound heavy nucleus splits into two tightly bound
lighter nuclei, again resulting in the liberation of energy. For example, when a neutron is absorbed
by a 92U235 nucleus, the 92U236 nucleus is formed in an excited state (the excitation energy is
supplied by the binding energy of the absorbed neutron). This 92U236 nucleus may undergo fission
to form nuclei of intermediate mass numbers (like 56B140 and 36Kr93 along with three neutrons).
The energy released in a typical fission reaction is about 200 MeV.
4The nuclei are identified by symbols like 11Na23; the subscript (which is usually omitted) rep-
resents the number of protons in the nucleus and the superscript represents the total number of
nucleons in the nucleus. Thus 11Na23 represents the sodium nucleus having 11 protons and 12
neutrons. Similarly 1H3 represents the tritium nucleus having 1 proton and 2 neutrons.
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where 1H1, 1H2, and 1H3 represent the nuclei of hydrogen (which is nothing but
a proton), deuterium, and tritium, respectively. The following deuterium–tritium
fusion reaction5

D + T → α (3.5 MeV) + neutron (14.1 MeV) (16.3)

is also of considerable importance as a possible source of thermonuclear power. As
indicated in Eq. (16.3), the total energy liberated is about 17.6 MeV. Tritium does not
occur naturally, and one of the methods for producing it is to let the neutron [emitted
in the D–T reaction – see Eq. (16.3)] interact with lithium [see Eq. (16.15)]. Even
though deuterium is available in abundant quantities (it constitutes about 0.015% of
natural water), one expects to use the D–T reaction in a fusion reactor, because at
T ≈ 100 million ◦K,6 the D–T reaction is about 100 times more probable than the
D–D reaction7 and the energy released in the D–T reaction is about four times that
in a D–D reaction [see Eqs. (16.1) and (16.3)].

16.3 The Laser Energy Requirements

One of the difficulties associated with the fusion reaction is the requirement of a
very high temperature for the fusion reactions to occur. This is due to the fact that
unless the nuclei have very high kinetic energies, the Coulomb repulsion will not
allow them to come sufficiently close for fusion reactions to occur.8 The tempera-
tures required are usually ∼ 100 million K, and at such high temperatures the matter
is in a fully ionized state and its confinement poses a serious problem; matter in a
fully ionized state is known as a plasma. Thus, two major problems in thermonu-
clear fusion are (i) heating of plasmas to very high temperatures and (ii) confinement
of plasmas for times long enough for substantial fusion reactions to occur.9 For
example, for the deuterium–tritium reaction [see Eq. (16.2)] at 10 keV (≈ 100 mil-
lion ◦K), for the fusion output energy to exceed the input energy required to heat the
plasma, one must have

nτ ≥ 1014 cm−3 s (16.4)

5Equation (16.3) can also be written in the form

1H2 + 1H3 → 2He4 + 0n1

6Temperatures of the order of 100 million K are required in fusion reactors; see Section 16.3.
7See, e.g., Booth et al. (1976).
8This is in contrast to fission reactions which are induced by neutrons which carry no charge. As
such, even at room temperatures, there is a considerable probability for fission reactions to occur
and hence it is relatively easy to construct a fission reactor. It may be mentioned that in a hydrogen
bomb (where the fusion reactions are responsible for the liberation of energy), a fission bomb is
first exploded to create the high temperatures required for fusion reactions to occur.
9In the sun (the energy of which is due to thermonuclear reactions), the plasma has a temperature
of ≥ 10 million K and it is believed that the confinement is due to the gravitational forces.
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where n represents the plasma density and τ is the confinement time. Equation
(16.4) is known as the Lawson’s criterion (see, e.g., Ribe (1975)). For n ∼
1015 ions/cm3, τ must be ≥ 0.1 s. Although the plasma has not yet been con-
fined for such long times, the Russian device (known as Tokamak), using mag-
netic confinement, has come close to the conditions where the above equality is
satisfied.

With the availability of intense laser pulses, a new idea of fusion systems has
emerged. The idea is essentially compressing, heating, and confining the ther-
monuclear material by inertial forces which are generated when an intense laser
pulse interacts with the thermonuclear material, which is usually in the form of
a solid pellet. In such a confinement, it is not necessary to have a magnetic
field.

For laser-induced fusion systems, instead of using the parameter nτ , it is more
useful to use the parameter ρR, where ρ and R represent the density of the fuel
and the fuel radius, respectively. It has been shown (see, for example, Booth et al.
(1976); Ribe (1975)) that if f represents the fractional burn-up of the fuel then

f ≈ ρR

6 + ρR
(16.5)

where ρ is measured in grams per cubic centimeter and R is measured in centimeters.
For f ≈ 0.05 (i.e., 5% burn-up of the fuel), ρR must be about 0.3 g/cm2; the higher
the value of ρR, the greater the fractional burn-up of the fuel. Further, if the mass
of D–T pellet is M g, then the total fusion energy released (in joules) would be
given by10

Eoutput = 4.2 × 1011fM (J) (16.6)

Obviously

M = 4π

3
R3ρ = 4π

3

1

ρ2 (ρR)3 (16.7)

10Since the masses of D and T nuclei are in the ratio of 2:3, the number of D nuclei will be

2 M

5

1

Md
= 2 M

5

1

2 × 1.66 × 10−24

where Md
(≈ 2 × 1.66 × 10−23 g

)
represents the mass of the deuteron; we have assumed equal

numbers of D and T nuclei in the pellet. The energy released in a D–T reaction is 17.6 MeV [see
Eq. (16.3)] and an additional 4.8 MeV is released when the neutron is absorbed by the lithium
atoms in the blanket [see Eq. (16.15)] resulting in a net energy release of about 22 MeV. Thus, the
output energy would be

Eoutput ≈ f × 2 M

5
× 22 × 1.6 × 10−6

2 × 1.66 × 10−24
� 4.2 × 1011fM (J)
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Also, to heat the D–T pellet to temperatures (≈ 100 million K) at which fusion
reactions will occur with high probability, the laser energy required would be11

Elaser ≈ 4 × 108 M

ε
or

Elaser ≈ 4 × 108 4π

3

1

ρ2ε
(ρR)3 (16.8)

where ε represents the fraction of laser energy used for heating the pellet; usually
ε ∼ 0.1. Thus the yield ratio Y is given as

Y = Eoutput

Elaser
≈ 4 × 1011fMε

4 × 108 M
= 103εf (16.9)

or

Y ≈ 100
ρR

6 + ρR
(16.10)

where we have assumed ε ≈ 0.1. Clearly, for Y > 1, ρR ≥ 0.1 g/cm2. Thus for a
sizable burn-up and for a reasonable yield, one should at least have ρR ≈ 0.2 g/cm2.
Now, for normal (D–T) solid, ρ ≈ 0.2 g/cm2; using Eq. (16.8) one obtains

Elaser = 4 × 108 × 4π

3

(0.2)3

(0.2)2 × 0.1
≈ 3 × 109 J (16.11)

which is indeed very high. However, as is obvious from Eq. (16.8), for a given value
of ρR, the laser energy requirement can be significantly decreased to the mega-
joule range by increasing the value of ρ; this can be achieved by compressions to
103–104 times the normal solid density. At such high densities, the α particles that
are produced in the reaction give up most of their energy to the unburned fuel before
leaving the pellet; this leads to an increased fractional burning of fuel. For a typi-
cal calculation reported by Ribe (1975), for ρR ≈ 3 g/cm2[corresponding to 30%
burn-up – see Eq. (16.5)] and an ignition temperature of 104 eV (≈ 100 million K),
one obtains using Eq. (16.8)

Elaser = 4 × 108 × 4π

3

(3)3

(0.2)2 × 0.4
≈ 2.5 × 1012 J (16.12)

11For the kinetic energies to be about 10 keV (≈ 100 million K), the energy imparted would be

2 ×
(

2 M × 10 × 103 × 1.6 × 10−19

5 × 2 × 1.66 × 10−24

)
≈ 4 × 108 M (J)

where M is in grams; the quantity inside the parentheses is the energy imparted to the deuteron,
and the factor of 2 outside the parentheses is due to the fact that an equal energy has also to be
imparted to tritium nuclei.
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where we have assumed a normal D–T solid of density 0.2 g/cm3 and ε = 0.4. On
the other hand, for ρ = 1000 g/cm3, one would obtain (for the same value of ρR)

Elaser ≈ 1.2 × 105 J (16.13)

The above numbers correspond to a pellet mass of 110 μg whose radius (before
compression) is about 0.05 cm; the compressed radius of this pellet is ∼0.003 cm.
The fusion energy yield would be given as [see Eq. (16.6)]

Eoutput ≈ 4.2 × 1011 × 0.3 × 100 × 10−6

≈ 14 × 106 J = 14 MJ
(16.14)

This corresponds to a yield of about 100.

16.4 The Laser-Induced Fusion Reactor

In a laser-induced fusion reactor, we take, for example, a deuterium–tritium pellet
in the form of a cryogenic solid where particle densities are ∼ 4 × 1022 cm−3 and
shine laser light from all directions (see Fig. 16.1). Within a very short time, the
outer surface of the pellet is heated considerably and gets converted into a very
hot plasma (T ∼ 100 million K). This hot ablation layer expands into vacuum and
as a reaction gives a push to the rest of the pellet in the opposite direction. Thus,

D-T pellets

Li blanket Laser pulses

To heat
exchangers and

recirculating
pumps

Fig. 16.1 Schematic of a D–T fusion reactor with lithium blanket
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if a spherical pellet is irradiated from all sides, then a spherical implosion front
travels towards the core. For a deuterium–tritium plasma, with an incident intensity
of 1017 W/cm2, one can get an inward pressure of ∼ 1012 atm.12 As the implosion
front accelerates toward the center, it sets up a sequence of shock waves traveling
inward. Such shock waves lead to a very high compression of the core and the
fusion energy is released from high compression densities13 along with the high
temperature. In order to obtain high compression densities, the time variation of the
laser pulse has to be such that successive shock waves do not meet until they reach
the center of the pellet. It has been shown that the time variation of the laser power
should roughly be of the form (t0 − t)−2, where t = t0 is the time when all the
shocks reach the center. Thus, if the pulse duration is about 10 ns, about four-fifths
of the energy goes in the last nanosecond and one-fifth in the first nine nanoseconds.
A typical ideal energy profile for maximum compression in D–T pellets is shown in
Fig. 16.2.

E
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Fig. 16.2 Typical energy
profile of the incident laser
pulse for maximum
compression in D–T pellets

According to a computer experiment by Nuckolls and his co-workers (1972), a
deuterium–tritium spherical pellet of radius 0.04 cm was irradiated by a 6 × 104 J
pulse of 25 ns duration14 (λ ∼ 1 μm); compression densities as high as 1000 g/cm3

were obtained and about 1.8 × 106 J of fusion energy was released in about
10–11 s after the compression. Thus a multiplication by a factor of about 30 was
observed.

We would like to mention that laser wavelengths (∼ 10μm) may be too high
for pellet heating. Detailed calculations show15 that 1.06 μm radiation can heat a

12The radiation pressure corresponding to an intensity of 1017W/cm2 is only about 108 atm.
13A compression ratio of a few thousand puts the laser energy requirement in the 105 J range (see
Section 16.3).
14The time variation of the incident laser pulse was assumed to be roughly of the form (t0 − t)−2;
thus the power varied from about 1011W at 10 ns to 1015 W at 15 ns.
15See, e.g., Kidder (1973).
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deuterium–tritium pellet to five times the temperature in one-tenth the time as com-
pared to 10.6 μm radiation heating the same pellet. This and other facts suggest the
use of 1 μm radiation for laser-induced fusion. The 10.6 μm radiation corresponds
to a CO2 laser (see Section 11.7) and the 1.06 μm radiation corresponds to the
neodymium-doped glass lasers (see Section 11.3). Further, neodymium-doped glass
lasers are capable of delivering a high laser energy within a short time (see Table
16.1). One of the major drawbacks of the neodymium-doped glass laser system is the
fact that the efficiency (defined as the ratio of the laser energy output to the electrical

Table 16.1 Some laser fusion facilities

Locationa Type
Number of
beams

Total beam
area (cm2)

Maximum
energy per
beam

Peak power
(TW)

USA
LASLb CO2 8 9600 10 kJ 20
LASLb CO2 72 – 100 kJ 100–200
LASLb CO2 1 1200 400 J 0.4
KMSb Nd:glass 2 200 200 J 0.5
NRLb Nd:glass 2 70 300 J 0.2

LLL
ARGUSb Nd:glass 2 600 1 kJ 4.0
SHIVAb Nd:glass 20 6300 10 kJ 30.0
NOVA Nd:glass 100 – 300–500 kJ 300

LLE
GDLb Nd:glass 1 60 210 J 0.7
ZETAb Nd:glass 6 360 1.3 kJ 3–5
OMEGA Nd:glass 24 5500 10-14 kJ 30–40

USSR
Lebedev
UM1 35b Nd:glass 32 2560 10 kJ 5–10
DELPHIN Nd:glass 216 3430 13 kJ 10–15

UK
Rutherfordb Nd:glass 2 200 200 J 0.5

France
LiMeilb Nd:glass 8 500 700 J 1.0
(Octal)

Japan
Osaka Nd:glass 12 40

Source: Refs. [Opt. Spectra 13(5), 30 (1979); Opt. Spectra 13, 29 (1979); Laser Focus 15(7), 38
(1979); Phys. Today 32, 17 (1979); Phys. Today 32, 20 (1979)]
aLASL – Los Alamos Scientific Laboratory, Los Alamos, New Mexico; KMS – KMS Fusion,
Ann Arbor, Michigan; NRL – Naval Research Laboratory, Washington DC; LLL – Lawrence
Livermore Laboratory, Livermore, California; LLE – Laboratory for Laser Energetics, Rochester,
New York
bExisting facilities
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Fig. 16.3 A beam of infrared light from a Nd:glass laser after passing through a 10-cm aper-
ture potassium dihydrogen phosphate (KDP) crystal (as left) is halved in wavelength (and hence
doubled in frequency), emerges as green light at 5320 Å, and is reflected by the mirror at the fore-
ground into the target chamber at far right. The 12.8-mm-thick KDP crystals have yielded doubling
efficiencies greater than 60%. The output power was 0.5 TW

(= 0.5 × 1012 W
)
, one of the highest

powers in the visible region of the spectrum. (Photograph courtesy: Thomas A. Leonard, KMS
Fusion, Inc.)

energy input) is extremely low (∼ 0.2%). On the other hand, CO2 lasers16 (which
operate at 10.6 μm) have efficiencies in the range of 5–7%. Although it is difficult to
predict the specific laser systems which will be in operation in a laser fusion reactor,
one does expect that very soon the laser technology would be sufficiently developed
to meet the requirements.

Figures 16.3 and 16.4 show some photographs of the laser fusion experiments
carried out at KMS Fusion, Inc., USA. Figure 16.3 shows a beam of light emerging
from a neodymium:glass laser after passage through a 10-cm aperture potassium
dihydrogen phosphate (KDP) crystal (at left) which doubles the frequency (har-
monic generation) and hence halves the wavelength from 1.064 μm (infrared) to
5320 Å (green), which then enters the target chamber shown at the extreme right.
Output powers of 0.5 TW (1 TW = 1012 W) were measured at the output of the
KDP crystals. Figure 16.4 shows a photograph taken during the laser irradiation of
the cryogenic target which was a hollow spherical glass shell of 51 μm diameter
with a 0.7 μm wall containing 1.3 ng of deuterium–tritium condensed into a liquid
layer on the inside surface of the shell. The targets produced 7 × 107 neutrons on
irradiation.

In March 2009, the National Ignition Facility (NIF) sent the first 192-beam laser
shot to the center of its target chamber. The first test of the world’s biggest – and

16For details of other kinds of lasers used in fusion, see, e.g., Booth et al., (1976).
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Fig. 16.4 Laser irradiation of
a cryogenic target which is a
hollow spherical glass shell
51 μm in diameter, with a
0.7-μm wall, containing
1.3 ng of deuterium–tritium
condensed in a liquid layer on
the inside surface of the shell.
Two X-ray pinhole cameras
are seen projecting toward the
target from the top of the
chamber. The targets
produced 7 × 107 neutrons.
(Photograph courtesy:
Thomas A. Leonard, KMS
Fusion, Inc.)

by up to 100 times the most energetic – laser system achieved 420 J of ultraviolet
energy for each beam. Added up, the shot cycle produced 80 kJ of energy. Within
2–3 years, scientists expect to be creating fusion reactions that release more energy
than it takes to produce them. If they are successful, it will be the first time this has
been done in a controlled way eventually leading to fusion power plants. At the NIF
located at Lawrence Livermore National Laboratory (LLNL), the 192 lasers that fire
simultaneously at precisely the same point in space are designed to deliver 1.8 MJ
of energy in a few nanoseconds equivalent to 500 trillion W of power. Significant
results are expected sometime between 2010 and 2012. Figure 16.5 gives an aerial
view of the NIF.

October 2008 marks the beginning of a 3-year preparatory phase of a new high-
power laser energy research facility (HiPER) costing about C 1 billion. Unlike the
National Ignition Facility (NIF) at the Lawrence Livermore Laboratory in the USA
and the Mégajoule laboratory in France (where a single set of lasers is used to both
compresses and heat the fuel), HiPER is planned to use separate laser pulses to
do the compression and heating. The compression bank with its amplifiers, pulse
shapers and wavelength shifters will fire 50–200 half-meter-diameter laser beams
focused down to a millimeter and containing a total of 250 kJ at a wavelength of
0.35 μm over “multiple nanoseconds” creating 109 bars of pressure. This is expected
to compresses the plasma to 300 g/cm3 – 20 times the density of lead or even gold.
Ignition is initiated by a 15-ps 70 kJ pulse, focussed to 100 μm diameter to match the
size of the super-dense plasma, which heats the compressed matter to 100 million K.
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Fig. 16.5 A bird’s-eye view of the NIF facility shows the main 705,000 ft2 building. The structure
includes two laser bays capable of generating more than 4 MJ of infrared laser light; four capacitor
bays (which store about 400 MJ of electrical energy); two switchyards, which direct all 192 laser
beams into the target bay; the target bay, where experimental activities are conducted; the target
diagnostic building, for assembling and maintaining diagnostic equipment for experiments; and
the Optical Assembly Building (upper left), where optics assemblies are prepared for installation.
(Source: Rick Sawicki Interview for Dartmouth Engineer Magazine, May 27, 2008)

The focussed intensities are expected to be about 1026 W/cm2. Figure 16.6 gives the
status of various projects on laser fusion facilities.

We end this chapter by briefly describing the laser fusion reactor (usually abbre-
viated as LFR). A simplified block diagram of the electricity-generating station is
shown in Fig. 16.7. The reactor would roughly consist of a high-vacuum enclosure
at the center of which deuterium–tritium pellets are dropped at regular intervals of
time. As soon as the pellet reaches the center of the chamber, it is irradiated by
synchronized pulses from an array of focused laser beams from all directions (see
Fig. 16.4). The fusion energy released is absorbed by the walls of the chamber; con-
sequently the walls get heated up, which may be used for running a steam turbine.
For a commercial power station, if 100 pellets are allowed to explode per second
and if in each explosion, an energy of about 108 J is released, one would have a 10
GW =1010 W power station.

One of the most important aspects of any fusion reactor is the production of
tritium. Since it is not available in nature, it has to be produced through nuclear
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Fig. 16.6 The status of various projects on laser fusion facilities (Source: Ref. M. Dunne, HiPER:
a laser fusion facility for Europe http://fsc.lle.rochester.edu/pub/workshops/FIW06/Dunne_F106.
pdf)
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Fig. 16.7 A simplified block diagram of a laser fusion electric-generating system
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reactions. This is achieved by placing lithium17 (or its compounds) in a blanket
surrounding the reactor chamber. The neutron emitted in the fusion reaction [see
Eq. (16.3)] is absorbed by a lithium nucleus to give rise to tritium according to
either of the following reactions:

3Li6 + 0n1 → T
(

1H3
)

+ α
(

2He4
)

+ 4.79 MeV (16.15)

3Li7 + 0n1 → T
(

1H3
)

+ α
(

2He4
)

+ 0n1 − 2.46 MeV (16.16)

Note that in the second reaction, the neutron appears on the right-hand side
also, which can again interact with a lithium nucleus to produce tritium.18 The
conceptual designs consist of liquid lithium being contained between two struc-
tural shells which enclose the reactor cavity. Liquid lithium will also be responsible
for the removal of heat from the reactor and the running of a steam turbine. The
heat exchangers and the lithium-processing equipment for separation of tritium are
expected to be adjacent to the reactor (see Fig. 16.7).

We conclude by noting that there are many practical difficulties associated with
the laser-driven fusion system, such as (a) delivery of a substantial part of the laser
energy to the fuel before heating the fuel (which would, in effect, reduce the com-
pression achieved) and before the shock wave disperses the fuel mass; (b) building
of high-power lasers to a stage when the output energy from the system exceeds
the input energy; and (c) design of complex targets and reliable production of such
targets with extremely good surface finish, as surface irregularities of more than
1% of the thickness of the wall seem to yield very unstable compressions of thick
shells. Also, projects are underway to study the feasibility of using particle beams
like electron beams and ion beams as fusion drivers. It is much beyond the scope
of the present book to go into the details of the various difficulties; the interested
reader may look up Brueckner and Jorna (1974), Post (1973), and Stickley (1978)
for further details.

17Lithium is quite abundant and has good heat transfer properties.
18In addition, neutron multiplication will occur in the blanket through (n, 2n) reactions; these
neutrons would further produce more tritium.





Chapter 17
Light Wave Communications

17.1 Introduction

One of the most important and exciting applications of lasers lies in the field of com-
munication. Since optical frequencies are extremely large compared to radio waves
and microwaves, a light beam acting as a carrier wave is capable of carrying far more
information in comparison to radio waves and microwaves. Light wave communi-
cations using hair-thin optical fibers as transmission media has become ubiquitous
with the ever increasing demand for higher and higher speeds of communication.
In this chapter, we will discuss briefly the concept of carrier wave communication
which uses electromagnetic waves as carriers of information and then discuss some
basic features of optical fibers and their application to light wave communication.

17.2 Carrier Wave Communication

Communication using electromagnetic waves is today the most reliable, economi-
cal, and fastest way of communicating information between different points. In any
communication system, the information to be transmitted is generated at a source;
gets transmitted through a channel such as atmosphere in radio broadcast, or electri-
cal lines in telephone or wireless network in mobile communication, or optical fibers
in a fiber-optic communication system; and finally reaches a receiver, which is the
destination. Usually the channel through which the information propagates intro-
duces loss in the signal and also distorts it to a certain extent. For a communication
system to be reliable the channel must introduce minimal distortion to the signal.
There should also be very little noise added by the channel so that the information
can be retrieved without significant errors.

The electrical signals produced by various sources such as the telephone, com-
puter, or video are not always suitable for transmission directly as such through
the channel. These signals are made to modulate a high-frequency electromagnetic
wave such as a radio wave, a microwave, or a light wave and it is this modulated
electromagnetic wave that carries the information. Such a communication system is
referred to as carrier wave communication.

417K. Thyagarajan, A. Ghatak, Lasers, Graduate Texts in Physics,
DOI 10.1007/978-1-4419-6442-7_17, C© Springer Science+Business Media, LLC 2010
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There are different ways of modulating an electromagnetic wave in accordance
with a given signal. The modulation can be either analog modulation or digital mod-
ulation. In the case of analog modulation, the amplitude, the phase, or the frequency
of the carrier wave is changed in accordance with the signal amplitude, while in
the case of digital modulation, the analog signal is first converted into a digital sig-
nal consisting of ones and zeroes which is then used to modulate the carrier. In the
following we shall discuss these different schemes.

17.2.1 Analog Modulation

In analog modulation some characteristics of the carrier wave (amplitude, phase, or
frequency) are modulated in accordance with the signal; the characteristic can take
values continuously within a range.

Since the carrier wave is a sinusoidal wave, we can write the carrier wave as

V(t) = V0 sin(ωt − ϕ) (17.1)

where V0 is a constant, ω represents the carrier frequency, and ϕ is an arbitrary
phase. Here V represents either the voltage or the electric field of the electromagnetic
wave. Amplitude, phase, and frequency modulations correspond to modulating the
amplitude, phase, and frequency of the carrier wave.

17.2.1.1 Amplitude Modulation

In the case of amplitude modulation, the amplitude of the carrier wave is modu-
lated in accordance with the signal to be sent. Thus we can write for an amplitude
modulated wave as

V(t) = V0{1 + m(t)}sin(ωt − ϕ) (17.2)

where m(t) represents the time-varying signal to be transmitted. As the signal ampli-
tude changes, the amplitude of the modulated wave changes and thus the modulated
wave carries the signal.

As an example if we consider the signal to be another sine wave with frequency
	 (<<ω), then we have the modulated wave as

V(t) = V0{1 + a sin(	t)}sin(ωt − ϕ) (17.3)

where a is a constant. Expanding the brackets and using the formulas for product of
sine functions, we have

V(t) = V0

{
sin(ωt − ϕ) + 1

2
a cos[(ω − 	)t − ϕ] − 1

2
a cos[(ω + 	)t − ϕ]

}

(17.4)
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Hence the modulated wave now contains three frequencies ω, ω + 	, and ω–	.
These are the carrier frequencies, the upper side band, and the lower side band
frequencies, respectively. Thus amplitude modulating a carrier wave by a sinusoidal
wave generates two side bands. Since any general time-varying function can be ana-
lyzed in terms of sinusoidal functions, amplitude modulation of the carrier wave
would result in the generation of an upper side band and a lower side band. If
the maximum frequency of the signal is 	max, then the upper side band would lie
between ω and ω + 	max and the lower side band from ω–	max to ω. Both the side
bands contain information on the entire signal.

Figure 17.1a shows a signal to be transmitted and Fig. 17.1b shows the carrier
wave; note that the frequency of the carrier wave is much larger than the frequencies
contained in the signal. Figure 17.1c shows the amplitude-modulated carrier wave.
The signal now rides on the carrier as its amplitude modulation. At the receiver, the
modulated carrier is demodulated and the signal can be retrieved.

As an example, let us assume that we wish to transmit speech. We first note that
in order for the speech to be intelligible, it is sufficient to send signal content up
to a frequency of 4000 Hz. Thus the electrical signal that comes out of the micro-
phone into which the person speaks can be restricted to a frequency of 4000 Hz.
In comparison, for sending high-fidelity music, the upper frequency is 20,000 Hz,

Carrier wave

Amplitude modulation

Frequency modulation

Signal 

Fig. 17.1 (a) The signal to
be transmitted; (b) the carrier
wave using which the signal
will be communicated; (c)
amplitude-modulated carrier
wave; and (d)
frequency-modulated carrier
wave
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which is also the limit of frequency of human hearing. The electrical signal from
the microphone could look like the one shown in Fig. 17.1a and if we are consider-
ing radio transmission, the radio wave on which the information rides will look like
the one shown in Fig. 17.1b. The amplitude-modulated radio wave would then be
like the one shown in Fig. 17.1c. It is this modulated radio wave that is broadcast
through open space (which is the channel) and at the receiver (your radio set) it is
demodulated and the signal is retrieved and you hear the speech.

An obvious question that arises is, “How can one send simultaneously more
than one signal through the same channel?” In order to understand this we first
note that the carrier wave shown in Fig. 17.1b is at a single frequency, while the
amplitude-modulated signal shown in Fig. 17.1c has a spectrum, i.e., it has a range
of frequencies. Thus if the signal occupies the frequencies up to 4000 Hz and if
the carrier wave frequency is 1,000,000 Hz, then the amplitude-modulated wave has
frequencies lying between 996,000 and 1,004,000 Hz (sum and difference of the
carrier frequency and the maximum signal frequency). The information contained
in the frequency range 996,000–1,000,000 Hz is the lower side band and the infor-
mation contained in the frequency range 1,000,000–1,004,000 Hz is the upper side
band and both these bands contain the entire information. Hence it is sufficient to
send only one of the side bands, e.g., the components lying between 1,000,000 and
1,004,000 Hz in order for the receiver to retrieve the signal; this is referred to as
upper side band transmission. Hence we see that to send one speech signal, we need
to reserve the frequencies lying between 1,000,000 and 1,004,000 Hz, a band of
4000 Hz.

Now, in order to send another speech signal, we can choose a radio wave of fre-
quency 1,004,000 Hz and send the modulated wave lying in the frequency band
between 1,004,000 and 1,008,000 Hz. These frequencies lie outside the range of
the frequencies of the first signal and hence will not interfere with that signal;
similarly for more and more speech signals. Thus if we can use carrier frequen-
cies over a range of say 1,000,000–3,000,000 Hz, then we can simultaneously send
2,000,000/4000 = 500 speech signals. This also makes it clear that the larger the
range of frequencies of the carrier wave, the larger the number of channels that can
be sent simultaneously. The range of available frequencies (which is a certain frac-
tion of the carrier frequency) increases with the frequency of the carrier wave and
this is the reason why light waves which have frequencies much higher than radio
waves or microwaves can transmit much more information.

17.2.1.2 Frequency Modulation

In the case of frequency modulation, instead of modulating the amplitude of the
carrier wave, its frequency is changed in accordance with the signal as shown in
Fig. 17.1d. In this case, the signal information is contained in the form of the fre-
quency of the signal. For the case of frequency-modulated signal, instead of Eq.
(17.3) we would have

V(t) = V0 sin(ω{1 + am(t)}t − ϕ) (17.5)
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As can be seen, in this case, the amplitude of the wave remains constant, while
the frequency changes with time in accordance with the signal represented by m(t).
Equation (17.5) represents a wave which does not have just one frequency but many
frequency components. The frequency spectrum in this case is not as simple as
in the case of amplitude modulation. It can be shown that unlike the amplitude
modulation case where the amplitude-modulated signal had a narrow upper and
a narrow lower side bands, in the case of frequency modulation, the modulated
signal contains many more frequency components. Hence an FM signal requires
much larger bandwidth to transmit than does the AM signal. Thus for a given range
of carrier frequencies, the number of independent channels that can be sent using
frequency modulation would be smaller. In order to accommodate more channels,
the carrier frequencies used in frequency modulation are much higher and fall in
the range 30–300 MHz. Since the information is coded into the frequency of the
carrier wave, the frequency-modulated waves are less susceptible to noise and this is
quite apparent while listening to AM radio broadcast (medium-wave or short-wave
channels) or FM radio broadcast.

In the above methods, simultaneous transmission of different independent sig-
nals is accomplished by reserving different carrier frequencies for different signals.
This method is referred to as frequency division multiplexing. All the signals are
propagating simultaneously through the transmission medium and the receiver can
pick up any of the signals by filtering only the frequency band of interest to it, i.e.,
tune into the required signal.

17.2.2 Digital Modulation

The modulation scheme used in optical fiber communication is called digital mod-
ulation. The digital modulation scheme is based on the fact that an analog signal
satisfying certain criteria can be represented by a digital signal. There is a theo-
rem called the sampling theorem according to which a signal which is limited by
a maximum frequency (also referred to as band-limited signal), i.e., has no fre-
quency component above a certain frequency, is uniquely determined by its values
at uniform time intervals spaced less than half of the inverse of the maximum fre-
quency present in the signal. Thus if we consider speech which has frequencies
below 4000 Hz, then the analog speech signal (like the one shown in Fig. 17.1a) can
be represented uniquely by specifying the values of the signal at time intervals of
less than 1/8000s. Thus if we sample the speech signal at 8000 times per second and
if we are given the values of the signal at these times, then we can uniquely deter-
mine the original analog speech signal even though we are not told the value of the
function at intermediate points. Figure 17.2 represents this fact; Fig. 17.2a shows
again the same signal as Fig. 17.1a and Fig. 17.2b represents the sampled values at
time intervals of 1/8000s. Thus instead of sending the analog signal, it is sufficient
to send the values of the signal at specific times and this is sufficient to determine the
signal uniquely.
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(a)

(b)

Fig. 17.2 (a) Sampling of
the given analog signal and
(b) sampled values of the
signal. Note that even though
the values of the signal
between the samples are not
specified, these can be
uniquely determined from the
sampled values

Instead of sending pulses of different amplitudes corresponding to different sam-
pled values, it is usual to first convert the various pulse amplitudes into a binary
signal which will consist of only two values of amplitudes, high amplitude referred
to as 1 and low amplitude (usually 0) referred to as 0.

In the binary scheme, the rightmost place is the coefficient of 20, the next digit
to the left is the coefficient of 21, the next one is the coefficient of 22, etc. Thus the
sequence 101 in binary format, in decimal form represents the number 1 × 22 +0
× 21 +1 × 20 =5. With three bits the largest decimal number would correspond to
111 which is 7. This number in the decimal system corresponds to the number 23–1.
Similarly the sequence of binary numbers 01100100 and 11000111 represents the
numbers 100 and 199, respectively, in decimal system. Any integer between 0 and
255 (=28–1) can be represented by this sequence of 1s and 0s with eight “digits.” If
a number greater than 255 has to be represented, then we need to take a ninth digit
before the digit corresponding to 128 and that would then correspond to the decimal
number 256. Computers use the digital language for processing of information and
today the binary representation is all pervasive as it is used in computer discs, digital
video discs, etc.

17.2.2.1 Pulse Code Modulation

The most common modulation scheme employed in optical fiber communication is
the pulse code modulation. In this, each of the amplitudes of the sampled values is
represented by a binary number consisting of eight digits (see Fig. 17.3). Since the
maximum decimal value with eight digits is 255 (= 128+ 64 + 32 + 16 + 8 + 4 +
2 + 1), the maximum amplitude of the signal is restricted to 255 so that all integer
values of signal can be represented by a sequence of 1s and 0s.

Now in pulse code modulation, the given analog signal is first sampled at an
appropriate rate and then the sample values are converted to a binary form. The
carrier is then modulated using the binary signal values to generate the modulated
signal.
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Fig. 17.4 Non-return-to-zero
(NRZ) and return-to-zero
(RZ) schemes

The most common scheme employed is called on–off keying (OOK). In this
scheme, every digit 1 is represented by a high-amplitude value of the carrier and
every digit 0 by zero amplitude of the carrier. Figure 17.4 shows the modulated
wave corresponding to the binary sequence of seven digits 10011010.

In the scheme shown in Fig. 17.4a, the amplitude of the carrier does not return to
zero when there are two adjacent 1s in the signal. This is referred to as non-return-to-
zero (NRZ) scheme. There is another scheme called the return-to-zero (RZ) scheme
in which the amplitude of the carrier returns to zero even if the adjacent digits are
1s (see Fig. 17.4b).

One of the major differences between the NRZ and RZ pulse sequences is the
bandwidth requirement. To appreciate this we first note that in the NRZ scheme
the fastest changes correspond to alternating sequence of 1s and 0s, while in the
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Fig. 17.5 An alternating
sequence of 1s and 0s
corresponds to the maximum
rate of change in NRZ, while
a series of 1s corresponds to
the maximum rate of change
in RZ. The sinusoidal curves
superimposed on the pulses
correspond to the
fundamental frequency of the
pulse sequence

case of RZ, a sequence of 1s represents the fastest changes (see Fig. 17.5). From
Fig. 17.5a it can be seen that the fundamental frequency component in the case of
NRZ pulse sequence is 1/2T, while in the case of RZ it is 1/T. Hence for transmission
without too much distortion, NRZ would require a bandwidth of at least 1/2T, while
RZ would need a bandwidth of 1/T. If the bit rate is B, then B = 1/T and thus the
bandwidth requirements for NRZ and RZ are given as

�f ≈ B

2
; NRZ

≈ B; RZ
(17.6)

Thus the bandwidth requirements for RZ are more severe than those for NRZ,
which is also expected since pulses in RZ format are narrower than the pulses in
NRZ format. Thus, for example, a 2.5-Gb/s system would need 2.5 GHz in RZ
format, while the same signal would require only 1.25 GHz in the NRZ format.
Most of the fiber-optic communication systems of today use NRZ schemes for
communication.

In the amplitude modulation scheme and the frequency modulation scheme,
different independent signals are allocated different carrier frequencies leading to
frequency division multiplexing. In digital modulation, the carrier frequency of dif-
ferent channels can be the same but different independent signals are multiplexed
in the time domain. This concept is shown in Fig. 17.6, wherein two independent
signals are sent using the pulse code modulation scheme, wherein the time slots
occupied by the two signals are different. Thus the signals now overlap in the fre-
quency domain but are sent at different times leading to what is referred to as time
division multiplexing.

One of the greatest advantages of pulse code modulation scheme of communi-
cation is that the receiver has to detect only the presence or the absence of a pulse;
the presence would correspond to 1, while the absence would correspond to 0. This
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Fig. 17.6 Time division multiplexing of two independent signals

is unlike the case in amplitude modulation, wherein the receiver is supposed to pre-
cisely measure the amplitude of the signal. Since detection of the presence or the
absence of a pulse is much more accurate than actual measurement of the ampli-
tude, communication using pulse code modulation scheme suffers from much less
distortion as compared to other schemes. Also for long-distance communication,
the signals can be cleaned up of noise at regular intervals (at what are called as
regenerators) and the accumulation of noise can be restricted. Thus for long-distance
communication, pulse code modulation schemes are much preferred over any analog
system.

17.2.2.2 Bit Rate Required for Speech

We have seen earlier that for transmitting speech, we need to send frequencies up
to 4000 Hz and if these have to be represented by digital pulses, then we need to
sample the signal at least 8000 times per second. Now each of these sampled val-
ues would be represented by the binary digit sequence. In telephony, each sampled
value is represented by eight pulses (or 8 bits) and thus the number of pulses per
second for each telephone channel would be 64,000. Thus speech signals require a
bit rate of 64 kilobits per second (64 kbps or 64 kb/s). If we have a communication
system capable of transmitting at the rate of 1 gigabits per second (1 Gb/s), then this
would correspond to transmitting simultaneously (1,000,000,000/64,000) or 15,000
speech signals. Higher the bit rate, larger the capacity of information transmission.
Table 17.1 gives the number of bits required for different information content per
signal.
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Table 17.1 Bit requirement of some common information-containing signals

Service Bit requirement

1000 words of text 60 × 103 bits
Telephone 64 × 103 bits / s
20 volume encyclopedia 3 × 108 bits
Standard TV 100 × 106 bits / s
HDTV 1.2 × 109 bits / s

17.2.2.3 Standard Bit Rates

Table 17.2 gives the hierarchy of two common standard bit rates referred to as SDH
(Synchronous Digital Hierarchy) and SONET (Synchronous Optical Network) that
is used for data transmission over optical fiber networks. SDH is the international
version published by the International Telecommunications Union (ITU), while
SONET is the United States version of the standard published by the American
National Standards Institute (ANSI).

Table 17.2 Hierarchy of digital signals in two common data rates

SDH signal SONET signal Bit rate (Mb/s)

STM-0 OC-1 51.840
STM-1 OC-3 155.520
STM-4 OC-12 622.080
STM-16 OC-48 2,488.320
STM-64 OC-192 9,953.280
STM-256 OC-768 39,813.120

17.3 Optical Fibers in Communication

We have just seen that light waves have a large information-carrying capacity. For
long-distance communication using light waves, we need a medium of transmission
and glass optical fibers are the preferred medium of transmission of information-
carrying light waves. Light wave communication using glass fibers can transmit
information at capacities of larger than 1 Tb/s (which is roughly equivalent to trans-
mission of about 15 million simultaneous telephone conversations). This is certainly
one of the extremely important technological achievements of the twentieth century
and is one of the most important applications of lasers which is directly affecting
society. The following sections provide an introduction to the propagation through
optical fibers.
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17.4 The Optical Fiber

At the heart of an optical communication system is the optical fiber that acts as
the transmission channel carrying the light beam loaded with information. The light
beam gets guided through the optical fiber due to the phenomenon of total inter-
nal reflection (often abbreviated as TIR). Figure 17.7 shows an optical fiber, which
consists of a (cylindrical) central dielectric core (of refractive index n1) cladded by
a material of slightly lower refractive index n2 (<n1). The corresponding refractive
index distribution (in the transverse direction) is given as

n = n1, r<a

= n2, r>a
(17.7)

where n1 and n2 (< n1) represent the refractive indices of core and cladding, respec-
tively, and a represents the radius of the core. We define a parameter � through the
following equations:

� ≡ n2
1 − n2

2

2n2
1

(17.8)

When � << 1 (as is true for silica fibers), we may write

� ≈ n1 − n2

n2
≈ n1 − n2

n1
(17.9)

The necessity of a cladded fiber rather than a bare fiber, i.e., without a cladding, was
felt because of the fact that for transmission of light from one place to another, the
fiber must be supported, and supporting structures may considerably distort the fiber,
thereby affecting the guidance of the light wave. This can be avoided by choosing a
sufficiently thick cladding. Further, in a fiber bundle, in the absence of the cladding,
light can leak through from one fiber to another leading to possible cross talk among
the information carried between two different fibers. The idea of adding a second
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Fig. 17.7 (a) A glass fiber consists of a cylindrical central glass core cladded by a glass of slightly
lower refractive index. (b) Light rays incident on the core–cladding interface at an angle greater
than the critical angle are trapped inside the core of the fiber
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layer of glass (namely, the cladding) came in 1955 independently from Hopkins
and Kapany in the UK and van Heel in Holland. However, during that time the
use of optical fibers was mainly in image transmission rather than in communica-
tions. Indeed, the early pioneering works in fiber optics (in the 1950s) by Hopkins,
Kapany, and Van Heel led to the use of the fiber in optical devices.

Now, for a ray entering the fiber, if the angle of incidence φ at the core–cladding
interface is greater than the critical angle φc [=sin–1 (n2/n1)], then the ray will
undergo TIR at that interface. We may mention here that the concept of rays is
really valid only for multimode fibers, where the core radius a is large (≈ 25 μm
or more). For a typical (multimoded) fiber, a ≈ 25 μm, n2 ≈ 1.45 (pure silica),
and � ≈ 0.01 giving a core index of n1 ≈ 1.465. The cladding is usually pure silica,
while the core is usually silica doped with germanium; doping by germanium results
in an increase in refractive index. Now, because of the cylindrical symmetry in the
fiber structure, this ray will suffer TIR at the lower interface also and therefore get
guided through the core by repeated total internal reflections. Figure 17.8 shows a
photograph of light propagating through an optical fiber. The fiber is visible due
to the phenomenon of Rayleigh scattering, which scatters a tiny part of the light
propagating through the fiber, and makes the fiber visible. Rayleigh scattering is
the same phenomenon that is responsible for the blue color of the sky and the red
color of the rising or the setting sun. Even for a bent fiber, light guidance can occur
through multiple total internal reflections as can be seen from Fig. 17.8.

Fig. 17.8 A long, thin
optical fiber carrying a light
beam. The fiber is visible due
to Rayleigh scattered light

17.5 Why Glass Fibers?

Why are optical fibers made of glass? Professor W.A. Gambling, who is one of the
pioneers in the field of fiber optics, quotes: “We note that glass is a remarkable mate-
rial which has been in use in ‘pure’ form for at least 9000 years.” The compositions
remained relatively unchanged for millennia and its uses have been widespread. The
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three most important properties of glass, which makes it of unprecedented value, are
the following [adapted from Gambling (1986)]:

1. First, there is a wide range of accessible temperatures where its viscosity is vari-
able and can be well controlled unlike most materials, like water and metals,
which remain liquid until they are cooled down to their freezing temperatures
and then suddenly become solid. Glass, on the other hand, does not solidify
at a discrete freezing temperature but gradually becomes stiffer and stiffer and
eventually becoming hard. In the transition region it can be easily drawn into a
thin fiber.

2. The second most important property is that highly pure silica is characterized
by extremely low loss, i.e., it is highly transparent. Today in most commer-
cially available silica fibers, 96% of the power gets transmitted after propagating
through 1 km of optical fiber. This indeed represents a truly remarkable
achievement.

3. The third most remarkable property is the intrinsic strength of glass. Its strength
is about 2000,000 lb/in2 so that a glass fiber of the type used in the telephone
network and having a diameter (125 μm) of twice the thickness of a human hair
can support a load of 40 lb.

Although for a common person, glass looks fragile, glass fibers are indeed
extremely strong. It is the exposure of the glass to external atmosphere that leads
to the formation of cracks, which then results in the fracture. In the case of optical
fibers, these are drawn in extremely clean environment and are coated with poly-
mers as they are being drawn. Covering the glass fiber with the polymer does not
permit contact with the atmosphere and gives it the protection.

17.6 Attenuation of Optical Fibers

When light propagates through any medium, it suffers loss due to various mecha-
nisms including those due to scattering, absorption, etc. Even the purest materials
will have loss due to various intrinsic mechanisms such as scattering, absorption
by the atoms and molecules forming the material, etc. In 1966 the most transpar-
ent glass available at that time had a loss of 1000 dB/km primarily due to trace
amount of impurities present in the glass; a loss of 1000 dB/km (or equivalently 1
dB/m) implies that for every 10 m the power will fall by a factor of 10. Thus after
propagating through 1 km of such a fiber, the output power will be negligible.

In 1966, Kao1 and Hockham (1966) first suggested the use of optical fibers for
communication and pointed out that for the optical fiber to be a viable communi-
cation medium, the losses (in the optical fiber) should be less than 20 dB/km. This

1Charles Kao was awarded the Nobel Prize in Physics in the year 2009 for for groundbreaking
achievements concerning the transmission of light in fibers for optical communication.
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suggestion triggered the beginning of serious research in removing the small amount
of impurities present in the glass and developing low-loss optical fibers. Since 1966,
there was a global effort to purify silica and in 1970, there was a major breakthrough:
the first low-loss glass optical fibers were fabricated by Maurer, Keck, and Schultz
(at Corning Glass Works, USA), with the fabricated optical fibers having a loss ∼17
dB/km at a wavelength of 633 nm. This would imply that the power will fall by a
factor of 10 in traversing through approximately 600 m length of the fiber.

Since then, the technology has been continuously improving and by late 1980s
commercially available optical fibers had losses less than about 0.25 dB/km at
a wavelength of about 1550 nm – a loss of 0.25 dB/km implies that the power
will fall by a factor of 10 after propagating through 40 km length of the optical
fiber.

Figure 17.9 shows a typical dependence of fiber attenuation (i.e., loss coefficient
per unit length) as a function of wavelength of silica optical fibers that are com-
mercially available today. It may be seen that the loss is less than 0.25 dB/km at a
wavelength of about 1550 nm. The losses in optical fibers are caused due to various
mechanisms such as Rayleigh scattering, absorption due to metallic impurities and
water in the fiber, and due to intrinsic absorption by the silica molecule itself.
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Fig. 17.9 A typical
attenuation spectrum of an
optical fiber SMF: Single
mode optical fiber

Rayleigh scattering is a basic mechanism in which light gets scattered by very
small inhomogeneities as it propagates through any medium. Rayleigh scattering
loss is wavelength dependent and is such that shorter wavelengths scatter more than
longer wavelengths. It is this phenomenon which is responsible for the blue color of
the sky. As sunlight passes through the atmosphere, the component corresponding
to blue color gets scattered more than the component corresponding to the red color
(since blue wavelengths are shorter than red wavelengths). Thus more blue reaches
our eye from the sky than does red and the sky looks blue. This is also the reason
why the rising and setting sun looks red in color.
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Rayleigh scattering causes loss of optical signals as they propagate through an
optical fiber. Very small inhomogeneities present in the optical fiber scatter light out
of the fiber leading to loss. In fact, this loss mechanism determines the ultimate loss
of optical fibers. Since Rayleigh scattering loss decreases with increase in wave-
length, optical fibers operating at higher wavelengths are expected to have lower
losses if all other loss mechanisms are eliminated.

Apart from the Rayleigh scattering loss, any impurities present in the optical
fiber would also cause absorption of the propagating light and would thus con-
tribute to loss. Some of the primary impurities include metallic ions such as copper,
chromium, iron, nickel, etc. Impurity levels of one part in a billion could cause
increase in attenuation of 1 dB/km in the near-infrared region. Such impurities can
be reduced to acceptable levels by using vapor-phase oxidation methods. Apart from
impurity metal ions, one of the major contributors to loss is the presence of water
dissolved in glass. An impurity level of just 1 part per million (1 ppm) of water can
cause a loss of 4 dB/km at 1380 nm. This shows the level of purity that is required
to achieve low-loss optical fibers.

The primary reason for the loss coefficient to decrease up to about 1550 nm
is the Rayleigh scattering loss. The absorption peak around 1380 nm in Fig. 17.9
is primarily due to traces of water. If all impurities are completely removed, the
absorption peak will disappear and we will have very low loss in the entire range of
wavelength starting from 1250 to 1650 nm (see Fig. 17.9).

For wavelengths longer than about 1600 nm, the loss increases due to the absorp-
tion of infrared light by silica molecules themselves. This is an intrinsic property of
silica and no amount of purification can remove this infrared absorption tail.

The first optical fiber communication systems operated at a wavelength around
1300 nm, where the material dispersion is negligible. However, the loss attains
its absolute minimum value of about 0.2 dB/km when the wavelength is around
1550 nm – as a consequence of which the distance between two consecutive
repeaters (used for amplifying and reshaping the attenuated signals) could be as
large as 250 km. Furthermore, the 1550-nm window has become extremely impor-
tant in view of the availability of erbium-doped fiber amplifiers (see Chapter 12).

Apart from these loss mechanisms, any deviation from straightness in the laying
of the optical fiber would also result in loss. Thus when a fiber is bent, this leads to
an additional loss. This additional loss can be kept to a minimum by appropriately
laying the fiber cable in the link. Sharp bends are usually avoided in the laying of the
fiber. Any random disturbances in the geometry of the fiber along its length would
also lead to loss and thus during fabrication the uniformity of the fiber characteristics
has to be maintained.

Figure 17.10 shows the loss spectrum of a typical commercially available sin-
glemode fiber. Also shown are the various bands of wavelengths that are used in a
wavelength division multiplexed (WDM) communication system. The most widely
used band is the C-band lying between 1530 and 1565 nm where erbium doped
fibers amplifiers operate.
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Fig. 17.10 Attenuation spectrum of a commercially available fiber from Corning Inc., USA. The
low-loss spectrum is divided into various bands: O, old band (1260–1360 nm); E, extended band
(1360–1460 nm); S, short band (1460–1530 nm); C, conventional band (1530–1565 nm); L, long
band (1565–1625 nm)

17.7 Numerical Aperture of the Fiber

We return to Fig. 17.7 and consider a ray which is incident on the entrance aperture
of the fiber making an angle i with the axis. Let the refracted ray make an angle θ

with the axis. Assuming the outside medium to have a refractive index n0 (which
for most practical cases is unity), we get

sin i

sin θ
= n1

n0
(17.10)

Obviously if this ray has to suffer total internal reflection at the core–cladding
interface

sinφ(= cos θ )>
n2

n1
(17.11)

Thus

sin θ<

[
1 −

(
n2

n1

)2
]1/ 2

(17.12)

and we must have i < im, where

sin im =
(

n2
1 − n2

2

)1/ 2 = n1
√

2� (17.13)

and we have assumed n0 = 1, i.e., the outside medium is assumed to be air. Thus,
if a cone of light is incident on one end of the fiber, it will be guided through it
provided the semiangle of the cone is less than im. This angle is a measure of the
light-gathering power of the fiber and as such, one defines the numerical aperture
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(NA) of the fiber by the following equation:

NA = sin im =
√

n2
1 − n2

2 ≈ n1
√

2� (17.14)

Example 17.1 For a typical step-index (multimode) fiber with n1 ≈ 1.45 and � ≈ 0.01, we get

sin im ≈ 0.205 =⇒ im ≈ 12◦

17.8 Multimode and Single-Mode Fibers

In this section we will try to understand the difference between a single-mode and
a multimode fiber. Both types of fibers are used in optical communication systems.
We first introduce the concept of modes: a mode is a transverse field distribution
which propagates along the fiber without any change in its field distribution except
for a change in phase. Mathematically, it is defined by the equation

�(x, y, z, t) = ψ(x, y)ei(ωt−βz) (17.15)

where ψ(x, y) represents the transverse field profile and β represents the propagation
constant; the propagation of the mode is in the z-direction. The quantity β is similar
to k for a plane wave given by ei(ωt – kz). A waveguide (like an optical fiber) is char-
acterized by a finite number of modes which are guided by the waveguide – each
mode is described by a definite transverse field distribution ψ(x, y) corresponding to
a definite value of β. The precise form of ψ(x, y) (and the corresponding value of the
propagation constant β) is obtained by solving Maxwell’s equations. Here we will
just present results; interested readers may look up any textbook listed at the end
of the book. For a step-index fiber defined by Eq. (17.7), we define a dimensionless
parameter defined by the following equation:

V = 2π

λ0
a
√

n2
1 − n2

2 = 2π

λ0
an1

√
2� (17.16)

λ0 is the free space wavelength of the light beam and � is defined by Eq. (17.8).
The parameter V (which also depends on the operating wavelength λ0) is known as
the “waveguide parameter” and is an extremely important quantity characterizing
an optical fiber. For a step-index fiber if

V < 2.4045 (17.17)

the fiber is said to be a single-mode fiber. For a given fiber, the wavelength for which
V = 2.4045 is known as the cutoff wavelength and is denoted by λc and the fiber
will be single moded for λ0 > λc (see Example 17.2). A multimoded fiber would
have a V value larger than 2.4045.
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If we consider a medium with refractive index n, the propagation constant of an
electromagnetic plane wave in this medium would be k0n. Thus the refractive index
is the ratio of the propagation constant in the medium to k0, which is the propagation
constant of the wave in free space. In a similar manner, the quantity

neff = β

k0
(17.18)

is referred to as the effective index of the mode. In an optical fiber, the effective
index plays the same role as refractive index in the case of a bulk medium.

Example 17.2: Consider a step-index fiber with n2=1.447, � = 0.003, and a = 4.2 μm. Thus

V = 2π

λ0
× 4.2 × 1.447 × √

0.006 ≈ 2.958

λ0

where λ0 is measured in micrometers. Thus for

λ0 >
2.958

2.4045
≈ 1.23 μm

the fiber will be single moded. Thus in this example, the cutoff wavelength λc =1.23 μm and the fiber
will be single moded for λ0 > 1.23 μm. If the fiber is operating at 1300 nm, then

V = 2.958

1.3
≈ 2.275

and the fiber will be single moded.

Example 17.3: Let us consider a fiber with n2=1.444, � = 0.0075, and a =2.3 μm for which

V = 2π

λ0
× 2.3 × 1.444 × 0.015 ≈ 2.556

λ0

and therefore the cutoff wavelength will be λc = 2.556/2.4045 =1.06 μm. If we operate at λ0 = 1.55 μm

V ≈ 1.649

and the fiber will be single moded.

17.9 Single-Mode Fiber

For a step-index fiber with 0 < V < 2.4048 we will have only one guided mode,
namely the LP01 mode also referred to as the fundamental mode (LP stands for
linearly polarized). Such a fiber is referred to as a single-mode fiber and is of
tremendous importance in optical fiber communication systems.

For a single-mode step-index fiber, a convenient empirical formula for b(V) is
given as

b(V) =
(

A − B

V

)2

, 1.5 � V � 2.5 (17.19)
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where A ≈ 1.1428 and B ≈ 0.996 and b, also referred to as the normalized
propagation constant, is defined through the following equation:

b(V) = n2
eff − n2

2

n2
1 − n2

2

(17.20)

17.9.1 Spot Size of the Fundamental Mode

The transverse field distribution associated with the fundamental mode of a single-
mode fiber is an extremely important quantity and it determines various important
parameters like splice loss at joints between fibers, launching efficiencies from
sources, bending loss, etc. For a step-index fiber, one has analytical expression for
the fundamental field distribution in terms of Bessel functions. For most single-
mode fibers with a general transverse refractive index profile, the fundamental mode
field distributions can be well approximated by a Gaussian function, which may be
written in the form

ψ(x, y) = A e
− x2+y2

w2 = A e
− r2

w2 (17.21)

where w is referred to as the spot size of the mode field pattern and 2w is called
the mode field diameter (MFD). MFD is a very important characteristic of a single-
mode optical fiber. For a step-index fiber one has the following empirical expression
for w (see Marcuse (1978)):

w

a
≈ 0.65 + 1.619

V3/2
+ 2.879

V6
; 0.8 ≤ V ≤ 2.5 (17.22)

where a is the core radius. As an example, for the step-index fiber considered earlier
and operating at 1300 nm, we have V ≈ 2.28 giving w ≈ 4.8 μm. Note that the
spot size is larger than the core radius of the fiber; this is due to the penetration of
the modal field into the cladding of the fiber. The same fiber will have a V value of
1.908 at λ0 = 1550 nm giving a value of the spot size ≈ 5.5 μm. Thus, in general,
the spot size increases with wavelength. The standard single-mode fiber designated
as G.652 fiber for operation has an MFD of 9.2 ± 0.4 μm at 1310 nm and an MFD
of 10.4 ± 0.8 μm at 1550 nm.

For V ≥ 10, the number of modes (for a step-index fiber) is approximately 1/2V
2

and the fiber is said to be a multimoded fiber. Different modes (in a multimoded
fiber) travel with different group velocities leading to what is known as intermodal
dispersion; in the language of ray optics, this is known as ray dispersion arising due
to the fact that different rays take different amounts of time in propagating through
the fiber. Indeed in a highly multimoded fiber, we can use ray optics to calculate
pulse dispersion.
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17.10 Pulse Dispersion in Optical Fibers

As discussed earlier, digital communication systems, information to be sent is first
coded in the form of pulses and then these pulses of light are transmitted from the
transmitter to the receiver where the information is decoded. Larger the number of
pulses that can be sent per unit time and still be resolvable at the receiver end, larger
would be the transmission capacity of the system. A pulse of light sent into a fiber
broadens in time as it propagates through the fiber; this phenomenon is known as
pulse dispersion and occurs primarily because of the following mechanisms:

1. In multimode fibers, dispersion is caused by different rays taking different times
to propagate through a given length of the fiber. In the language of wave optics,
this is known as intermodal dispersion because it arises due to different modes
traveling with different group velocities.

2. Any given light source emits over a range of wavelengths and, because of the
dependence of refractive index on wavelength, different wavelengths take differ-
ent amounts of time to propagate along the same path. This is known as material
dispersion and obviously, it is present in both single-mode and multimode fibers.

3. In single-mode fibers, since there is only one mode, there is no intermodal dis-
persion. However, apart from material dispersion, we have what is known as
waveguide dispersion. Physically, this arises due to the fact that the spot size (of
the fundamental mode) depends explicitly on the wavelength.

4. A single-mode fiber can support two orthogonally polarized LP01 modes. In a
perfectly circular core fiber laid along a perfectly straight path, the two polariza-
tions propagate with the same velocity. However due to small random deviations
from circularity of the core or due to random bends and twists present in the
fiber, the orthogonal polarizations travel with slightly different velocities and
get coupled randomly along the length of the fiber. This phenomenon leads to
polarization mode dispersion (PMD) which becomes important for high-speed
communication systems operating at 40 Gb/s and higher.

Obviously, waveguide dispersion and polarization mode dispersion are present
in multimode fibers also – however, the effects are very small and can be neglected.

17.10.1 Dispersion in Multimode Fibers

A broad class of multimoded graded index fibers can be described by the following
refractive index distribution:

n2(r) = n2
1

[
1 − 2�

( r

a

)q]
, 0<r<a

= n2
2 = n2

1 (1 − 2�) , r>a
(17.23)
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where r corresponds to a cylindrical radial coordinate, n1 represents the value of the
refractive index on the axis (i.e., at r = 0), and n2 represents the refractive index
of the cladding; q = 1, 2, and ∞ correspond to the linear, parabolic, and step-
index profiles, respectively. Equation (17.23) describes what is usually referred to
as a power law profile, which gives an accurate description of the refractive index
variation in most multimoded fibers. The total number of modes in a highly mul-
timoded graded index optical fiber characterized by Eq. (17.23) are approximately
given as

N ≈ q

2 (2 + q)
V2 (17.24)

Thus, a parabolic index (q =2) fiber with V = 10 will support approximately 25
modes. Similarly, a step-index (q = ∞) fiber with V = 10 will support approxi-
mately 50 modes. When the fiber supports such a large number of modes, then the
continuum (ray) description gives very accurate results. For the power law profile,
it is possible to calculate the pulse broadening due to the fact that different rays
take different amount of time in traversing a certain length of the fiber; details can
be found in many text books; see, for example, Ghatak and Thyagarajan (1998).
The time taken to propagate through a length L of a multimode fiber described by a
q-profile (see Eq. 17.23) is given as

τ (L) =
(

Aβ̃ + B

β̃

)
L (17.25)

where

A = 2

c(2 + q)
; B = qn2

1

c(2 + q)
(17.26)

and for rays guided by the fiber, n2 < β̃ < n1. Using Eq. (17.25) we can estimate
the intermodal dispersion in fibers with different q values. Thus, for n1 ≈ 1.46
and � ≈ 0.01, the dispersion would be 50 ns/km for a step-index fiber (q = ∞),
0.25 ns/km for a parabolic index fiber (q = 2), and 0.0625 ns/km for q = 2–2�
(referred to as the optimum profile exhibiting minimum dispersion).

Thus we find that for a parabolic index fiber, the intermodal (or ray) dispersion
is reduced by a factor of about 200 in comparison to the step-index fiber and for
the optimum profile there is a further reduction by a factor of 4. It is because of
this reason that first- and second-generation optical communication systems used
near parabolic index fibers. In order to further decrease the pulse dispersion, it is
necessary to use single-mode fibers because there will be no intermodal dispersion.
However, in all fiber-optic systems we will have material dispersion which is a char-
acteristic of the material itself and not of the waveguide; we will discuss this in the
following section.
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17.10.2 Material Dispersion

Above we have considered the broadening of an optical pulse due to different rays
taking different amounts of time to propagate through a certain length of the fiber.
However, every source of light has a certain wavelength spread which is often
referred to as the spectral width of the source. An LED would have a spectral width
of about 25 nm and a typical laser diode (LD) operating at 1300 nm would have
a spectral width of about 2 nm or less. The pulse broadening (due to wavelength
dependence of the refractive index) is given in terms of the material dispersion coef-
ficient Dm (which is measured in picoseconds per kilometer and nanometer) and is
defined as

Dm (ps/km nm) = −104

3λ0

[
λ2

0
d2n

dλ2
0

]
(17.27)

λ0 is measured in micrometer and the quantity inside the square brackets is dimen-
sionless. Thus Dm represents the material dispersion in picoseconds per kilometer
length of the fiber per nanometer spectral width of the source. At a particular wave-
length, the value of Dm is a characteristic of the material and is (almost) the same for
all silica fibers. When Dm is negative, it implies that the longer wavelengths travel
faster; this is referred to as normal group velocity dispersion (GVD). Similarly, a
positive value of Dm implies that shorter wavelengths travel faster; this is referred
to as anomalous GVD.

The spectral width �λ0 of an LED operating around λ0 = 825 nm is about 20 nm;
at this wavelength for pure silica Dm ≈ 84.2 ps/(km nm). Thus a pulse will broaden
by 1.7 ns/km of fiber. It is interesting to note that for operation around λ0 ≈ 1300 nm
[where Dm ≈ 2.4 ps/(km nm)], the resulting material dispersion is only 50 ps/km of
the fiber. The very small value of �τm is due to the fact that the group velocity is
approximately constant around λ0 = 1300 nm. Indeed the wavelength λ0 ≈ 1270 nm
is usually referred to as the zero material dispersion wavelength, and it is because of
such low material dispersion that the optical communication systems shifted their
operation to around λ0 ≈ 1300 nm.

Optical communication systems in operation today use LDs (laser diodes) with
λ0 ≈ 1550 nm having a spectral width of about 2 nm. At this wavelength the material
dispersion coefficient is 21.5 ps/(km nm) and the material dispersion �τm would be
43 ps/km.

17.10.3 Dispersion and Bit Rate

In multimode fibers, the total dispersion consists of intermodal dispersion (�τ i) and
material dispersion (�τm) and is given as

�τ =
√

(�τi)2 + (�τm)2 (17.28)
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In the NRZ scheme the maximum permissible bit rate is approximately given as

Bmax ≈ 0.7

�τ
(17.29)

Operation around 1310 nm minimizes �τm and hence almost all multimode fiber
systems operate at this wavelength region with optimum refractive index profiles
having small values of �τ i.

17.10.4 Dispersion in Single-Mode Fibers

In the case of a single-mode optical fiber, the effective index neff (= β/k0) of the
mode depends on the core and cladding refractive indices as well as the waveguide
parameters (refractive index profile shape and radii of various regions). Hence neff
would vary with wavelength even if the core and cladding media were assumed to
be dispersionless (i.e., the refractive indices of core and cladding are assumed to
be independent of wavelength). This dependence of effective index on wavelength
is due to the waveguidance mechanism and is referred to as waveguide dispersion.
Waveguide dispersion can be understood from the fact that the effective index of the
mode depends on the fraction of power in the core and the cladding at a particular
wavelength. As the wavelength changes, this fraction also changes. Thus even if the
refractive indices of the core and the cladding are assumed to be independent of
wavelength, the effective index will change with wavelength. It is this dependence
of neff(λ0) that leads to waveguide dispersion.

Thus the total dispersion in the case of a single-mode optical fiber can be
attributed to two types of dispersion, namely material dispersion and waveguide
dispersion. It can be shown that the total dispersion coefficient D is given to a good
accuracy by the sum of material (Dm) and waveguide (Dw) dispersion coefficients
(see e.g., Ghatak and Thyagarajan, 1998). The material contribution is given by Eq.
(17.27), while the waveguide contribution for a step-index fiber is given as

Dw = −n2�

cλ0

(
V

d2(bV)

dV2

)
(17.30)

A simple empirical expression for waveguide dispersion for step-index fibers is

Dw [ps/(km nm)] = −n2�

3λ0
× 107[0.080 + 0.549(2.834 − V)2] (17.31)

where λ0 is measured in nanometers.
In the single-mode regime, the quantity within the bracket in Eq. (17.30) is usu-

ally positive; hence the waveguide dispersion is negative. Since the sign of material
dispersion depends on the operating wavelength region, it is possible that the two
effects, namely material and waveguide dispersions, cancel each other at a certain
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wavelength. Such a wavelength, which is a very important parameter of single-
mode fibers, is referred to as the zero-dispersion wavelength (λZD). For typical
step-index fibers, the zero-dispersion wavelength falls in the 1310-nm-wavelength
window. Since the lowest loss in an optical fiber occurs at a wavelength of 1550 nm
and optical amplifiers are available in the 1550-nm window, fiber designs can be
modified to shift the zero-dispersion wavelength to the 1550-nm-wavelength win-
dow. Such fibers are referred to as dispersion-shifted fibers (with zero dispersion
around 1550 nm) or non-zero dispersion-shifted fibers (with finite but small disper-
sion around 1550 nm). With proper fiber refractive index profile design, it is also
possible to have flat dispersion spectrum leading to dispersion-flattened designs.
Figure 17.11 shows the total dispersion in three standard types of fibers, namely
G.652, G.653, and G.655 fibers. The G.655 fibers have a small but finite disper-
sion around the 1550 nm wavelength. The small dispersion is required to avoid the
nonlinear optical effect referred to as four wave mixing.
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 G.655

Dispersion [ps/nm.km]

Wavelength (μm)

Fig. 17.11 Wavelength
dependence of dispersion
coefficient of single-mode
fibers with different refractive
index profiles

It appears that when an optical fiber is operated at the zero-dispersion wave-
length, the pulses will not suffer any dispersion at all. In fact zero dispersion only
signifies that the second-order dispersive effects are absent. In this case the next
higher order dispersion, namely third-order dispersion, will become the dominating
term in determining the dispersion. Thus in the absence of second-order dispersion,
we can write for dispersion suffered by a pulse as

�τ = L (�λ0)
2

2

dD

dλ0
(17.32)

where S = dD / dλ0 represents the dispersion slope at zero-dispersion wavelength
and is measured in units of picosecond per kilometer and square nanometer. Third-
order dispersion becomes important when operating close to the zero-dispersion
wavelength. In the presence of only third-order dispersion, the pulse does not
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Table 17.3 Values of dispersion and dispersion slope for some standard fibers at 1550 nm

Fiber type D [ps/(km nm)] S [ps/(km nm2)]

Standard SMF (G.652) 17 0.058
LEAF (Corning) 4.2 0.085
Truewave-reduced slope (OFS) 4.5 0.045
TeraLight (Alcatel) 8.0 0.057

remain symmetric. Table 17.3 lists values of D and S for some standard fibers
at 1550 nm.

17.10.5 Dispersion and Maximum Bit Rate in Single-Mode Fibers

In a digital communication system employing light pulses, pulse broadening would
result in an overlap of adjacent pulses, resulting in intersymbol interference leading
to errors in detection. Apart from this, since the energy in the pulse gets reduced
within the time slot, the corresponding signal-to-noise ratio (SNR) will decrease.
One can offset this by increasing the power in the pulses. This additional power
requirement is termed as dispersion power penalty. Increased dispersion would
imply increased power penalty.

In order to keep the interference between adjacent bits below a specified level,
the root mean square width of the dispersed pulse needs to be kept below a certain
fraction ε of the bit period. For a 2 dB power penalty, ε ∼ 0.491. Using this condition
we can estimate the maximum bit rate B for a given link length L and dispersion
coefficient D operating at 1550 nm as

B2DL < 1.9 × 105 Gb2ps/nm (17.33)

where B is measured in gigabits per second, D in picoseconds per kilometer and
nanometer and L in kilometer. Thus for a bit rate of 2.5 Gb/s the maximum allowed
dispersion (D.L) is approximately 30,400 ps/nm, while for a bit rate of 10 Gb/s the
maximum allowed dispersion is 1900 ps/nm.

Problems

Problem 17.1 Consider an analog signal given as

f (t) = 10 + 2 sin 5π t + cos 8π t + 3 sin
(

15π t + π

9

)

where t is measured in seconds. At what rate would you sample so that the analog signal can be retrieved
from the digitized signal?

Solution The frequencies present in the given signal are 0, 2.5, 4, and 7.5 Hz. Hence the minimum
sampling rate for the signal is 15 samples per second.
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Problem 17.2 If in the above problem each sample is represented by 8 bits, then what would be the bit
rate?

Solution The bit rate would be 15 × 8 = 120 bits/s.

Problem 17.3 Consider a communication system having a rise time of 20 ns. What bit rates can it support
when operated in NRZ and RZ formats?

Solution Using Eq. (17.6) we can obtain the bit rates that can be supported by the system as 35 and
17.5 MHz.

Problem 17.4 A typical digital TV channel required bit rates of 10 Mb/s. Can a system having a rise time
of 50 ns support this transmission?

Solution For sending 10 Mb/s signal the rise time should be smaller than 35 ns for RZ coding and 70 ns
for NRZ coding. Hence the system can support the transmission only if NRZ coding is used.

Problem 17.5 High-definition television (HDTV) requires higher bit rates than does standard TV. Typical
bit rates would be about 16 Mb/s. What is the rise time requirement of the system if I need to send 10
HDTV channels through the same link?

Solution The bit rate for 10 HDTV channels would be 160 Mb/s. Thus the rise time requirement in the
NRZ scheme would be about 4.3 ns.

Problem 17.6 Consider an RC circuit and assume that a step voltage V0 is applied at t = 0. Relate the
rise time of the RC circuit to its bandwidth.

Solution It is well known that when a step voltage is applied to an RC circuit, then the voltage variation
with time is given as

Vc(t) = V0

(
1 − e−t/ RC

)

Thus the voltage rises to 10% of the peak value V0 in a time given as

0.1V0 = V0

(
1 − e−t0.1/ RC

)

or

t0.1 = RC ln

(
1

0.9

)

Similarly the time taken to rise to 90% of the peak value is given as

t0.9 = RC ln

(
1

0.1

)

Hence the rise time is
Tr = (t0.9 − t0.1) = RC ln (9) ≈ 2.2RC

The 3-dB bandwidth of an RC circuit is given as

�f = 1

2πRC

Hence from the above equations we get

Tr ≈ 0.35

�f
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Problem 17.7 Consider a Gaussian function given as

f (t) = 1√
2πσ

e−t2/ 2σ2

where σ is called the root mean square (RMS) pulse width. Relate the full width at half maximum
(FWHM) of this function to its bandwidth.

Solution The 50% rise time t0.5 is obtained from the below equation:

f (t0.5) = 0.5f (0)

which gives
t0.5 = √

2 ln 2σ

Thus the FWHM tFWHM is 2t0.5.
The Fourier transform of f(t) is given as

F(ω) = 1√
2π

e−ω2σ2/ 2

Thus the 3-dB bandwidth is defined as the frequency f0.5 (=2π /ω) at which the function has fallen to a
value half of that at zero frequency. This can be obtained as

f0.5 =
√

2 ln 2

2πσ

Hence we get

f0.5 = 0.44

tFWHM

Problem 17.8 Using Eqs. (17.19) and (17.30) obtain an expression for waveguide dispersion. Obtain the
value of waveguide dispersion at 1310 and 1550 nm for a standard single-mode fiber.

Problem 17.9 Using Eq. (17.22) plot the variation of w with wavelength in the range of wavelength
1100–1600 nm for a standard single-mode fiber.





Chapter 18
Lasers in Science

18.1 Introduction

In this chapter, we discuss some experiments in physics and chemistry (and related
areas) which have become possible only because of the availability of highly coher-
ent and intense laser beams. In Sections 18.2, 18.3, and 18.4 we briefly discuss
second-harmonic generation, stimulated Raman emission, and the self-focusing
phenomenon, respectively; all these phenomena have opened up new avenues of
research after the discovery of the laser. Second-harmonic generation is a process
similar to what we had discussed in Chapter 14, namely the parametric process of
three-wave interaction and the optical parametric oscillator that is a very important
tunable source of coherent radiation. In Section 18.5, we outline how laser beams
can be used for triggering chemical and photochemical reactions. In Sections 18.6,
18.7, and 18.8, we discuss some experiments which can be carried out with extreme
precision with the help of lasers. The Nobel Lecture by Ted Hansch at the end of
the book discusses very nicely the application of lasers to precision clocks. Finally,
in Section 18.9, we give a fairly detailed account of isotope separation using lasers.
We would like to point out that there are in fact innumerable experiments that have
become possible only with the availability of laser beams; here we discuss only a
few of them.

18.2 Second-Harmonic Generation

With the availability of high-power laser beams, there has been a considerable
amount of work on the non-linear interaction of optical beams with matter. One
of the most striking non-linear effects is the phenomenon of second-harmonic
generation, in which one generates an optical beam of frequency 2ω from the inter-
action of a high-power laser beam (of frequency ω) with a suitable crystal. The
first demonstration of the second-harmonic generation was made by Franken et al.
(1961) by focusing a 3-kW ruby laser pulse (λ = 6943 Å) on a quartz crystal
(see Fig. 18.1).

445K. Thyagarajan, A. Ghatak, Lasers, Graduate Texts in Physics,
DOI 10.1007/978-1-4419-6442-7_18, C© Springer Science+Business Media, LLC 2010
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Fig. 18.1 Schematic of the experimental setup used by Franken and his co-workers for the gener-
ation and observation of the second-harmonic light. The beam from the ruby laser is focused by a
lens into a quartz crystal which converts a very small portion of the incident light energy (which
is at a wavelength of 6943 Å) into its second harmonic, which has a wavelength of 3471.5 Å (this
wavelength falls in the ultraviolet part of the spectrum). The spectrometer arrangement shown in
the figure disperses the components of light at wavelengths 6943 and 3461.5 Å, which can be
photographed

In order to understand second-harmonic generation we consider the non-linear
dependence of the electric polarization1 on the electric field. It is well known that
an atom consists of a positively charged nucleus surrounded by a number of elec-
trons. When an electric field is applied, the electron cloud gets displaced and each
atom behaves as an electric dipole. This leads to the medium being polarized. For
weak intensities of the light beam, the polarization induced in the crystal is propor-
tional to the oscillating electric field associated with the light beam. However, for
an intense focused beam, the electric fields in the focal region could be very high
(≥107 V/cm) and for such strong fields the response of the crystal is no more lin-
ear and may be of the type shown in Fig. 18.2. From the figure one can see that the
electric field in a particular direction can be more effective in polarizing the material
compared to a field in the opposite direction. This indeed happens in crystals which
have no center of inversion symmetry. These crystals are usually piezoelectric in
nature.2 In Fig. 18.2 we show typical linear and non-linear dependences of the opti-
cal polarization on the electric field which induces the polarization. Note that in the
absence of any non-linearities, the curve between the induced polarization and the
applied electric field is a straight line, which implies that if the field is increased
(or decreased) by a factor α, the polarization would also increase or decrease by
the same factor. On the other hand, in the presence of non-linearities, only for weak
fields is the curve approximately a straight line.

1By “polarization” we imply here the dipole moment induced by the electric field. This induced
dipole moment is due to the relative displacement of the center of the negative charge from that of
the nucleus.
2A piezoelectric material converts mechanical energy into electrical energy.
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Fig. 18.2 The curves show the time variation of the electric field of the light wave incident on the
crystal and the induced polarization. A typical linear dependence between the induced polarization
wave and the applied electric field of the incident light wave is shown in (a), and (c) corresponds
to a typical non-linear dependence. The distorted nature of the induced polarization wave in (c)
leads to the production of harmonics of the incident light (see Fig. 18.3). (b) and (d) show the
dependence of the polarization on the applied electric field for a linear and a non-linear response
of a crystal

For weak electric fields, media behave linearly and the polarization P induced in
the medium is directly proportional to the electric field E of the light wave. Thus
we have

P = ε0χE (18.1)

Now when the electric field strength increases and if the medium does not possess
a center of inversion symmetry, then the polarization is no more related linearly to
the electric field. In this case instead of Eq. (18.1) we have

P = ε0χE + 2ε0dE2 (18.2)

where d represents the non-linear coefficient and gives the strength of the non-
linearity of the medium. Equation (18.2) is a simplified form of equation; polar-
ization and electric fields are vectors and thus actually the quantity d is a tensor of
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Fig. 18.3 By making a
Fourier analysis of the wave
shown in (a), it can be shown
that it consists of three
components, namely a
zero-frequency component
shown in (b), a component
with the fundamental
frequency ω shown in (c), and
a second-harmonic
component with a frequency
2ω shown in (d). Thus a
non-linear polarization wave
leads to the production of a
second harmonic of the
fundamental frequency

rank 3 with 27 elements. For a given medium and given states of polarization of the
incident electric field and polarization, we can write Eq. (18.2) with d representing
an effective non-linear coefficient.

If we assume the incident light wave to have an electric field variation given as

E = E0 cos (ωt − kz) (18.3)

then the induced polarization is given as

P = ε0χE0 cos (ωt − kz) + 2ε0dE2
0 cos2 (ωt − kz) (18.4)

Using standard trigonometric identity we can write Eq. (18.4) as

P = ε0χE0 cos (ωt − kz) + ε0dE2
0 + ε0dE2

0 cos 2 (ωt − kz) (18.5)

Thus in this case in addition to the term oscillating at frequency ω, there is a
term which is constant and independent of time and the other term oscillates at a fre-
quency 2ω. Figure 18.3 shows the sine wave components of the polarization as given
by Eq. (18.5). Since polarization is the source of electromagnetic radiation, the term
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Fig. 18.4 When a ruby laser beam (red light) is passed through a crystal of potassium dihydrogen
phosphate, a portion of the energy gets converted into blue light, which is the second harmonic.
The remaining ruby red light is suppressed by using a glass filter after the crystal. The two beams
are made visible by means of smoke-filled glass troughs. (Photograph courtesy: Dr. R.W. Terhune)

oscillating at a frequency 2ω will lead to the generation of electromagnetic waves
at frequency 2ω. In order that the radiation emitted by individual dipoles of the
medium be added constructively, we need to satisfy the following phase matching
condition:

k(2ω) = 2 k(ω) (18.6)

where k(2ω) and k(ω) represent the propagation constants of the medium at
frequency 2ω and ω, respectively. Equation (18.6) can be written as

n(2ω) = n(ω) (18.7)

i.e., the refractive index of the medium must be equal at frequencies ω and 2ω. This
is accomplished using various techniques such as birefringence phase matching,
quasi-phase matching. Chapter 14 discusses the concept of phase matching in more
detail for the case of difference frequency generation. In fact, Eq. (18.7) is a momen-
tum conservation equation for the interaction process. Second-harmonic generation
can be considered to be a process in which two photons at frequency ω merge into
a single photon at frequency 2ω. For maximum efficiency of this process, we need
to conserve momentum and since the momentum of a photon is represented by �k,
Eq. (18.6) is nothing but momentum conservation equation.

The constant term in Eq. (18.5) is referred to as dc polarization and corresponds
to zero frequency; this dc polarization was also observed by Franken et al. (1961).

Figure 18.4 shows how a ruby laser beam (red light) when passed through a
crystal of ammonium dihydrogen phosphate gets partially converted into its second
harmonic which lies near the ultraviolet region. The remaining ruby red light has
been filtered by using a glass filter after the crystal.

There has been an extensive amount of work in the field of harmonic genera-
tion as it provides a coherent beam at frequency 2ω at the output of the crystal.
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Since efficient lasers in the infrared wavelengths and red wavelengths are available,
SHG can be used to achieve coherent sources at the ultraviolet and blue wavelengths
for various applications. For example green laser wavelengths can be generated by
pumping an yttrium orthovanadate (Nd:YVO4) crystal by a laser diode at 808 nm
resulting in emission at 1064 nm. Using a crystal such as potassium titanyl phos-
phate (KTP) as a frequency doubler, the laser generates 532 nm (green) wavelength.
Output powers of up to 5 W can be generated using such techniques at 532 nm wave-
length. Such lasers are finding applications in DNA sequencing, flow cytometry, cell
sorting, holography, laser printing, etc.

The optical parametric process discussed in Chapter 14 is based on the same
non-linearity that leads to second-harmonic generation. Both these processes have
very important applications in science as well as technology. In fact the parametric
downconversion process discussed in Chapter 14 is used for generation of squeezed
light which has many applications including in gravitational wave detection.

18.3 Stimulated Raman Emission

Another important application of the laser light is in stimulated Raman emission.
Raman scattering can be understood by considering light of frequency ω to consist
of photons of energy �ω. When a monochromatic light beam gets scattered by a
transparent substance, one of the following may occur:

1. Over 99% of the scattered radiation has the same frequency as that of the incident
light beam (see Fig. 18.5); this is known as Rayleigh scattering. The sky looks
blue because of Rayleigh scattering and the light that comes out from the side of
the optical fiber (see Fig. 17.8) is also due to Rayleigh scattering.

2. A very small portion of the scattered radiation has a frequency different from
that of the incident beam – this may arise due to one of the following three
processes:

Rayleigh scattering 

Molecule in the
lowest energy state

Incident photon of
energy E

Molecule in the
same energy state

Scattered photon of
same energy

Interaction
between

photon and
the molecule

Fig. 18.5 Rayleigh scattering in which the frequency of the scattered photon is the same as that of
the incident photon
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Raman scattering (Stokes emission)

(a)

Molecule in the
lowest energy state

Incident photon of
energy E

Molecule in the
higher energy state

Scattered photon of
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(b)

Raman scattering (Anti Stokes emission)

Molecule in the
higher energy state

Incident photon of
energy E Molecule in the
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Fig. 18.6 (a) Stokes emission in which the molecule takes away some energy from the incident
photon and the scattered photon has a lower frequency as compared to the incident photon. (b)
Anti-Stokes emission in which the molecule gives some energy to the incident photon and the
scattered photon has a higher frequency as compared to the incident photon

i) A part of the energy of the incident photon may be absorbed to generate
translatory motion of the molecules – this would result in the scattered light
having a very small shift of frequency, typically in the 10–20 GHz range.
This scattering process is known as Brillouin scattering.3

ii) A part of the energy �ω of the incident photon is taken over by the individual
molecule in the form of rotational (or vibrational) energy and the scattered
photon has a smaller energy �ω′ with ω′<ω. The resulting spectral lines are
known as Raman Stokes lines (see Fig. 18.6a).

iii) On the other hand, the photon can undergo scattering by a molecule which
is already in an excited vibrational or rotational state. The molecule can

3The shift in frequency is usually measured in wavenumber units, which is defined later in this
section. In Brillouin scattering, the shift is � 0.1 cm–1. On the other hand, in Raman scattering, the
shift is � 104 cm–1.
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de-excite to one of the lower energy states and in the process, the inci-
dent photon can take up this excess energy and come out with a higher
frequency (ω′ > ω). This leads to the scattered light having a larger energy
and hence larger frequency. The resulting spectral lines are known as Raman
anti-Stokes lines (see Fig. 18.6b).

Rayleigh scattered
radiation

Anti Stokes
Raman lines

Stokes
Raman lines

Raman shift (cm–1)

0 200–200 400 600–400–600

Fig. 18.7 Scattered spectrum
showing Rayleigh scattering
and Raman scattering

The difference energy, which is �
(
ω′ − ω

)
for the Raman Stokes line and

�
(
ω − ω′) for the Raman anti-Stokes line, would therefore correspond to the energy

difference between the rotational (or vibrational) energy levels of the molecule and
would therefore be a characteristic of the molecule itself.

The quantity �
(
ω′ − ω

)
or �

(
ω − ω′) is usually referred to as the “Raman

shift” (see Fig. 18.7) and is independent of the frequency of the incident radiation.
Through a careful analysis of the Raman spectra, one can determine the structure of
molecules, and there lies the tremendous importance of Raman effect.

Since the probability of finding molecules is higher in the lower energy state
as compared to the higher energy state, the Stokes emission (into a lower energy
photon) is much more intense than the anti-Stokes emission (into higher energy).
Figure 18.7 shows a typical spectrum of scattered light observed showing the
Rayleigh scattering at the incident frequency, Stokes lines at lower frequency and
much weaker anti-Stokes line at a higher frequency. Note that the frequency shift
in Stokes and anti-Stokes is equal; both of them involve the same set of energy lev-
els of the molecule and the anti-Stokes emission is much weaker than the Stokes
emission.

Figure 18.8a shows the Raman scattered spectrum from a mixture of hydro-
gen and deuterium when the mixture is illuminated by a laser beam at 488 nm
wavelength, the corresponding frequency being approximately 615 THz (= 6.15 ×
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(a) (b)

Fig. 18.8 (a) Raman scattered spectrum of hydrogen and it isotopes. (b) Raman spectrum of
diamond

1014 Hz). Now, there is an energy level corresponding to vibration of the hydrogen
molecule which is separated from the lowest level by 125 THz; thus the Stokes line
should appear at a (lower) frequency of 490 THz (690 nm wavelength) and the very
weak anti-Stokes line should appear at a (higher) frequency of 740 THz (405 nm).
In spectroscopy the frequency shift is measured in wavenumber units (i.e., inverse
wavelength) and the units are usually cm–1(read as centimeter inverse)

�T (cm−1) = �E

hc

where �E is measured in ergs (1 erg = 10–7 J), h ≈ 6.634 × 10–27 erg s is the
Planck’s constant, and c ≈ 3 × 1010 cm/s is the speed of light in free space. Thus
the frequency shift in hertz will be given as

�ν (Hz) = �E

h
= �T (cm−1) × 3 × 1010

Thus a frequency shift of 4155 cm–1 in wavenumbers corresponds to 125 THz,
which is consistent with the value given above. In Fig. 18.8a, the Raman shift due to
D2 and HD molecules are also shown; once again the frequency shift is a “signature”
of the molecule and is determined by the energy difference of the vibrational levels
of the molecule. Since deuterium is heavier than hydrogen, the vibrational frequency
of HD is smaller than that of hydrogen and that of D2 is even smaller. This is clearly
seen in Fig. 18.8a, where the frequency shift of HD is smaller than that of H2 and
that of D2 is even smaller. Similarly, Fig. 18.8b shows the Raman scattered spectrum
of diamond showing a Raman shift of 1331 cm–1 which for a pump wavelength of
514 nm would correspond to a wavelength of 620 nm.

The Raman effect is extremely weak, which means that for proper observation,
it requires a very bright light source. In fact, before the invention of the laser, there
was little interest in using Raman scattering as a general spectroscopic tool. Raman
scattering using light sources such as the sodium lamp was so weak that only ideal
samples yielded good spectra. The laser dramatically changed that situation, and
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Fig. 18.9 Schematic of the experimental setup used for the observation of stimulated Raman emis-
sion. The light emerging from the ruby laser is focused by a lens into a cell containing benzene.
The Stokes lines occur in the infrared and the anti-Stokes lines occur in the visible region. The
various anti-Stokes lines appearing in the red, orange, yellow, and green regions of the spectrum
form rings around the central ruby laser spot (see Fig. 18.10)

today all Raman instruments use laser excitation. The Raman instruments available
today use the many technological advances in the areas of light sources, fiber-optic
guides, good spectrometers. etc. making Raman scattering a very valuable tool in
many applications including industrial applications such as in chemical processing
and quality control. Lasers have made available virtually any wavelength from the
ultraviolet to near-infrared for analysis allowing for optimization of Raman studies.
An example of Raman scattering studies is the in situ growth monitoring of diamond
films in plasma reactors at temperatures as high as 1000◦C using a UV Raman
system operating at 244 nm. With the advent of the laser, Raman scattering became
an important tool in research laboratories as well as in industrial applications.

In the case of stimulated Raman emission, the photons emitted in the sponta-
neous Raman effect are made to stimulate further Raman emissions. A layout of an
experimental arrangement for observing stimulated Raman emission from Raman
laser material (e.g., nitrobenzene) is shown in Fig. 18.9. An intense laser beam is
focused on the Raman laser material. The photons corresponding to the Stokes lines
have a wavelength in the infrared region which does not appear on the color film.
In the anti-Stokes emission, the frequency of the emitted photon is higher, which
results in orange, yellow, and green rings (see Fig. 18.10).4

The stimulated Raman effect has been observed in a large number of materi-
als, which provides us with hundreds of coherent sources of light from ultraviolet
to infrared. Stimulated Raman scattering and continuous wave Raman oscillation
have also been observed in optical fibers. Stimulated Raman scattering can be used

4That the emitted photons of a particular frequency should appear in well-defined cones about the
direction of the incident photons follows from the conservation of momentum. The direction of the
emitted photon can be found by using the fact that a photon of frequency v has a momentum equal
to hv

/
c
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Fig. 18.10 The stimulated
Raman effect obtained by
focusing a ruby laser beam in
a cell filled with benzene and
photographing the scattered
radiation in a setup similar to
that shown in Fig. 18.5.
(Photograph courtesy:
Dr. R.W. Terhune)

for amplification of light waves at frequency corresponding to the Raman shift.
Stimulated Raman amplifiers are very important components of today’s optical fiber
communication systems as they are capable of providing optical amplification at any
signal wavelength.

Fig. 18.11 Raman spectrum
from various minerals
including that from a sample
of lunar soil. (Source: Ref.
http://hyperphysics.phy-
astr.gsu.edu/Hbase/molecule/
raman2.html)
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Raman amplification and oscillation in optical fiber waveguides requires low
pumping powers because of the strong transverse confinement of the optical energy
in the waveguide and the very long interaction lengths (hundreds of meters to tens
of kilometers) that are possible with the use of optical fibers. The pumping source
is usually the 1.064-μm radiation of the Nd:YAG laser (see Section 9.5) or high-
power 1450-nm diode laser. The broad Raman gain bandwidth of silica glass fibers
has indeed been used in making a tunable continuous wave fiber Raman oscillator
(Lin et al. 1977a, Stolen et al. 1977). Such Raman oscillators can indeed be used as
tunable light sources and are especially useful for fiber-optic communication studies
as the region of operation at 1.3 μm wavelength is indeed becoming very important
due to the existence of a region of zero dispersion in single-mode glass fibers. [see
e.g. Thyagarajan and Ghatak (2007)].

Raman scattering is a very useful tool for the identification of minerals. Raman
spectra for different minerals tend to have sharp unique patterns and hence serving
as “fingerprints” for the minerals. Since Raman spectra can be collected remotely,
they show great promise for planetary exploration. Figure 18.11 shows spectra
of the common silicate minerals olivine, pyroxene, and plagioclase that are com-
pared to a Raman spectrum of a lunar soil sample identified as 71501 (Ref.
http://hyperphysics.phy-astr.gsu.edu/Hbase/molecule/raman2.html).

18.4 Intensity-Dependent Refractive Index

Another interesting non-linear effect is the intensity dependence of refractive index
of a medium which leads to phenomena such as self-focusing and soliton formation.
The intensity dependence of refractive index arises because of the third-order non-
linearity in which the electric polarization depends on the cube of the electric field
instead of square of the electric field as described by Eq. (18.2). Due to the third-
order non-linearity, the dependence of refractive index of a medium on intensity can
be written in the following form:

n = n0 + n2I (18.8)

where n0 is the refractive index of the medium at low intensities, n2 is a constant,
and I represents the intensity of the laser beam. Thus, if the intensity5 of the beam
is maximum on the axis and decreases radially, and if n2 is positive, then the beam
would get focused (see Fig. 18.12). This can be qualitatively understood from the
fact that the velocity (which is inversely proportional to the refractive index) will
be minimum on the axis, and by simple Huygens’ construction, one can show that
a plane wave front would become converging. This results in what is known as the
self-focusing phenomenon. Since a light beam usually suffers diffraction due to the

5This is indeed the case for a laser beam where one usually has a Gaussian variation of intensity
along the wave front.
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Fig. 18.12 Self-focusing of
the beam occurs when a
high-power laser beam with
an intensity distribution
which decreases away from
the center passes through a
medium with a positive value
of n2

finite spatial extent of the beam, it is possible to have beams in which the diffraction
effects are compensated by the focusing generated by the non-linearity. In such a
case the beam will propagate with no change in the spatial profile and such beams
are referred to as spatial solitons. Since diffraction effects are governed by the spatial
dimension of the beam and the non-linear effects are controlled by the intensity of
the beam, there is a critical power at which the beam (with a characteristic spatial
intensity profile) will behave as a spatial soliton.

The same intensity-dependent refractive index generates some very interesting
effects in the temporal domain. Let us consider a pulse of light such as a Gaussian
pulse (see Fig. 18.13); the intensity is maximum at the center and falls off on either
side. Considering the intensity-dependent refractive index, for the center of the
pulse, the refractive index of the medium will be larger than that for the leading and
trailing edges of the pulse. Since the speed of propagation depends on the refractive
index, this would imply that the center of the pulse would travel slower as compared
to the leading and trailing edges of the pulse. This leads to a crowding of the waves
toward the trailing edge of the pulse and an opposite effect in the leading edge,
resulting in a chirping of the pulse, i.e., a pulse with a frequency which changes

Nonlinear medium 
t

Fig. 18.13 Chirping in an
optical pulse due to the
non-linear dependence of the
refractive index of the
material of the optical fiber
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Fig. 18.14 Supercontinuum
generation from an optical
fiber. The incident light is a
light beam at about 800 nm
and the output contains
frequencies from 400 to
1600 nm [Reprinted from
Ranka et al. (2000). © 2000
OSA]

within the duration of the pulse (see Fig. 18.13). It is known from Fourier trans-
form theory that the spectral width of a chirped pulse is greater than an unchirped
pulse of the same duration. Thus this non-linearity leads to a spectral broadening of
the pulse. Since the minimum possible temporal width of a pulse depends inversely
on the spectral width, the spectrally broadened pulse can be compressed using dis-
persive elements to a pulse of shorter duration than the incident pulse. This is a
very important technique for pulse compression. Using optical fibers, the increase
in spectral width can be extremely large. Thus it is possible to generate spectra from
400 to 1600 nm starting from a few hundred femtosecond pulse at about 800 nm
(see Fig. 18.14). This phenomenon is referred to as supercontinuum generation and
finds wide application in realizing broadband sources for many applications such as
spectroscopy, characterization, optical clocks (see Nobel Lecture by Hansch at the
end of the book), etc.

18.5 Lasers in Chemistry

Lasers are expected to find important applications in chemistry. Because of the
extremely large temperatures obtainable at the focus of a laser beam, the laser is an
excellent tool for triggering chemical and photochemical reactions.6 Electric fields
larger than 109 V/cm are obtainable at the focus; such fields are larger than the fields
that hold the valence electrons to the atoms.

Lasers attached to microscopes are used as microprobes in microanalysis. Such
microanalysis can give information regarding the presence of trace metals in various
tissues. The technique essentially involves sending a giant pulse to a preselected area
and vaporizing some of the target material. The vapor so produced may itself emit
a spectrum of wavelengths or one may pass a discharge through it to produce a
characteristic spectrum. An analysis of the spectrum gives the presence of various
elements.

6The use of lasers in photophysics and photochemistry has been discussed at a popular level by
Letokhov (1977).
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It has been demonstrated that molecules that have been excited by an infrared
laser react faster than the molecules that are in the ground state. The extremely
high monochromaticity of the laser allows one to selectively excite different bands
of a molecule and thus leads to the possibility of producing some new chemical
products.

With the generation of intense laser pulses lasting for a few picoseconds,7 one
can now study ultrafast physical and chemical processes. This gives an opportunity
for understanding the most fundamental processes with unprecedented time reso-
lution. The technique is essentially to excite the sample with an intense pulse and
then to study the behavior of a certain characteristic parameter of the sample (e.g.,
absorption or scattering) as a function of the delay time after excitation. Such studies
have indeed been successfully applied to study various processes such as the redis-
tribution of light energy absorbed by chlorophyll in the photosynthetic process, to
observe ultrafast chemical reactions, to obtain the vibrational and rotational decay
constants of molecules, to study photovisual processes, and others. For a review
of some of these applications, the reader is referred to the articles by Alfano and
Shapiro (1975) and Busch and Rentzepis (1976).

With the availability of laser pulses with durations in the tens of femtoseconds, it
is possible to observe in real time chemical reactions in which chemical bonds break,
form, or geometrically change with extreme rapidity involving motion of electrons
and atomic nuclei. The field of femtochemistry is expected to permit femtosec-
ond time resolution in the observation of chemical reactions. Today femtochemistry
finds applications in studies on various types of bonds and addresses increasingly
complex molecular systems, from diatomics to proteins to DNA, leading to the new
branch of femtobiology. For a nice review of femtochemistry, readers are referred
to the excellent article by Zewail (2000).

18.6 Lasers and Ether Drift

Lasers have made possible an experiment to test the presence of ether drift with
an accuracy a thousand times better than could be obtained before. A setup of the
experiment is shown in Fig. 18.15. The beams from two lasers oscillating at slightly
different frequencies are combined with a beam splitter and detected by a photo-
multiplier. The slight difference in frequency between the two lasers produces beats
at a frequency equal to the difference between the two frequencies. The oscillation
frequency of the laser depends on the length of the resonant cavity and also on the
speed of light in the cavity. Thus a rotation of the apparatus must change the fre-
quency of oscillation of the lasers and hence the beat frequency, if there was any
ether drift. When the experiment was performed, no change in beat frequency was
observed. The apparatus was sensitive enough to detect a velocity change as small
as 0.03 mm/s.

71 ps = 10–12 s.
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Fig. 18.15 An experimental
setup for detecting the
presence of ether drift

18.7 Lasers and Gravitational Waves

Einstein’s general theory of relativity predicted the existence of gravitational waves
which are ripples in the fabric of space–time. These waves are very weak (even for
events such as supernova explosions) and supposed to be produced when massive
objects accelerate through space. Scientists have been working on using the prin-
ciples of interferometry to detect the existence of these waves. Gravitational waves

Fig. 18.16 The LIGO interferometer being built to detect gravitational waves. Squeezed light is
expected to be used in the interferometer for increasing the sensitivity of the sensor. (Source: Ref.
http://physicsworld.com/cws/article/news/33755)
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passing through a Michelson interferometer (with arm lengths of a few kilometers)
are supposed to stretch one arm and compress the other leading to a change of
phase of the interference pattern. However the change of length is extremely tiny,
about 10–18 m. Thus the expected fringe shift is extremely small and the interfer-
ometer to detect such effects needs to have very large arm lengths. Figure 18.16
shows a photograph of The LIGO (Laser Interferometer Gravitational Observatory)
being built to detect gravitational waves. Current detectors are not sensitive enough
to measure such small changes. The ultimate sensitivity is determined by quantum
noise in the detector. We had discussed in Chapter 9 about squeezed states which
exhibit noise level below that of vacuum state in one quadrature. Such squeezed
states are expected to enable detection of gravitational waves. Such squeezed light
is proposed to be produced using non-linear effects in crystals and experiments on
squeezed light have demonstrated noise levels below the vacuum state.

18.8 Rotation of the Earth

Lasers have been used to detect the absolute rotation of the Earth. If light is made to
rotate in both clockwise and anti-clockwise directions around a square with the help
of mirrors as shown in Fig. 18.17, then if the square is at rest, the time taken for light
to travel around the square in both the clockwise and the anti-clockwise directions
would be the same. But if the square is rotated about an axis which is normal to the
plane of the square, then the time taken for light to travel along one direction will be
different from that taken along the other direction. Thus if one could measure this
difference, one could obtain information about the rotation of the square.8

An experiment to detect the rotation of the Earth by using such a method with
ordinary light sources was performed by Sagnac in 1914 and then by Michelson and
Gale in 1925. With the use of lasers, one can do similar experiments with much more
precision and sensitivity. The sides of the square are gas discharge tubes containing
helium and neon. The corners of the square are occupied by mirrors (see Fig. 18.17).
Light beams traveling along either direction would undergo amplification. Thus one
would have two beams, one propagating in the clockwise direction and the other in
the anti-clockwise direction. The frequency of oscillation of the laser would depend
on the path length along the square. Since the path lengths along the two directions
are different when the system is rotating in the plane, two different frequencies are
obtained. By mixing the light beams of the two frequencies, one can detect the beat
frequency of the beams and hence the rate of rotation of the square. For example,
at New York (which is at a latitude of 40◦40′N) the effective speed of rotation is
about one-sixth of a degree per minute; this would correspond to a beat frequency
of 40 Hz.

8The difference in path length between the two paths is extremely small; thus only a shift of a
hundred-thousandth of a wavelength would be produced when the square is of side 3 m and is kept
at a latitude of 40◦ on the surface of the earth.
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Fig. 18.17 A ring laser for
detecting the absolute
rotation of the earth. When
the system is at rest, both the
clockwise and anti-clockwise
rotating beams have the same
frequency. When the system
is rotated about an axis
normal to the plane
containing the system, the
clockwise rotating and the
anti-clockwise rotating beams
have slightly different
frequencies. When they are
combined, then beats are
produced which can easily be
detected

In the ring interferometer that we have discussed, one can show that the
phase difference introduced by the counter propagating beams is (see, e.g.,
Post (1967))

�φ = 8π

cλ
� · A (18.9)

where � is the rotation vector and A is the area enclosed by the optical path.
This phase change is generally too small for direct measurement in the range of
rotation speeds encountered in inertial navigation. For example, a rotation rate of
5 × 10−7 rad

/
s(0.1◦/h) over an area of 0.1 m2 at λ = 0.6μm yields a phase shift

of 7 × 10−9 rad (∼10−9 of a fringe!). The availability of extremely low-loss, single-
mode optical fibers makes it possible to increase �ϕ by three to four orders of
magnitude by increasing the effective area A by having the light beams propagate
through a large number of turns of an optical fiber. In addition to this increase in
area, it is possible to have both the clockwise and counterclockwise beams follow
identical paths, thus stabilizing the differential path lengths.

Fiber-optic gyroscope is a very versatile device for measurement of rotation and
has been in production by many industries in the world. Low-cost fiber-optic gyros
are also finding applications in vehicles such as cars.



18.9 Photon Statistics 463

18.9 Photon Statistics

Let us consider an experiment in which a beam of light from a source is allowed to
fall on a photodetector for a specific time interval T by having a shutter open in front
of the detector for the time T; one then registers the number of photoelectrons so lib-
erated. Then the shutter is again opened for an equal time interval T after a certain
time delay which is longer than the coherence time of the source and the number
of photoelectrons counted during the interval is again registered. This experiment
is repeated a large number of times (∼ 105) and the number of photoelectrons pro-
duced in equal intervals of time is counted. The results of such an experiment give
one the probability distribution p (n, T) of counting n photons in a time T. Here it is
assumed that the light source is stationary, i.e., the long time average of the intensity
is fixed and independent or the particular long time period chosen for measuring it.
The above-obtained probability distribution contains information regarding the sta-
tistical properties of the source, and such studies have applications in spectroscopy,
stellar interferometry, etc.

It can be shown that for a polarized thermal source, for counting times T much
smaller than the coherence time Tc, the photoelectron counting distribution p (n) is
given by9 the following formula (see, e.g., Loudon (1973)):

p (n) = 〈n〉n

[1 + 〈n〉] n+1
(18.10)

where 〈n〉 represents the mean number of counts in time T. Figure 18.18a shows
typical plots of the above distribution for 〈n〉 = 4 and 〈n〉= 10.

9It is much beyond the scope of this book to go into the derivation of Eqs. (18.10) and (18.11).
However, it may be worthwhile to mention that the probability distribution p (n, t, T) of registering
n photo-electrons by an ideal detector in a time interval t to t + T is given by (see, e.g., Mandel
(1959))

p (n, t, T) =
∫ ∞

0

(αw)n

n! e−αwP (w) dw

where α is the quantum efficiency of the detector,

w =
∫ t+T

t
I
(
t′
)

dt′

is the integrated light intensity, and P(w) is the probability distribution corresponding to the vari-
able w. Thus the photoelectron counting distribution given by the above equation depends on the
particular form of the probability distribution P(w). Now, for a polarized thermal source, it can be
shown that

P (w) = (
1
/〈w〉) e−w/〈w〉, for T<<Tc

= δ (w − 〈w〉) , for T>>Tc

where 〈w〉 = T 〈I〉 and angular brackets denote averaging. Further, for an ideal laser, the beam
would not exhibit any intensity fluctuations and P (w) = δ (w − 〈w〉). On substituting the above
equations for P(w) in the equation for p (n, t, T), one gets Eqs. (18.10) and (18.11).
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Fig. 18.18 (a) The probability distribution for the arrival of photons from a thermal source. (b) The
probability distribution for the arrival of photons from a laser source corresponds to the Poisson
distribution

On the other hand, for very large values of T as compared to Tc, all the fluctua-
tions in the intensity may be expected to be averaged out during the counting period.
For such a case, the photon counting distribution is given as

p (n) = 〈n〉n

n! e−〈n〉 (18.11)

which is a Poisson distribution.
When the source is an ideal laser, the beam would not exhibit any intensity

fluctuations and the counting distribution would be again given by Eq. (18.11).
Figure 18.18b shows the probability distribution given by Eq. (18.11) for 〈n〉 =

4 and 10. As can be observed from the figure, even for a beam of constant intensity
the fluctuations still exist.

Experiments on photoelectron counting were first carried out by Arecchi et al.
(1966a, b), in which they have shown that for a laser operating much beyond thresh-
old, the counting distribution is indeed Poissonian. The results on the counting
distribution from a laser source near threshold, from thermal sources and from a
mixture of a laser and a thermal source, have also been discussed by Arecchi et al.



18.10 Lasers in Isotope Separation 465

(1966a, b). For further details, the reader is referred to Arecchi (1976), Mandel and
Wolf (1970), and Mehta (1970).

18.10 Lasers in Isotope Separation

A new application of lasers (in particular, tunable lasers), which has been much
discussed in recent years, is in isotope separation.10 The technique seems to promise
efficient separation processes that may perhaps revolutionize the economics of the
separation and the use of isotopes. The major interest in the so-called LIS (laser
isotope separation) process would be its possibility for large-scale enrichment of
uranium for use in nuclear power reactors. There are, however, other applications
for pure isotopes in medicine, science, and technology, if they could be produced
economically. We shall, in the following, briefly discuss the principle of LIS and
the variety of options which have been considered and already demonstrated on the
laboratory scale.

Isotopes are atoms that have the same number of protons and electrons but which
differ in the number of neutrons. Since most chemical properties are determined by
the electrons surrounding the nucleus, the isotopes of an element behave in almost
indistinguishable ways. Thus one of the common methods of separating an element
from a mixture (by making use of its chemical properties) becomes cumbersome
when an isotope is to be separated from a mixture with another isotope of the same
element. Light elements lying below oxygen in the Periodic Table may be separated
using repeated chemical extraction. Isotopes of heavier atoms may be separated
using physical methods. For example, because of the differences in masses of the
isotopes, they diffuse at different rates through a porous barrier and repeated passage
through various stages leads to separation of required concentration of the isotope.

Isotope separation using a laser beam is a fundamentally different technique
where one makes use of the slight differences in the energy levels of the atoms of the
isotopes due to the difference in nuclear mass. This difference is termed the isotope
shift. Thus, one isotope may absorb light of a certain wavelength, while the other
isotope of the element may not absorb it.11 Since the light emerging from a laser is
extremely monochromatic, one may shine laser light on a mixture of two isotopes
and excite the atoms of only one of the isotopes, thus earmarking it for subsequent
separation. A block diagram of a typical LIS process is shown in Fig. 18.19. It may
be of interest to note here that the basic physical idea of isotope separation by light
was conceived more than 70 years ago. The first successful separation of mercury

10The material in this section was kindly contributed by Dr. S.V. Lawande of Bhabha Atomic
Research Centre, Mumbai.
11When an atom absorbs light, it jumps from one energy level to another, the difference in energy
between the two levels being just equal to the energy of the incident photon. Since the energy levels
are slightly different for two different isotopes, their absorption properties are also different. The
isotope shift between hydrogen and deuterium is given as �v

/
v ≈ 2.7 × 10−4. For uranium, the

isotope shift is given as �v
/

v ≈ 0.6 × 10−4.
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Fig. 18.19 Block diagram of a typical laser isotope separation process. A laser excites one of the
isotopes from the isotopic mixture through selective absorption and the excited isotope atoms are
separated using one of the many techniques

isotope (202Hg) was reported by Zuber (1935), who irradiated a cell containing natu-
ral mercury vapor with the light from a mercury lamp. Since the invention of tunable
lasers, it has become possible to revive the interest in photochemical separation
processes for large-scale isotope separation.

In addition to the high monochromaticity, the high intensity of the laser is also
responsible for its application in isotope separation because with low-intensity
beams the separation rate would be too little for practical use.

The basic principle behind the laser isotope separation process is to first selec-
tively excite the atoms of the isotope by irradiating a stream of the atoms by a laser
beam and then separate the excited atoms from the mixture. Various techniques exist
for separation. We will discuss a few of them; for more details the reader is referred
to Zare (1977).

18.10.1 Separation Using Radiation Pressure

An interesting method of laser isotope separation is the deflection of free atoms or
molecules by radiation pressure. A photon of energy hv carries with it a momentum
of hv

/
c. When this photon is absorbed by an atom, conservation of momentum

requires that the atom acquire this momentum. Thus the absorption tends to push
the atom in the direction of travel of the incident photon. The momentum acquired
in a single absorption is very small; hence for the atom to gain sufficient momentum,
it must absorb many photons. This requires that the atoms have a short lifetime in the
excited state before dropping back to the ground state. It should be noted that every
time an atom emits a photon, it acquires a momentum equal and opposite to that it
gained during absorption. Since the emissions occur in all random directions, the
net effect of many absorptions and emissions is to push the atoms along the laser
beam. In the present technique, a laser beam is allowed to impinge on an atomic
beam at right angles (see Fig. 18.20) and the atoms of the isotope (which absorb the
radiation) are deflected by the laser beam.

To give some idea of the numbers involved, the velocity resulting from the
momentum transfer is about 3 cm/s in the case of sodium atoms. After an excitation
event the atom/molecule remains in the excited state for a certain time τ ∼ 10−8 s.
Thus a sodium atom traveling with a thermal velocity v ≈ 105 cm/s through an inter-
action zone of length 1 cm will be subjected to 103 absorption events and gain a net
velocity of 3×103 cm/s in the direction of the laser beam. The resulting deflection of
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Fig. 18.20 Separation of isotope by deflection caused by selective absorption. The atomic beam
emerging from the source is impinged by a laser beam tuned to excite atoms of the isotope to be
separated. The absorption causes the atoms to acquire a momentum, and by repeated absorption
they gain enough kinetic energy to get deflected from the main beam

30 mrad will be sufficient for separating the sodium atom. Such a scheme has been
used to separate the isotopes of barium (Bernhardt et al. 1974). More sophisticated
modifications of this scheme which improve the photon economy have also been
conceived.

18.10.2 Separation by Selective Photoionization
or Photodissociation

The most popular and perhaps universally applicable scheme of isotope separation
is the two-step photoionization of atoms or the two-step dissociation of molecules
(Fig. 18.21). The first step causes the selective excitation; this is followed by a sec-
ond excitation which ionizes the excited atoms or dissociates the excited molecules.
In the case of atoms the separation can be carried out by extracting the ions by
means of electric fields. In the case of molecules the dissociation products must be
separated from the other molecules. This may be carried out directly or by means of
chemical reactions. It must be mentioned here that the two-step photoionization was
used to demonstrate the feasibility of LIS for uranium at the Lawrence Livermore
Laboratory in the USA.12 In this experiment an atomic beam of uranium, gener-
ated in a furnace at a temperature of about 2100◦C, was excited by the light of
a dye laser (isotope-selective excitation) and then ionized by the light of a high-
pressure mercury lamp and the 235U isotope, which is present in natural uranium in
a concentration of 0.71%, was enriched to 60%.

12Reported in Physics Today 27(9), 17 (1974).
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The application of two-step excitation of molecules is described in an experiment
on the separation of the isotopes13 10B and 11B. In this experiment, 11BC3 isotope
was selectively excited by the light of a CO2 laser which emits lines correspond-
ing to vibrational transitions of 11BC3. The molecules excited in this manner were
dissociated by light with a wavelength between 2130 and 2150 Å. The fragments
generated by this dissociation, originating mainly from 11BC3, were bound by reac-
tion with O2. It was found that with five light pulses of the CO2 laser radiation, a
14% isotopic enrichment of a 5-μg sample could be obtained.

18.10.3 Photochemical Separation

Another possible way of separating selectively excited atoms/molecules from those
in the ground state is by means of a chemical reaction. The reaction must be so
chosen that it takes place only with atoms or molecules in the excited state but
not with those in the ground state. The isotope of interest can be separated from the
other isotopes present by the chemical separation of the reaction products. The basic
idea is illustrated in Fig. 18.22. An example of a separation using this scheme is the
enrichment of deuterium using an HF laser (Mayer et al. 1970). Some lines of the
HF laser coincide with strong transitions of methanol but not with the corresponding
lines of deuteromethanol. The excitation activates the reaction

CH3OH + Br2 → 2HBr + HCOOH

A one-to-one gas mixture of CH3OH + CD3OD can be converted under irradia-
tion for 60 s with a 90-W HF laser in the presence of Br2 into a mixture containing
95% CD3OD.

13Reported in Physics Today 27(9), 17 (1974).
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Fig. 18.22 Chemical reactions that take place only with excited atoms or molecules may be
employed for the separation of the excited isotope atoms or molecules

One of the most important fields in which the laser isotope separation process
would find application is in the nuclear power industry, which requires uranium
enriched with the isotope of mass number 235. The present method of enrichment is
through gaseous diffusion through a number of stages. This process is quite costly;
the cost of obtaining uranium 235 of 90% purity is about 2.3 cents per milligram
(Zare 1977). Similarly, the cost of other isotopes of such a concentration is also high.
In addition to the nuclear power industry, the isotope separation process would also
help obtain isotopes used as tracers in medicine, agriculture, research, industry, etc.

Problems

Problem 18.1 From Eq. (18.5) estimate the velocity of the non-linear polarization at 2ω and compare
with the velocity of the electromagnetic wave at frequency ω.

Problem 18.2 The peak Raman scattering in silica appears at about a frequency shift of 13 THz. If the
pump wavelength is 1450 nm, at what wavelength would you expect the maximum Raman scattering to
take place?

Problem 18.3 The value of n2 for pure silica is about 3 × 10 –20m2/W. Consider a light wave carrying
a power of 100 mW propagating through an optical fiber in which the mode occupies a transverse area
of 30 μm2. Calculate the non-linear change in refractive index. If the light beam propagates through
1 km of the fiber, then calculate the change in phase of the light beam due to non-linearity. Assume a
wavelength of 1500 nm and neglect attenuation in the fiber.

Problem 18.4 Consider a 1-ps pulse at 1500 nm. What is the spectral width of the pulse? If the spectrum
increases by 50% due to non-linear effects as it propagates in a medium, to what minimum pulse width
can the output pulse be compressed?
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Problem 18.5 Consider a fiber-optic gyroscope with 500 m of fiber wound on a coil of radius 10 cm.
What is the phase difference between the clockwise and anti-clockwise propagating beams for a rotation
rate corresponding to the earth’s rotation? Assume a wavelength of 633 nm.

Problem 18.6 Consider a laser beam obeying Poisson statistics and assume that the average number of
photons is 1. What is the probability of detecting no photons?

Problem 18.7 What is the change in phase at the output of a 1-km-long fiber when the power is changed
from 10 μW to 100 mW. Assume the area of the light beam propagating in the fiber to be 50 μm2 and
n2 = 3 × 10–20m2/W. Neglect fiber loss.



Chapter 19
Lasers in Industry

19.1 Introduction

In Chapter 10 we discussed the special properties possessed by laser light, namely its
extreme directionality, its extreme monochromaticity, and the large intensity associ-
ated with some laser systems. In the present chapter, we briefly discuss the various
industrial applications of the laser.

The beam coming out of a laser is usually a few millimeters (or more) in diam-
eter and hence, for most material processing applications, one must use focusing
elements (like lenses) to increase the intensity of the beam. The beam from a laser
has a well-defined wave front, which is either plane or spherical. When such a beam
passes through a lens, then according to geometrical optics, the beam should get
focused to a point. In actual practice, however, diffraction effects have to be taken
into consideration (see Chapter 2), and one can show that if λ is the wavelength of
the laser light, a is the radius of the beam, and f is the focal length of the lens, then
the incoming beam will get focused into a region of radius (see Fig. 19.1)1

b ≈ λf / a (19.1)

Fig. 19.1 When a plane
wave of wavelength λ falls on
a lens of radius a, then at the
focal plane F of the lens, one
obtains an intensity
distribution of the type shown
in the figure. About 84% of
the total energy is confined
within a region of radius
λf / a

1Here we have assumed that the aperture of the lens is greater than the width of the beam. If the
converse is true, then a would represent the radius of the aperture of the lens.

471K. Thyagarajan, A. Ghatak, Lasers, Graduate Texts in Physics,
DOI 10.1007/978-1-4419-6442-7_19, C© Springer Science+Business Media, LLC 2010
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As can be seen, the dimension of this region2 is directly proportional of f and λ

(the smaller the value of λ, the smaller the size of the focused spot) and inversely
proportional to the radius a. If P represents the power of the laser beam, then the
intensity I, obtained at the focused region, would be given as

I ≈ P

πb2
≈ Pa2

πλ2f 2
(19.2)

Thus if we focus a 1-W laser beam (with λ = 1.06 μm and having a beam radius
of about 1 cm)3 by a lens of focal length 2 cm, then the intensity obtained at the
focused spot would be given as

I ≈ 1

3.14 × (
1.06 × 104 × 2

)2
W / cm2

≈ 7 × 106W / cm2

(19.3)

Figure 10.4 shows the spark created in air at the focus of a 3-MW peak power
giant pulsed ruby laser. The electric field strengths produced at the focus are of the
order of 109 V / m. Note here that such large intensities are produced in an extremely
small region whose radius is ∼ 2 × 10−6 m. Further, as can be seen from Eq. (19.2),
the larger the value of a, the greater the intensity; as such, one often uses a beam
expander to increase the diameter of the beam; a beam expander usually consists of
a set of two convex lenses as shown in Fig. 19.2.

Fig. 19.2 A beam expander
consisting of two convex
lenses

It may be noted that when one produces such small focused laser spots, the beam
has a large divergence, and hence near the focused region, the beam expands again
within a very short distance. This distance (which may be defined as the distance
over which the intensity of the beam drops to some percentage of that at the focus)
defines the depth of focus. Thus, smaller focused spots lead to a smaller depth of

2The dimension of the focused region is usually larger than that given by Eq. (19.1) due to the
multimode emission of the laser. We are also assuming here that the lenses are aberrationless. In
general, aberrations increase the spot dimension, resulting in lower intensities.
3The 1.06-μm radiation is emitted from the neodymium-doped YAG or glass laser (see Chapter
11).
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focus. This must also be kept in mind while choosing the parameters in a laser
processing application.

We now discuss in the next few sections some of the important applications of
the laser in industry.

19.2 Applications in Material Processing

Since laser beams have high power and can be focused to very small areas, they
can generate very high intensities in the region of focus. The intensity levels at the
focus can be adjusted by controlling the power and the focused area of the beam.
This property of lasers is used in many industrial applications. The primary lasers
used for such applications are the Nd:YAG laser emitting at 1060 nm (infrared) with
typical powers of 5 kW, carbon dioxide laser emitting at 10.6 μm (far infrared) with
powers of up to 50 kW, excimer lasers emitting at 157–350 nm (ultraviolet range)
with powers of up to about 500 W. Depending on the application, both continuous
wave and pulsed lasers are used. The applications include welding, cutting, hole
drilling, micromachining, marking, photolithography, etc.

19.2.1 Laser Welding

One of the simplest applications is in welding wherein high temperature is required
to melt and join materials such as steel. High-power lasers have found many impor-
tant applications in the area of welding. For example, carbon dioxide lasers emitting
a wavelength of 10.6 μm and with a power of 6 kW of power are used in weld-
ing of 1/4-in.-thick stainless steel. Lasers are routinely used in the manufacture of
automobiles. Figure 19.3 shows welding of car parts using a laser.

Pulsed ruby lasers have also been used in welding. For example, a pulsed ruby
laser beam having an energy of 5 J with pulse duration of about 5 ns was used in

Fig. 19.3 Welding of auto
parts by a high-power laser
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Fig. 19.4 Welding of parts
on a transistor; the arrow
shows the position of the
weld. (Adapted from
Gagliano et al. (1969))

welding 0.18-mm-thick stainless steel. The weld was made using overlapping spots
and the laser was pulsed at a rate of 20 pulses/min. The focused spot was about
1 mm in diameter and the associated power density was ∼ 6 × 105 W/cm2.

Laser welding has found important applications in the fields of electronics and
microelectronics which require precise welding of very thin wires (as small as
10 μm) or welding of two thin films together. In this field, the laser offers some
unique advantages. Thus, because of the extremely short times associated with the
laser welding process, welding can be done in regions adjacent to heat-sensitive
areas without affecting these elements. Figure 19.4 shows a weld performed with
a laser on a transistor unit. Further, welding in otherwise inaccessible areas (like
inside a glass envelope) can also be done using a laser beam. Figure 19.5 shows
such an example in which a 0.03-in. wire was welded to a 0.01-in.-thick steel tab
without breaking the vacuum seal. In laser welding of two wires, one may have an
effective weld even without the removal of the insulation.

Laser welds can easily be performed between two dissimilar metals. Thus, a ther-
mocouple may easily be welded to a substrate without much damage to adjacent
material. One can indeed simultaneously form the junction and attach the junc-
tion to the substrate. This method has been used in attaching measuring probes
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Fig. 19.5 Laser welding in
inaccessible areas. The
photograph shows the
welding of a 0.03-in. wire to a
0.01-in.-thick steel tab inside
a vacuum tube without
breaking the vacuum seal.
The arrows point toward the
repaired connections.
(Adapted from Weaver
(1971); photograph courtesy:
Dr. Weaver)

to transistors, turbine blades, etc. Laser weld not only achieves welding between
dissimilar metals but also allows precise location of the weld.

In welding, material is added to join the two components. Thus the laser power
must not be too high to evaporate the material; removal of material leads, in general,
to bad welds. Thus the laser used in welding processes must have a high average
power rather than high peak power. The neodymium:YAG lasers and carbon diox-
ide lasers are two important kinds of lasers that find wide-ranging applications in
welding.

19.2.2 Hole Drilling

Drilling of holes in various substances is another interesting application of the laser.4

For example, a laser pulse having a pulse width of about one hundredth of a second
and an energy of approximately 0.05 J can burn through a 1-mm-thick steel plate

4In the early 1960s, the power of a focused laser beam was measured by the number of razor blades
that the beam could burn through simultaneously, the “Gillette” being the unit of measurement of
power per blade burnt through.
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Fig. 19.6 Hole drilled in a
1-mm-thick stainless steel

leaving behind a hole of radius about 0.1 mm. Further, one can use a laser beam for
the drilling of diamond dies used for drawing wires. Drilling holes less than about
250 μm in diameter by using metal bits becomes very difficult and is also accompa-
nied by frequent breakage of drill bits. With laser one can easily drill holes as small
as 10 μm through the hardest of substances. Figure 19.6 shows a typical laser-drilled
hole in a 1-mm-thick stainless steel. The Swiss watch industry in Europe has been
using flash-pumped neodymium:YAG laser to drill ruby stones used in timepieces.
In addition to the absence of problems like drill breakage, laser hole drilling has the
advantage of precise location of the hole.

Figure 19.7 shows drilling through a piece of rock using an Nd:YAG laser emit-
ting at 1.06 μm. Laser drilling can indeed reduce drilling time by more than a factor
of 10 and hence reduce cost dramatically in oil exploration applications. Typical
drilling speed of 1 cm/s is possible by using different types of lasers.

Due to the extremely small areas to which the laser beams can be focused, they
are used in the area of micromachining. Figure 19.8 shows how it is possible to
write on a human hair using lasers. Lasers are also being used in the removal of
microscopic quantities of material from balance wheels while in motion. They have
also been used in trimming resistors to accuracies of 0.1%. Such micromachining
processes find widespread use in semiconductor circuit processing. The advantages
offered by a system employing lasers for such purposes include the small size of the
focused image with a precise control of energy, the absence of any contamination,
accuracy of positioning, and ease of automation.

19.2.3 Laser Cutting

Lasers also find application in cutting materials. The most common laser that is used
in cutting processes is the carbon dioxide laser due to its high output power.
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Fig. 19.7 Drilling through a
piece of rock using laser.
(Adapted from Ref.
http://www.ne.anl.gov/facilities/
lal/laser_drilling.html)

100 μm

Fig. 19.8 Micromachining in
a piece of hair using a laser.
(Adapted from Lambda
Physik, Germany)

In the cutting process, one essentially removes the materials along the cut. When
cuts are obtained using pulsed lasers, then the repetition frequency of the pulse and
the motion of the laser across the material are adjusted so that a series of partially
overlapping holes are produced. The width of the cut should be as small as possible
with due allowance to avoid any rewelding of the cut material. The efficiency of
laser cutting can be increased by making use of a gas jet coaxial with the laser (see
Fig. 19.9). In some cases one uses a highly reactive gas like oxygen so that when the
laser heats up the material, it interacts with the gas and gets burnt. The gas jet also
helps in expelling molten materials. Such a method has been used to cut materials
like stainless steel, low-carbon steel, and titanium. For example, a 0.13-cm-thick
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Fig. 19.10 Use of carbon
dioxide laser to cut wood.
(Photograph courtesy:
Ferranti Ltd.)

stainless steel plate was cut at the rate of 0.8 m/min using a 190-W carbon dioxide
laser using oxygen jet.

In some methods, one uses inert gasses (like nitrogen or argon) in place of oxy-
gen. Such a gas jet helps in expelling molten materials. Such a technique would be
very efficient with materials which absorb most radiation at the laser wavelength.
Wood, paper, plastic, etc. have been cut using such a method. A gas jet-assisted CO2
laser can be used for obtaining parallel cuts of up to 50 mm depth in wood prod-
ucts. At the cut edges, carbonization occurs, but it is usually limited to a small depth
(about a few tens of micrometers) of the material. This causes a discoloration only
and can be decreased by increasing the cutting speed. Figure 19.10 shows how a
carbon dioxide laser is used (with a gas jet) in cutting wood. Laser cutting of stain-
less steel, nickel alloys, and other metals finds widespread application in the aircraft
and automobile industries.
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19.2.4 Other Applications

Lasers also find applications in vaporizing materials for subsequent deposition on
a substrate. Some unique advantages offered by the laser in such a scheme include
the fact that no contamination occurs, some preselected areas of the source material
may be evaporated, and the evaporant may be located very close to the substrate.

An interesting application of laser is in the opening of oysters. A laser beam
is focused on that point on the shell where the muscle is attached. This results in
detachment of the muscle, the opening of the shell, and leaving the raw oyster alive
in the half shell (see Fig. 19.11).

Fig. 19.11 The photograph
shows an oyster opened with
a CO2 laser, which neatly
detaches adductor muscle
from the shell and leaves the
raw oyster alive in the half
shell. (Photograph courtesy:
Professor Gurbax Singh of
the University of Maryland)

19.3 Laser Tracking

By tracking we imply either determining the trajectory of a moving object like an
aircraft or a rocket, or determining the daily positions of a heavenly object (like the
Moon) or an artificial satellite; a nice review on laser tracking systems has been
given by Lehr (1974). The basic principle of laser tracking is essentially the same
as that used in microwave radar systems. In this technique, one usually measures
the time taken to travel to and fro for a sharp laser pulse sent by the observer to be
reflected by the object and received back by the observer (see Fig. 19.12); suitably
modulated continuous wave (CW) lasers can also be used for tracking.

One of the main advantages of a laser tracking system over a microwave radar
system is the fact that not only a laser tracking system has a smaller size but also
its cost is usually much less. Further, in many cases one can use a retroreflector on
the object; in a retroreflector, the incident and reflected rays are parallel and travel
in opposite directions. A cube corner is often used to act as a retroreflector (see
Fig. 19.13). For example, on the surface of the moon, or on a satellite, one can have
a retroreflector to reflect back the incident radiation. For a laser tracking system, the
size of the retroreflector is much smaller than the corresponding microwave reflector
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Fig. 19.12 Light detection
and ranging (LIDAR)

Fig. 19.13 Cube corner as a
retroreflector

owing to the smaller wavelength of the optical beam and hence the reflector can be
more conveniently mounted in the system involving lasers.

In a microwave radar system, one has to incorporate corrections because of the
presence of the ionosphere and also because of the presence of water vapor in the
troposphere. These corrections are much easier to incorporate in the case of an opti-
cal beam. As compared to a microwave radar system, the laser radar offers much
higher spatial resolution.

On the other hand, there are some disadvantages in using a laser tracking sys-
tem. For example, when fog and snow are present in the atmosphere, it is extremely
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Table 19.1 Characteristics of pulsed lasers used in tracking systems

Type
Wavelength
(μm)

Efficiency
(%) Energy (J)

Pulse
duration
(ns)

Pulse
repetition
rate

Spectral
width
(nm)

Nd:YAG
GaAs
Ruby
Nd:glass

1.06
0.9
0.694
0.530

0.1
4
0.013
0.04

0.02
10–4

7
20

10–25
100
3
20

100 s–1

100 s–1

20 min–1

12 h–1

0.5
2
0.04
0.9

Source: Adapted from Lehr (1974)

Table 19.2 Typical ranges and velocities

Object Distance (m) Angular velocity (arcsec/s)

Moon
Near-Earth satellite
Aircraft (DC-10)
Rocket (at launch)

3.8 × 108

106

2 × 104

5 × 103

14.5
103

500
105

Source: Adapted from Lehr (1974)

difficult to work at optical frequencies. Further, during daytime there is a large back-
ground noise. The losses in the transmitter and the receiver are also considerably
larger in laser systems.

In Table 19.1 we have tabulated some of the typical lasers that have been used
in tracking systems. Typical ranges and velocities of various objects measured by a
laser tracking system are tabulated in Table 19.2. One can see that the distance that
can be covered range from 5000 m to hundreds of megameters.

The transmitter which is pointed toward the object may simply consist of a beam
expander as shown in Fig. 19.2. For tracking a moving object, both the laser and
the telescope may be moved. One could alternatively fix the laser and bend the
laser beam by means of mirrors. There are other ways of directing the laser beam
toward the object; for further details, the reader is referred to the review article by
Lehr (1974) and the references therein. The receiver which is also pointed toward
the object may consist of a reflector or a combination of mirrors and lenses. The
detector may simply be a photomultiplier.

Figure 19.14 gives a block diagram of a laser radar system for tracking of a satel-
lite. A portion of the pulse that is sent is collected and is made to start an electronic
counter. The counter stops counting as soon as the reflected pulse is received back.
The counter may be directly calibrated in units of distance.

National Aeronautics and Space Administration, USA, had launched an alu-
minum sphere called the Laser Geodynamic Satellite (LAGEOS) into orbit at an
altitude of 5800 km for studying the movements in the Earth’s surface, which would
be of great help in predicting earthquakes. Figure 19.15 shows the satellite, which
is 60 cm in diameter, weighs 411 kg, and has 426 retroreflectors which return the
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Fig. 19.15 The Laser Geodynamic Satellite (LAGEOS) put into orbit by the National Aeronautics
and Space Administration, USA, for measuring minute movements of the Earth’s crust, which
would be helpful in predicting earthquakes. The satellite is 60 cm in diameter, weighs 411 kg, and
is studded with 426 retroreflectors, which return the incident laser pulses to their origin on the
surface of the Earth. Minute movements of the Earth’s crust are detected by measuring the flight
time of a light pulse to the satellite and back. (Photograph courtesy: United States Information
Services, New Delhi)

laser pulses exactly back to the point of origin on the Earth. Accurate measurements
of the time of flight of laser pulses to the satellite and back should help scientists
in measuring minute movements of the Earth’s crust. Figure 19.16 shows scientists
performing the prelaunch testing of the satellite.
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Fig. 19.16 LAGEOS
undergoing prelaunch testing
in the laboratory. (Photograph
courtesy: United States
Information Service, New
Delhi)

19.4 Lidar

Laser systems have also been used for monitoring the environment. Such systems
are called LIDARs (acronym for light detection and ranging) and they essentially
study the laser beam scattered from the atmosphere. It may be mentioned that studies
of the atmosphere using an optical beam had been carried out even before the advent
of the laser; for example, using a searchlight, Hulbert in 1937 studied atmospheric
turbidity to a height of 28 km. The arrival of the laser on the scene revolutionized
the atmospheric study using coherent laser beams.

Pulses of laser light are sent and the radiation that is scattered by various parti-
cles present in the atmosphere is picked up by the receiver. The background sunlight
is removed by using filters. This scattered light gives information regarding the
particles present in the atmosphere with a sensitivity that is much more than that
obtainable from microwave radars.

In Fig. 19.14 we have given a block diagram of a pulsed LIDAR system to study
the nature of aerosols present in the atmosphere. One usually measures the time
dependence of the intensity of the backscattered laser light using a photodetector.
The time variation can be easily converted into the height from which the laser beam
has been backscattered. A typical time dependence of the backscattered laser radi-
ance is plotted in Fig. 19.17a which corresponds to an atmosphere which has no
aerosols, i.e., the backscattering is by pure molecular gases such as N2, O2, and
Ar. On the other hand, if the atmosphere contained aerosols, then the time depen-
dence of the backscattered laser radiance would of the form shown in Fig. 19.17b.



484 19 Lasers in Industry

Range (height)

(a)

B
ac

k 
sc

at
te

re
d 

L
as

er
 R

ad
ia

nc
e

Range (height)

(b)

B
ac

k 
sc

at
te

re
d 

L
as

er
 R

ad
ia

nc
e

Y

X

h1 h2

Fig. 19.17 Backscattered
radiation from (a) a clear
atmosphere and (b)
atmosphere containing
aerosols

Note the kinks that appear in the curve at the points marked X and Y; these are
due to the fact that between the heights h1 and h2 there are aerosols which are
responsible for a greater intensity (compared to that for a clear atmosphere) of the
backscattered laser light. Thus a curve like that shown in Fig. 19.17b implies a
haze which exists between the heights h1 and h2. It may be seen that corresponding
to the heights h2 the intensity is roughly the same as that from a pure molecu-
lar atmosphere. Thus, beyond the height h2, one does not expect the presence of
any aerosols. With the LIDAR one can also study the concentrations and sizes of
various particles present in the atmosphere, which are of extreme importance in pol-
lution studies. Small particles are difficult to detect with the microwave radar; the
microwave radar can detect the presence of rain, hail, or snow in the atmosphere.
This difference arises essentially due to the larger amount of scattering that occurs
at optical wavelengths. In addition, a LIDAR can also be used to study the visibility
of the atmosphere, the diffusion of particulate materials (or gases released at a point)
in the atmosphere, and also the presence of clouds, fog, etc.; the study of turbulence
and winds and the probing of the stratosphere have also been carried out by LIDAR
systems. For further details on the use of laser systems for monitoring the environ-
ment, the reader is referred to the review article by Hall (1974) and the references
therein.
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19.5 Lasers in Medicine

Perhaps the most important use of lasers in the field of medicine is in eye surgery.
Hundreds of successful eye operations have already been performed using lasers.
The tremendous use of the laser in eye surgery is primarily due to the fact that
the outer transparent regions of the eye allow light at suitable wavelengths to pass
through for subsequent absorption by the tissues at the back of the eye.

As is well known, the eye is roughly spherical and consists of an outer transparent
wall called the cornea, which is followed by the iris (which can adjust its opening
to control the amount of light entering the eye), and a lens. Between the cornea and
the lens is the aqueous humor. The back part of the eye contains the light-sensitive
element, namely the retina. Light falling on the eye is focused by the lens on the
retina, and the photosensitive pigment-containing cells present in the retina convert
the light energy into electrical signals, which are carried by the optic nerve to the
brain, resulting in the process of seeing.

As a result of some disease or heavy impact, the retinal layer may get detached
from the underlying tissue, creating a partial blindness in the affected area. Earlier, a
xenon arc lamp was used for welding together the detached portion of the retina. But
the long exposure times of this source required administering anesthesia for safety.
Also it cannot be focused sharply. The unique advantages of using a laser beam for
welding a detached retina are that since it can be focused to an extremely small
spot, precise location of the weld can be made and also the welds are much smaller
in size. The spot size of a typical xenon arc beam on the retina when focused by
the eye lens is about 500–1000 μm in diameter; this is much larger than the typical
diameter (about 50 μm) obtainable using a laser beam. The time involved in laser
beam welding is so short that the eye does not need any clamping. Pulses of light
from a ruby laser lasting for about 300 μs at levels below 1 J are used for retinal
attachment.

Lasers are also expected to be used extensively in the treatment of cancer. In
an experiment reported in the USSR, amelanotic melanoma was inculcated from
human beings on nine animals. These animals were irradiated with a ruby laser
beam and it was reported that within 1 month the tumors completely disappeared.
The power associated with the ruby laser beam was about 100 MW with a total
energy of about 200 J. Successful skin cancer treatment with lasers has also been
reported on human beings.

Lasers can also be used for correction of focusing defects of the eye. In the
method referred to as LASIK (laser in situ keratomileusis), the cornea of the eye
can be crafted to adjust the curvature so that the focusing by the eye lens takes place
on the retina (see Fig. 19.18). This method can correct for eye defects requiring high
lens powers and is a very popular technique.

It is impossible to list all the applications of lasers in the field of medicine.
Extensive use of lasers is anticipated in surgery, dentistry, and dermatology. For
further details and other applications of lasers in medicine, the reader is referred to
the recent article by Peng et al. (2008).
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Fig. 19.18 Application of lasers in LASIK

19.6 Precision Length Measurement

The large coherence length and high output intensity coupled with a low diver-
gence enables the laser to find applications in precision length measurements using
interferometric techniques. The method essentially consists of dividing the beam
from the laser by a beam splitter into two portions and then making them interfere
after traversing two different paths (see Fig. 19.19). One of the beams emerging
from the beam splitter is reflected by a fixed reflector and the other usually by a
retroreflector5 mounted on the surface whose position is to be monitored. The two
reflected beams interfere to produce either constructive or destructive interference.
Thus, as the reflecting surface is moved, one would obtain alternatively constructive

Corner cube
reflector

Laser

Photodetector

Fixed
mirror

Fig. 19.19 Laser
interferometer arrangement
for precision length
measurements

5As mentioned earlier, a retroreflector reflects an incident beam in a direction exactly opposite
to that of an incident beam (see Fig. 19.11), and it is characterized by the property that minor
misalignments of the moving surface do not cause any significant errors.
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and destructive interferences, which can be detected with the help of a photodetec-
tor. Since the change from a constructive to a destructive interference corresponds to
a change of a distance of half a wavelength, one can measure the distance traversed
by the surface on which the reflector is mounted by counting the number of fringes
which have crossed the photodetector. Accuracies up to 0.1 μm can be obtained by
using such a technique.

This technique is being used for accurate positioning of aircraft components on
a machine tool, for calibration and testing of machine tools, for comparison with
standards, and many other precision measurements; for further details, see, e.g.,
Harry (1974), Chapter 5 and the references therein. The conventional cadmium light
source can be used only over path differences of about 20 cm. With the laser one
can make very accurate measurements over very long distances because of the large
coherence length. The most common type of laser used in such applications is the
helium laser and since the distance measurement is being made in terms of wave-
length, in these measurements, a high wavelength stability of the laser output must
be maintained.

19.7 Laser Interferometry and Speckle Metrology

The phenomenon of interference, which was briefly discussed in Chapter 2, is a
widely used technique for many extremely accurate measurements in science, tech-
nology and engineering. The field which uses interference phenomena for such
measurements is referred to as interferometry. To achieve interference between two
beams of light, an interferometer divides a light beam into two or more parts, which
are made to travel different paths after which they are united to produce an inter-
ference pattern. The interference pattern exhibits the effect of the paths travelled
by the beams. Since the wavelength of light is very small (∼ 500 nm), interference
principles are capable of resolving changes in distance to the order of a few tens of
nanometers.

As discussed in Chapter 2, good interference between waves requires the waves
to be coherent and before the advent of the laser, such spatially and temporally
coherent sources were realized by using a pinhole to have a point source leading
to spatial coherence and a wavelength filter to achieve temporal coherence (see
Chapter 10 for a detailed discussion on coherence). This led to a drastic reduc-
tion in the intensity of the light that is available for the interference phenomena.
The appearance of the laser provided interferometry with an intense spatially and
temporally coherent source and laser interferometry has become a very important
tool in the hands of the scientists and engineers for measurement purposes. Laser
interferometers are used for high-precision measurements from a few nanometers to
about 100 m for measuring distances, angles, flatness, straightness, velocity, accel-
eration, vibrations, etc. Accurate measurement of displacement is very crucial in
many industries such as machine tool industries. Some of the highest demands for
accurate measurement come from integrated circuit manufacturing industries where
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interferometers are used to control wafer steppers. Some of the more common lasers
that are used in interferometry are the He–Ne laser, Argon ion laser, Nd:YAG laser,
and diode laser. Among these, diode lasers are the most compact with low power
consumption and are available over a very broad range of wavelengths. They are
also tunable over a limited wavelength range. The beam from a diode laser is usu-
ally highly divergent and does not have a circular cross section. Additional optics is
usually used to produce a collimated beam.

In Chapter 18 we also discussed about applications of laser in the detection of
gravitational waves. Here we shall discuss some applications of laser interferome-
try in detection of small displacements and vibrations. In Section 19.7.4 we shall
discuss speckle metrology which has very important applications.

19.7.1 Homodyne and Heterodyne Interferometry

One of the most common interferometers used in laser interferometry is the
Michelson interferometer arrangement shown in Fig. 19.20. Beam from a light
source, here a laser, is directed toward a beam splitter which reflects half the incident
light toward a fixed mirror and reflects the other half toward a movable mirror (see
Fig. 19.20). The returning beams interfere after getting transmitted and reflected at
the beam splitter. The intensity in the transmitted arm of the interferometer changes
with the displacement of the mirror through the following expression:

I(d) = I1 + I2 + 2I1I2 cos(2πd/λ) (19.4)

where I1 and I2 are the intensities of the beams returning via paths 1 and 2, respec-
tively, the last term is the interference term and 2d is the path difference between
the two arms. As d changes, the intensity received in the transmitted arm changes.

Laser

Beam splitter

Detection system

Movable mirror

Mirror
Path 1

Path 2

Fig. 19.20 A schematic of the Michelson interferometer setup
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Fig. 19.21 The fringe signal
from the detector when the
mirror is moved. For every
movement by one half
wavelength of the mirror, the
intensity goes through one
cycle. (Source: Teach Spin)

A change of d by half a wavelength would cause the intensity to go over one full
period of interference (see Fig. 19.21). Thus a precise measurement of the intensity
change can lead to precise measurement of the change in d.

Movement of the mirror by half a wavelength changes the phase of the interfer-
ing beams by one full wavelength resulting in passage through a full interference
fringe. Thus starting from a minimum position, moving of the mirror by one half
wavelength passes the interference to go from this minimum to the next minimum.
Since a laser has a large coherence length, a measurement such as this can be made
over a large distance and due to the monochromaticity, the measurements are very
accurate. The intensity measurements are usually carried out by photodetectors to
obtain an electronic signal for further processing. Although the principle looks very
simple, there are many possible errors that can contribute to an inaccuracy in the
measurement. For example, the laser wavelength needs to be known precisely and
should not vary during the measurement, there could be problems due to varying
atmospheric conditions etc. As an example it may be noted that a change of temper-
ature of air by 1◦C or pressure by 2.5 mmHg or 80% change in humidity will cause
an error of one part in a million.

In the above discussion, the laser is assumed to emit a single wavelength; thus
the two interfering beams have the same frequency and the output intensity remains
constant as long as the mirrors are stationary. This is also referred to as homodyne
interferometry. In contrast, in heterodyne interferometry, the laser is made to emit
two closely lying wavelengths or frequencies. The two frequencies from the laser
can be generated, for example, using an acousto-optic modulator or by using exter-
nal fields such as magnetic field across a He–Ne laser tube which creates two closely
lying energy levels via the Zeeman effect. Using the Zeeman effect a maximum
frequency difference of about 4 MHz can be generated, while using acousto-optic
modulators, it is possible to generate frequency shits of 20 MHz or more. In such
an interferometer instead of a polarization-independent beam splitter, one uses a
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Fig. 19.22 A schematic of
the laser heterodyne
interferometer

polarizing beam splitter (see Fig. 19.22). Assuming that the two frequencies f1 and
f2 are in orthogonal linear polarization states, light at these frequencies incident
on the polarizing beam splitter splits and takes two different paths. In the interfer-
ometer, a part of the light emitted by the laser is reflected to a photodetector and
mixed producing a current that is modulated at the beat frequency f1–f2. The beams
reflected by the mirror in the reference arm and the mirror in the measurement arm
return to the beam splitter and are made to interfere in another photodetector. When
both the mirrors are stationary, the beat frequency measured is f1–f2. When the mov-
able mirror on which the wave at frequency f2 is incident, moves, the reflected wave
undergoes Doppler shift and thus the frequency that mixes with the other wave
changes from f2 to f2 + �f or f2–�f depending on the direction of motion of the
mirror; here the �f term is due to the Doppler shift. This signal is then electroni-
cally “compared” with the reference signal f1–f2. A phase detector is then used to
measure the phase between the reference and the measured signals, which is used to
get precise information on the position and velocity of the movable interferometer
arm.

If the mirror moves with a velocity v, then the Doppler shift �f is given as

�f = 2vf2
c

(19.5)

where c is the velocity of light in free space. The change of phase of the signal for a
movement between times t1 and t2 is given as

ϕ =
t2∫

t1

2π�f dt = 2π f2
c

�l (19.6)

where �l is the distance moved by the movable mirror. The displacement is obtained
by a measurement of the difference in phase between the reference beat signal and
the measured signal.
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A few aspects of the heterodyne interferometer make it superior to the homodyne
interferometer. Since the displacement information is carried on an ac signal rather
than a dc signal, it is less sensitive to laser power fluctuations and other noise-like
ambient light, etc. It also requires only a single detector; however it requires a very
highly stable dual-frequency laser source and the signal processing is also more
complex.

19.7.2 Holographic Interferometry

In an earlier chapter we had discussed the basic principles of holography. Here we
outline a very important application of holography, namely holographic interfer-
ometry. The technique of holographic interferometry was first discovered in 1965
and ever since has been widely used for many applications. Here we discuss in
brief the following: double-exposure interferometry, real-time interferometry, and
time-average interferometry.

19.7.2.1 Double-Exposure Interferometry

This technique is used to determine minute deformations (in the scale of wavelength
of light) in an object from which information on the quality of the object can be
obtained. Due to the basic nature of the holographic principle, rough surfaces can be
studied with interferometric precision. The object is holographically recorded twice
on the same photosensitive device, once before and once after introducing deforma-
tion in the object. As discussed in Chapter 15, the hologram reconstructs the two
object waves simultaneously and since the object has had distortions between the
two exposures, the two reconstructions are not identical, leading to an interference
between the two waves. The resulting interference pattern contains information on
the deformation of the object.

In order to analyze this, let the object wave emerging before the deformation be
represented by O(x,y) and the object wave after the deformation be represented by
O′(x,y). If the deformation is small and if we assume that it leads only to changes in
phase, then we can write

O′(x, y) = O(x, y) exp(−iφ(x, y)) (19.7)

where φ(x,y) is the change of phase due to the deformation. During the reconstruc-
tion after double exposure, the object waves O(x,y) and O′(x,y) are simultaneously
generated and what we observe is the interference between the two waves. This
leads to an intensity distribution given as

I(x, y) = K([O(x, y) + O′(x, y)])2 = 2 K(O(x, y))2(1 + cosϕ(x, y)) (19.8)

where K is a constant. The term within the brackets on the right-hand side describes
the interference pattern that would be observed superimposed on the object intensity
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Fig. 19.23 Double-exposure
interferogram of a tire; the
two exposures correspond
to different levels of air
filling. (Source: Ref.
www.holophile.com/
history.htm)

pattern defined by (O(x, y))2. The fringes will have the shape given by the curves
ϕ(x, y) = constant.

This principle of double-exposure holographic interferometry is used in non-
destructive testing of objects. Thus if the deformation corresponds to application
of stress on the object or change of temperature between the two exposures, then
the fringe pattern will be a direct indication of the deformation caused in the object
due to the applied stress or the temperature change. Defects in the object become
immediately visible due to the strain being different at points where the defect is
present in the object as compared to other regions of the object. Figure 19.23 shows
a typical example of a double-exposure interferogram showing clearly the fringes
formed due to distortion of the object. The contours of the fringes clearly indicate
the strain contours of the object.

19.7.2.2 Real-Time Interferometry

This is similar to double-exposure interferometry, except that the hologram is
recorded only once and is placed exactly at the same position and illuminated with
the reconstruction wave. Thus the hologram produces the object wave at the time
of recording. Now any distortion in the object generates an object wave which will
interfere with the reconstructed object wave to produce interference fringes. If the
distortions vary with time, the interference pattern will vary with time, thus helping
visualization of time variation of distortion of the object.

19.7.2.3 Time-Average Interferometry

This technique is used in the case of steady-state vibration problems. The technique
gives information on the vibration modes, amplitude distribution, etc. Consider an
object which is vibrating in one of its normal modes. If the period of vibration is
much shorter than the recording time, then the recording is an overlap of several
recordings. Thus when the hologram is reconstructed, the wave fronts stored in the
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hologram corresponding to various positions of the object are reconstructed and they
form an interference pattern.

Let the vibration of the object be described as A cos ωt. If we assume that the
vibrations are of small amplitude, as the object vibrates, only the phase of the object
wave can be assumed to change and ifω is the frequency of vibration, we can assume
that the phase of the object wave changes according to the following equation:

� = F cosωt (19.9)

where F is the maximum value of the phase change due to the vibration. If the
recording time is large compared to the time period of vibration, then the holo-
gram records a continuous distribution of images of the object corresponding to one
cycle of vibration. During reconstruction, the total object wave reconstructed will
be the sum of all the object waves recorded during the recording process. Hence the
reconstruction process generates a reconstructed wave with an intensity given as

I = I0

(∫
e(iF cosωt)dt

)2

= I0J2
0(F) (19.10)

where I0 is a constant corresponding to the reconstruction when the object is sta-
tionary (F = 0) and J0 is the Bessel function of first kind of order zero. Thus the
intensity distribution in the reconstruction corresponds to the object image modu-
lated by the Bessel function term. The brightest image point corresponds to F = 0,
which corresponds to the nodal point of the vibration pattern. Zeroes of the Bessel
function correspond to dark fringes and subsequent maxima of the Bessel function
J0 correspond to bright fringes. The fringe pattern gives the vibration pattern of the
object (see Fig. 19.24). Knowing the positions of maxima and minima of the Bessel
function, it is possible to analyze the vibration characteristics of the object.

19.7.3 Laser Interferometry Lithography

In recent years, laser interferometry has been used for nanolithography to pro-
duce periodic and quasi-periodic nanostructures for various applications. In this a
periodic interference pattern is produced using two, three, or four laser beams prop-
agating in appropriate directions. The periodic interference pattern is produced on
photoresist and the pattern produced on the photoresist is then transferred using
conventional photolithographic techniques to the underlying layer. Another recent
technique involves using high-power laser beams for interference and directly writ-
ing the pattern into recording materials to produce nanostructured surfaces and
devices. The advantages of this technique vis-a-vis other lithography techniques
such as electron beam lithography is its high efficiency and the lower cost.

If we assume N laser beams propagating in different directions and interfering,
then the electric field distribution in the interference pattern is given as
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Fig. 19.24 Time-average
holograms of a vibrating
guitar. (Adapted from Jansson
(1969))

E =
∑

An exp(ωt − kn.r + φn) (19.11)

where An is the amplitude, φn the phase, and kn the corresponding propagation
vector of the nth beam. By choosing appropriate values of the various param-
eters, it is possible to generate various interference patterns which can then be
transferred to the material. Lasers used for this purpose should have an appro-
priate wavelength, high degree of spatial and temporal coherences, and enough
power. Typical lasers used for this include excimer lasers and solid-state lasers.
The lasers may require beam shaping before interfering in order to achieve a good
uniform interference pattern. Since the fringe width in interference depends on the
wavelength, the smaller the wavelength, the smaller the fringe width; short wave-
length lasers are interesting to generate finer features. Thus using 157- or 193-nm
UV lasers, pattern sizes of about 50 nm are possible. Figure 19.25 shows a typ-
ical pattern on silicon surface obtained by using direct writing laser interference
lithography.

19.7.4 Speckle Metrology

The granular pattern that is observed when a highly coherent beam of light such as
the output from a laser undergoes diffuse reflection from a rough surface is referred
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Fig. 19.25 Nanolithography using interference among various laser beams

Fig. 19.26 An arrangement
to see speckles. When a
coherent beam from a laser
illuminates a rough surface, a
speckle pattern is seen on a
screen placed in front

to as laser speckle. When a rough surface is illuminated by coherent light, then light
gets scattered from different points and the light reaching any point on a screen
consists of these various scattered waves (see Fig. 19.26). Due to the nature of the
surface, the phases of the various waves reaching the given point on the screen may
lie anywhere between 0 and π . When waves with these random phases are added,
the resultant could lie anywhere between a maximum and a minimum value. At a
nearby point, the waves may add to generate a different intensity value. In such
a circumstance, what we observe on the screen is a speckle pattern; Figure 19.27
shows a typical speckle pattern observed on a screen. The mean speckle diameter is
approximately given as

s ≈ 1.22
λL

d
(19.12)
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Fig. 19.27 A typical speckle
pattern as observed on a
screen

where λ is the wavelength of illumination, L is the distance between the screen and
the rough surface, and d is the diameter of region of illumination of the object. Thus
if we assume d = 2 cm, λ = 500 nm, and L = 1 m, we obtain s ∼ 30 μm.

Figure 19.28 shows another geometry where speckles are observed; this corre-
sponds to an imaging geometry. In this case, the imaging system images each point
on the object into a diffraction spot and the random interference among the various
diffraction images leads to a speckle pattern. In this case the mean speckle diameter
is approximately given by the following relation:

s ≈ 1.22λF(1 + M) (19.13)

Fig. 19.28 An imaging
geometry in which a lens
images the rough surface.
Interference among the
various diffraction spots gives
rise to speckles
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Fig. 19.29 The size of
speckles depends on the
aperture size. The upper
figure corresponds to a larger
aperture than the lower figure.
(Source: Bates et al. (1986))

where F is the F number of the lens (focal length divided by diameter of the lens)
and M is the magnification.

As an example if we are observing a rough surface and if we assume a pupil
diameter of 4 mm, then we have an F number of 6 (assuming an eye lens having a
focal length of 24 mm). If the object is at a distance of 25 cm from the eye, then we
can assume M << 1 and we obtain for the approximate size of the speckle as formed
on the retina as s ∼ 3.6 μm. Note that the size of the observed speckles depends on
the resolution of the optical system. Thus observing the speckles through a pinhole
placed in front of the eye will lead to increase in size since this will lead to an
increase in the F number which in turn leads to a reduction in the resolution of
the eye. Thus if we put a pinhole of diameter 1 mm in front of the eye, then the
speckle size would increase by a factor of 4 to about 14 μm. Figure 19.29 shows the
speckles with two different apertures showing that the speckle size increases with
the decrease in the aperture.

The contrast of the speckles is zero for a perfectly reflecting surface and it
increases as the surface roughness increases. However, even when the roughness
is well within the wavelength of the light, the contrast becomes unity and remains
so for any higher roughness.
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It is interesting to note that when laser light is coupled into a multi-mode fiber, the
output from the fiber also exhibits a speckle pattern due to interference among the
various modes of propagation of the fiber. Any disturbance of the fiber in terms of
vibration or change of temperature leads to a change in the phases of the interfering
modes and this results in the movement of the speckle pattern. There are indeed
some fiber-optic sensors based on this phenomenon to detect movement.

Speckle contrast measurement has proved to be a powerful tool for the non-
destructive testing of small surface roughness within the light wavelength. Other
important applications include displacement or motion analysis and relevant non-
destructive testing. To illustrate, we discuss the simple example of the well-known
laser speckle photography for lateral (in-plane) displacement analysis. Historically,
the method involving a single illuminating beam is called photography, whereas
with two beams it is called interferometry, although both are interferometric meth-
ods. For this, the surface to be studied is illuminated by a divergent laser beam
(Fig. 19.28). Laser speckles are formed on the camera focused on the film plane.
The smallest speckle size S0 on the object plane will thus be governed by the lens
resolution, given by Eq. (19.13). Obviously we assume that the film resolution is
capable of recording the pattern.

If the object is displaced slightly from its original position, the speckle pattern
would in general change. For a small lateral displacement of the object, the nature
of the random structure on the image plane can be assumed to remain unchanged
with only the position of the speckles suffering a displacement along the direction
of the displacement of the object. If a second exposure of the speckles with object
displaced from its original position is recorded on the same film, we get a double
exposure of the same speckle structure but one of them laterally displaced with
respect to the other. We will show that the analysis of the transparency thus formed
will give the displacement of the object.

Let the intensity distribution of the speckle during the first exposure be denoted
by S(x,y), where x and y are measured on the plane of the recording medium. The
second exposure of the speckle with the displaced position of the object would then
be represented by S(x–x0,y), where x0 is the displacement of the object assumed to
be along the x-direction. Thus the total exposure of the recording medium will be
the sum of the two exposures and if we assume that the transmittance of the recorded
negative is proportional to the total exposure, then we can write for the transmittance
of the recorded negative as

T(x, y) = A − B
[
S(x, y) + S(x − x0, y)

]
(19.14)

where A and B are constants. Equation (19.14) can be written in an alternative
form as

T(x, y) = A − BS(x, y) ⊗ [
δ(x, y) + δ(x − x0, y)

]
(19.15)

where ⊗ represents convolution operation.
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We now place the negative on the front focal plane of a lens and illuminate it
with a coherent beam of wavelength λ. On the back focal plane of the lens we
would observe the Fourier transform of the amplitude distribution on the front focal
plane (see Chapter 15) and thus the amplitude distribution on the back focal plane
would be proportional to

T̃(u, v) = F .T .
[
T(x, y)

] = Aδ(u, v) − BS̃(u, v)
[
1 + e2π iux0

]
(19.16)

where

u = x

λf
; v = y

λf
(19.17)

with f representing the focal length of the lens and x and y refer here to the coordi-
nates on the back focal plane of the lens and tilde representing the Fourier transform
of the corresponding variables.

The first term in Eq. (19.16) represents a bright spot on the axis, while the second
term represents the pattern that would be observed on the screen. Concentrating on
the second term, we note that it consists of the Fourier transform of the speckle
pattern modulated by the interference term. The intensity pattern produced by the
second term would be given as

I(x, y) =
∣∣∣S̃(u, v)

∣∣∣
2 ∣∣∣1 + e2π iux0

∣∣∣
2 = 4

∣∣∣S̃(u, v)
∣∣∣
2

cos2
(
πx0x

λf

)
(19.18)

Equation (19.18) shows that on the back focal plane, we would have a dif-

fused illumination represented by
∣∣∣ ˜S(u, v)

∣∣∣
2
, which is modulated by a fringe pattern

represented by the function

cos2
(
πx0x

λf

)

which is similar to Young’s interference fringes. The separation between two con-
secutive bright or dark fringes would be λf / x0. Thus knowing the wavelength and
the focal length of the lens, it is possible to estimate the lateral shift in the object.
Figure 19.30 shows a typical fringe pattern observed on the back focal plane of a
lens showing clearly the interference fringes and the direction of displacement.

There is another method for the analysis of the double-exposure speckle pattern,
namely by pointwise scanning of the photograph (see Fig. 19.31). This method is
very convenient due to its simplicity. A point of the recorded transparency is sim-
ply illuminated by a laser beam. A diffraction halo with a set of Young’s fringes
is observed at a distance on the screen. The fringes are the measure of the object
displacement D given as

D = λL

md
(19.19)



500 19 Lasers in Industry

Fig. 19.30 Young’s type
interference fringes produced
on the focal plane of a lens
when a double-exposure
speckle photograph is placed
on the front focal plane and
illuminated by a laser beam.
(Source: Bates et al. (1986))

L

Laser beam

Transparency
Observation

screen

Fig. 19.31 Young’s fringes
(pointwise scanning) method
of the analysis of speckle
photographs

where d is the fringe spacing, L is the distance from the screen to the transparency,
and m is the magnification. The orientation of the fringes is perpendicular to the
direction of the displacement.

There is yet another method. This involves illuminating the object by two
beams, particularly to reduce the measurement range and to observe the changes
in real time. There are methods to process the image electronically (no photo-
graphic recording) using a TV vidicon under the subject electronic speckle pattern
interferometry.

Attempts have also been made to eliminate the need for wet chemical processing
and still use the conventional manner of analysis. These are replacing the usual pho-
tographic film by instant films, thermoplastic photographic materials, liquid-crystal
light valves, BSO crystals, photographic diffusers, real-time heterodyne approach,
etc.; there is a method of magnifying the speckles using lenses and a TV camera–
monitor system to observe these movements directly. However, a detailed discussion
of these techniques is beyond the scope of this text.
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19.8 Velocity Measurement

It is well known that when a light beam gets scattered by a moving object, the
frequency of the scattered wave is different from that of the incident wave; the shift
in the frequency depends on the velocity of the object. Indeed, if v represents the
light frequency and υ represents the velocity of the moving object which is moving
at an angle θ with respect to the incident light beam (see Fig. 19.32), then the change
in frequency �v between the incident and the reflected beams is given as

�v

v
= 2υ

c
cos θ (19.20)

where c represents the velocity of light in free space. Thus the change in frequency
�v is directly proportional to the velocity υ of the moving object; this is known as
the Doppler shift. Thus, by measuring the change in frequency suffered by a beam
when scattered by a moving object, one can determine the velocity of the object.
This method has been successfully used for velocity determination of many types
of materials from about 10 mm/min to about 150 m/min (Harry 1974). Further,
using the above principle, portable velocity-measuring meters have been fabricated
which measure speeds in the range of 10–80 miles/h; these have been used by
traffic police. Laser Doppler velocimeters have also been used for measuring fluid
flow rates.

The basic arrangement for velocity measurements is the following: the beam
from a CW laser (usually a helium–neon laser – see Section 9.4) is split by a beam
splitter; one of the components is reflected back from a fixed mirror and the other
component undergoes scattering from the moving object. The two beams are then
combined and made to interfere as shown in Fig. 19.32, and because of the differ-
ence in frequency between the two beams, beating occurs. The beat frequency is a
direct measure of the velocity of motion of the object.

ν

ν

ν

ν'

ν'ν

Photodetector

Fig. 19.32 Schematic of an
arrangement for measuring
the velocity of a moving
object using Doppler shift
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19.8.1 Lasers in Information Storage

Lasers find widespread applications in the storage, transmission, and processing
of information. As we have discussed earlier, combined with optical fibers, they
have revolutionized the field of transmission of information. An extremely important
application of lasers is in the field of information storage. We are all familiar with
compact discs (CDs) storing data, music, pictures, videos, etc. With progress in
lasers and materials, the capacity of information storage has been steadily rising
and today CDs are used to routinely store gigabytes of information.

Compact discs store information in digital form. Any form of information is first
converted into digital form with just a sequence of 1s and 0s. In a CD these 1s and
0s are recorded in the form of pits or depressions along a spiral track on a plastic
material with a metal coating (see Fig. 19.33). The total length of the track would
be about 6 km! The usual coding is such that any transition from pit to land (flat
area) or land to pit is read as 1s, while the duration in the pit or in the land is read
as 0s (see Fig. 19.34). In CDs the radial distance between adjacent tracks, which is
the track pitch, is 1.6 μm, while the length of data marks is about 0.6 μm. In order
to write on the CD, the data stream is used to generate pulses of light corresponding

0.6 μm1.6 μmFig. 19.33 In a compact disc
(CD), information is stored in
the form of pits along a spiral
track

1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 Stored data pattern

Adjacent track

Focused laser spot

Fig. 19.34 In a CD, transition from land to pit or pit to land is read as “1s,” while the duration
within the pit or the land is read as “0s”
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CD DVDFig. 19.35 Comparison
between the pit sizes in a CD
and a DVD

Laser source

Rotating CD

Photodetector

Electronic
processing

Beam splitter

Fig. 19.36 A laser beam is
focused on the CD and the
reflected intensity is read and
converted into the signal

to the data stream. The laser which emits an intense beam of light is focused on
the surface of the CD using an objective. As the CD rotates under the laser spot, a
small region heats up whenever the laser beam hits and changes the reflectivity of
the surface. Digital video discs (DVDs) use the same principle except that the track
pitch is about 0.74 μm instead of 1.6 μm and the data marks are narrower and the
focused laser spot is also smaller (see Fig. 19.35). The data are written on the CD
along a spiral track on the surface. To read the information stored in the CD, a laser
beam is focused through a beam splitter on the disc and the spot size of the focused
laser is about the track width (see Fig. 19.36). As the CD moves under the focused
laser spot, it leads to a modulation of the reflected intensity, which is then directed
by the beam splitter to a photodetector which converts the intensity variations to
electric current variations for further processing.

It is clear that the smaller the data points and the smaller the track pitch, the
larger the amount of data that can be stored per unit area in the disc and hence the
larger the capacity of the disc. For writing and reading of the data, we use lasers
and the minimum spot to which the laser can be focused will determine the size
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CD DVD

780 nm 650 nmFig. 19.37 Reading of a CD
at a wavelength of 780 nm
and a DVD at a wavelength of
650 nm

Table 19.3 Comparison of various parameters of CD, DVD, and Blue Ray DVD

Parameter CD DVD Blue Ray DVD

Laser wavelength (μm) 0.78 0.65 0.405
Track to track spacing (μm) 1.6 0.74 0.32
Spot size of focused spot (μm) 1.6 1.1 0.48
User capacity (Gb) 0.68 9 50

Source: Milster (2005)

of the data points so that the readout can be precise. The fundamental limitation to
the size of the focused spot of a laser beam arises due to diffraction. Smaller spot
sizes can be achieved using smaller wavelengths and smaller focal length lenses.
Since the CD is covered by a protective layer, the focusing needs to be carried
out through the protective layer and this determines the smallest focal length that
can be used. A CD uses a 1.2-mm clear substrate and data are recorded on the
recordable layer through the clear substrate. The substrate also acts as a protective
layer for the data. The reading wavelength is typically 780 nm. In contrast, in a
DVD, two clear substrates each of 0.6 mm thick are bonded together and data are
recorded on the bond side of each substrate. The reading wavelength in DVDs is
typically 650 nm (see Fig. 19.37). Thus DVDs can store much more data than do
CDs. Recent developments of blue lasers emitting a wavelength of 405 nm have
triggered development of DVDs with much higher capacities since they operate with
smaller wavelength and hence can be focused to smaller spot sizes. Table 19.3 lists
a comparison of CDs, DVDs, and Blue Ray DVDs with regard to some important
characteristics.

Further increases in data storage capacity are possible with new technologies
such as holographic discs. In holographic storage, information is stored within the
entire volume of the recording medium rather than on a surface. Thus holographic
storage offers orders of magnitude increase of storage capacity. It is in principle
possible to store 1 Tb of information per cubic centimeter of the medium using a
wavelength of 500 nm. In holographic data storage, the required data are transferred
to and from the storage medium as two-dimensional images composed of thousands
of pixels (picture elements). The data which need to be stored are first presented
to the recording system as pixels on a device called the spatial light modulator
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(SLM). This is a planar device which encodes the data into small checkerboard
pattern of light and dark pixels with the data arranged as an array on the page; each
pixel is a small shutter which can either stop (corresponding to bit 0) or pass (cor-
responding to bit 1) a light beam. Commercial devices containing 1000 × 1000
pixels are available. Light from a laser is split into two parts and one part is used
as a reference beam, while the other part illuminates the SLM. Interference occur-
ring between the two beams is recorded in the storage medium as the data pattern.
Multiple pages are recorded by recording the holograms with reference waves inci-
dent along different directions. Readout is performed by using a laser beam at the
appropriate angle when the entire page is read out as a single bit. The reconstructed
beam is detected by a detector array and converted into electronic data. By chang-
ing the angle of the beam, one can read one entire page at a time. Thus apart from
the ability to store large amounts of data, holographic data storage also promises
extremely fast readouts of about 1 Gb/s as compared to DVDs, wherein the readouts
are about hundred-fold smaller. There is intense research activity to realize effi-
cient recordable media and holographic data storage devices are expected to become
commercially available within the next few years.

19.8.2 Bar Code Scanner

The technology associated with identification of all types of products using bar
codes is one of the very important developments of the past century. The Universal
Product Code (UPC) was introduced in the USA in 1973 and the European Article
Numbering (EAN) system was developed in Europe in 1978 and is presently the
most widely used bar code scheme used in the world. A special form of the EAN
code is the International Standard Book Numbering (ISBN) system and is used for
identification of books. A bar code consists of a series of strips of dark and white
bands (see Fig. 19.38). Each strip has a width of about 0.3 mm and the total width of
the bar code is about 3 cm. Information such as the country of origin, manufacturer
of the product, the direction of scan, price, reading error checking, weight of the
product, and expiry date can be stored in the pattern of dark and white strips. By a
simple scanning, complete information regarding the product can be obtained.

Fig. 19.38 A bar code
consisting of series of strips
of dark and white bands
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Polygonal scanning
mirror

Light from
laser

Bar code
Photodetector

Fig. 19.39 A laser beam is
scanned across the bar code
and the scattered light is
focused on a detector which
converts the code into
information

The primary purpose of the laser in this application is the optical reading of the
bar code. In the bar code scanner, a low-power (∼ 0.5 mW) laser beam is deflected
by a rotating polygon mirror to scan along a line (see Fig. 19.39). Typical scanning
speeds are about 200 m/s. Such high speeds are chosen to ensure that even if the
product is moving while it is getting scanned, the scanned object does not move
significantly while getting scanned. When the laser beam hits the bars, the amount
of scattered light depends on whether the strip is black or white. As the laser beam
scans across the black and white strips at a certain speed, the variation of scattering
with time contains the information of the bar code. The scattered light is focused on
a photodetector which converts the optical signal to an electrical signal for further
processing. In order to be able to scan the product in any arbitrary direction for ease
of scanning, the laser beam is made to scan in multiple directions by using multiple
mirrors with the rotating polygon.

Problems

Problem 19.1 Consider a retroreflector shown in Fig. 19.13. Assuming the rays to be described by
vectors, show that the three mirror system reflects any incident wave in exactly the reverse direction.

Problem 19.2 In the Michelson interferometer shown in Fig. 19.20, by what distance would one have
to move the mirror for the output on the photodetector to change from one interference maximum to the
next one?

Problem 19.3 Calculate the change in frequency of an incident light at 633 nm when it gets scattered by
an object moving at the speed of 100 km/h away from it.

Problem 19.4 In the interferometer shown in Fig. 19.20, if the polarization state of the light returning
from the object is different from the one reflected by the fixed mirror, what would happen to the signal at
the photodetector?
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Problem 19.5 A laser operating at 450 nm is focused by a lens having an NA of 0.6. What would be the
approximate area of the focused spot?

Problem 19.6 A Gaussian beam is incident on a converging lens of focal length f with its waist at the
front focal plane of the lens. What will be the intensity distribution on the back focal plane of the lens?
Assume the lens diameter to be large.
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Appendix A
Solution for the Harmonic Oscillator Equation

In this appendix we will show that for the solution of the following equation

d2ψ

dξ2
+

[
� − ξ2

]
ψ(ξ ) = 0 (A.1)

to be well behaved we must have � = 1,3,5,7, . . ..; i.e., � must be an odd integer.
These are the eigenvalues of Eq. (A.1). We introduce the variable

η = ξ2 (A.2)
Thus

dψ

dξ
= dψ

dη

dη

dξ
= dψ

dη
2ξ (A.3)

and
d2ψ

dξ2
= 4η

d2ψ

dη2
+ 2

dψ

dη
(A.4)

Substituting in Eq. (A.1), we obtain

d2ψ

dη2
+ 1

2η

dψ

dη
+

[
�

4η
− 1

4

]
ψ(η) = 0 (A.5)

In order to determine the asymptotic form, we let η → ∞ so that the above
equation takes the form

d2ψ

dη2
− 1

4
ψ(η) = 0

the solution of which would be e± 1
2 η. This suggests that we try out the following

solution

ψ(η) = y(η)e− 1
2 η (A.6)

Thus

dψ

dη
=

[
dy

dη
− 1

2
y

]
e− 1

2 η (A.7)
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and

d2ψ

dη2
=

[
d2y

dη2
− dy

dη
+ 1

4
y(η)

]
e− 1

2 η (A.8)

Substituting Eqs. (A.7) and (A.8) in Eq. (A.5) we get

η
d2y

dη2
+

(
1

2
− η

)
dy

dη
+ � − 1

4
y(η) = 0 (A.9)

Now the confluent hypergeometric equation is given by (see, e.g., Refs. Alfano
and Shapiro (1975), Arditty et al. (1980))

x
d2y

dx2
+ (c − x)

dy

dx
− ay(x) = 0 (A.10)

where a and c are constants. For c �= 0, ±1, ±2, ± 3, ±4, the two independent
solutions of the above equation are

y1(x) = 1F1(a, c, x) (A.11)

and

y2(x) = x1−c
1F1 (a − c + 1, 2 − c, x) (A.12)

where 1F1(a, c, x) is known as the confluent hypergeometric function and is defined
by the following equation:

1F1(a, c, x) = 1 + a

c

x

1! + a(a + 1)

c(c + 1)

x2

2! + a(a + 1)(a + 2)

c(c + 1)(c + 2)

x3

3! + · · · (A.13)

Obviously, for a = c we will have

1F1(a, a, x) = 1 + x

1! + x2

2! + x3

3! + . . . .. = ex (A.14)

Thus although the series given by Eqs. (A.13) and (A.14) is convergent for all val-
ues of x, they would blow up at infinity. Indeed the asymptotic form of 1F1 (a, c, x)
is given as

1F1(a, c, x) →
x→∞

�(c)

�(a)
xa−c ex (A.15)

The confluent hypergeometric series 1F1 (a, c, x) is very easy to remember and
its asymptotic form is easy to understand. Returning to Eq. (A.9), we find that y(η)
satisfies the confluent hypergeometric equation with
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a = 1 − �

4
and c = 1

2
(A.16)

Thus the two independent solutions of Eq. (A.1) are

ψ1(η) =1 F1

(
1 − �

4
,

1

2
, η

)
e− 1

2 η (A.17)

and

ψ2(η) = √
η1F1

(
3 − �

4
,

3

2
, η

)
e− 1

2 η (A.18)

We must remember that η = ξ2. Using the asymptotic form of the confluent
hypergeometric function [Eq. (A.15)], one can readily see that if the series does not

become a polynomial, then as η → ∞, ψ(η) will blow up as e
1
2 η. In order to avoid

this, the series must become a polynomial. Now ψ1(η) becomes a polynomial for
�= 1,5, 9, 13,. . ., and ψ2(η) becomes a polynomial for �= 3, 7, 11, 15. Thus only
when

� = 1, 3, 5, 7, 9, . . . (A.19)

we will have a well-behaved solution of Eq. (A.1) – these are the eigenvalues of
Eq. (A.1). The corresponding wave functions are the Hermite–Gauss functions:

ψ(ξ ) = NHm(ξ ) exp

(
−1

2
ξ2

)
, m = 0, 1, 2, 3, . . . (A.20)

Indeed

Hn(ξ ) = (−1)n/2 n!( n
2

)! 1F1

(
−n

2
,

1

2
, ξ2

)
for n = 0, 2, 4, . . . (A.21)

and

Hn(ξ ) = (−1)(n−1)/2 n!(
n−1

2

)
!
2ξ1F1

(
−n − 1

2
,

3

2
, ξ2

)
for n = 1, 3, 5, . . .

(A.22)





Appendix B
The Solution of the Radial Part
of the Schrödinger Equation

For a particle in a spherically symmetric potential V= V (r), the radial part of the
Schrödinger equation is given as

1

r2

d

dr

(
r2 dR

dr

)
+ 2μ

�2

[
E − V(r) − l(l + 1)�2

2μr2

]
R(r) = 0 (B.1)

If we define a new radial function

u(r) = rR(r) (B.2)

we would get

r2 dR

dr
= r2 d

dr

[
u(r)

r

]

= r
du

dr
− u(r)

Thus

1

r2

d

dr

(
r2 dR

dr

)
= 1

r

d2u

dr2

and Eq. (B.1) would become

d2u(r)

dr2
+ 2μ

�2

[
E − V(r) − l(l + 1)�2

2μr2

]
u(r) = 0

For the hydrogen-like atom problem,

V(r) = − Zq2

4πε0r

and therefore

d2u

dr2
+ 2μ

�2

[
E + Zq2

4πε0r
− l(l + 1)�2

2μr2

]
u(r) = 0 (B.3)
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In order to solve the above equation, we introduce the dimensionless variable

ρ = γ r (B.4)

where the parameter γ is to be conveniently chosen later. Since

d2u

dr2
= γ 2 d2u(ρ)

dρ2

we readily get

d2u

dρ2
+

[
2μE

�2γ 2
+ 2μ

γ�2

Zq2

4πε0ρ
− l(l + 1)

ρ2

]
u(ρ) = 0 (B.5)

We choose1

γ 2 = 8μ|E|
�2

= −8μE

�2
(B.6)

and set

λ = 2μZ

�2γ

(
q2

4πε0

)
= Zcα

(
μ

2|E|
)1/2

(B.7)

Where

α = q2

4πε0�c
≈ 1

137

is the fine structure constant. Thus Eq. (B.5) becomes

d2u

dρ2
+

[
−1

4
+ λ

ρ
− l (l + 1)

ρ2

]
u(ρ) = 0 (B.8)

Now as ρ → ∞, the first term inside the square bracket is the most dominating
term and we may approximately write

d2u

dρ2
− 1

4
u(ρ) = 0

the solution of which is given as

u(ρ) ∼ e±ρ/2

We reject the exponentially amplifying solution and write

1We are looking for energy levels corresponding to bound states; therefore E < 0.
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u(ρ) ∼ e−ρ/2 as ρ → ∞ (B.9)

Now as ρ → 0, the third term inside the square brackets is the most dominating
term and we may approximately write

d2u

dρ2
− l(l + 1)

ρ2
u(ρ) = 0

If we write

u(ρ) ∼ ρg

then we readily obtain

g(g − 1) = l(l + 1)

giving

g = −l or (l + 1)

We reject the g = –l solution because it will diverge for ρ → 0 so that we may
write

u(ρ) ∼ ρl+1 as ρ → 0 (B.10)

The above equations suggest that we try to solve Eq. (B.8) by defining y(ρ)
through the following equation:

u(ρ) = ρl+1 e−ρ/2y(ρ) (B.11)

Simple manipulations will show that y(ρ) satisfies the following equation:

ρ
d2y

dρ2
+ (c − ρ)

dy

dρ
− ay(ρ) = 0 (B.12)

where

a = l + 1 − λ;

c = 2 l + 2
(B.13)

Equation (B.12) is the confluent hypergeometric equation (see Appendix A) and
the solution which is finite at the origin is given as

y(ρ) = 1F1(a, c, ρ) = 1 + a

c

ρ

1! + a(a + 1)

c(c + 1)

ρ2

2! + · · · (B.14)
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which is known as the confluent hypergeometric function. Thus the complete
solution of Eq. (B.8) which is well behaved at ρ = 0 is given as

u(ρ) = Nρl+1 e−ρ/2
1 F1(a, c, ρ) (B.15)

where N is the normalization constant so that

∞∫

0

u2(r)dr =
∞∫

0

R2(r)r2 dr = 1 (B.16)

The value of N is given by Eq. (3.152) We may mention the following:

(i) The solution given by Eq. (B.15) is a rigorously correct solution of Eq.
(B.5). Writing the solution in the form of Eq. (66) does not involve any
approximation.

(ii) The infinite series given by Eq. (B.14) is convergent for all values of ρ in the
domain 0<ρ <∞.

(iii) For a = c, the infinite series given in Eq. (B.14) is simply eρ ; thus as ρ → ∞,
u(ρ) will diverge as ρl+1 eρ/2.

(iv) Indeed

1F1(a, c, ρ) −→
ρ→∞ ρa−ceρ

Thus

u(ρ) −→
ρ→∞ ρl+1ρa−c eρ/2

and will blow up as ρ→ ∞ [although the infinite series given by Eq. (B.14) is always
convergent!]. In order to avoid this we must make the infinite series a polynomial
which can happen only if a is a negative integer:

a = −nr, nr = 0, 1, 2, . . . (B.15)

Thus

λ = l + 1 + nr = n, n = 1, 2, . . . (B.16)

The quantities nr and n are usually referred to as the radial quantum number and
the total quantum number, respectively. Now, λ = n implies [see Eq. (62)]

Z2c2α2μ

2|E| = n2
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or

E = En = −Z2c2α2μ

2n2
(B.17)

which represent the energy eigenvalues of a hydrogen-like atom. The corresponding
normalized wave functions are given by Eqs. (3.151) and (3.152).





Appendix C
The Fourier Transform

According to Fourier’s theorem, a periodic function can be expressed as a sum of
sine and cosine functions whose frequencies increase in the ratio of natural numbers.
Thus, a periodic function with period α, i.e.

f (x + nα) = f (x), n = 0, ±1, ±2, ±3, . . . (C.1)

can be expanded in the form of

f (x) = 1

2
a0 +

∞∑
n=1

[an cos(nkx) + bn sin(nkx)] (C.2)

where

k = 2π

α
(C.3)

The coefficients an and bn can be easily determined by using the following
properties of the trigonometric functions:

2

α

∫ x0+α

x0

cos(nkx) cos(mkx)dx = δmn (C.4)

2

α

∫ x0+α

x0

sin(nkx) sin(mkx)dx = δmn (C.5)

2

α

∫ x0+α

x0

sin(nkx) cos(mkx)dx = 0 (C.6)

where x0 is arbitrary and δmn is the Kronecker delta function defined through the
following equation:

603
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δmn =
{

0, if m �= n

1, if m = n
(C.7)

If we multiply Eq. (C.1) by cos(mkx) and integrate from x0 to x0 + α, we would
obtain

an =
∫ x0+α

x0

f (x) cos(nkx)dx, n = 0, 1, 2, . . . (C.8)

Similarly

bn =
∫ x0+α

x0

f (x) sin(nkx)dx, n = 1, 2, 3, . . . (C.9)

For the sake of convenience we choose x0 = −α / 2. If we now substitute the above
expressions for an and bn in Eq. (C.2), we would obtain

f (x) = 1

α

∫ α/ 2

−α/ 2
f (x′)dx′ +

∞∑
n=1

[
2

α
cos(nkx)

∫ α/ 2

−α/ 2
f
(
x′) cos

(
nkx′) dx′

+ 2

α
sin (nkx)

∫ +α/ 2

−α/ 2
f
(
x′) sin

(
nkx′) dx′

] (C.10)

or

f (x) = 1

2π
�s

∫ +π /�s

−π /�s
f
(
x′)dx′ +

∞∑
n=1

{
�s

π

∫ +π /�s

−π /�s
f
(
x′) cos

[
n�s

(
x′ − x

)]
dx′

}

(C.11)
where

�s = 2π

α
= k (C.12)

We now let α → ∞ so that �s → 0. Thus, if the integral

∫ +∞

−∞
∣∣f (x′)∣∣dx′

exists (i.e., it has a finite value), then the first term on the right-hand side of Eq.
(C.11) would go to zero. Further, since

∫ ∞

0
F(s)ds = lim

�s→0

∞∑
n=1

F (n�s)�s (C.13)

we have, in the limit �s → 0
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f (x) = 1

π

∫ ∞

0

{∫ +∞

−∞
f
(
x′) cos

[
s
(
x′ − x

)]
dx′

}
ds (C.14)

Equation (C.14) is known as the Fourier integral. Since the cosine function inside
the integral is an even function of s, we may write

f (x) = 1

2π

∫ +∞

−∞

{∫ +∞

−∞
f
(
x′) cos

[
s
(
x′ − x

)]
dx′

}
ds (C.15)

Further, since sin
[
s
(
x′ − x

)]
is an odd function of s

0 = i

2π

∫ +∞

−∞

{∫ +∞

−∞
f
(
x′) sin

[
s
(
x′ − x

)]
dx′

}
ds (C.16)

Adding (or subtracting) Eqs. (C.15) and (C.16), we get

f (x) = 1

2π

∫ +∞

−∞

∫ +∞

−∞
f
(
x′)e±is(x′−x)dx′ ds (C.17)

Thus, if

F(s) = 1

(2π )1/2

∫ ∞

−∞
f
(
x′)eisx′

dx′ (C.18)

then

f (x) = 1

(2π )1/2

∫ +∞

−∞
F(s)e−isx ds (C.19)

The function F(s) defined by Eq. (C.18) is known as the Fourier transform of
f(x) and conversely.

Since the Dirac delta function δ
(
x − x′) is defined by the equation

f (x) =
∫ +∞

−∞
f
(
x′) δ (x − x′) dx′ (C.20)

we obtain, comparing Eqs. (C.17) and (C.20), the following representation of the
delta function:

δ
(
x′ − x

) = 1

2π

∫ +∞

−∞
e±is(x′−x) dx (C.21)

For a time-dependent function, we can write the Fourier transform in the
following form:

F(ω) = 1

(2π)1/2

∫ +∞

−∞
f
(
t′
)
eiωt dt′ (C.22)
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f (t) = 1

(2π)1/2

∫ +∞

−∞
F (ω)e−iωtdω (C.23)

where ω represents the angular frequency. As an example, we consider a time-
dependent pulse of the form

f (t) = A e−t2/ 2τ 2
e−iω0t (C.24)

Thus

F(ω) = A

(2π )1/2

∫ +∞

−∞
exp

(
− t2

2τ 2

)
ei(ω−ω0)tdt

= Aτ exp

[
− (ω − ω0)

2 τ 2

2

]
(C.25)

where we have used the following result:

∫ +∞

−∞
e−αx2+βx dx = eβ

2/ 4α
∫ +∞

−∞
exp

[
−α

(
x − β

2α

)2
]

dx

= (π / α)1/2 exp
(
β2 / 4α

) (C.26)

From Eqs. (C.24) and (C.25) it can be immediately seen that a temporal pulse of
duration ∼τ has a frequency spread of �ω ∼ 1 / τ . Thus, one obtains

τ�ω ∼ 1 (C.27)

If τ → ∞, the pulse becomes almost monochromatic and �ω → 0. The result
expressed by Eq. (C.27) is quite general in the sense that it is independent of the
shape of the pulse. For example, for a pulse of the form

f (t) =
{

A e−iω0t |t| < τ / 2

0 everywhere else
(C.28)

one would obtain

F(ω) = A

(
2

π

)1/2 sin (ω − ω0) τ / 2

ω − ω0
(C.29)

which also has a spread ∼ 1 / τ .
If we introduce the variable

u = s / 2π (C.30)



Appendix C 607

then Eq. (C.17) becomes

f (x) =
∫ +∞

−∞

∫ +∞

−∞
f
(
x′)e2π iu(x′−x) dx′ du (C.31)

Thus, if we write

F(u) =
∫ +∞

−∞
f
(
x′) e2π iux′

dx′ = F [
f (x)

]
(C.32)

then

f (x) =
∫ +∞

−∞
F(u) e−2π iux du (C.33)

where the symbol F [ ] stands for the Fourier transform of the quantity inside the
brackets. The quantity u is termed the spatial frequency (see Section 10.2).

Now

F [F [
f (x)

]] = F [F(u)]

=
∫ +∞

−∞
F(u) e2π iux dx

= f (−x)

(C.34)

Thus the Fourier transform of the Fourier transform of a function is the original
function itself except for an inversion. We also see that

F
[

exp

(
2π ix

a

)]
=

∫ +∞

−∞
exp

[
2π ix

(
1

a
+ u

)]
dx

= δ (u + 1 / a)

(C.35)

where we have used Eq. (C.21). In addition

F [δ(t − t0)] =
∫ ∞

−∞
δ (t − t0) e2π ivt dt

= e2π ivt0

(C.36)

Convolution theorem. The convolution of two functions f (t) and g(t) is defined
by the relation

f (t)∗ g(t) =
∫ ∞

−∞
f
(
t′
)
g
(
t − t′

)
dt′ = g (t) ∗f (t) (C.37)

We will now show that the Fourier transform of the convolution of two functions
is the product of their Fourier transforms. This can be seen as follows:
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F [
f (t)∗g(t)

] =
∫ ∞

−∞

∫ ∞

−∞
f
(
t′
)
g
(
t − t′

)
e2π ivt dt′ dt

=
∫ ∞

−∞
dt′ f

(
t′
)

e2π ivt
∫ ∞

−∞
g
(
t − t′

)
e2π iv(t−t′)dt

= F(v) G(v)

(C.38)

where F(ν) = F [
f (t)

]
and G(ν) = F [

g(t)
]
. Similarly

F [
f (t)g(t)

] =
∫ ∞

−∞
f
(
t′
)
g
(
t′
)

e+2π ivt′ dt′

=
∫ ∞

−∞
f
(
t′
) ∫ ∞

−∞
G

(
v′)−2π iv′t′ dv′ e2π ivt′ dt′

=
∫ ∞

−∞
G

(
v′)

∫ ∞

−∞
f
(
t′
)
e2π i(v−v′)t′ dt′ dv′

=
∫ ∞

−∞
G

(
v′)F (

v − v′) dv′

= F(v)∗G(v)

(C.39)

i.e., Fourier transform of the product of two functions is the convolution of their
Fourier transforms.

We will now consider some examples. The convolution of a function f (t) with a
delta function δ(t − t0) is

f (t)∗δ(t − t0) =
∫ ∞

−∞
f
(
t′
)
δ
(
t − t′ − t0

)
dt′

= f (t − t0)

(C.40)

Thus the convolution of a function with a delta function yields the same function
but with a shift in origin.

Similarly, the convolution of two Gaussian functions can again be shown to be
another Gaussian function:

exp

(
− x2

α2

)
∗ exp

(
− x2

β2

)
= αβ (π)1/2

(
α2 + β2

)1/2
exp

(
− x2

α2 + β2

)
(C.41)

Sampling theorem. We will now derive the sampling theorem according to which
a band-limited function, i.e., a function which has no spectral components beyond
a certain frequency, say vm, is uniquely determined by its value at uniform intervals
less than (1 / 2vm) seconds.

A band-limited function having a maximum spectral component vm implies that
its Fourier transform is zero beyond vm (see Fig. C.1). Thus if f (t) is a band-limited
function, then
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f(t)

t
(a)

(b)

0 νm−νm
ν

F(ν)

Fig. C.1 (a) A band-limited
function having no spectral
components beyond a
frequency vm and (b) the
corresponding Fourier
spectrum

F [
f (t)

] = F(v) = 0, for v > vm (C.42)

We now consider the sampled function which consists of impulses every T sec-
onds with the strength of each impulse being equal to the value of the function at
that time. Thus the sampled function can be written as

fs(t) =
∞∑

n=−∞
f (t)δ(t − nT) = f (t)

∞∑
n=−∞

δ(t − nT) (C.43)

The sampled function fs(t) is shown in Fig. C.2a. Here T represents the sampling
interval and δ(t − nT) represents the Dirac delta function.

In order to obtain the Fourier spectrum of the sampled function, we have to first
find the Fourier transform of the function

∑∞
n=−∞ δ(t − nT). Using Eq. (C.36) we

have

F
[ ∞∑

n=−∞
δ (t − nT)

]
=

∫ ∞

−∞

∞∑
n=−∞

δ (t − nT) e2π ivt dt

=
∞∑

n=−∞
e2π invT

(C.44)
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T
(a)

(b)

f(t)

t

1/T

νm−νm
ν

Fs(ν)

Fig. C.2 (a) The function
shown here is obtained by
periodically sampling the
original function depicted in
Fig. C.1 at uniform intervals
by impulses separated in time
by T; the strength of the
sampled signal at the
sampling times is equal to the
value of the original function
at that time. (b) The Fourier
spectrum corresponding to
the sampled function when
the sampling interval T is
smaller than 1 / 2vm, the
Nyquist interval. Observe that
in such a case the various
repetitively appearing spectra
do not overlap and it is
possible to use a filter to
retrieve F(v) and hence f (t)

In order to evaluate the sum of the right-hand side of Eq. (C.44), we consider the
following finite sum:

N∑
n=−N

e2π ivnT = e−2π inNT
(

1 − e2π ivT(2 N+1)

1 − e2π ivT

)
= sin [πvT (2 N + 1)]

sin (πvT)
(C.45)

which is a periodic function with a period 1 / T . If we restrict ourselves to the region
−1 / 2T < v <1 / 2T , then for a large value of N, the above function is sharply
peaked around v = 0 and we may write

lim
N→∞

sinπvT (2 N + 1)

sin πvT
= lim

g→∞
sin gvT

πvT
(C.46)

In order to determine the value of the limit on the right-hand side of Eq. (C.46),
we have from Eq. (C.21)

δ(t) = 1

2π

∫ ∞

−∞
eivt dv

= lim
N→∞

1

2π

∫ N

−N
eivt dv

= lim
N→∞

sin Nt

π t

(C.47)
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Thus we get from Eq. (C.46)

lim
N→∞

sin πvT (2 N + 1)

sin πvT
= δ (vT) (C.48)

and from Eqs. (C.44) and (C.45)

F
[ ∞∑

n=−∞
δ(t − nT)

]
= 1

T

∞∑
n=−∞

δ
(

v − n

T

)
(C.49)

Hence the Fourier transform of the sampled function is given as

F [
fs(t)

] = F
[

f (t)
∞∑

n=−∞
δ(t − nT)

]

= F [
f (t)

] ∗F
[ ∞∑

n=−∞
δ (t − nT)

]
using Eq. (C.39)

= F(v)∗ 1

T

∞∑
n=−∞

δ
(

v − n

T

)
using Eq. (C.49)

= 1

T

∞∑
n=−∞

F(v)∗δ
(

v − n

T

)

= 1

T

∞∑
n=−∞

F
(

v − n

T

)
using Eq. (C.40)

(C.50)

Here

F(v) = F [
f (t)

] =
∫ ∞

−∞
f (t) e2π ivt dt (C.51)

represents the Fourier transform of the function f (t). Hence from above it follows
that the Fourier transform of the sampled function consists of an infinite sum of
repetitively appearing Fourier transforms of the original function (see Fig. C.2b),
i.e., if the function F(v) is band limited up to vm, then in order that the various
repetitively appearing Fourier spectra in the sampled function do not overlap, one
must have

2vm ≤ 1 / T

or

T ≤ 1 / 2vm (C.52)

Hence as long as we sample f (t) at regular intervals less than 1 / 2vm seconds
apart, the Fourier spectrum of the sampled function is a periodic replica of F(v). One
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can thus recover f (t) completely by allowing the sampled signal to pass through a
low-pass filter which attenuates all frequencies beyond vm and which passes without
distortion the frequency components below vm. On the other hand, if T > 1 / 2vm,
then the various spectra F(v) overlap and it is not possible to recover f (t) from
the sampled values (see Fig. C.3). Thus in order to completely preserve the infor-
mation content of a signal in a retrievable form, the sampling interval should not be
more than 1 / 2vm; this maximum sampling interval is also referred to as the Nyquist
interval.

T
(a)

(b)

1/T

νm

fs(t)

t

−νm
ν

Fs(ν)

Fig. C.3 (a) The same as
shown in Fig. C.2(a) but here
the sampling interval is larger
than 1

2vm
(b) The

corresponding Fourier
spectrum which shows
overlap of the various
repetitively appearing spectra.
In such a case it is not
possible to retrieve the signal

Hence from the above theorem it follows that complete information of a band-
limited signal can be transmitted by just sending the discrete sampled values. This
is the basic principle behind digital transmission systems (see Section 17.2).

It may be mentioned here that no signal is strictly band limited. But for most prac-
tical situations, the energy content in high frequencies is so small to be negligible.
Thus, one can consider such signals to be essentially band limited.



Appendix D
Planck’s Law

In Section 7.2 we solved Maxwell’s equations in a rectangular cavity and obtained
the allowed frequencies of oscillation of the field in the cavity [see Eq. (7.16)]. In
Appendix E, we will calculate the density of such modes and will show that the
number of modes per unit volume in a frequency interval dω will be given as [see
Eq. (E.10)]

p(ω) dω = 1

π2c3
ω2 dω (D.1)

In Section 8.2, we have shown that quantum mechanically, we can visualize the
radiation field (inside a cavity) as consisting of an infinite number of simple har-
monic oscillators (each oscillator corresponding to a particular mode of the cavity)
and that the energy of each oscillator can take only the discrete values

Enλ =
(

nλ + 1

2

)
�ωλ, nλ = 0, 1, 2, . . . (D.2)

[see Eq. (9.59)]. Now, according to Boltzmann’s law, if Enλ is the energy of the λth
mode in the nth excited state, then the probability pnλ of the system being in this
state (at thermal equilibrium) is proportional to

exp
(−Enλ / kBT

)

where kB is the Boltzmann’s constant and T is the absolute temperature. Because
the λth mode must be in one of the states, we must have

∞∑
nλ=0

Pnλ = 1 (D.3)

To ensure this condition, we must have

Pnλ = exp
(−Enλ / kBT

)
∑∞

nλ=0
exp

(−Enλ / kBT
) (D.4)

613
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Substituting for Enλ from Eq. (D.2), we have

Pnλ = exp (−nλx)∑∞
nλ=0 exp [−nλx]

(D.5)

where

x = �ωλ

kBT
(D.6)

Carrying out the summation of the geometrical series in the denominator, we
obtain

Pnλ = [
1 − e−x] e−nλx (D.7)

The mean number of photons n̄λ associated with the λth mode is given as

n̄λ =
∞∑

nλ=0

Pnλnλ

= (
1 − e−x) ∞∑

nλ=0

nλe−nλx

= − (
1 − e−x) d

dx

∞∑
nλ=0

e−nλx

= − (
1 − e−x) d

dx

(
1

1 − e−x

)

or

n̄λ = 1

ex − 1
= 1

e�ωλ/ kBT − 1
(D.8)

Thus the mean energy associated with each mode will be

n̄λ�ωλ = �ωλ

e�ωλ/ kBT − 1
(D.9)

Consequently, if u(ω) represents the energy of the radiation field (per unit
volume) in the frequency interval dω, then

u(ω)dω = (energy associated with a mode) × (number of

modes per unit volume in the frequency interval d ω)

= �ω

e�ω/ kBT−1
× 1

π2c3 ω
2dω
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or

u(ω) = �ω3

π2c3

1

e�ω/ kBT − 1
(D.10)

which is the famous Planck’s law. For kBT >> �ω, one obtains

u(ω) ≈ ω2

π2c3
kBT (D.11)

which is known as the Rayleigh–Jeans law. On the other hand, at low temperatures,
where kBT << �ω, one obtains

u(ω) ≈ �ω3

π2c3
exp

(
− �ω

kBT

)
(D.12)

which is known as Wien’s law.





Appendix E
The Density of States

In Section 7.2, we had solved Maxwell’s equations in a rectangular cavity and had
shown that the electric field inside the cavity is given as

Ex = E0x cos kxx sin kyy sin kzz (E.1)

with similar expressions for Ey and Ez [see Eq. (7.14)]. By imposing proper bound-
ary conditions, the following allowed values of kx, ky, and kz are obtained [see Eqs.
( 7.12) and ( 7.13)]:

kx = mπ

2a
, m = 0, 1, 2, . . . (E.2)

ky = nπ

2b
, n = 0, 1, 2, . . . (E.3)

kz = qπ

d
, q = 0, 1, 2, . . . (E.4)

Now, the number of modes whose x component of k lies between kx and
kx + dkx would simply be the number of integers lying between (2a / π) kx and
(2a / π) (kx + dkx). This number would be approximately equal to (2a / π) dkx.
Similarly, the number of modes whose y and z components of k lie between ky

and ky + dky and kz and kz + dkz would, respectively, be

(
2b

π
dky

)
and

d

π
dkz

Thus, there will be

(
2a

π
dkx

)(
2b

π
dky

)(
d

π
dkz

)
= V

π3
dkx dky dkz (E.5)

modes in the range dkx dky dkz of k; here V (= 2a × 2b × d) represents the volume
of the cavity. Thus the number of modes per unit volume in the k space would be

617
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V

π3

If P(k)dk represents the number of modes whose |k| lies between k and k + dk,
then

P(k)dk = 2 × 1

8
× V

π3
4πk2 dk (E.6)

where the factor 4πk2 dk represents the volume element (in the k space) lying
between k and k + dk and the factor 1/8 is due to the fact that kx, ky and kz can
take only positive values [see Eqs. (E.2)–(E.4)] so that while counting the modes in
the k space we must consider only the positive octant; the factor of 2 corresponds
to the fact that corresponding to a particular value of k, there are two independent
modes of polarization. If p(k)dk represents the corresponding number of modes per
unit volume, then

p(k)dk = 1

π
k2 dk (E.7)

Now, if p(ν)dν represents the number of modes (per unit volume) in the
frequency interval dν, then

p(ν) dν = p(k) dk = 1

π2
k2 dk = 1

π2

(
2πν

c

)2 2π

c
dν (E.8)

or

p(ν) dν = 8πν2

c3
dν (E.9)

which is identical to Eq. (7.18). In deriving Eq. (E.9) we have used the relation
k = 2πν / c. Transforming to the ω space, we obtain

p(ω)dω = 1

π2c3
ω2 dω (E.10)

It should be mentioned that in the derivation of the above formula we have
assumed |k| to lie between k and k+dk and have integrated over all the directions of
k. If, however, we are interested in the number of modes for which k lies between k
and k + dk but the direction of k lies in the solid angle d	, then the number of such
modes would be given as

N(k) dk d	 = 1

8
× V

π3
× 4πk2 dk × d	

4π
(E.11)
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and we have not taken into account the two independent states of polarization. Thus

N(ω)dω d	 = N(k)dk d	 = V

8π3
× k2 dk d	

or

N(ω) dω d	 = Vω2

8π3c3
dω d	 (E.12)

which is identical to Eq. (9.176).





Appendix F
Fourier Transforming Property of a Lens

In this appendix, we will show that the amplitude distribution at the back focal plane
of a lens is the spatial Fourier transform of the object field distribution at the front
focal plane. In order to show this, we must first determine the effect of a lens on an
incident field.

Consider an object point O which is at a distance d1 from an aberrationless thin
lens of focal length f (see Fig. F.1). We know that under geometrical optics approx-
imation, the lens images the point O at the point I which is at a distance d2 from the
lens where

1

d2
= 1

f
− 1

d1
(F.1)

I0

d2d1

Fig. F.1 A spherical wave
emanating from an object
point which is at a distance d1
from a lens is converted into a
converging spherical wave
converging toward the point I
at a distance d2 satisfying Eq.
(F.1)

Thus, the lens transforms an incident diverging spherical wave emanating from O
into a converging spherical wave converging to the point I. The phase of the incident
diverging spherical wave from O can be written as

exp(−ikr) = exp

⌊
−ik

(
x2 + y2 + d2

1

)1/2
⌋

= exp(−ikd1) exp

(
−ik

x2 + y2

2d1

) (F.2)

where we have assumed a time dependence of the form eiωt so that exp[i(ωt − kr)]
and exp[i(ωt + kr)] represent, respectively, a diverging and a converging spherical
wave and in writing in last expression, we have assumed that x, y << d1. The wave
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after passing through the lens becomes a converging spherical wave given by

exp (+ikd2) exp

(
+ik

x2 + y2

2d2

)
(F.3)

where we have assumed x, y << d2 and the positive sign refers to the fact that the
wave is a converging spherical wave. Hence, if we represent by pL the effect of the
lens on the incident field distribution, then

exp (−ikd1) exp

[
− ik

2d1

(
x2 + y2

)]
pL = exp (+ikd2) exp

[
+ ik

2d2

(
x2 + y2

)]

or

pL = exp [ik (d2 + d1)] exp

[
ik

2

(
1

d1
+ 1

d2

)(
x2 + y2

)]
(F.4)

Using Eq. (F.1) and neglecting the first factor on the right-hand side of Eq. (F.4)
as it is a constant phase factor, one obtains

pL = exp

[
+ ik

2f

(
x2 + y2

)]
(F.5)

Thus, the effect of a thin lens of focal length f is to multiply the incident field
distribution by the factor pL given by Eq. (F.5).

In order to obtain the field distribution at the back focal plane, we would also
require the effect of propagation through space; this is indeed given by Eq. (7.72),
namely,

g (x, y, z) ≈ i

λz
e−ikz

∫∫
f
(
x′, y′) exp

{
− ik

2z

[(
x − x′)2 + (y − y′)2

]}
dx′dy′ (F.6)

where f
(
x′, y′) is the field distribution on the plane z = 0 and g(x, y, z) is the field at

the point x,y,z.
Let us now consider a field distribution f (x, y) on the front focal plane (P1) of a

lens of focal length f (see Fig. F.2). The field on the plane P3 would be given by Eq.
(F.6) with z replaced by f, i.e.,

i

λf
e−ikf

∫∫
f (ξ , η) exp

{
− ik

2f

[(
x′ − ξ

)2 + (
y′ − η

)2
]}

dξdη
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f (x,y) g (x,y)

P1

d1 d2

P3 P4 P2

L

Fig. F.2 The field
distribution on the back focal
plane of a lens of focal length
f is the Fourier transform of
the field distribution on the
front focal plane P1

This field on passing through the lens becomes

i

λf
e−ikf

∫∫
(ξ , η) exp

{
− ik

2f

[(
x′ − ξ

)2 + (
y′ − η

)2
]}

dξdη

× exp

[
ik

2f

(
x′2 + y′2)

]

Thus, the field on the back focal plane P2 would be

g(x, y) =
(

i

λf

)2

e−2ikf
∫∫ ∫∫

f (ξ , η) exp

{
− ik

2f

[(
x′ − ξ

)2 + (
y′ − η

)2
]}

× exp

{
− ik

2f

[(
x + x′)2 + (

y + y′)2
]}

× exp

[
ik

2f

(
x′2 + y′2)

]
dξdηdx′dy′

(F.7)
which on simplification gives

g (x, y) = − 1

λ2f 2
e−2ikf exp

[
− ik

2f

(
x2 + y2

)] ∫∫
d ξd ηf (ξ , η)

× exp

[
− ik

2f

(
ξ2 + η2

)] ∫
exp

{
− ik

2f

[
x′2 − 2x′ (x + ξ)

]}
dx′

×
∫

exp

{
− ik

2f

[
y′2 − 2y′ (y + η)

]}
dy′

= − 1

λ2f 2

π2fλ

2π i
e−2ikf exp

[
− ik

2f

(
x2 + y2

)] ∫∫
d ξd ηf (ξ , η)

× exp

[
− ik

2f

(
ξ2 + η2

)]

× exp

[
+ ik

2f

(
x2 + ξ2 + 2xξ + y2 + η2 + 2yη

)]

= i

λf
e−2ikf

∫∫
d ξd η f (ξ , η) exp

[
2π i

(
xξ

λf
+ yη

λf

)]

(F.8)
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where we have used the following result:

∫ ∞

−∞
e−px2+qxdx =

(
π

p

)1/2

exp

(
q2

4p

)
(F.9)

Thus, apart from a constant phase factor, the amplitude distribution at the
back focal plane of a lens is nothing but the Fourier transform of the amplitude
distribution at the front focal plane evaluated at spatial frequencies x / λf and y / λf .



Appendix G
The Natural Lineshape Function

A spontaneous transition from a state b to a lower energy state a does not give
radiation at a single frequency ωba. A finite lifetime τ of the excited state gives
it an energy width of the order � / τ so that the emitted radiation has a frequency
distribution. This argument may be made more precise by considering the simple
case of an atom with only two states a and b (Eb > Ea) undergoing spontaneous
transition from b and a. In this section we will calculate the frequency distribution of
the emitted radiation from such a spontaneous transition; the analysis is based on the
treatment given by Heitler (1954), Section 18, and is known as Weisskopf-Wigner
theory of the natural line width.

It is assumed that at t = 0, the atom is in the excited state b and the radiation field
has no photons. We denote this state by

|1〉 = |b; 0, 0, 0, . . .〉 (G.1)

[compare with Eqs. (9.174)]. The atom makes a transition to the state aemitting a
photon of frequency ωλ in the mode characterized by λ[see Eq. (9.175)]. We denote
this state by

|aλ〉 = |a; 0, 0, . . . 1λ, 0, . . .〉 (G.2)

If we denote the corresponding probability amplitudes by

C1 (t) and Caλ (t)

then

C1 (0) = 1

Caλ (0) = 0
(G.3)

Further [see Eq. (9.159)]

i�
dC1

dt
=

∑
λ

〈1|H′ |aλ〉 ei(W1−Waλ)t/ � Caλ (t)

=
∑
λ

〈1|H′ |aλ〉 ei(ω0−ωλ)t Caλ (t)
(G.4)
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and

i�
dCaλ

dt
= 〈aλ| H′ |1〉 e−i(ω0−ωλ)t C1(t) (G.5)

where

�ω0 = Eb − Ea (G.6)

and

W1 − Waλ = Eb − (Ea + �ωλ) = � (ω0 − ωλ) (G.7)

We try to solve Eqs. (G.4) and (G.5) by assuming2

C1(t) = e−γ t/ 2 (G.8)

which satisfies the condition C1(0) = 1. It may be noted that since |C1 (t)|2 rep-
resents the probability of finding the atom in the upper state and the quantity 1 / γ
represents the mean lifetime of the state. If we substitute for C1(t) in Eq. (G.5) and
carry out the integration we get

Caλ(t) = 〈aλ| H′ |1〉 exp
{− [

i (ω0 − ωλ) + γ / 2
]

t
} − 1

(ω0 − ωλ) − iγ / 2
(G.9)

We substitute Eqs. (G.8) and (G.9) in (G.4) to obtain

− i�
γ

2
=

∑
λ

∣∣∣∣H′〉∣∣2
�

1 − exp
[
i (ω0 − ωλ) t + γ t / 2

]

(ω0 − ωλ) − iγ / 2
(G.10)

where
〈
H′〉 ≡ 〈aλ| H′|1〉. The summation on the right-hand side of the above equa-

tion is over a number of states λ with very nearly the same frequency. Under these
circumstances, the summation can be replaced by an integral

∑
λ

→
∫∫

N(ω)dω d	 (G.11)

where N(ω) represents the density of states [see Eq. (9.176)]. Equation (H.10) then
becomes

γ = 2i

�

[
1

�

∫∫
|〈H〉|2N (ω) J (ω) dω d	

]
(G.12)

2It should be mentioned that the present treatment is consistent with the treatment given in Chapter
9. Indeed, in Chapter 9 we have shown that A [as given by Eq. (9.182)] represents the probability
per unit time for the spontaneous emission to occur; the decay given by Eq. (G.8) follows with
γ = A; this is explicitly shown later in this section.
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where

J(ω) = 1 − exp [i (ω0 − ω) t] eγ t/ 2

(ω0 − ω) − iγ / 2
(G.13)

We will assume that γ << ω0; i.e., the inverse of the lifetime
(≤ 109s−1

)
is much

smaller than the characteristic frequencies (∼1015 s–1); this will indeed follow from
the final result. Under this assumption γ can be neglected in Eq. (G.13) to obtain

J ≈ 1 − ei(ω0−ω)t

ω0 − ω

≈ 1 − cos [(ω0 − ω) t]

(ω0 − ω)
− i

sin [(ω0 − ω) t]

(ω0 − ω)

(G.14)

The first term has very rapid variation around ω ≈ ω0 and gives negligible con-
tribution to any integral over ω except around ω ≈ ω0, where the function itself
vanishes. Thus this term will lead to a small imaginary value of γ . We are in any
case interested in the real part of γ (which would give the lifetime, etc.) which will
be given by

γ ≈ 2

�

[
1

�

∫ ∣∣〈H′〉∣∣2 N (ω0) d	
∫ ∞

−∞
sin (ω0 − ω) t

(ω0 − ω)
dω

]
(G.15)

We have made two approximations here. First, we have pulled out factors which
are essentially constant in the neighborhood of ω ≈ ω0. Second, the limits of the
integral have been taken from –∞ to +∞ since in any case the contribution vanishes
except around ω0. Thus

γ ≈ 2π

�

[
1

�

∫ ∣∣〈H′〉∣∣2 N(ω0)d	

]

= 2π

�

1

�

Vω2
0

8π3c3

∫ ∣∣〈H′〉∣∣2 d	

(G.16)

Now

〈
H′〉 = 〈aλ| H′ |1〉

= 〈a; 0, 0, . . . 1λ, 0, . . .| (−ie)

×
∑
λ

(
�ωλ

2ε0V

)1/2 [
âλeikλ·r − â†

λe−ikλ·r
]

êλ · r |b;0, 0, . . . , 0λ, . . .〉

= (ie)

(
�ωλ

2ε0V

)1/2

〈a| eikλ·rr |b〉 · êλ

= (ie)

(
�ωλ

2ε0V

)1/2

〈a| r |b〉 · êλ

(G.17)
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where in the last step we have used the dipole approximation. On substitution in Eq.
(G.16), we get

γ ≈ 1

2π

[
e2

4πε0�c

]
ω3

0

c2

∫ ∣∣êλ · 〈a| r |b〉∣∣2d	 (G.18)

[compare Eq. (9.180)]. On carrying out the integration and summing over the two
states of polarization we get [see Eq. (9.182)]

γ = A (G.19)

i.e., γ is simply the Einstein A coefficient corresponding to spontaneous emissions
as it indeed should be!

Now the probability of a photon being emitted in the mode λ is given by [see
Eq. (G.9)]

|Caλ (t = ∞)|2 =
∣∣〈H′〉∣∣2

�2

1

(ω0 − ωλ)
2 + γ 2 / 4

(G.20)

If we multiply the above equation by N(ω) dωd	, which gives the number of
modes in the frequency interval ω to ω + dω and in the solid angle d	, and carry
out the integration over d	 and sum over the two states of polarization, we would get

g (ω) dω = γ

2π

dω

(ω0 − ω)2 + γ 2 / 4
(G.21)

where we have used Eq. (G.18). The above equation indeed gives us the probability
that the spontaneously emitted photon has its frequency between ω and ω + dω,
which is nothing but the Lorentzian line shape; notice that the above expression is
normalized, which implies that the probability that the atom makes a spontaneous
transition from the upper state to the lower state is unity (as t → ∞), as it indeed
should be.



Appendix H
Nonlinear polarization in optical fibers

At low optical intensities, all media behave as linear media, i.e., the electric polar-
ization P developed in the medium is linearly related to the electric field E of the
lightwave:

P = ε0χE (H.1)

When the intensity of the light wave increases, then the amplitude of the electric
field associated with the light wave also increases and in such a situation the rela-
tionship described by Eq. (H.1) is no more valid. In such a situation the polarization
is not linearly related to the electric field and we can write for the total polarization
as

P = ε0χE + ε0χ
(3)E3 (H.2)

where ε0χ
(3)E3 represents the nonlinear polarization term and χ (3) is referred to as

the third-order nonlinear susceptibility. Note that there is no term proportional to
E2 the quadratic term is present only in media not possessing a center of inversion
symmetry like many crystals. The second term in Eq. (H.2) is responsible for many
nonlinear effects in optical fibers; these include self phase modulation, cross phase
modulation, and four wave mixing. Here we will give a brief outline of the derivation
of Eq. (H.2) which results in nonlinear polarization rotation. Such an effect is used
in the generation of ultrashort pulses from fiber lasers (see Chapter 12).

Equation (H.2) is written in scalar form but since both electric fields and polar-
ization are vector fields we have to write a vector equation. Thus the nonlinear
polarization in vector form is given by

P NL
i = ε0χ

(3)
ijklEjEkEl (H.3)

where the subscripts correspond to various Cartesian components of the fields and
χ

(3)
ijkl is called the third-order nonlinear optical susceptibility tensor. It is character-

ized by 81 elements and depending on the symmetry present in the medium some
of them may be zero, some may be equal to some other elements, etc. For an optical
fiber, the only nonzero elements are
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χ
(3)
1122 = χ

(3)
1212 = χ

(3)
1221 = χ

(3)
2211 = χ

(3)
2121 = χ

(3)
2112 = χ

(3)
2233 = χ

(3)
2323

= χ
(3)
2332 = χ

(3)
3322 = χ

(3)
3232 = χ

(3)
3223 = χ

(3)
3311 = χ

(3)
3131

= χ
(3)
3113 = χ

(3)
1133 = χ

(3)
1313 = χ

(3)
1331 = 1

3
χ

(3)
1111 = 1

3
χ

(3)
2222 = 1

3
χ3

3333

(H.4)

All other elements of the nonlinear susceptibility tensor are zero.
Let the propagation direction along the fiber be designated as z-direction and the

transverse coordinates are assumed to be x and y. If we assume the incident field
to have both x and y components then the electric field at any point along the fiber
would be given by

E(x, y, z, t) = 1

2
[(x̂Ex(z) + ŷEy(z))ei(ωt−βz) + c.c] (H.5)

where c.c represents complex conjugate, Ex and Ey are the complex amplitudes of
the x-component and y-component of the electric field of the light wave, β represents
the propagation constant, and ω the frequency of the wave. For simplicity we are
neglecting the transverse dependence of the fields within the fiber; taking them into
account will result in an overlap integral which would primarily lead to a reduction
of the nonlinear effects.

For an electric field E, the power carried is given by

F = n

2cμ0
|E|2S (H.6)

where S is the area of the beam and n represents the refractive index of the medium.
We now define

Ax =
√

nS

2cμ0
Ex; Ay =

√
nS

2cμ0
Ey (H.7)

The constants are chosen so that the powers carried by the x-component and
y-component of the wave are directly given by |Ax|2 and |Ay|2.

Substituting from Eqs. (H.4), (H.5) into Eq. (H.3), and collecting terms at
frequency ω, we get for the x-component of nonlinear polarization to be

P(NL)
x = 3

8
ε0χ1111

[{
|Ex|2Ex + 2

3
|Ey|2Ex + 1

3
E∗

x E2
y

}
ei(ωt − βz) + c.c.

]
(H.8)

The first term within the bracket on the right-hand side leads to self phase
modulation while the second terms are referred to as cross phase modulation.

The wave equation describing the propagation of a wave in the presence of
nonlinear polarization is given by [see Eq. (14.18)]

∂2Ex

∂x2
+ ∂2Ex

∂y2
+ ∂2Ex

∂z2
− εμ0

∂2Ex

∂t2
= μ0

∂2P(NL)
x

∂t2
(H.9)

Substituting from Eq. (H.5) and (H.8) into Eq. (H.9) and neglecting the second
differential of Ex with respect to z, we obtain the following equation for Ax:
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∂Ax

∂z
= −iγ

[(
|A + x|2 + |Ay|2

)
Ax + 1

3
A∗

xA2
y

]
(H.10)

where γ is the nonlinear coefficient defined by

γ = 3

4

ωχ
(3)
1111

c2ε0n2S
= ωn2

cS
(H.11)

where

n2 = 3

4

χ
(3)
1111

cε0n2
(H.12)

Using a similar procedure we can derive the following equation satisfied by Ay:

∂Ay

∂z
= −iγ

[(
|Ay|2 + 2

3
|Ax|2

)
Ay + 1

3
A∗

yA2
x

]
(H.13)

These equations are written in terms of the two linearly polarized components of
the propagating wave. The terms A∗

xA∗
y and A∗

xA∗
y can be eliminated by describing

the wave in terms of circular polarization components rather than linear polarization
components. For this we define the following:

A+ = 1√
2

(Ax + iAy); A− = 1√
2

(Ax − iAy) (H.14)

A+ represents the amplitude of the right circular component and A– represents
the amplitude of the left circular component. Substituting from Eq. (H.14) into Eqs.
(H.10) and (H.13), we obtain the following equations:

∂A+
∂z

= 2

3
iγ (|A+|2 + 2|A−|2)A+ (H.15)

and

∂A−
∂z

= 2

3
iγ (|A−|2 + 2|A+|2)A− (H.16)

These equations are used in Section to describe nonlinear polarization rotation.
It is interesting to note that Eqs. (H.15) and (H.16) satisfy the following

equations:

∂|A+|2
∂z

= 0;
∂|A−|2
∂z

= 0 (H.17)
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showing that the powers in the right circular and left circular polarizations do not
change with propagation in spite of the nonlinear interaction. Thus circular polariza-
tion modes are the modes of propagation in such a case. The nonlinearity introduces
only an additional phase difference other than due to linear propagation. The phase
shift depends on the amplitude of the right and left circular components.
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