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Preface

It is exactly 50 years since the first laser was realized. Lasers emit coherent electro-
magnetic radiation, and ever since their invention, they have assumed tremendous
importance in the fields of science, engineering, and technology because of their
impact in both basic research as well as in various technological applications. Lasers
are ubiquitous and can be found in consumer goods such as music players, laser
printers, scanners for product identification, in industries like metal cutting, welding,
hole drilling, marking, in medical applications in surgery, and in scientific applica-
tions like in spectroscopy, interferometry, and testing of foundations of quantum
mechanics. The scientific and technological advances have enabled lasers span-
ning time scales from continuous operation up to as short as a hundred attoseconds,
wavelengths spanning almost the entire electromagnetic spectrum up to the X-ray
region, power levels into the terawatt region, and sizes ranging from tiny few tens of
nanometers to lasers having a length of 270 km. The range of available power, pulse
widths, and wavelengths is extremely wide and one can almost always find a laser
that can fit into a desired application be it material processing, medical application,
or in scientific or engineering discipline. Laser being the fundamental source with
such a range of properties and such wide applications, a course on the fundamentals
and applications of lasers to both scientists and engineers has become imperative.

The present book attempts to provide a coherent presentation of the basic physics
behind the working of the laser along with some of their most important applications
and has grown out of the lectures given by the authors to senior undergraduate and
graduate students at the Indian Institute of Technology Delhi.

In the first part of the book, after covering basic optics and basic quantum
mechanics, the book goes on to discuss the basic physics behind laser operation,
some important laser types, and the special properties of laser beams. Fiber lasers
and semiconductor lasers which are two of the most important laser types today are
discussed in greater detail and so is the parametric oscillator which uses optical non-
linearity for optical amplification and oscillation and is one of the most important
tunable lasers. The coverage is from first principles so that the book can also be used
for self study. The tutorial coverage of fiber lasers given in the book is unique and
should serve as a very good introduction to the subject of fiber amplifiers and lasers.
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viil Preface

Toward the end of the first part of the book we discuss quantization of electromag-
netic field and develop the concept of photons, which forms the basic foundation of
the field of quantum optics.

The second part of the book discusses some of the most important applications
of lasers in spatial frequency filtering, holography, laser-induced fusion, light wave
communications, and in science and industry. Although there are many more appli-
cations that are not included in the book, we feel that we have covered some of the
most important applications.

We believe that the reader should have some sense of perspective of the history of
the development of the laser. One obvious way to go about would be to introduce the
reader to some of the original papers; unfortunately these papers are usually not easy
to read and involve considerable mathematical complexity. We felt that the Nobel
lectures of Charles H Townes, Nicolai G Basov, and A M Prokhorov would convey
the development of the subject in a manner that could not possibly be matched and
therefore in the third part of the book we reproduce these Nobel Lectures. We have
also reproduced the Nobel lecture of Theodor W Hansch who in 2005 was jointly
awarded the Nobel Prize for developing an optical “frequency comb synthesizer,”
which makes it possible, for the first time, to measure with extreme precision the
number of light oscillations per second. The frequency comb techniques described
in the lecture are also offering powerful new tools for ultrafast physics.

Numerical examples are scattered throughout the book for helping the student
to have a better appreciation of the concepts and the problems at the end of each
chapter should provide the student with gaining a better understanding of the basics
and help in applying the concepts to practical situations. Some of the problems
are expected to help the reader to get a feel for numbers, some of them will use
the basic concepts developed in the chapter to enhance the understanding and a
few of the problems should be challenging to the student to bring out new features
or applications leading perhaps to further reading in case the reader is interested.
This book could serve as a text in a course at a senior undergraduate or a first-year
graduate course on lasers and their applications for students majoring in various
disciplines such as Physics, Chemistry, and Electrical Engineering.

The first edition of this book (entitled LASERS: Theory & Applications)
appeared in 1981. The basic structure of the present book remains the same
except that we have added many more topics like Erbium Doped Fiber Lasers and
Amplifier, Optical Parametric Oscillators, etc. In addition we now have a new chap-
ter on Semiconductor Lasers. A number of problems have now been included in the
book which should be very useful in further understanding the concepts of lasers.
We have also added the Nobel Lecture of Theodor Hansch. Nevertheless, the reader
may find some of the references dated because they have been taken from the first
edition.

We hope that the book will be of use to scientists and engineers who plan to study
or teach the basic physics behind the operation of lasers along with their important
applications.

New Delhi, India K. Thyagarajan
Ajoy Ghatak
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Milestones in the Development of Lasers
and Their Applications

1917: A Einstein postulated stimulated emission and laid the foundation for the
invention of the laser by re-deriving Planck’s law

1924: R Tolman observed that “molecules in the upper quantum state may return to
the lower quantum state in such a way to reinforce the primary beam by “negative
absorption”

1928: R W Landenberg confirmed the existence of stimulated emission and negative
absorption through experiments conducted on gases.

1940: V A Fabrikant suggests method for producing population inversion in his PhD
thesis and observed that “if the number of molecules in the excited state could be
made larger than that of molecules in the fundamental state, radiation amplification
could occur”.

1947: W E Lamb and R C Retherford found apparent stimulated emission in
hydrogen spectra.

1950: Alfred Kastler suggests a method of “optical pumping” for orientation of
paramagnetic atoms or nuclei in the ground state. This was an important step on the
way to the development of lasers for which Kastler received the 1966 Nobel Prize
in Physics.

1951: E M Purcell and R V Pound: In an experiment using nuclear magnetic reso-
nance, Purcell and Pound introduce the concept of negative temperature, to describe
the inverted populations of states usually necessary for maser and laser action.

1954: J P Gordon, H J Zeiger and C H Townes and demonstrate first MASER oper-
ating as a very high resolution microwave spectrometer, a microwave amplifier or a
very stable oscillator.

1956: N Bloembergen first proposed a three level solid state MASER

1958: A Schawlow and C H Townes, extend the concept of MASER to the infrared
and optical region introducing the concept of the laser.

XiX



XX Milestones in the Development of Lasers and Their Applications

1959: Gordon Gould introduces the term LASER
1960: T H Maiman realizes the first working laser: Ruby laser

1960: P P Sorokin and M J Stevenson Four level solid state laser (uranium doped
calcium fluoride)

1960: A Javan W Bennet and D Herriott invent the He-Ne laser

1961: E Snitzer: First fiber laser.

1961: P Franken; observes optical second harmonic generation

1962: E Snitzer: First Nd:Glass laser

1962: R. Hall creates the first GaAs semiconductor laser

1962: R W Hellwarth invents Q-switching

1963: Mode locking achieved

1963: Z Alferov and H Kromer: Proposal of heterostructure diode lasers
1964: C K N Patel invents the CO, laser

1964: W Bridges: Realizes the first Argon ion laser

1964: Nobel Prize to C H Townes, N G Basov and A M Prochorov “for fundamen-
tal work in the field of quantum electronics, which has led to the construction of
oscillators and amplifiers based on the maser-laser principle”

1964: J E Geusic, H M Marcos, L G Van Uiteit, B Thomas and L Johnson: First
working Nd: YAG laser

1965: CD player

1966: C K Kao and G Hockam proposed using optical fibers for communication.
Kao was awarded the Nobel Prize in 2009 for this work.

1966: P Sorokin and J Lankard: First organic dye laser

1966: Nobel Prize to A Kastler “for the discovery and development of optical
methods for studying Hertzian resonances in atoms”

1970: Z Alferov and I Hayashi and M Panish: CW room temperature semiconductor
laser

1970: Corning Glass Work scientists prepare the first batch of optical fiber, hundreds
of yards long and are able to communicate over it with crystal clear clarity

1971: Nobel Prize: D Gabor “for his invention and development of the holographic
method”

1975: Barcode scanner

1975: Commercial CW semiconductor lasers
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1976: Free electron laser

1977: Live fiber optic telephone traffic: General Telephone & Electronics send first
live telephone traffic through fiber optics, 6 Mbit/s in Long Beach CA.

1979: Vertical cavity surface emitting laser VCSEL

1981: Nobel Prize to N Bloembergen and A L Schawlow “for their contribution to
the development of laser spectroscopy”

1982: Ti:Sapphire laser
1983: Redefinition of the meter based on the speed of light

1985: Steven Chu, Claude Cohen-Tannoudji, and William D. Phillips develop
methods to cool and trap atoms with laser light. Their research is helps to study fun-
damental phenomena and measure important physical quantities with unprecedented
precision. They are awarded the Nobel Prize in Physics in 1997.

1987: Laser eye surgery

1987: R.J. Mears, L. Reekie, .M. Jauncey, and D.N. Payne: Demonstration of
Erbium doped fiber amplifiers

1988: Transatlantic fiber cable
1988: Double clad fiber laser

1994: J Faist, F Capasso, D L. Sivco, C Sirtori, A L. Hutchinson, and A Y. Cho:
Invention of quantum cascade lasers

1996: S Nakamura: First GaN laser

1997: Nobel Prize to S Chu, C Cohen Tannoudji and W D Philips “for development
of methods to cool and trap atoms with laser light”

1997: W Ketterle: First demonstration of atom laser

1997: T Hansch proposes an octave-spanning self-referenced universal optical
frequency comb synthesizer

1999: J Ranka, R Windeler and A Stentz demonstrate use of internally structured
fiber for supercontinuum generation

2000: J Hall, S Cundiff J Ye and T Hansch: Demonstrate optical frequency comb
and report first absolute optical frequency measurement

2000: Nobel Prize to Z I Alferov and H Kroemer “for developing semiconductor
heterostructures used in high-speed- and opto-electronics”

2001: Nobel Prize to E Cornell, W Ketterle and C E Wieman “for the achieve-
ment of Bose-Einstein condensation in dilute gases of alkali atoms, and for early
fundamental studies of the properties of the condensates”
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2005: H Rong, R Jones, A Liu, O Cohen, D Hak, A Fang and M Paniccia: First
continuous wave Raman silicon laser

2005: Nobel Prize to R J Glauber “for his contribution to the quantum theory of
optical coherence” and to J L Hall and T H Hansch “for their contributions to the
development of laser-based precision spectroscopy, including the optical frequency
comb technique”

2009: Nobel Prize to C K Kao “for groundbreaking achievements concerning the
transmission of light in fibers for optical communication”

Ref: Many of the data given here has been taken from the URL for Laserfest:
http://www.laserfest.org/lasers/history/timeline.cfm
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Chapter 1
Introduction

An atomic system is characterized by discrete energy states, and usually the atoms
exist in the lowest energy state, which is normally referred to as the ground state.
An atom in a lower energy state may be excited to a higher energy state through a
variety of processes. One of the important processes of excitation is through colli-
sions with other particles. The excitation can also occur through the absorption of
electromagnetic radiation of proper frequencies; such a process is known as stim-
ulated absorption or simply as absorption. On the other hand, when the atom is in
the excited state, it can make a transition to a lower energy state through the emis-
sion of electromagnetic radiation; however, in contrast to the absorption process, the
emission process can occur in two different ways.

(i) The first is referred to as spontaneous emission in which an atom in the excited
state emits radiation even in the absence of any incident radiation. It is thus not
stimulated by any incident signal but occurs spontaneously. Further, the rate of
spontaneous emissions is proportional to the number of atoms in the excited
state.

(i) The second is referred to as stimulated emission, in which an incident signal
of appropriate frequency triggers an atom in an excited state to emit radiation.
The rate of stimulated emission (or absorption) depends both on the intensity
of the external field and also on the number of atoms in the upper state. The
net stimulated transition rate (stimulated absorption and stimulated emission)
depends on the difference in the number of atoms in the excited and the lower
states, unlike the case of spontaneous emission, which depends only on the
population of the excited state.

The fact that there should be two kinds of emissions — namely spontaneous and
stimulated — was first predicted by Einstein (1917). The consideration which led
to this prediction was the description of thermodynamic equilibrium between atoms
and the radiation field. Einstein (1917) showed that both spontaneous and stimulated
emissions are necessary to obtain Planck’s radiation law; this is discussed in Section
4.2. The quantum mechanical theory of spontaneous and stimulated emission is
discussed in Section 9.6.

K. Thyagarajan, A. Ghatak, Lasers, Graduate Texts in Physics, 3
DOI 10.1007/978-1-4419-6442-7_1, © Springer Science+Business Media, LLC 2010
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The phenomenon of stimulated emission was first used by Townes in 1954 in
the construction of a microwave amplifier device called the maser,! which is an
acronym for microwave amplification by stimulated emission of radiation (Gordon
etal. 1955). At about the same time a similar device was also proposed by Prochorov
and Basov. The maser principle was later extended to the optical frequencies by
Schawlow and Townes (1958), which led to the device now known as the laser.
In fact “laser” is an acronym for light amplification by stimulated emission of
radiation. The first successful operation of a laser device was demonstrated by
Maiman in 1960 using ruby crystal (see Section 11.2). Within a few months of oper-
ation of the device, Javan and his associates constructed the first gas laser, namely,
the He—Ne laser (see Section 11.5). Since then, laser action has been obtained in
a large variety of materials including liquids, ionized gases, dyes, semiconductors.
(see Chapters 11-13).

The three main components of any laser device are the active medium, the pump-
ing source, and the optical resonator. The active medium consists of a collection
of atoms, molecules, or ions (in solid, liquid, or gaseous form), which acts as an
amplifier for light waves. For amplification, the medium has to be kept in a state of
population inversion, i.e., in a state in which the number of atoms in the upper energy
level is greater than the number of atoms in the lower energy level. The pumping
mechanism provides for obtaining such a state of population inversion between a
pair of energy levels of the atomic system. When the active medium is placed inside
an optical resonator, the system acts as an oscillator.

After developing the necessary basic principles in optics in Chapter 2 and basic
quantum mechanics in Chapter 3, in Chapter 4 we give the original argument of
Einstein regarding the presence of both spontaneous and stimulated emissions and
obtain expressions for the rate of absorption and emission using a semiclassical
theory. We also consider the interaction of an atom with electromagnetic radiation
over a band of frequencies and obtain the gain (or loss) coefficient as the beam
propagates through the active medium.

Under normal circumstances, there is always a larger number of atoms in the
lower energy state as compared to the excited energy state, and an electromagnetic
wave passing through such a collection of atoms would get attenuated rather than
amplified. Thus, in order to have amplification, one must have population inversion.
In Chapter 5, we discuss the two-level, three-level, and four-level systems and obtain
conditions to achieve population inversion between two states of the system. It is
shown that it is not possible to achieve steady-state population inversion in a two-
level system. Also in order to obtain a population inversion, the transition rates of
the various levels in three-level or four-level systems must satisfy certain conditions.
We also obtain the pumping powers required for obtaining population inversion in
three- and four-level systems and show that it is in general much easier to obtain
inversion in a four-level system as compared to a three-level system. In Chapter 6

1A nice account of the maser device is given in the Nobel lecture of Townes, which is reproduced
in Part III of this book.
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Fig. 1.1 A plane parallel
resonator consisting of a pair
of plane mirrors facing each
other. The active medium is
placed inside the cavity. One
of the mirrors is made
partially transmitting to 4k :
couple out the laser beam Mirror %l , <— Mirror

e

we give the semiclassical theory of laser operation and show that the amplification
process due to stimulated transitions is phase coherent — i.e., an electromagnetic
wave passing through an inverted medium gets amplified and the phase of the wave
is changed by a constant amount; the gain depends on the amount of inversion.

A medium with population inversion is capable of amplification, but if the
medium is to act as an oscillator, a part of the output energy must be fed back
into the system.” Such a feedback is brought about by placing the active medium
between a pair of mirrors facing each other (see Fig. 1.1); the pair of mirrors forms
what is referred to as an optical resonator. The sides of the cavity are, in general,
open and hence such resonators are also referred to as open resonators. In Chapter 7
we give a detailed account of optical resonators and obtain the oscillation frequen-
cies of the modes of the resonator. The different field patterns of the various modes
are also obtained. We also discuss techniques to achieve single transverse mode and
single longitudinal mode oscillation of the laser. In many applications one requires
pulsed operation of the laser. There are primarily two main techniques used for oper-
ating a laser in a pulsed fashion; these are Q-switching and mode locking. Chapter 7
discusses these two techniques and it is shown that using mode locking techniques
it is indeed possible to achieve ultrashort pulses in the sub picosecond time scale.

Because of the open nature of the resonators, all modes of the resonator are lossy
due to the diffraction spillover of energy from the mirrors. In addition to this basic
loss, the scattering in the laser medium, the absorption at the mirrors, and the loss
due to output coupling of the mirrors also lead to losses. In an actual laser, the modes
that keep oscillating are those for which the gain provided by the laser medium com-
pensates for the losses. When the laser is oscillating in steady state, the losses are
exactly compensated by the gain. Since the gain provided by the medium depends
on the amount of population inversion, there is a critical value of population inver-
sion beyond which the particular mode would oscillate in the laser. If the population

2 Since some of the energy is coupled back to the system, it is said to act as an oscillator. Indeed,
in the early stages of the development of the laser, there was a move to change its name to loser,
which is an acronym for light oscillation by stimulated emission of radiation. Since it would have
been difficult to obtain research grants on losers, it was decided to retain the name laser.
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inversion is less than this value, the mode cannot oscillate. The critical value of
population inversion is also called the threshold population inversion. In Chapters 4
and 6 we obtain explicit expressions for the threshold population inversion in terms
of the parameters of the laser medium and the resonator.

The quantum mechanical theory of spontaneous and stimulated emission is dis-
cussed in Chapter 9; the necessary quantum mechanics is given in Chapter 8.
Chapter 9 also discusses the important states of light, namely coherent states and
squeezed states. The emission from a laser is in the form of a coherent state while
squeezed states are non-classical states of light and find wide applications. We also
discuss the properties of a beam splitter from a quantum mechanical perspective and
show some interesting features of the quantum aspects of light.

The onset of oscillations in a laser cavity can be understood as follows. Through
some pumping mechanism one creates a state of population inversion in the laser
medium placed inside the resonator system. Thus the medium is prepared to be in
a state in which it is capable of coherent amplification over a specified band of fre-
quencies. The spontaneous emission occurring inside the resonator cavity excites the
various modes of the cavity. For a given population inversion, each mode is charac-
terized by a certain amplification coefficient due to the gain and a certain attenuation
coefficient due to the losses in the cavity. The modes for which the losses in the cav-
ity exceed the gain will die out. On the other hand, the modes whose gain is higher
than the losses get amplified by drawing energy from the laser medium. The ampli-
tude of the mode keeps on increasing till non-linear saturation depletes the upper
level population to a value when the gain equals the losses and the mode oscillates in
steady state. In Chapter 5 we study the change in the energy in a mode as a function
of the rate of pumping and show that as the pumping rate passes through the thresh-
old value, the energy contained in a mode rises very steeply and the steady-state
energy in a mode above threshold is orders of magnitude greater than the energy
in the same mode below threshold. Since the laser medium provides gain over a
band of frequencies, it may happen that many modes have a gain higher than the
loss, and in such a case the laser oscillates in a multi-mode fashion. In Chapter 7 we
also briefly discuss various techniques for selecting a single-mode oscillation of the
cavity.

The light emitted by ordinary sources of light, like the incandescent lamp, is
spread over all directions and is usually over a large range of wavelengths. In con-
trast, the light from a laser could be highly monochromatic and highly directional.
Because of the presence of the optical cavity, only certain frequencies can oscil-
late in the cavity. In addition, when the laser is oscillating in steady state the losses
are exactly compensated by the gain provided by the medium and the wave com-
ing out of the laser can be represented as a nearly continuous wave. The ultimate
monochromaticity is determined by the spontaneous emissions occurring inside the
cavity because the radiation coming out of the spontaneous emissions is incoher-
ent. The notion of coherence is discussed in Chapter 10 and the expression for the
ultimate monochromaticity of the emitted radiation is discussed in Chapter 7. In
practice, the monochromaticity is limited due to external factors like temperature
fluctuations and mechanical oscillations of the optical cavity. The light coming out
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of the laser which is oscillating in a single mode is also composed of a well-defined
wave front. This comes about because of the effects of propagation and diffrac-
tion inside the resonator cavity. This property is also discussed in greater detail in
Chapter 10.

In Chapter 11 we briefly discuss some of the important types of lasers. Chapter 12
discusses the very important area of fiber lasers which are now finding widespread
applications in many industries. Chapter 13 discusses one of the most important and
most widely used lasers, namely semiconductor lasers. In fact semiconductor lasers
have revolutionized the consumer application of lasers; they can be found in super
markets, in music systems, in printers, etc.

Most lasers work on the principle of population inversion. It is also possible
to achieve optical amplification using non-linear optical effects. In Chapter 14 we
discuss the concept of parametric amplification using crystals. Since parametric
amplifiers do not depend on energy levels of the medium, it is possible to use this
process to realize coherent sources over a very broad range of wavelengths. Thus
optical parametric oscillators (OPO) are one of the most versatile tunable lasers
available in the commercial market.

In Chapter 15—-Chapter 19 we discuss some of the important applications of lasers
which have come about because of the special properties of lasers. These include
spatial frequency filtering and holography, laser-induced fusion, and light wave
communications. We also discuss some of the very important applications of lasers
in industries and also how lasers are playing a very important role in science. Finally
in Part IIT of the book we reprint the Nobel lectures of Townes, Prochorov, Basov,
and Hansch. Townes, Prochorov, and Basov were awarded the 1964 Nobel Prize
for physics for their invention of the laser devices. The Nobel lectures of Townes
and Prochorov discuss the basic principles of the maser and the laser whereas
the Nobel lecture of Basov gives a detailed account of semiconductor lasers. The
Nobel lecture of Hansch discusses the very important field of optical clocks. Such
clocks are expected to replace atomic clocks in the near future due to their extreme
accuracy.

Today lasers span sizes from a few tens of nanometer size to hun-
dreds of kilometers long. The tiniest lasers demonstrated today have a size
of only about 44 nm and is referred to as a SPASER which stands for
Surface Plasmon Amplification by Stimulated Emission of Radiation (Ref: Purdue
University. “New Nanolaser Key To Future Optical Computers And Technologies.”
ScienceDaily 17 August 2009; 23 January 2010 <http://www.sciencedaily.com
/releases/2009/08/090816171003.htm>. The laser emits a wavelength of 530 nm
which is much larger than the size of the laser! The longest laser today is the Raman
fiber laser (based on stimulated Raman scattering) and has a length of 270 km!
(Turitsyn et al. 2009). Such ultralong lasers are expected to find applications in areas
such as non-linear science, theory of disordered systems, and wave turbulence. Since
loss is a major concern in optical fiber communication systems, such an ultralong
laser offers possibilities of having an effectively high-bandwidth lossless fiber optic
transmission link.



8 1 Introduction

Lasers can provide us with sources having extreme properties in terms of energy,
pulse width, wavelength, etc., and thus help in research in understanding the basic
concept of space and matter. Research and development continues unabated to
develop lasers with shorter wavelengths, shorter pulses, higher energies etc.

Linac Coherent Light Source is the world’s first hard X-ray free-electron laser,
located at the SLAC National Accelerator Laboratory in California. Recently the
laser produced its first hard X-ray laser pulses of unprecedented energy and ultra-
short duration with wavelengths shorter than the size of molecules. Such lasers
are expected to enable frontier research into studies on chemical processes and to
perhaps understanding ultimately the processes leading to life.

Attosecond (as) is a duration lasting 10718 5, a thousand times shorter than a fem-
tosecond and a million times shorter than a nanosecond. In fact the orbital period of
an electron in the ground state of the hydrogen atom is just 152 as. The shortest laser
pulses that have been produced are only 80 as long. Attosecond science is still in its
infancy and with further development attosecond science should help us understand
various molecular processes, electron transition between energy levels, etc.

The world’s most powerful laser was recently unveiled in the National Ignition
Facility (NIF) at the Lawrence Livermore National Laboratory in California. The
NIF has 192 separate laser beams all converging simultaneously on a single target,
the size of a pencil eraser. The laser delivers 1.1 MJ of energy into the target; such
a high concentration of energy can generate temperatures of more than 100 million
degrees and pressures more than 100 billion times earth’s atmospheric pressure.
These conditions are similar to those in the stars and the cores of giant planets.

The extreme laser infrastructure being designed and realized in France is
expected to generate peak powers of more than a petawatt (10’3 W) with pulse
widths lasting a few tens of attoseconds. The expectations are to be able to gener-
ate exawatt (10'®) lasers. This is expected to make it possible to study phenomena
occurring near black holes, to change the refractive index of vacuum, etc. (Gerstner
2007).



Chapter 2
Basic Optics

2.1 Introduction

In this chapter we will discuss the basic concepts associated with polarization,
diffraction, and interference of a light wave. The concepts developed in this chap-
ter will be used in the rest of the book. For more details on these basic concepts,
the reader may refer to Born and Wolf (1999), Jenkins and White (1981), Ghatak
(2009), Ghatak and Thyagarajan (1989), and Tolansky (1955).

2.2 The Wave Equation

All electromagnetic phenomena can be said to follow from Maxwell’s equa-
tions. For a charge-free homogeneous, isotropic dielectric, Maxwell’s equations
simplify to

VE=0 2.1
VH=0 2.2)
VxE= oH 2.3)
T, '
and
oE
VxH=¢— 2.4)
ot

where ¢ and u represent the dielectric permittivity and the magnetic permeability of
the medium and E and H represent the electric field and magnetic field, respectively.
For most dielectrics, the magnetic permeability of the medium is almost equal to that

of vacuum, i.e., _7 R
w=pno=4mr x 107" NC ~s

If we take the curl of Eq. (2.3), we would obtain

9’E

a
curl (curl E) Mat X el ¥

(2.5)

K. Thyagarajan, A. Ghatak, Lasers, Graduate Texts in Physics, 9
DOI 10.1007/978-1-4419-6442-7_2, © Springer Science+Business Media, LLC 2010
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where we have used Eq. (2.4). Now, the operator V°E is defined by the following
equation:

V2E = grad (div E) — curl (curl E) (2.6)
Using Cartesian coordinates, one can easily show that
3’°E, 3’E, 9°E
2 _ X X X .
(V E))C =32 + 0y? + 32 = div (grad Ey)

i.e., a Cartesian component of VZE is the div grad of the Cartesian component.!
Thus, using

V xV xE=V(V.E)— V?E
we obtain

9°E
V (V.E)— V’E = —en— s 2.7

or

9’E

V2E = epi—
PY?

(2.8)
where we have used the equation V.E = 0 [see Eq. (2.1)]. Equation (2.8) is known
as the three-dimensional wave equation and each Cartesian component of E satisfies
the scalar wave equation:

3%y
Vi =eu—s 2.9
Y =en o2 (2.9)
In a similar manner, one can derive the wave equation satisfied by H
3’H
VH =¢ep—s 2.10
el (2.10)

For plane waves (propagating in the direction of k), the electric and magnetic fields
can be written in the form

E = Eg expli(wt — k.r)] (2.11)
and

H = Hy expli(wt — k.r)] (2.12)

1However, (E),# div grad E,
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where E¢ and Hy are space- and time-independent vectors; but may, in general, be
complex. If we substitute Eq. (2.11) in Eq. (2.8), we would readily get

K e
where

2_ 32 12412
k™ = ki +k +k;
Thus the velocity of propagation (v) of the wave is given by

_e_ 1 (2.13)
v—k— .

g

In free space
e=2g0=288542x10"2C>’N"'m™? andp = po =47 x107'NC2s? (2.14)

so that
1 1

© JE0R0 /88542 x 1012 x 47 x 107 (2.15)
=2.99794 x 108m s~}

vV=cC

which is the velocity of light in free space. In a dielectric characterized by the
dielectric permittivity ¢, the velocity of propagation (v) of the wave will be

(2.16)

where

n= | (2.17)

is known as the refractive index of the medium. Now, if we substitute the plane wave
solution [Eq. (2.11)] in the equation V.E = 0, we would obtain

ilky Eox + ky Eoy + k; Eo;] expli(wt — k)] =0

implying
kE=0 (2.18)

Similarly the equation V.H = 0 would give us
kH=0 (2.19)

Equations (2.18) and (2.19) tell us that E and H are at right angles to k; thus the
waves are transverse in nature. Further, if we substitute the plane wave solutions
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[Egs. (2.11) and (2.12)] in Egs. (2.3) and (2.4), we would obtain

k x E H x k
= and E =
i we

H

(2.20)

Thus E, H, and k are all at right angles to each other. Either of the above equations
will give

Ey =nHo (2.21)

where 7 is known as the intrinsic impedance of the medium given by
kK  op [ /€0
we k & &€

=" ~3770
&0

and

is known as the impedance of free space. In writing Eq. (2.22) we have assumed
pw = o = 4m x 1007 N C~2s2. The (time-averaged) energy density associated
with a propagating electromagnetic wave is given by

[
<u> = 58 Ej (2.23)

In the SI system, the units of x will be J m—>. In the above equation, E represents
the amplitude of the electric field. The intensity / of the beam (which represents the
energy crossing an unit area per unit time) will be given by

I =<u>v

where v represents the velocity of the wave. Thus

=l l [Ep (2.24)
= — & = - —_— .
2 =0 2V o 0

Example 2.1 Consider a 5 mW He-Ne laser beam having a beam diameter of 4 mm propagating in air.
Thus
5% 1073

= ~ 400 Jm 25!
7 (2% 1073)

Since
1= tee2 =k 2
= —gycC = |—
2°0¢%0 0 gocC
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we get

Eo= 2 400 ~ 550 Vm!
07\ (8854 x 10-12) x (3 x 109)

2.3 Linearly Polarized Waves

As shown above, associated with a plane electromagnetic wave there is an electric
field E and a magnetic field H which are at right angles to each other. For a linearly
polarized plane electromagnetic wave propagating in the x-direction (in a uniform
isotropic medium), the electric and magnetic fields can be written in the form (see
Fig. 2.1)

Ey, = Ey cos(wt —kx), E; =0, Ex =0 (2.25)
and

H, =0, H, =0, H; = Hy cos(wt — kx) (2.26)

Since the longitudinal components E, and H, are zero, the wave is said to be a
transverse wave. Also, since the electric field oscillates in the y-direction, Egs. (2.25)
and (2.26) describe what is usually referred to as a y-polarized wave. The direction
of propagation is along the vector (E x H) which in this case is along the x-axis.

Fig. 2.1 A y-polarized Linearly Polarized Light
electromagnetic wave

propagating in the x-direction z
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Fig. 2.2 If an ordinary light
beam is allowed to fall on a
Polaroid, then the emerging
beam will be linearly
polarized along the pass axis
of the Polaroid. If we place
another Polaroid P, then the
intensity of the transmitted
light will depend on the
relative orientation of P, with
respect to Py

Unpolarized
light

Unpolarized

Unpolarized

P
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For a z-polarized plane wave (propagating in the +x-direction), the corresponding
fields would be given by

E. =0, E, =0, E,=Eycos(wt— kx), (2.27)
and

H, =0, Hy = —Hy cos(wt —kx) , H, =0 (2.28)

An ordinary light beam, like the one coming from a sodium lamp or from the sun,
is unpolarized (or randomly polarized), because its electric vector (on a plane trans-
verse to the direction of propagation) keeps changing its direction in a random
manner as shown in Fig. 2.2. If we allow the unpolarized beam to fall on a piece
of Polaroid sheet then the beam emerging from the Polaroid will be linearly polar-
ized. In Fig. 2.2 the lines shown on the Polaroid represent what is referred to as
the “pass axis” of the Polaroid, i.e., the Polaroid absorbs the electric field perpen-
dicular to its pass axis. Polaroid sheets are extensively used for producing linearly
polarized light beams. As an interesting corollary, we may note that if a second
Polaroid (whose pass axis is at right angles to the pass axis of the first Polaroid) is
placed immediately after the first Polaroid, then no light will come through it; the
Polaroids are said to be in a “crossed position” (see Fig. 2.2¢).

2.4 Circularly and Elliptically Polarized Waves

We can superpose two plane waves of equal amplitudes, one polarized in the y-
direction and the other polarized in the z-direction, with a phase difference of w/2
between them:

E1 =Epy cos(wt — kx),
. b4
E; = Eyz cos (a)t — kx + E) s (2.29)

The resultant electric field is given by
E = Eyy cos(wt — kx) — Ey Z sin(wt — kx) (2.30)

which describes a left circularly polarized (usually abbreviated as LCP) wave. At
any particular value of x, the tip of the E-vector, with increasing time ¢, can easily
be shown to rotate on the circumference of a circle like a left-handed screw. For
example, at x= 0 the y and z components of the electric vector are given by

Ey = Ey cos wt, E; = —Ep sinwt (2.31)

thus the tip of the electric vector rotates on a circle in the anti-clockwise direction
(see Fig. 2.3) and therefore it is said to represent an LCP beam. When propagating
in air or in any isotropic medium, the state of polarization (SOP) is maintained,
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Fig. 2.3 A linearly polarized o(s)
beam making an angle 45°
with the z-axis gets converted
to an LCP after propagating
through a calcite Quarter
Wave Plate (usually
abbreviated as QWP); the
optic axis in the QWP is
along the z-direction as
shown by lines parallel to the
z-axis

e(f)

LCP
Calcite
x=0 Qwp

i.e., a linearly polarized beam will remain linearly polarized; similarly, right circu-
larly polarized (usually abbreviated as RCP) beam will remain RCP. In general, the
superposition of two beams with arbitrary amplitudes and phase

E, = Ey cos (wt — kx) and E; = E cos(wt — kx + ¢) (2.32)

will represent an elliptically polarized beam.

How to obtain a circularly polarized beam? If a linearly polarized beam is passed
through a properly oriented quarter wave plate we obtain a circularly polarized beam
(see, e.g., Ghatak and Thyagarajan 1989). Crystals such as calcite and quartz are
called anisotropic crystals and are characterized by two refractive indices, namely
ordinary refractive index n, and extraordinary refractive index ne. Inside a crystal-
like calcite, there is a preferred direction (known as the optic axis of the crystal);
we will assume the crystal to be cut in a way so that the optic axis is parallel to one
of the surfaces. In Fig. 2.3 we have assumed the z-axis to be along the optic axis.
If the incident beam is y-polarized the beam will propagate as (what is known as)
an ordinary wave with velocity (¢/ng). On the other hand, if the incident beam is
z-polarized the beam will propagate as (what is known as) an extraordinary wave
with velocity (¢/ne). For any other state of polarization of the incident beam, both
the extraordinary and the ordinary components will be present. For a crystal-like
calcite n. < ny, and the e-wave will travel faster than the o-wave; this is shown
by putting s (slow) and f (fast) inside the parenthesis in Fig. 2.3. Let the electric
vector (of amplitude Ej) associated with the incident-polarized beam make an angle
¢ with the z-axis; in Fig. 2.3, ¢ has been shown to be equal to 45°. Such a beam
can be assumed to be a superposition of two linearly polarized beams (vibrating
in phase), polarized along the y- and z-directions with amplitudes Eq sin ¢ and Ej
cos ¢, respectively. The y component (whose amplitude is Eq sin ¢) passes through
as an ordinary beam propagating with velocity c/n, and the z component (whose
amplitude is Ep cos ¢) passes through as an extraordinary beam propagating with
velocity c/ne; thus

2
Ey, = Ej sin¢ cos (wt — kox) = Ej sin¢ cos (a)t — )\—nnox> (2.33)
0
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and

2
E, = Ej cos ¢ cos (wt — k.x) = Ep cos ¢ cos (a)t — A—nnex) (2.34)
0

where ) is the free-space wavelength given by

Ao = e (2.35)
1)
Since ne # no, the two beams will propagate with different velocities and, as such,
when they come out of the crystal, they will not be in phase. Consequently, the emer-
gent beam (which will be a superposition of these two beams) will be, in general,
elliptically polarized. If the thickness of the crystal (denoted by d) is such that the
phase difference produced is /2, i.e.,

2 T

o d(no —ne) = ) (2.36)
we have what is known as a quarter wave plate. Obviously, the thickness d of the
quarter wave plate will depend on A¢. For calcite, at 1o= 5893 A (at 18°C)

no = 1.65836, n, = 1.48641
and for this wavelength the thickness of the quarter wave plate will be given by

5893 x 1078

= —————cm ~ 0.000857 mm
4 x 0.17195

If we put two identical quarter wave plates one after the other we will have what is
known as a half-wave plate and the phase difference introduced will be . Such a
plate is used to change the orientation of an input linearly polarized wave.

2.5 The Diffraction Integral

In order to consider the propagation of an electromagnetic wave in an infinitely
extended (isotropic) medium, we start with the scalar wave equation [see
Eq. 2.9)]:

2

2 _ 3
VoY =euno

7z (2.37)

We assume the time dependence of the form ¢/®’ and write

¥ = U(x,y,2) e (2.38)
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to obtain

VIU+KU=0 (2.39)
where

k= w e = 2 (2.40)

v
and U represents one of the Cartesian components of the electric field. The solution
of Eq. (2.39) can be written as

+00 +00
U (x,y,2) = / f F (ky, ky ) e7Cexthoytked) qp di, (2.41)

—00 —00

where

ke =+,/k2 — k2 — k2 (2.42)

For waves making small angles with the z-axis we may write

ks +ky
— 2 _r o~ x Ty
ke= k> —kyi —k; =~ k|:1— 12
Thus
, I+ k;
Uy, z)=¢e // kx,k exp —i| kex + kyy — % z | | dkdk,
(2.43)
and the field distribution on the plane z= 0 will be given by
Uy z=0)= / / F (ke ky ) e R th) dk dky (2.44)

Thus U (x,y, z = 0) is the Fourier transform of F (kx, ky ) The inverse transform
will give us

Pl k) = @n)? / f UW,y,0) e®rth) drdy (2.45)

Substituting the above expression for F' (kx, ky) in Eq. (2.43), we get

e—ikz
U(x,y,2) = = // U(x”y’,O) LI dx’dy/
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where

+oo ik?
I :/ exp [iky (¥ —x)] exp [ﬁz} dk,

= (2.46)
472 ik (¢ —x)? '
= exp| —————
AZ 2z

and we have used the following integral

+00 2
/ e x>+ Bx dx = \/E exp [ ﬂ_] (2.47)
o0 o 4o

Similarly
+oo I ik2
I =/ exp [zky (y —y)] exp EZ dk,
—0o0
5 (2.48)
472 [ ik (y —) ]
= exp| —————
AZ 2z
Thus
i —1 lk 2 2
u(x,y, z) = e ikz // u(x',y',0) exp [_2_1 {(x—x/) + (=) }] dx'dy’
(2.49)

The above equation (known as the diffraction integral) represents the diffraction
pattern in the Fresnel approximation. If we know the field u(x,y) on a plane referred
to as z= 0, then Eq. (2.49) helps us to calculate the field generated in any plane z.
The field changes as it propagates due to diffraction effects.

2.6 Diffraction of a Gaussian Beam

A beam coming out of a laser can be well approximated by a Gaussian distribution
of electric field amplitude. We consider a Gaussian beam propagating along the
z-direction whose amplitude distribution on the plane z= 0 is given by

2 2
u(x,y,0) = A exp |:_x +2y :|
o

(2.50)

implying that the phase front is plane at z= 0. From the above equation it follows
that at a distance wq from the z-axis, the amplitude falls by a factor 1/e (i.e., the
intensity reduces by a factor 1/e?). This quantity wyq is called the spot size of the
beam. If we substitute Eq. (2.50) in Eq. (2.49) and use Eq. (2.47) to carry out
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the integration, we would obtain

A X+ y2i| i
ulx, v, 0 —— exp|———1 e 2.51
(. 3.2) 1—iy) p[ w2 (2) @D
where
AZ
yV=—5 (2.52)
T Wy
A2 Z2
w@=wo/1+y>=wo [I+ =5 (2.53)
2wy
Y L (x2 ¥ y2) (2.54)
2R(z)
_ 1 72 wg
R(z) =z 1+? =z |1+ PP (2.55)
Thus the intensity distribution varies with z according to the following equation:
2 (2 +)?)
I(x,y,2) = exp| —————= 2.56
3D =170 p[ e (2.56)

which shows that the transverse intensity distribution remains Gaussian with the
beamwidth increasing with z which essentially implies diffraction divergence. As
can be seen from Eq. (2.53), for small values of z, the width increases quadratically
with z but for values of z >>> wy2/A, we obtain

4 4
W@~ wy—s = ——
Wy TwWo

(2.57)

which shows that the width increases linearly with z. This is the Fraunhofer region
of diffraction. We define the diffraction angle as

A
mmo="2 ~ * (2.58)
Z T wWo

showing that the rate of increase in the width is proportional to the wavelength
and inversely proportional to the initial width of the beam. In order to get some
numerical values we assume A= 0.5 wm. Then, for wyp= 1 mm

20 ~0.018° and w~159mm at z=10m

Similarly, for wo= 0.25 mm,

20 ~0.073°and w~637mm at z=10m
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Fig. 2.4 A spherical wave Z=R
diverging from the point O. ~
The dashed curve represents N
a section of the spherical \
wavefront at a distance R \
from the source

Notice that 6 increases with decrease in wg (smaller the size of the aperture, greater
the diffraction). Further, for a given value of wy, the diffraction effects decrease with
A. From Eq. (2.51) one can readily show that

+00 +00 >
T W
I(x.y,2) dxdy = —= I
—00 =00
which is independent of z. This is to be expected, as the total energy crossing the
entire x—y plane will not change with z.

Now, for a spherical wave diverging from the origin, the field distribution is
given by

y L ik (2.59)

r

On the plane z= R (see Fig. 2.4)

12
r:[x2+y2+R2]
1/2
K24 y? /
R2
x2+y2
2R

(2.60)

&1+

~ R+

where we have assumed |x|, |y| << R. Thus on the plane z= R, the phase distribution
(corresponding to a diverging spherical wave of radius R) would be given by

oIk ng g IkR =% (@) (2.61)

From the above equation it follows that a phase variation of the type

exp [—i% (x2 + yz)} (2.62)
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Fig. 2.5 Diffraction divergence of a Gaussian beam whose phase front is plane at z= 0. The dashed
curves represent the phase fronts

(on the x—y plane) represents a diverging spherical wave of radius R. If we com-
pare the above expression with Egs. (2.59) and (2.60) we see that as the Gaussian
beam propagates, the phase front curvature changes and we obtain the following
approximate expression for the radius of curvature of the phase front at any value z:

2.4
0

T
R@~z|1+

2.63
o (2.63)

Thus as the beam propagates, the phase front which was plane at z= 0 becomes
curved. In Fig. 2.5 we have shown a Gaussian beam resonating between two iden-
tical spherical mirrors of radius R; the plane z= 0, where the phase front is plane
and the beam has the minimum spot size, is referred to as the waist of the Gaussian
beam. For the beam to resonate, the phase front must have a radius of curvature
equal to R on the mirrors. For this to happen we must have

(2.64)

where d is the distance between the two mirrors. We will discuss more details about
the optical resonators in Chapter 7.
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It should be mentioned that although in the derivation of Eq. (2.51) we
have assumed z to be large, Eq. (2.51) does give the correct field distribution
even at z=0.

2.7 Intensity Distribution at the Back Focal Plane of a Lens
If a truncated plane wave of diameter 2a propagating along the z-axis is incident on

a converging lens of focal length f (see Fig. 2.6a), the intensity distribution on the
back focal plane is given by (see, e.g., Born and Wolf (1999))

25,77
1=10[ I(V)} (2.65)
1%
where
2
y= T4, (2.66)
Af
P
P
. I D oF
' .
P,
@ (b)

Fig. 2.6 (a) Plane wave falling on a converging lens gets focused at the focus of the lens. (b) The
Airy pattern formed at the focus of the lens

Iy is the intensity at the axial point F and r is the distance from the point F on the
focal plane. Equation (2.65) describes the well-known Airy pattern (see Fig. 2.6b).
The intensity is zero at the zeroes of the Bessel function J;(v) and J;(v) = 0 when
v=13.832,7.016, 10.174,. . ..

About 84% of the light energy is contained within the first dark ring and about
7% of light energy is contained in the annular region between the first two dark
rings, etc., the first two dark rings occurring at

v=23.832 and 7.016
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2.8 Two-Beam Interference

Whenever two waves superpose, one obtains what is known as the interference pat-
tern. In this section, we will consider the interference pattern produced by waves
emanating from two point sources. As is well known, a stationary interference
pattern is observed when the two interfering waves maintain a constant phase dif-
ference. For light waves, due to the very process of emission, one cannot observe a
stationary interference pattern between the waves emanating from two independent
sources, although interference does take place. Thus one tries to derive the interfer-
ing waves from a single wave so that a definite phase relationship is maintained all
through.

d =0.005mm (f=5mm)

K

——— y (mm)
o
|

|
=50

—— x (mm)

@ (b)

Fig. 2.7 (a) Waves emanating from two point sources interfere to produce interference fringes
shown in Fig. 2.7 (b)

Let S; and S represent two coherent point sources emitting waves of wavelength
X (see Fig. 2.7a). We wish to determine the interference pattern on the photographic
plate Pj; the interference pattern on the photographic plate P, is discussed in
Problem 2.11. The intensity distribution is given by

[ = 4lycos® §/2 (2.67)

where [ is the intensity produced by either of the waves independently and

2
5 = T”A (2.68)
where
A=50-50 (2.69)

represents the path difference between the two interfering waves. Thus, when
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§=2nr = A=510—-50=nxn=0,1,2,..... (Bright Fringe) (2.70)

we will have a bright fringe, and when

1
=0C2n+Hr = A=8510-50=mn+ z)k, n=0,1,2,..... (Dark Fringe)
.71

we will have a dark fringe. Using simple geometry one can show that the locus of
the points (on the plane P;) such that S;Q ~ S,0Q= A is a hyperbola, given by

(@ — A2 — A%? = A2 [02 n % (d2 - Az)} 2.72)

Now,
A=0=x=0

which represents the central bright fringe. Equation (2.72) can be written in the form
(see, e.g., Ghatak (2009))

Y [y2 +D*+ % (d2 — A2)} (2.73)

For values of y such that
y? << D? (2.74)

the loci are straight lines parallel to the y-axis and one obtains straight line fringes
as shown in Fig.2.7b. The corresponding fringe width would be

—)LD 2.75
/3—7 (2.75)

Thus for D= 50 cm, d= 0.05 cm, and A= 6000 A, we get B=0.06 cm.

2.9 Multiple Reflections from a Plane Parallel Film

We next consider the incidence of a plane wave on a plate of thickness 7 (and of
refractive index ny) surrounded by a medium of refractive index n; as shown in
Fig. 2.8; [the Fabry—Perot interferometer consists of two partially reflecting mirrors
(separated by a fixed distance /) placed in air so that nj= ny= 1].

Let Ap be the (complex) amplitude of the incident wave. The wave will undergo
multiple reflections at the two interfaces as shown in Fig. 2.8a. Let r; and #; repre-
sent the amplitude reflection and transmission coefficients when the wave is incident
from n; toward n; and let r» and £, represent the corresponding coefficients when the
wave is incident from n, toward n1. Thus the amplitude of the successive reflected
waves will be

Aogry, Agti m eia, Aoty rg eZi(S, R
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VAR
IR

2 4 h 0
5 27 A _4mmhcost (2.76)
Ao A0

Fig. 2.8 Reflection and
transmission of a beam of
amplitude Ao incident at a
angle 6; on a film of refractive
index n, and thickness i

where

represents the phase difference (between two successive waves emanating from the
plate) due to the additional path traversed by the beam in the film, and in Eq. (2.76),
0, is the angle of refraction inside the film (of refractive index ny), k the film thick-
ness, and Aq is the free-space wavelength. Thus the resultant (complex) amplitude
of the reflected wave will be

A, =Ap [r1+t1 t2r26i5 <1+r%ei5+rge2i5+....)]

it id
= Ao |+ 225 (2.77)
l—rye

Now, if the reflectors are lossless, the reflectivity and the transmittivity at each
interface are given by

R:r%:r%
T=t1pr=1—R

[We are reserving the symbol T for the transmittivity of the Fabry—Perot etalon].

Thus
A, (1 =R)ed
14—0 =T |:1 - —1 — Rei‘s (278)

where we have used the fact that r,= — r1. Thus the reflectivity of the Fabry—Perot
etalon is given by
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2 2

=R.

1 — el
1— Reéld
(1 — cos 8)% + sin®8
(1 — R cos8)? + R? sin’s

4R sinzg

= 28
(1 —R)? + 4R sin 5

A,

p=‘_
Ap

or
F sinzg
T s e
2
where
4R

is called the coefficient of Finesse. One can immediately see that when R << 1, F'is
small and the reflectivity is proportional to sin” §/2. The same intensity distribution
is obtained in the two-beam interference pattern; we may mention here that we have
obtained sin® /2 instead of cos? 8/2 because of the additional phase change of 7 in
one of the reflected beams.
Similarly, the amplitude of the successive transmitted waves will be
Apti 1, Apt1 1 r% ei(S’ Apt 1y rg e2i8’ -

where, without any loss of generality, we have assumed the first transmitted wave

to have zero phase. Thus the resultant amplitude of the transmitted wave will be
given by

Ar=Apth |:1+r%ei8+r§€2i8+....i|

b 1—R

Ay —12  _py——
CT—2eid T Re

Thus the transmittivity 7 of the film is given by

A;
T=|—
Ap

> (1 —R)?
"~ (1 =R cos8)? + R? sin? 8

or

1

= 2.81
1+F sinzg ( )
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It is immediately seen that the reflectivity and the transmittivity of the Fabry—Perot
etalon add up to unity. Further,

when

§=2mnmn , m=1,2,3,.... (2.82)

In Fig. 2.9 we have plotted the transmittivity as a function of é for different values
of F. In order to get an estimate of the width of the transmission resources, let

1 AS
T=—- for §=2mm + —
2 2

Thus

AS
F sin’ - = 1 (2.83)

The quantity A§ represents the FWHM (full width at half maximum). In almost all
cases, A§ <<< 1 and therefore, to a very good approximation, it is given by

4  2(1-R

A~ —=""2
JF VR

(2.84)

Thus the transmission resonances become sharper as the value of F increases (see
Fig. 2.9).

Fig. 2.9 The transmittivity
of a Fabry—Perot etalon as a
function of d for different
values of F; the value of m is
usually large. The
transmission resonances
become sharper as we
increase the value of F. The L L
FWHM (Full Width at Half 2mm @m+2) =
Maximum) is denoted by A§
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2.10 Modes of the Fabry—Perot Cavity

We consider a polychromatic beam incident normally (8,= 0) on a Fabry—Perot cav-
ity with air between the reflecting plates (np= 1) — see Fig. 2.8. Equations (2.76) and
(2.82) tell us that transmission resonance will occur whenever the incident frequency
satisfies the following equation:

V=1, = mﬁ (2.85)

where m is an integer. The above equation represents the different (longitudinal)
modes of the (Fabry—Perot) cavity. For h= 10 cm, the frequency spacing of two
adjacent modes would be given by

c

dv=—=1 MH
v o 500 z

For an incident beam having a central frequency of
v=1y=06x 10" Hz
and a spectral width? of 7000 MHz the output beam will have frequencies
Vg, Vo £ dv and vy &= 2 Sv

as shown in Fig. 2.10. One can readily calculate that the five lines correspond to

1500 MHz
¥
)
—> —>
< 7000 MHz » h I
—> v —p Vv

Fig. 2.10 A beam having a spectral width of about 7000 MHz (around vy = 6 X 10" Hz) is
incident normally on a Fabry—Perot etalon with 2= 10 cm and np= 1. The output has five narrow
spectral lines

2For vy = 6 x 10" Hz, ho= 5000 A and a spectral width of 7000 MHz would imply ’ATf;U =

AV—O" = 67: 1'(()),3 ~ 1.2x 1079 giving Axg = 0.06 A. Thus a frequency spectral width of 7000 MHz

(around vo = 6 x 10'* Hz) implies a wavelength spread of only 0.06 A.



30 2 Basic Optics

Fig. 2.11 Typical output 1
spectrum of a Fabry—Perot
multi longitudinal mode
(MLM) laser diode; the
wavelength spacing between ]
two modes is about 1.25 nm

-—t

. I
| T

STHRT 15Z0. 04 nm STOP 1560, BH nm

M\ﬂ
U

m = 399998, 399999, 400000, 400001, and 400002

Figure 2.11 shows a typical output of a multilongitudinal (MLM) laser
diode.

Problems

Problem 2.1 The electric field components of a plane electromagnetic wave are

Ey = =3E sin(wt — kz); Ey = Ey sin(wt — kz)
Plot the resultant field at various values of time and show that it describes a linearly polarized wave.

Solution The beam will be linearly polarized

Problem 2.2 The electric field components of a plane electromagnetic wave are

Ex = Ey sin(wt + kz); Ey = Ey cos(wt + kz)

Show that it describes a left circularly polarized wave.
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Solution Propagation along the + z-direction (coming out of the page). Atz =0

Ex = Egsinot; Ey = Ey coswt

= Ef + E% = E(Z) = Circularly polarized

Since propagation is along the +z-axis, i.e., coming out of the page, we have an LCP wave.

Problem 2.3 The electric field components of a plane electromagnetic wave are
Ex = =2E cos(wt + kz); Ey = Eq sin(wt + kz)

Show that it describes a right elliptically polarized wave.

Problem 2.4 In Fig. 2.3 if we replace the quarter wave plate by a (calcite) half-wave plate, what will be
the state of polarization of the output beam?

Problem 2.5 For calcite, at Ay = 5893 A (at 18°C) no= 1.65836, ne = 1.48641. The thickness of the
corresponding QWP is 0.000857 mm (see Section 2.4). If in Fig. 2.3 the wavelength of the incident
linearly polarized beam is changed to 6328 A determine the state of polarization of the output beam.

Problem 2.6 A left circularly polarized beam is incident on a calcite half-wave plate. Show that the
emergent beam will be right circularly polarized.

Problem 2.7 A 3 mW laser beam (Ao =~ 6328 A) is incident on the eye. On the retina, it forms a circular
spot of radius of about 20 pm. Calculate approximately the intensity on the retina.

2
Solution Area of the focused spot A = (20 X 10_6) ~ 1.3 x 1072 m2. On the retina, the intensity
will be approximately given by

3x1073W

~ 6 2
Tax 1002 23X 10 W/m

P
I~ — =~
A

Problem 2.8 Consider a Gaussian beam propagating along the z-direction whose phase front is plane at
z =0 [see Eq. (2.50)]. The spot size of the beam at z = 0, wq is 0.3 mm. Calculate (a) the spot size and
(b) the radius of curvature of the phase front at z = 60 cm. Assume Ao &~ 6328 A.

[Ans: (@) w(z =60cm) ~ 0.84 mm (b) R(z = 60cm) ~ 93.3 cm].
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Problem 2.9 In continuation of the previous problem, show that for a simple resonator consisting of a
plane mirror and a spherical mirror (of radius of curvature 93.3 cm) separated by 60 cm, the spot size of
the beam at the plane mirror would be 0.3 mm.

Problem 2.10 Consider a He—Ne laser beam (with X &~ 6328 A) incident on a circular aperture of radius
0.02 cm. Calculate the radii of the first two dark rings of the Airy pattern produced at the focal plane of
a convex lens of focal length 20 cm.

Solution The radius of the first dark ring would be [see Eq. (2.66)]

3.832 x 6.328 x 107 x 20
"o~ x x X2~ 0039 cm
2 x 0.02

Similarly, the radius of the second dark ring is

7.016 x 6.328 x 10~ x 20
r &~ ~ 0.071 cm
27 x 0.02

Problem 2.11 Consider two coherent point sources S| and S, emitting waves of wavelength \ (see Fig.
2.7a). Show that the interference pattern on a plane normal to the line joining S and S> will consist of
concentric circular fringes.

Problem 2.12 Consider a light beam of all frequencies lying between v = vg = 5.0 x 104 Hz to v =
5.00002 x 104 Hz incident normally on a Fabry—Perot interferometer (see Fig. 2.10) with R = 0.95,
no = 1, and d = 25 cm. Calculate the frequencies (in the above frequency range) and the corresponding
mode number which will correspond to transmission resonances.

Solution Transmission resonances occur at

v=vm =msg =m39— = (6 x 103 m) Hz

14
Forv =g =5 10" Hz; m = 219 — 8333333

Since m is not an integer the frequency v does not correspond to a mode.

For m = 833334, v = 5.000004 x 1014 Hz = v + 400 MHz
For m = 833335, v =5.000010 x 104 Hz = v + 1000 MHz
For m = 833336, v =5.000016 x 10" Hz = v + 1600 MHz

Finally, for m = 833337, v=5.000022 x 10M4Hz = vo +2200 MHz which is beyond the given range.



Chapter 3
Elements of Quantum Mechanics

3.1 Introduction

In this chapter we discuss very briefly the basic principles of quantum mechan-
ics which are used in later chapters. At places, the chapter will appear a bit
disconnected; this is inevitable because the subject of quantum mechanics is so
vast that it is impossible to present the basic concepts in a coherent fashion in
one tiny chapter! Nevertheless, whatever we discuss we will try to do from first
principles.

We first give a heuristic derivation of the Schrodinger equation which is followed
by its solutions corresponding to some important potential energy functions. We
have solved the particle in a box problem and also the harmonic oscillator problem.
For the hydrogen atom problem, we just present the results. We have also dis-
cussed the physical interpretation of the wave function and the uncertainty principle.
Several other “solvable” problems are briefly discussed at the end of the chapter.

3.2 The One-Dimensional Schrodinger Equation

There are many experimental results which show that atomic objects (like electrons,
protons, neutrons, « particles) exhibit both wave and particle properties. Indeed the
wavelength A is related to the momentum p through the de Broglie relation

= (3.1)
p

where h (% 6.627 x 10734J s) represents Planck’s constant. Thus, we may write

p = hk 3.2)
where i = h /27 and
k=2 (3:3)
A
K. Thyagarajan, A. Ghatak, Lasers, Graduate Texts in Physics, 33

DOI 10.1007/978-1-4419-6442-7_3, © Springer Science+Business Media, LLC 2010



34 3 Elements of Quantum Mechanics
represents the wavenumber. Further, as established by Einstein’s explanation of the

photoelectric effect, the energy E of the particle is related to the frequency w by the
following equation:

E = how 34)

The simplest type of a wave is a one-dimensional plane wave described by the
wave function

W(x, 1) =A expli(kx — wt)] (3.5)

where A is the amplitude of the wave and the propagation is assumed to be in the +x
direction. If we now use Eqgs. (3.2) and (3.4), we would obtain

U = exp I:% (px — Et)i| 3.6)

Elementary differentiation will give us

ow

jh— = EW 3.7

th— 3.7
ow

— ih— = pW 3.8)
0x

which suggests that, at least for a free particle, the energy and momentum can be
represented by differential operators given by

0 0
E ih—, —ih— 3.9
— i o p—> —i o (3.9)

Further, if we again differentiate Eq. (3.8), we would obtain

v p?
_ror_ P (3.10)
2m 9x? 2m
For a free particle, the energy and momentum are related by the equation
2
p
E=— 3.11
o (3.11)
Thus the right-hand sides of Egs. (3.7) and (3.10) are equal and we obtain
LW h? 9?w
h = (3.12)

or T T om a2

which is the one-dimensional Schrédinger equation for a free particle. If we use
the operator representations of E and p [see Eq. (3.9)], we may write the above
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equation as

2
v ="y (3.13)

2m

We next consider the particle to be in a force field characterized by the potential
energy V (x); thus, classically, the total energy of the system is given by

2
E=2 {v (3.14)

2m

If we now assume p and E to be represented by the differential operators, the
equation

pz
EV = |:— + V(x):| v (3.15)
2m
would assume the form
oW " 92
h—=|——+V \J 3.16
ot [ o | (x)} (5.16)

which represents the one-dimensional time-dependent Schrodinger equation. The
above equation can be written in the form

v

ihﬁ =HVY (3.17)
where
[P AR L (3.18)
om 2m 3x2

is an operator and represents the Hamiltonian of the system. Equations (3.16)
and (3.17) represent the one-dimensional time-dependent Schrodinger equation.
The above is a very heuristic derivation of the Schrodinger equation and lacks
rigor. Strictly speaking Schrodinger equation cannot be derived. To quote Richard
Feynman

Where did we get that equation from ? Nowhere. It is not possible to derive it from anything
you know. It came out of the mind of Schrodinger.

Although we have obtained Eq. (3.16) starting from an expression for a plane wave,
the Schrodinger equation as described by Eq. (3.16) is more general in the sense that
¥ (r,t) called the wave function contains all information that is knowable about
the system. As will be discussed in Section 3.4, ¥*(r, )y (r, 1)dt represents the
probability of finding the particle in a volume element dr. Note also that observables
such as momentum energy are represented by operators [see Eq. (3.9)].
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When the Hamiltonian, H, is independent of time!, Eq. (3.16) can be solved by
using the method of separation of variables:

W(x,0) = v T (1) (3.19)

Substituting in Eq. (3.16) and dividing by W, we obtain

"Tod v

1 dr 1| n?d*y
2m dx?

_— V(x)l//] —E (3.20)

where E is a constant (and now a number). Thus

a7 + / ET () =0
dr B
giving
T (£) ~ exp <—%Er) (3.21)
Further, Eq. (3.20) gives us
h? d>y
——— 4+ VY =E 3.22
TR +Vy ¥ (3.22)
or
HyYy = Ey (3.23)

which is essentially an eigenvalue equation. For i to be “well behaved,” the quan-
tity E takes some particular values (see, e.g., Examples 3.1 and 3.2), these are
known as the energy eigenvalues and the corresponding forms of i are known as
eigenfunctions; by “well-behaved” we imply functions which are single valued and
square-integrable (i.e., f |1//|2dr should exist).

In Section 3.4 we will interpret the wave function ¥ as the probability amplitude;
therefore i should be single valued and |y (x)|2dx has to be finite for finite values
of dx. Thus

li 2dx =0
A, ¥/

In practice this is satisfied by demanding that ¥ be finite everywhere. We also
have the following theorems:

I'Whenever we are considering bound states of a system (like those of the hydrogen atom or that of
the harmonic oscillator) the Hamiltonian is independent of time; however, for problems such as the
interaction of an atom with radiation field, the Hamiltonian is not independent of time (see, e.g.,
Section 4.7).
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Theorem 1 The derivative of the wave function dyr/dx is always continuous as long
as the potential energy V(x) is finite, whether or not it is continuous®.

Proof We integrate the Schrodinger equation [Eq. (3.22)] from x— ¢ to x+¢ to obtain

x+8d2¢/ ) x+-e
m

Ve 2m / E - VCOIY ()

or o o

x+e

2
Yx+e)—y'x—e) = —h—’? / [E — V()Y (x)dx

Since V(x) is assumed to be finite (it could, however, be discontinuous), the RHS
tends to zero as e—0. Thus ¥’ is continuous at any value of x. It is obvious that
Y has to be necessarily continuous everywhere. Alternatively one may argue that if
dyr /dx is discontinuous then d?/dx* must become infinite; this will be inconsistent
with Eq. (3.22) as long as V(x) does not become infinite.

Theorem 2 If the potential energy function V(x) is infinite anywhere, the proper
boundary condition is obtained by assuming V(x) to be finite at that point and car-
rying out a limiting process making V(x) tend to infinity. Such a limiting process
makes the wave function vanish at a point where V(x)=00.

Example 3.1 Particle in a one-dimensional infinitely deep potential well

We will determine the energy levels and the corresponding eigenfunctions of a particle of mass p in a
one-dimensional infinitely deep potential well characterized by the following potential energy variation
(see Fig. 3.1):

+ oo + oo

Fig. 3.1 Particle in a
one-dimensional box 0 a

I may be mentioned that in many texts the continuity of v and dyr /dx are taken to be axioms.
This is not correct because it follows from the fact that v (x) satisfies a second-order differential
equation [see Eq. (3.22)]. Indeed, when V(x) becomes infinite, dy /dx is not continuous.
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Vix)=0 for O<x<a

(3.24)
=00 for x<0 andforx>a
For 0 < x < a, the one-dimensional Schrodinger equation becomes
a2y,
w2t k“g(x) =0 (3.25)
where > uE
2 _ 2K
k* = e (3.26)
The general solution of Eq. (3.25) is
¥ (x) = A sinkx + B cos kx (3.27)

Since the boundary condition at a surface at which there is an infinite potential step is that ¥ is zero (see
Theorem 2), we must have
Yx=0=vx=a)=0 (3.28)

Using the boundary condition given by the above equation, we get
Y (x=0=B=0 (3.29)

and
Y (x=a)=Asinka=0

Thus, either A = 0 or
ka=nmt, n=1,2,... (3.30)

The condition A= 0 leads to the trivial solution of ¥ vanishing everywhere; the same is the case for n=0.
If we now use Eq. (3.26), the allowed energy values are therefore given by

n?r2h?
E,=——,n=123,... (3.31)
2ua?

The corresponding eigenfunctions are

Yn = % sin (" x) O<x<a 332)
=0 x<0andx>a
where the factor «/2/a is such that the wave functions form an orthonormal set
a
/ Vi)Y (x)dx = Smn (3.33)
0 1 Lif k
=11 =n
e S (3.34)
=0ifk #n

is known as the Kronecker delta function. It may be noted that whereas ¥, (x) is continuous everywhere,
dyrj,(x)/dx is discontinuous at x= 0 and at x=a. This is because of V(x) becoming infinite at x= 0 and at
x=a (see Theorem 1). Figure 3.2 gives a plot of the first three eigenfunctions and one can see that the
eigenfunctions are either symmetric or antisymmetric about the line x = a/2; this follows from the fact
that V(x) is symmetric about x = a/2 (see Problem 3.2).
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Fig. 3.2 The energy + o0 +oo

eigenvalues and W)
eigenfunctions for a particle
in an infinitely deep potential

well. Notice that the \/
eigenfunctions are either Ya(x)

symmetric or antisymmetric
about x = a/2

Y1(x)

The following points are also to be noted

®

(i)
(iii)

(iv)

E cannot be negative because if we assume E to be negative then the boundary conditions at x=0
and x=a cannot be simultaneously satisfied.

The eigenvalues form a discrete set.

The eigenfunctions given by Eq. (3.32) form a complete set, i.e., an arbitrary (well-behaved)
function f(x) (in the domain 0 < x < @) can be expanded in terms of the eigenfunctions of H:

fx) = chwn(x) = \/g Z cp Sin (%x) (3.35)
n n=12,...

where ¢, are constants which can be determined by multiplying both sides of the above equation
by ¥, *(x) and integrating from 0 to a to obtain

/ w,ii(X)f(X)dx = ch / w;;(x)v/n(x)dx = Z cnémn = cm (3.36)
0 "0 "

where we have used the orthonormality condition given by Eq. (3.33).

The most general solution of the time-dependent Schrodinger equation

ih o HY R 82w + V(x) ¥ (x,1) (3.37)
ih— = =—— — x) W(x, .
at 21 dx2

with V(x) given by Eq. (3.24) will be

oo o0
; )
V= Y eapu@e B = N oy (e (3.38)
n=12,... n=12,...
t 2ul?
where c=L 4= MT (3.39)
) wch

Substituting for ¥, (x) and E, we get

i 2 . nmx ‘nzﬂzh
V(x,t) = Z cn ;smT exp | —i T t (3.40)
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Since

W(x,0) =) catn(x) (341
n
the coefficients ¢;; can be determined from the initial form of the wave function:

on = f VW (x, 0)dx (3.42)
0

Thus, the recipe for determining W(x, 7) is as follows:

If we know W(x, 0) we can determine ¢, from Eq. (3.42), we substitute these values in Eq. (3.38),
and sum the series to obtain W(x, 7).

We assume W (x, 0) to be normalized:

fw 0> dr =1 (3.43)
0

This would imply

a a
1=/Zc;';w,f(x>2cmu/fm(x)dx=22cz cm/w;‘(x)wmmdx
0 n m n n 0
:ZZ C;‘; CmOmn = Z|Cn‘2

(3.44)

where we have used the orthonormality condition given by Eq. (3.33). Further,

n m

a a
/ W e = 30 cheme En=Emi/R / Y (@) (x) dx
0 0
= 2 X creme EnmEm Ry, = 37 fen? = 1
n m n

Thus, if the wave function is normalized at =0, then it will remain normalized at all times.
Further, we can interpret Eq. (3.44) by saying that |c, 12 represents the probability of finding the
system in the nth eigenstate which remains the same at all times. Thus there are no transitions.
Indeed, whenever the potential energy function is time-independent, we obtain what are known
as stationary states and there is no transition between states.

As a simple example, let us assume that the particle is described by the following wave function
(at t=0):

1 [ 1
W(x,0) = \E Y1) + é V() + \/; e

Notice that

D lenl? =1
n

so that the wave function is normalized. Thus, if we carry out a measurement of energy, the
probabilities of obtaining the values Ej, Ep, and E4 would be 1/6, ]/2, and 1/3, respectively.
How will such a state evolve with time? Well, we just multiply each term by the appropriate
time-dependent factor to obtain W(x, f) [see Eq. (3.38)].
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W(x,1) = \E Y1 (e~ + %wzme—“”ﬂo + \Ewg(x)e—“”/fo (3.45)

where 1 is given by Eq. (3.39). Obviously

a
/ |W(x, ) 2dx = 1 (3.46)
0

for all values of 7. The quantity
P(x,1) = [ (x| (3.47)

would represent the time evolution of the probability distribution function. However, at all values
of time, the probability of finding the system in a particular state remains the same. Further, the
average value of the energy is given by

1 1 1
EY=-E{+-FE+ - E
(E) 61+2 2+3 4

[1 16:| 72h2 15 nlR?
==+

3 2ua? - 2 2ua? (348)

6 +3

Thus, if one carries out a large number of measurements (of energy) on identically prepared
systems characterized by the same wave function as given by Eq. (3.45), then the average value
of the energy would be given by Eq. (3.48).

(vii)  What happens to the wave function if £ # Ej, i.e., if E is not one of the eigenvalues? For such a
case the boundary conditions cannot be satisfied and therefore it cannot be an allowed value of
energy. For example, if

_ 08172R?
N 2ua?

then the wave function cannot be zero for both x=0 and x=a.

Example 3.2 The linear harmonic oscillator
‘We next consider the linear harmonic oscillator problem where the potential energy function is given by

1
V@ =3 w* X2 (3.49)

and the Schrodinger equation [Eq. (3.22)] can be written in the form

d*y

27 _ g2 _
ot [A £ ]w 0 (3.50)
where £ = « x and we have chosen
7o)
= 3.51
o 3 (3.51)
so that
2E
A=—
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For the wave function not to blow up at x=+ oo (which represents the boundary condition), A must be
equal to an odd integer (see Appendix A), i.e.,

2FE
A=—=(2 1); =0,1,2,3,.... 3.52
o Cm+1D; m (3.52)
The above equation would give us the following expression for the discrete energy eigenvalues:
1
E:Em:<m+§)hw,m:0,l,2,3,..‘. (3.53)

The corresponding normalized wave functions are the Hermite—Gauss functions (see Appendix A):

1
Yim(€) = NuHm(€) exp (—Esz) ,m=0,1,2,3,.... (3.54)
where
o 1/2
Np=|——z+—— 3.55
" <7rl/22’"m!) ( )

represents the normalization constant. The first few Hermite polynomials are
Hy()=1 H (§)=2¢
Hy () =482 -2,  H3(§) =8 — 12¢,... (3.56)

The wave functions form a complete set of orthonormal functions:
+00
/ Y Undx = 8, (3.57)
—0Q

The most general solution of the time-dependent Schrodinger equation [Eq. (3.16) with V(x) given by
Eq. (3.49)] will be

o0
V=Y. caymxe Enilh

n=0,1,2,...
(3.58)

= i C”wn(x)e—i(nﬂ-%)wt

n=0,1,2,...

The values of ¢, will be determined by the initial state of the oscillator.

3.3 The Three-Dimensional Schrodinger Equation

The three-dimensional generalization of the Schrodinger equation is quite straight-
forward; instead of Eq. (3.29), we have

d
E — ih—
ot
L0 .0 L0
Dx —> —lha, Dy —> —lha—y , Pz —> _lha_z (3.59)
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Thus the equation [cf. Eq. (3.13)]

1 2 2 2
EW = [% (P20} +02) + V(r)i| w (3.60)
assumes the form
0w
ih— = HV (3.61)
at
where
p2 h2 5
H="—+4+VI@=——V-"4+V(r) (3.62)
2m 2m

is an operator and represents the Hamiltonian of the system. Equations (3.61) and
(3.62) represent the three-dimensional Schrodinger equation. Once again, when the
Hamiltonian, H, is independent of time, Eq. (3.61) can be solved by using the
method of separation of variables:

V) =y )T @ (3.63)

Substituting in Eq. (3.61) and dividing by W, we obtain

Ldr 17 ®
lT(t)dt_w[

—— VXY + V() 1//] =E (3.64)
2m

where E is a constant (and now a number). The solution of the time-dependent part
is again given by Eq. (3.21). Equation (3.64) gives us

h2
— — VY +Vy =Ey (3.65)
2m
or
HYy = EYy (3.66)
which, once again, is essentially an eigenvalue equation. The solution
Wy, (r,1) = ¥y (r) exp (—iEyt/ ) (3.67)

is said to describe a stationary state; here the subscript n refers to a particular
eigenvalue E,. Thus

HYy = Epyn (3.68)
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3.4 Physical Interpretation of ¥ and Its Normalization

We rewrite the Schrodinger equation

oW (r, 1 ?
Y ®D oy Ly e (3.69)
at 2m
along with its complex conjugate
AW (r, ¢ h?
P L) AR (3.70)
at 2m

If we multiply Eq. (3.69) by W* and Eq. (3.70) by ¥ and subtract, we obtain

oW Jw* K2
i v — + W = —— (Vi — uV2Ip* 3.71
: ( or T o ) 2m< ) G-71)

Remembering that V2> = 32/ dx*>4+98%/ 9y>+092/ 3z>, we may rewrite the above
equation in the form

at 2m | ox \ ox ox
0 AV L0V 0 ov* L0V
o (v—/— —w )+ = (v —w ) [=0
ay ay ay 0z 0z 0z
or
dp
—+V.-J=0 (3.72)
ot
where
p =Wy (3.73)
aJ. aJ. aJ.
V.y=-—""+2+ = (3.74)
0x ay 0z
PR L ) 375)
T 2m dx ax ’

and similar expressions for J, and J,. Equation (3.72) is the equation of continuity
in fluid dynamics and can be physically interpreted by considering a moving gas
with p representing the number of particles per unit volume and J representing the
current density. Thus, if we normalize W such that

///W*Wdt: (3.76)
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For all states for which [ W*Wdr exists, this normalization is always possible
because if W is a solution of Eq. (3.69) then any multiple of W is also a solution and
we may always choose the multiplicative constant such that Eq. (3.76) is satisfied.
We may associate

o=V Y (3.77)
with position probability density and J with probability current density. This implies

that W*Wdr represents the probability of finding the particle in the volume element
drt. Further, for an infinitely extended plane wave

W= exp [% (p-r— Et)] (3.78)
the current density J can be easily calculated to give
j=P _y (3.79)
m

which is just the current for a beam of particles of unit density® (U*W = 1) and
velocity v.

Example 3.3 Particle in a three-dimensional box

For a free particle of mass u inside a cubical box of side L, the Schrodinger equation is given by

5 0O<x<L
v2y+2Ey —0 o 3.80
v+ hzw- <y<L (3.80)
O0<z<L

with the boundary condition that v should vanish everywhere on the surface of the cube. We use the

method of separation of variables and write ¥ =X(x) Y(y) Z(z) to obtain
1(12)(+ 1d2Y+ 1d2Z  2uE
Xdx2 Ydy? Zd2 R

(3.81)

The first term is a function of x alone, the second term of y alone, etc., so that each term has to be set
equal to a constant. We write
1 d2x

X9z = —k)% (3.82)
and similar equations for Y(y) and Z(z) with
2uE
2 2 2 _ zH
ky +ky +k; = 2 (3.83)

We have set each term equal to a negative constant; otherwise the boundary conditions cannot be satisfied.
The solution of Eq. (3.82) is

31t may be noted that the plane wave is not normalizable; this is due to the fact that an infinitely
extended plane wave corresponds to a constant probability density everywhere.
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X(x) = A sin kyx + B cos kyx

and since ¥ has to vanish on all points on the surface x=0 we must have B=0. Further, for i to vanish
on all points on the surface x=L, we must have

sin kxyL =0
or o
ke = XL withny =1,2,... (3.84)
(cf. Example 3.1). Similarly, we would obtain
ky = 28 1,23
) = Ny =1,2,5,...
y L

and
ngmw
k; = 2 ,n;=1,2,3,...

Thus using Eq. (3.83) we get the following expression for energy eigenvalues

_ n2h?
B 2ul?

(F +n} +nd), ne.ny, ng =1,2,3,.. (3.85)

The corresponding normalized wave functions are

v(x,y,2) = <I%)1/2 sin (% x) sin (% y) sin (%z) (3.86)

3.4.1 Density of States

If g(E) dE represents the number of states whose energy lies between E and E+dE
then g(E) is known as the density of states and it represents a very important quantity
in the theory of solids. In order to calculate g(E) we first calculate N(E) which
represents the total number of states whose energies are less than E. Obviously

E
N(E) = / g(E)dE (3.87)
0
and therefore
dN(E)
E)y=—"7 .
g(E) iE (3.88)
Now,
2uL*E
w4 = T = Rosay) (3.89)

Thus N(E) will be the number of sets of integers whose sum of square is less than
R?. In the n,, ny, and n; space each point corresponds to a unit volume and if we
draw a sphere of radius R then the volume of the positive octant will approximately
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represent4 N(E); we have to take the positive octant because ny, ny, and n; take
positive values. Thus

4_”R3 ewirr? 32

3 = 3273 (3.90)

1
N(E)=2x = X
8
where an additional factor of 2 has been introduced as a state can be occupied by
two electrons. Using Eq. (3.88) we get

ew2v gl/2

E) =
g(E) 223

(3.9
where V(=L?) represents the volume of the box. Often it is more convenient to
express the density of states in momentum space. Now for a free non-relativistic
particle

2
=2 (3.92)
2u
Thus the equation
g(p)dp = g(E)AE (3.93)
would readily give
V
gp) = Pyl (3.94)

3.5 Expectation Values of Dynamical Quantities

The interpretation of |W|? in terms of the position probability density allows
us to calculate the expectation value of measurable quantities. For example, the
expectation value of the x coordinate is given by

{x) = % = //f W* (r, 1) xW (r,1) dr (3.95)

where the integration is over the entire space and in the last step we have assumed
the wave function to be normalized. Similarly, we may write for (y) and (z) and also
for the expectation value of the potential energy V

(V) = /// U (r,f) V(r) W (r,1)dt (3.96)

4If the reader finds it difficult to understand he may first try to make the corresponding two-
dimensional calculations in which one is interested in finding the number of sets of integers such
that nxz+ny2 < R?. If one takes a graph paper then each corner corresponds to a set of integers and
each point can be associated with a unit area. Thus the number of sets of integers would be 7 R%/4
where the factor l/4 is because of the fact that we are interested only in the positive quadrant.
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In order to obtain an expression for the expectation values of quantities like energy
and momentum, we multiply the Schrodinger equation [Eq. (3.61)] by W* and
integrate it to obtain

* . ow * hz 2 *
v lhEd‘C = | v —2—V Vdr + | " VWdr (3.97)
m

From now on the single integral sign will be assumed to represent the three-
dimensional integral over the entire space. The last term is simply (V); further,
since

p2
(E) = <—> +(V) (3.98)

2m

we may write
L ov
ERV
2\ * [ _ 32

<px>— /\y ( B _ax2) dr (3.100)

and similar expressions for (p§> and (pf) Equations (3.99) and (3.100) suggest that
the expectation value of any dynamical quantity O is obtained by operating it on ¥,
premultiplying it by W*, and then integrating:

(0) = f U*Ov dt (3.101)

In particular

(px) = / v (—iha—\y) dr (3.102)
0x

For the harmonic oscillator wave functions (see Example 3.2) if we use the various
properties of the Hermite—Gauss functions, we get

(x) = / WHxW, dx = 0 (3.103)
<x2> = /\IJ;XZ\IJndx _ (n + 1) (3.104)
mw 2
(px) = /\If,f (—ihaqj”) dx=0 (3.105)
0x

2
< §> - /w; (—rf 333) dx = moh <n+ %) (3.106)
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We define the uncertainties in the values of position and momentum through the
following standard definitions

ax =l — w2 = /1?) - 2 (3.107)
and
ap =l = 02 = JIp?) - )2 (3.108)
Using the harmonic oscillator wave functions one can show that
Ax Apy = (n + %) B (3.109)

which relates the uncertainties in position and momentum. The minimum uncer-
tainty product occurs for the ground state (n = 0)

3.6 The Commutator

The commutator of two operators o and § is defined by the following equation:

e, fl = af — pa = —[B,a] (3.110)

Now, the commutator of x and p, operating on an arbitrary function WV is
given by

[x,px] VU = (xpy — pwx) ¥ = —ih |:)cﬂ — i (xlIJ)i| = ih¥
ox ox
Since W is arbitrary, we obtain
[x,px] = xpx — pxx =ik (3.111)
Similarly
[v.py] = [z.p:] = iR
However,
[x.py]=[p.p:]=---=0

[x.y]=[vz]=--=0
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and

[px-py] = [py-p:] = =0 (3.112)

3.7 Orthogonality of Wave Functions

We shall first prove that all values of E,, [see Eq. (3.68)] are real and that if E,, # Ey,
then the corresponding wave functions are necessarily orthogonal, i.e.,

/w,fl/fndt=0forn;ék (3.113)
We start with the Schrodinger equation for the two states:
R,
- Z—V Yn + V() Y = Enn (3.114)
m
R,
_EV Y+ V(r) Y = Exv (3.115)

We multiply Eq. (3.114) by v and the complex conjugate of Eq. (3.115) by v/, and
subtract:

h2
" m (w,j‘vw,, - ‘”ﬂvzﬁ) = (En — E{) ¥iVn (3.116)
or
fLZ
Sl AL (ViVY — ¥ VY dt = (E, — E) / Yiy,dt (3.117)

Now according to the divergence theorem

/V-th:/F-dS
|4 s

where S is the surface bounding the volume V. Thus, the integral on the left-hand
side of Eq. (3.117) can be transformed to a surface integral which would vanish
if the volume integral is over the entire space; this is because the wave functions
vanish at the surface which is at infinity. Thus

(E,,—E,f) /W,fw,,dr =0 (3.118)
For n=k, we must have

E,=E' (3.119)

proving that all eigenvalues must be real, and for E,, # Ej Eq. (3.113) follows.
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IfE, = Ey (n # k) so that iy and ¥, are two linearly independent wave functions
belonging to the same energy value, then v and v, are not necessarily orthogonal.
An energy level E is said to be degenerate when two or more linearly independent
eigenfunctions correspond to it. However, it can easily be shown that any linear
combination of the degenerate eigenfunctions (like Cyx + Ca¥,) is also a possible
eigenfunction belonging to the same eigenvalue:

Hyre = Exyre (3.120)

Hyr, = Exyy (3.121)

where H = — (hz/ 2m) Viqv (r) [see Eq. (3.114)]. If we multiply Eq. (3.120) by
C1 and Eq. (3.121) by C2, where Cy and C; are any complex numbers and then add
we obtain

He = Exop (3.122)

where ¢ = C1y; + Cory,. Equation (3.122) tells us that ¢ is also an eigenfunction
belonging to the same eigenvalue. Since C; and C; are arbitrary, it is always possible
to construct linearly independent wave functions (belonging to this level) which
are mutually orthogonal. Further, one can always multiply an eigenfunction by a
suitable constant such that

/ Vi n dt = g (3.123)

where dy, is known as the Kronecker delta function defined through Eq. (3.34)

It may be pointed out that the linear harmonic oscillator states [Eq.3.53)] are
nondegenerate; however, for the hydrogen atom problem, the state characterized by
the quantum number 7 is n>-fold degenerate.

3.8 Spherically Symmetric Potentials

One of the most important problems in quantum mechanics is that of the motion of
a particle in a potential which depends only on the magnitude of the distance from
a fixed point:

V(r) =V(r) (3.124)

Such a potential is referred to as a spherically symmetric potential. Now, in spherical
polar coordinates

1o (Lop\ L[ 1 8 (. ay 1 9%y
Vi = — — (P2 )= | — — 0 —— 7
V=25, (’ 8r>+r2 [sin@ 20 <Sm ae) T e 392

(3.125)
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where

1 9 9 1 92
L’=-1m|— — (sing— )+ — — (3.126)
sinf 90 36 sin?@ 9 ¢?

is the operator representation of the square of the angular momentum. Thus the
three-dimensional Schrodinger equation

2 2u _
VoY + ﬁ [E—V@)]Y(r,0,¢) =0 (3.127)

can be written in the form

2
19 ( 3w> +—[E VLY (r, 0,¢) = Ly (3.128)

r2or K2 22

In order to solve the above equation we use the method of separation of variables
and write

Y(r,0,¢) = R(NY(0, ) (3.129)

Substituting in Eq. (3.128) we get

Y(6,9) d drR\ 2u R(r)
2 dr <’2 5) Ta [E— V(IR Y(O,¢) = o 2L2Y(9 ®)

Dividing by R(r)Y(6,¢)/r*, we obtain

Li<2d—R> 207 g Vil= -1 yeey =i (3.130)
Rnar\" @) T 2 [ 1= 2Y0,9) 9= ‘

where we have set the terms equal to a constant A because the left-hand side of the

above equation depends only on r while the other term depends only on 6 and ¢.
The above equation gives us the eigenvalue equation

L>Y(0,¢) = M2 Y6, ¢) (3.131)
The eigenvalues of L? are I(I+1) 12, i.e., well-behaved solutions are obtained when
A=IlIl+1), [=012,... (3.132)

The corresponding eigenfunctions being the spherical harmonics

Yim@,8), m=—l,—1+1,...,1—1,] (3.133)
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Thus Eq. (3.130) can be written in the form

1d[,dR 21 I(1+ 1)R?
—— —|+= |E- - =" | R = 134
51 <r dr) + 23 [ V(r) 2 (r=0 (3.134)

which is known as the radial part of the Schrodinger equation.

3.9 The Two-Body Problem

In this section we will discuss the energy eigenvalues and the corresponding eigen-
functions for the hydrogen-like atom for which the potential energy variation is
given by

V() = — (3.135)

where

Z =1 for the H-atom problem,
Z =2 for the singly ionized He-atom problem (He™),
Z =13 for the doubly ionized Li-atom problem (Li**)

where
r = |I‘1 — I‘2| (3.136)

represents the magnitude of the distance between the two particles, i.e., between the
electron and the nucleus. In writing Eq. (3.135) we have used the SI system of units
so that

g ~16x107"°C
g0 ~ 8.854 x 10712 MKS units

and V(r) is measured in Joules. In this book we will be almost always using the SI
system of units; however, since CGS units are used in many books, we give below
the corresponding expression for V(r) in CGS units:

2
Vi) = —67 (3.137)

where e ~ 4.8 x 10710 esu represents the electronic charge in CGS units and V(r) is
measured in ergs. We may note that the Coulomb potential described by Eq. (3.135)
depends only on |ri-r»|, i.e., on the magnitude of the distance between the two
particles. Indeed, for a two-body problem, whenever the potential energy depends
only on the magnitude of the distance between the two particles, the problem can
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always be reduced to a one-body problem (describing the internal motion of the
atom) along with a uniform translational motion of the centre of mass. Thus the
internal motion of the atom is described by the wave function ¥ (r) and satisfies the
equation

2 2u
V() + 7z [E-V()]y@)=0 (3.138)
where
r=r;—n (3.139)

represents the relative coordinate and
Mem
n=—— N (3.140)
me + my
represents the reduced mass with m, and my represent the mass of the electron and
that of the nucleus, respectively. The total energy of the atom is given by

Etotal =E+ Ecm (3-141)
where
h2P2
Em = M 3 M =my + my] (3.142)

represents the uniform translational energy of the center of mass. The different spec-
troscopic lines emitted by an atom correspond to the transition between different
states obtained by solving Eq. (3.138).

3.9.1 The Hydrogen-Like Atom Problem

The radial part of the wave function satisfies the following equation:

i|R(r) =0 (3.143)

1 d[,dR N 2 Zg* I+ A2
el s flad _
r2 dr dr K2 4 egr 2ur?

For R(r) to be well behaved at r=0 and also as r — o0, we would obtain the
following discrete energy eigenvalues of the problem see Appendix B:

E,=—— (3.144)

where
n=1273,...

represents the total quantum number and

1
|E|| = H 7% ? (3.145)
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represents the magnitude of the ground state energy. Further,

7 1
* 4eghc 137.036 ( )

represents the fine structure constant and c(= 2.998 x 108 m/s) represents the speed
of light in free space. For the hydrogen atom

my =m, ~ 1.6726 x 10727 kg
giving
wr ~ 9.1045 x 1073 kg

where we have taken m, ~ 9.1094 x 10_31kg. On the other hand, for the
deuterium atom

my =mp ~ 3.3436 x 10777 kg
giving
up ~ 9.1070 x 1073! kg

Now, for the n = n; — n = ny transition, the wavelength of the emitted radiation
is given by

h
A= (3.147)
En — En,

or

A= 2h ! L (3.148)
B nZ2a%c? n% n% '

When ny=1, 2, and 3 we have what is known as Lyman series, the Balmer series,
and the Paschen series, respectively. For the n=3 — n=2 transition, the wavelength
of the emitted radiation comes out to be

65652 A and 6563.4A

for hydrogen and deuterium, respectively. The corresponding wavelength for the
n=4 — n=2 transition is

4863.1A and 4861.7A

Such a small difference in the wavelength was first observed by Urey in 1932 which
led to the discovery of deuterium.
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In spectroscopy the energy levels are usually written in wavenumber units which

are obtained by dividing by hc:
T, = E,__Z R (3.149)
"The T n? '

where

R

272 2 \2 2
— ”“( q ) _ p (3.150)

ch® \dme 2h

is known as the Rydberg constant. Values of the Rydberg constant for different
hydrogen like atoms are given below:

R = 109677.58 cm™! (for the hydrogen atom)
109707.56 cm™"  (for the deuterium atom)
109722.40 cm™"  (for the He™-atom)
109728.90 cm™"  (for the Li*™" -atom)

The slight difference in the values is because of the difference in the values of the
reduced mass p.
The normalized radial part of the wave function is given by see Appendix B:

Ru(p) =N e "2 p' Fi(—n,, 21+ 2, p) (3.151)

where 7n, is known as the radial quantum number and for the 1 F function to be a
polynomial, n, can take only the following values:

n-=0,1,2,3,....
The total quantum number is given by

n=I[014+14+n,
Thus
n=1273,...withl=0,1,2,...n—1

The normalization constant is given by

3/2 Iy 1/2
N=_Y (n+D (3.152)
QI+ | 2n(n—1—1)!
In the above equation
2Z
p=Yr; y=—
nag
12 (3.153)
aop

T (g /ATeo)
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where ag is the Bohr radius. Further

ala+1) p2

a
F s Uy =1 - N A
iFi@.c.p) =1+ 20+ 2= 5

+ - (3.154)

represents the confluent hypergeometric function. For given values of » and [, a
would be a negative integer or zero and the above function would be a polynomial.
For example, for n=2, /=0, we will have n,=1:

1/2 3/2
N=pn| 2 P_L(zy
4x1 V2 \ao

and 0
Thus
1 (Z\? 1 e
R =—[— 1 — = - 3.155
o= (2)" (1- L) iss
where
g= L (3.156)
ap

Similarly, one can calculate other wave functions. We give below the first few R,;(r)

7\3/2
Rio (r) =2<a—> et (3.157)
0
3/2
Ry (r) = 2%/6 (;) get/? (3.158)
0
2 [z 2. 2,
__<« (£ _ e £ —£/3
R3o (r) = 373 (ao) (1 3é+27§ ) e (3.159a)
3/2
R31 (r) = % (%) (E - ééz) e (3.159b)
4 Z\*"* ,
_ - —£/3
Ry (r) = 81730 (ao) e (3.160)

The wave functions are normalized so that

o
f|Rn, M P dr=1 (3.161)
0

The complete wave function is given by

Vnim (1,0, ¢) = Ru1 (r) Yim (0, ) (3.162)

where Y},,(0,¢) are the spherical harmonics tabulated below.
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Looking at Eq. (3.162) we see that the energy depends on the total quantum
number n. Since for each value of n we have values of / ranging from 0 to n—1 and
for each value of /, the m values range from —/ to +/ there are

n—1
Z QI+ 1) =n?
=0

states v, belonging to a particular energy. The degeneracy with respect to m is
due to spherical symmetry of the potential energy function. But the /-degeneracy
is peculiar to the Coulomb field and is, in general, removed for non-Coulomb

potentials.
Further,
Yoo = (4m)~1/2 (3.163)
3\ 1/2 .
Yii=— <g> sin G’ (3.164)
1/2
Yio= (E) cos 6 (3.165)
1/2 '
Yi_1 = <§) sinfe” (3.166)
5\ 1/2 ‘
Yoo = (E) sin® 92 (3.167)
1/2 _
Yo = — (§> sinf cos 0e'? (3.168)
5 \1/2
Yoo = (E) (3 cos2 6 — 1) (3.169)
1/2 _
Yo_1 = (8_71) sin 6 cos fe (3.170)
5\1/2 '
Yoo = <E) sin® G2 (3.171)

and so on. The ground state eigenfunction is Y100 (m=1,1=0, m =0), the
first excited state (n = 2) is fourfold degenerate 20,0, ¥2,1,—1, ¥2,1,0, and Y21 1.
Similarly n = 3 state is ninefold degenerate. In general, the states character-
ized by the quantum number n are n’-fold degenerate. The wave functions are
orthonormal, i.e.,

/ / / Ut dr sin 6 d0 A = 8, 81 Sy (3.172)

It may be a worthwhile exercise for the reader to see that the above wave functions
satisfy Eq. (3.172) with E given by Eq. (3.144).
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Problems

Problem 3.1 Consider a potential energy function given by the following equation (see Fig. 3.3)

Vix) =00 x<0
=0 O<x<a (3.173)

=Vy x>a

Assume v and % to be continuous at x=a and that the wave function vanishes at x=0 and as
X — +00.
(a) Using the above boundary conditions, solve the one-dimensional Schrodinger equation to obtain
the following transcendental equations which would determine the discrete values of energy:

—Ecoté = /a2 —£2 (3.174)

2uEa? 2,U,V0a2
&=, 2 and o =,/ =) (3.175)

ZMVOGZ
h2

show that there will be three bound states (see Fig. 3.3) with

where

(b) Assuming @ = 37

=972

& =2.83595, 5.64146, and 8.33877

Fig. 3.3 The first three oo V)

eigenvalues and + o

eigenfunctions of an isolated 7/ 2a

well for a=37;a =,/ 2'";75’“2

Vo
S N~—
N\
N—t

«—a—»

Problem 3.2 Consider a symmetric potential energy function so that V(- x) = V(x). Show that the solu-
tions are either symmetric or antisymmetric functions of x, i.e., either /(- x) = + ¥ (x) or ¥ (- x)
=-v¥(x)

[Hint: In Eq. (3.22), make the transformation x — —x and assuming V (- x) = V(x) show that
¥ (—x) satisfies the same equation as ¥/ (x); hence, we must have ¥ (—x)=Ay(x). Make the transformation
X — —x again to prove A = =+ 1]
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Problem 3.3 Consider a potential energy function given by the following equation

. d

Vo) = :O’ I =2 (3.176)
Vo; IxI>5

Since the potential energy variation is symmetric about x=0, the solutions are either symmetric or

antisymmetric functions of x. (see Problem 3.2). For E < Vj solve the Schrodinger equation (in the

two regions). Assuming ¥ and % continuous at x==x d/2 and that the wave function must vanish as

x — = oo obtain the following transcendental equations which would determine the discrete values of

energy
Etané = (/a2 — £2 for symmetric states (3.177)
—EcotE = /a? — &2 for antisymmetric states (3.178)

where

[2 W Ed? [2 14 Vo d?
= and =,/ ——— 3.179
§ 4h2 “ 4R2 G179

For a given value of a, the solutions of Egs. (3.177) and (3.178) will give the bound states for the
potential well problem given by Eq. (3.176). Obviously, for & < /2 we will have only bound state. For
given values of V{y, u and d, as h — 0, the value of o will become large and we will have a continuum
of states implying that all energy levels are possible. Thus in the limit of & — 0, we have the results of
classical mechanics.

Problem 3.4 Using the results of the previous problem, obtain the energy eigenvalues for a single well
corresponding to the following values of various parameters: u = m, , Vo =20eV;d =5 A

[Ans: E] ~ 1.088 eV; Ey & 4.314 eV, E3 & 9.527 eV, E4 ~ 16.253 eV]

Problem 3.5 Consider the three-dimensional harmonic oscillator

|
v=su (w%xz +oh?+ w%zz) (3.180)

Use the method of separation of variables to solve the Schrodinger equation (in Cartesian coordinates)
and show that the energy eigenvalues are given by

1 1 1

ny, np, n3 = 0,1, 2,.... The corresponding wave functions are products of the Hermite—Gauss
functions.

Problem 3.6 Calculate the wavenumbers corresponding to the Hy (n =3 — n = 2) and the Hg(n = 4
— n = 2) lines of the Balmer series for the hydrogen atom. What will be the corresponding wavelengths

[Ans: ~ 6563 A and 4861 A]

Problem 3.7 Calculate the wavelengths for the n = 4 — n = 3 transition in the Het atom

[Ans: ~ 4686 A]
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Problem 3.8 Calculate the wavelengths corresponding tothen =2 - n=1;n=3 —->n=1;n=4 —
n=1,and n =5 — n =1 transitions of the Lyman series of the hydrogen atom

[Ans: ~ 1216 A, 1026 A, 973 A, 950 A]

Problem 3.9 Using the expressions for spherical harmonics, write all wave functions corresponding to
the n = 2 and n = 3 states of the hydrogen atom. Show that they are fourfold and ninefold degenerate.
(Actually, if we take into account the spin states, they are 8-fold and 18-fold degenerate)

o0
Problem 3.10 Show that [ Riq () Ryg () > dr =0
0






Chapter 4
Einstein Coefficients and Light Amplification

4.1 Introduction

In this chapter we discuss interaction of radiation and atoms and obtain the
relationship between absorption and emission processes. We show that for light
amplification a state of population inversion should be created in the atomic system.
We also obtain an expression for the gain coefficient of the system. This is followed
by a discussion of two-level, three-level, and four-level systems using the rate equa-
tion approach. Finally a discussion of various mechanisms leading to broadening of
spectral lines is discussed.

4.2 The Einstein Coefficients

We consider two levels of an atomic system as shown in Fig. 4.1 and let Ny and
N> be the number of atoms per unit volume present in the energy levels E; and E»,
respectively. The atomic system can interact with electromagnetic radiation in three
distinct ways:

(a) An atom in the lower energy level E] can absorb the incident radiation at a fre-
quency w = (E» — E1)/ h and be excited to E»; this excitation process requires
the presence of radiation. The rate at which absorption takes place from level 1
to level 2 will be proportional to the number of atoms present in the level E1 and
also to the energy density of the radiation at the frequency w = (E» — E1)/ h.
Thus if u(w)dw represents the radiation energy per unit volume between w and
o + dw then we may write the number of atoms undergoing absorptions per unit
time per unit volume from level 1 to level 2 as

12 = Biau(w)Ny (4.1)
where B, is a constant of proportionality and depends on the energy levels

E1 and E;. Notice here that u(w) has the units of energy density per frequency
interval.

K. Thyagarajan, A. Ghatak, Lasers, Graduate Texts in Physics, 63
DOI 10.1007/978-1-4419-6442-7_4, © Springer Science+Business Media, LLC 2010
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Fig. 4.1 Two states of an

atom with energies E| and E; E N
with corresponding
population densities of N;
and Ny, respectively
E, Ny

(b) For the reverse process, namely the deexcitation of the atom from E; to Ej,
Einstein postulated that an atom can make a transition from E, to E; through
two distinct processes, namely stimulated emission and spontaneous emis-
sion. In the case of stimulated emission, the radiation which is incident on
the atom stimulates it to emit radiation and the rate of transition to the lower
energy level is proportional to the energy density of radiation at the frequency
. Thus, the number of stimulated emissions per unit time per unit volume
will be

21 = Byju(w)N; 4.2)

where Bp; is the coefficient of proportionality and depends on the energy
levels.

(c) An atom which is in the upper energy level E; can also make a sponta-
neous emission; this rate will be proportional to N, only and thus we have
for the number atoms making spontaneous emissions per unit time per unit
volume

Uz1 = ANV, 4.3)

At thermal equilibrium between the atomic system and the radiation field, the
number of upward transitions must be equal to the number of downward transitions.
Hence, at thermal equilibrium

N1Brau(w) = N2Az1 + NaBau(w)

or
Agy

u(w) =
(N1/N2)B12 — By

(4.4)

Using Boltzmann’s law, the ratio of the equilibrium populations of levels 1 and 2 at
temperature 7 is

]& — e(E27E1)/kBT — ehw/kBT (45)
Ny

where kg(= 1.38 x 10~23J/K) is the Boltzmann’s constant. Hence
Az

_——— 4.6
Bppel@/ksT — By, @0

u(w) =
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Now according to Planck’s law, the radiation energy density per unit frequency
interval is given by (see Appendix F)

hw3n8 1
72c3 oho/ksT _ |

u(w) = “4.7)

where ¢ is the velocity of light in free space and ng is the refractive index of the
medium.
Comparing Egs. (4.6) and (4.7), we obtain

By =By =B (4.8)
and
Agp thng

B =13 4.9)

Thus the stimulated emission rate per atom is the same as the absorption rate per
atom and the ratio of spontaneous to stimulated emission coefficients is given
by Eq. (4.9). The coefficients A and B are referred to as the Einstein A and B
coefficients.

At thermal equilibrium, the ratio of the number of spontaneous to stimulated
emissions is given by

_ AN, _ JolksT _ (4.10)
By Nyu(w)

Thus at thermal equilibrium at a temperature 7, for frequencies, w >> kpT/h,
the number of spontaneous emissions far exceeds the number of stimulated
emissions.

Example 4.1 Let us consider an optical source at 7 = 1000 K. At this temperature

kgT 138 x 1073(0/K) x 103(K) _

13 x 101571
A 1.054 x 10—34(Js)

Thus for w >> 1.3 x 101*s~!, the radiation would be mostly due to spontaneous emission. For A =
500nm, ® ~ 3.8 x 10195~ and
R~ 2 ~50x 10"

Thus at optical frequencies the emission from a hot body is predominantly due to spontaneous transitions
and hence the light from usual light sources is incoherent.

We shall now obtain the relationship between the Einstein A coefficient and the
spontaneous lifetime of level 2. Let us assume that an atom in level 2 can make
a spontaneous transition only to level 1. Then since the number of atoms making
spontaneous transitions per unit time per unit volume is A2 /N>, we may write the
rate of change of population of level 2 with time due to spontaneous emission as

N _ 4N 4.11)
dr - 214V2 .
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the solution of which is

Na(t) = Np(0)e 421! (4.12)

Thus the population of level 2 reduces by 1/e in a time #s, = 1/A3; which is called
the spontaneous lifetime associated with the transition 2— 1.

Example 4.2 In the 2P — 18 transition in the hydrogen atom, the lifetime of the 2P state for spontaneous
emission is given by

1
fsp = oo ~ 1.6 x 107 %
21

Thus Agp ~ 6 x 105!

The frequency of the transition is given by

w~ 1.55 x 101051 (hw ~ 10.2 V)
Thus 7203
By = —— Ay ~ 4.1 x 102 m?/1s?
ﬁw3nO

where we have assumed np= 1. (Note the unit for By;.)

Now, if one observes the spectrum of the radiation due to the spontaneous
emission from a collection of atoms, one finds that the radiation is not strictly
monochromatic but is spread over a certain frequency range. Similarly, if one mea-
sures the absorption by a collection of atoms as a function of frequency, one again
finds that the atoms are capable of absorbing not just a single frequency but radi-
ation over a band of frequencies. This implies that energy levels have widths and
the atoms can interact with radiation over a range of frequencies but the strength of
interaction is a function of frequency (see Fig. 4.2). This function that describes the
frequency dependence is called the lineshape function and is represented by g(w).
The function is usually normalized according to

/ g(w)dw = 1 (4.13)

Explicit expressions for g(w) will be obtained in Section 4.5.

g(w)

@ (b)

Fig. 4.2 (a) Because of the finite lifetime of a state each state has a certain width so that the
atom can absorb or emit radiation over a range of frequencies. The corresponding lineshape is
shown in (b)
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From the above we may say that out of the total N, and N| atoms per unit volume,
only N, g(w)dw and Ny g(w)dw atoms per unit volume will be capable of interacting
with radiation of frequency lying between w and w + dw. Hence the total number of
stimulated emissions per unit time per unit volume will now be given by

Iy = / Baru(@)Ng(@)do

_N 723 /u(a))g(a))dw

2
hndts, 3

(4.14)

where we have used Eq. (4.9) and A2y = 1/1p.
We now consider two specific cases.

(1) If the atoms are interacting with radiation whose spectrum is very broad com-
pared to that of g(w) (see Fig. 4.3a), then one may assume that over the region of
integration where g(w) is appreciable u(w)/w? is essentially constant and thus
may be taken out of the integral in Eq. (4.14). Using the normalization integral,
Eq. (4.14) becomes

N 12c3

I21 = IN2T— 7

hiew3n3
0 notsp

u(w) (4.15)
where @ now represents the transition frequency. Equation (4.15) is consistent
with Eq. (4.2) if we use Eq. (4.9) for B>;. Thus Eq. (4.15) represents the rate of
stimulated emission per unit volume when the atom interacts with broadband
radiation.

(2) We now consider the other extreme case in which the atom is interacting with
near-monochromatic radiation. If the frequency of the incident radiation is «’,
then the u(w) curve will be extremely sharply peaked at @ = w’ as compared to
g(w) (see Fig. 4.3b) and thus g(w)/w3 can be taken out of the integral to obtain

@ (b)

Fig. 4.3 (a) Atoms characterized by the lineshape function g(w) interacting with broadband
radiation. (b) Atoms interacting with near-monochromatic radiation
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2203
[ =Ny ——— g(w)/u(w)dw
he ”0 sp

(4.16)
2.3
mTec
= NzTg(w’)u
hw notsp
where
u= /u(a))da) 4.17)

is the energy density of the incident near-monochromatic radiation. It may be
noted that u# has dimensions of energy per unit volume unlike #(w) which has
the dimensions of energy per unit volume per unit frequency interval. Thus
when the atom described by a lineshape function g(w) interacts with near-
monochromatic radiation at frequency «’, the stimulated emission rate per unit
volume is given by Eq. (4.16).

In a similar manner, the number of stimulated absorptions per unit time per unit

volume will be
2

3
Fp=N——+—
/3,3
ha ngtsp

g u (4.18)

4.2.1 Absorption and Emission Cross Sections

The rates of absorption and stimulated emission can also be characterized in terms
of the parameters referred to as absorption and emission cross sections. To do this,
we first notice that the energy density u and the intensity / of the propagating
electromagnetic wave are related through the following equation (see Section 2.2):

1 nol
u= = — (4.19)
c/no c

The number of photons crossing a unit area per unit time also referred to as the
photon flux ¢ is related to the intensity / through the following equation:

1
¢ = T (4.20)
Thus Eq. (4.18) can be written as
Fp=N——— n2c2 glw)p
w? 0 Isp 4.21)
= o0.N1¢

where o, represents the absorption cross section (with dimensions of area) for this
transition and is given by
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n2c?

Og = 2—28(0)) (4.22)
o nytsp

Similarly we can define the emission cross section o, through the rate I'77. Since
"1 and 'y are equal, the absorption and emission cross sections are equal.

Note that the absorption and emission cross sections are functions of frequency
and are related to the line broadening function g(w) and the lifetime #gp.

The peak emission cross sections for some of the important laser transitions are
given in Table 4.1.

Table 4.1 Table giving transition cross section for some important laser lines

Laser transition Wavelength (nm) Cross section (m?) Lifetime (jus)
He—Ne laser 632.8 5.8 x 1077 30 x 1073
Argon ion 514.5 2.5 x 10717 6 x 1073
Nd:YAG 1064 2.8 x 10723 230

Example 4.3 Consider the transition in neon atom at the wavelength of 1150 nm. This transition is
Doppler broadened with a linewidth of 900 MHz and the upper state spontaneous lifetime is 100 ns.
Using Eq. (4.22) we can calculate the peak absorption cross section. If we assume g(wqg) ~ 1/Aw, we
obtain o, ~ 5.8 x 10716 m

4.3 Light Amplification

We next consider a collection of atoms and let a near-monochromatic radiation of
energy density u at frequency «’ pass through it. We shall now obtain the rate of
change of intensity of the radiation as it passes through the medium.

Let us consider two planes P and P; of area S situated at z and z + dz, z being the
direction of propagation of the radiation (see Fig. 4.4). If I(z) and I(z+dz) represent
the intensity of the radiation at z and z + dz, respectively, then the net amount of
energy entering the volume Sdz between P and P, will be

() — I+ d2)]S = [1(2) — 1(z) — j—idz]s

4.23
a (4.23)
= ——3S8dz
dz
—_—
=] (]
Fig. 4.4 Propagation of
radiation at frequency o’ —
through a medium leading to
a change of intensity with
& y 1,6 I,(z+d?)

propagation
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This must be equal to the net energy absorbed by the atoms in the volume Sdz. The
energy absorbed by the atoms in going from level 1 to level 2 will be I'1Sdzhe’
where hw' is the energy absorbed when an atom goes from level 1 to level 2.
Similarly the energy released through stimulated emissions from level 2 to level 1
will be T'p;Sdzhw'. We shall neglect the energy arising from spontaneous emission
since it appears over a broad frequency range and is also emitted in all directions.
Thus the fraction of the spontaneous emission which would be at the radiation fre-
quency @' and which would be traveling along the z-direction will be very small.
Thus the net energy absorbed per unit time in the volume Sdz will be

2.3
1
(T2 — Taphe'Sds = ——— —ug(w)(N1 — Na)hoSdz
h(,() l’lb tsp
o (4.24)
= e ug(N) — Np)Sdz
w"nytsp

Now, the energy density u and the intensity of radiation / are related through
Eq. (4.19). Thus using Eqgs. (4.23) and (4.24) we obtain

df 1 (4.25)
— = —«a .
dz
where
72c?
a=———g)N —Np) =—y (4.26)
2n%tsp

and we have removed the prime on w with the understanding that w represents the
frequency of the incident radiation. Hence if N| > N>, « is positive (and y is nega-
tive) and the intensity decreases with z leading to an attenuation of the beam. On the
other hand, if N> > Nj then « is negative (and y is positive) the beam is amplified
with z. Figure 4.5 shows typical plots of a(w) versus w for Ny > N, and N, > Nj.
Obviously the frequency dependence of o will be almost the same as that of the
lineshape function g(w). The condition N, > Ny is called population inversion and it
is under this condition that one can obtain optical amplification.
In Eq. (4.26) if (N1 — N») is independent of /, then we have from Eq. (4.25)

1(z) = [(0)e™* 4.27)

i.e., an exponential attenuation when N > N, and an exponential amplification when
N> > N1. We should mention that such an exponential decrease or increase of inten-
sity is obtained for low intensities; for large intensities saturation sets in and (N7 —
N>) is no longer independent of / (see Chapter 5).

Example 4.3 We consider a ruby laser (see Chapter 11) with the following characteristics:

no = 1.76, tgpy = 3 x 10735, A9 = 6943A
g(wo) ~ 1/Aw ~ 1.1 x 107125
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Fig. 4.5 A typical variation a(w)
of a(w) with w for an
amplifying medium
corresponding to N> > N
(lower curve) and for an
attenuating medium with

N;>N.
N> < Ny (upper curve) 1772

Ni<N,

where we have assumed that for the normalized lineshape function!

1
glwo) ~ s (4.28)

where Aw represents the full width at half maximum of the lineshape function and w( represents the
frequency at the centre of the line. At thermal equilibrium at 300 K,

N2 _ h/kgT o 19=30
Ny

A typical chromium ion density in a ruby laser is about 1.6 x 10! cm™3 and since at 300 K most atoms
are in the ground level, the absorption coefficient at the centre of the line would be

a=14x10""N =Ny~ 1.4 x 10717 x 1.6 x 10°
~22cm” !

If a population inversion density of 5 x 1010 em=3 is generated (which represents a typical value) then
the gain coefficient will be
—a~ 14 x 1071 x5 x 101°

~7%x1073 em™!
Example 4.4 As another example we consider the Nd: YAG laser (see Chapter 11) for which

no =182, 15 =023x10"3s, Ag=1.06um

Aw 1

—~_—~195x 10" Hz
2 2r g(wg)

Ay =
If we want a gain of 1 m~!, the inversion required can be calculated from Eq. (4.26) as

4v2natspa
2 g(w)
~33x 108 cm™3

(N2 =Np) =

IWe will show in Section 4.5 that g(wg)Aw equals (2/7) and (41n2/m)'/2 for Lorentzian and
Gaussian lineshape functions, respectively.
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4.4 The Threshold Condition

In the last section we saw that in order that a medium be capable of amplifying
incident radiation, one must create a state of population inversion in the medium.
Such a medium will behave as an amplifier for those frequencies which fall within
its linewidth. In order to generate radiation, this amplifying medium is placed in an
optical resonator which consists of a pair of mirrors facing each other much like in a
Fabry—Perot etalon (see Fig. 4.6). Radiation which bounces back and forth between
the mirrors is amplified by the amplifying medium and also suffers losses due to
the finite reflectivity of the mirrors and other scattering and diffraction losses. If
the oscillations have to be sustained in the cavity then the losses must be exactly
compensated by the gain. Thus a minimum population inversion density is required
to overcome the losses and this is called the threshold population inversion.

Fig. 4.6 A typical optical Ry d R,
resonator consisting of a pair f :
of mirrors facing each other.

The active medium is placed
inside the cavity

i

= 1 Ipe)d o
.q— R, IO eZ(w—(”)zl R, [0 e(”,—u|)a’ 4..

> RyRy Iy 20—a)d

In order to obtain an expression for the threshold population inversion, let d rep-
resent the length of the resonator and let Ry and R; represent the reflectivities of the
mirrors (see Fig. 4.6). Let | represent the average loss per unit length due to all loss
mechanisms (other than the finite reflectivity) such as scattering loss and diffraction
loss due to finite mirror sizes. Let us consider a radiation with intensity /o leaving
mirror M. As it propagates through the medium and reaches the second mirror, it
is amplified by e”? and also suffers a loss of e~%¢; for an amplifying medium y
is positive and ¢ > 1. The intensity of the reflected beam at the second mirror
will be IoR2eY =4 A second passage through the resonator and a reflection at the
first mirror leads to an intensity for the radiation after one complete round trip of
IoR 1 Rye*Y ~@)4 Hence for laser oscillation to begin

RiRy?r—d > (4.29)

the equality sign giving the threshold value for « (i.e., for population inversion).
Indeed, when the laser is oscillating in a steady state with a continuous wave oscil-
lation, then the equality sign in Eq. (4.29) must be satisfied. If the inversion is
increased then the LHS becomes greater than unity; this implies that the round trip
gain is greater than the round trip loss. This would result in an increasing intensity
inside the laser till saturation effects take over, which would result in a decrease
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in the inversion (we shall explicitly show saturation effects in Chapter 5). Thus the
gain is brought back to its value at threshold.
Equation (4.29) can be written as

1
y >a) — glnR1R2 (4.30)

This RHS of Eq. (4.30) depends on the passive cavity parameters only. This can
be related to the passive cavity lifetime 7. which is the time in which energy in
the cavity reduces by a factor 1/e. In the absence of amplification by the medium,
the intensity at a point reduces by a factor RjR,e™ 214 ~Qed=InRiR2) i g
time corresponding to one round-trip time. One round-trip time corresponds to
t = 2d(c/ng) = 2dng/c. Hence if the intensity reduces as e~"/%, then in a time
t = 2dng/c, the factor by which the intensity will be reduced is e~24"0/¢ Thus

e—(2a|d—lnR|R2) — g—Zdn()/ctC

= e

or

1 c
— = —Quijd —InR|R 4.31
. 2an(Oél nRR) 4.31)

Using Eqgs. (4.26) and (4.31), Eq. (4.30) becomes
2.3
4veny ts_p 1

(4.32)

Corresponding to the equality sign, we have the threshold population inversion
density required for the oscillation of the laser.

According to Eq. (4.32), in order to have a low threshold value of the population
inversion, the following conditions must hold:

(a) The value of ¢, should be large, i.e., the cavity losses must be small.

(b) Since g(w) is normalized according to Eq. (4.13) the peak value of g(w) will
be inversely proportional to the width Aw of the g(w) function [see Eq. (4.28)].
Thus smaller widths give larger values of g(w) which implies lower threshold
values of (N2 — Np). Also since the largest g(w) appears at the line centre, the
resonator mode which lies closest to the line centre will reach threshold first
and begin to oscillate.

(¢) Smaller values of f (i.e., strongly allowed transitions) also lead to smaller
values of threshold inversion. At the same time for smaller relaxation times
(tsp), larger pumping power will be required to maintain a given population
inversion. In general, population inversion is more easily obtained on transitions
which have longer relaxation times.

(d) The value of g(w) at the centre of the line is inversely proportional to Aw
which, for example, in the case of Doppler broadening is proportional to w (see
Section 4.5). Thus the threshold population inversion increases approximately
in proportion to . Thus it is much easier to obtain laser action at infrared
wavelengths than in the ultraviolet region.
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Example 4.5 We first consider a ruby laser? which has the following typical parameters:
ro = 6943A, 1sp ~ 3 x 10735, ng = 1.76,d = 5 cm
Ry =Ry=09, a1 =0

1 1
8@0) = = A

~ 1.1 x 10712

Thus for the above values
e 2.8 x 107

and
(Ny — N ~ 1.5 x 1017 em™3

Typical Cr*3 jon densities are about 1.6 x 1012 cm™3. Thus the fractional excess population is very small.
The above population inversion corresponds to a gain of about 0.02 em~! or to 0.09 dB/cm.

Example 4.6 As another example, we consider a He—Ne laser with the following typical characteristics:
ho = 6328A, 1sp = 1077, ng ~ 1, d = 20cm

Ry =Ry =098, a1 =0
Av ~ 10°Hz

! -9
~ —— ~0.16 x 107 7s
8(@o) 27 Av x s

for the above values
10~ 33 x 10785

and
(Ny — N ~ 6.24 x 108 cm™3

4.5 Line Broadening Mechanisms

As we mentioned in Section 4.2 the radiation coming out of a collection of atoms
making transitions between two energy levels is never perfectly monochromatic.
This line broadening is described in terms of the lineshape function g(w) that was
introduced in Section 4.2. In this section, we shall discuss some important line
broadening mechanisms and obtain the corresponding g(w). A study of line broad-
ening is extremely important since it determines the operation characteristics of
the laser such as the threshold population inversion and the number of oscillating
modes.

The various broadening mechanisms can be broadly classified as homogeneous
or inhomogeneous broadening. In the case of homogenous broadening (like natural
or collision broadening) the mechanisms act to broaden the response of each atom in
an identical fashion, and for such a case the probability of absorption or emission of
radiation of a certain frequency is the same for all atoms in the collection. Thus there

2Ruby laser active medium consists of Cr*3-doped ion AlO3 and is an example of a three level
laser. More details regarding the ruby laser are given in Section 10.2.
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is nothing which distinguishes one group of atoms from another in the collection. In
the case of inhomogeneous broadening, different groups of atoms are distinguished
by different frequency responses. Thus, for example, in Doppler broadening groups
of atoms having different velocity components are distinguishable and they have
different spectral responses. Similarly broadening caused by local inhomogeneities
of a crystal lattice acts to shift the central frequency of the response of individual
atoms by different amounts, thereby leading to inhomogeneous broadening. In the
following, we shall discuss natural, collision, and Doppler broadening.

4.5.1 Natural Broadening

We have seen earlier that an excited atom can emit its energy in the form of sponta-
neous emission. In order to investigate the spectral distribution of this spontaneous
radiation, we recall that the rate of decrease of the number of atoms in level 2 due
to transitions from level 2 to level 1 is [see Eq. (4.11)]

o N (4.33)
dr = 214V2 .

For every transition an energy fiwg = E»—E]| is released. Thus the energy emitted
per unit time per unit volume will be

dN>
W) =|—|h
) ’dt on)

(4.34)
= NaoAoi hiwpe 21"

where we have used Eqs. (4.33) and (4.12). Since Eq. (4.34) describes the variation
of the intensity of the spontaneously emitted radiation, we may write the electric
field associated with the spontaneous radiation as

E(t) = Eg e~/ (4.35)

where t;, = 1/A21 and we have used the fact that intensity is proportional to
the square of the electric field. Thus the electric field associated with spontaneous
emission decreases exponentially.

In order to calculate the spectrum associated with the wave described by the
Eq. (4.35), we first take the Fourier transform:

E(w) = / - E(f) e ds

—00

= Eo/(; exp [i (wo — w) t — 1/21p ] dt (4.36)
1

0 1 .
Tsp +l(a)—w0)
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where = 0 is the time at which the atoms start emitting radiation. The power spec-
trum associated with the radiation will be proportional to |Eo(w)|%. Hence we may
write the lineshape function associated with the spontaneously emitted radiation as

1
(@ — wo)* + 1/41,
where K is a constant of proportionality which is determined such that g(w) satisfies

the normalization condition given by Eq. (4.13). Substituting for g(w) in Eq. (4.13)
and integrating, one can show that

glw)=K

1
T 2% Isp

Thus the normalized lineshape function is
2tsp 1
14+ 4w — a)o)zl‘szp

(4.37)

The above functional form is referred to as a Lorentzian and is plotted in Fig. 4.7.
The full width at half maximum (FWHM) of the Lorentzian is

1
Awy = — (4.38)
Isp
Thus, Eq. (4.37) can also be written as

1

4.39
TAoN 1+ 4w — wy)?/ (Awy)? (439

glw) =

A more precise derivation of Eq. (4.39) is given in Appendix G.

Example 4.7 The spontaneous lifetime of the sodium level leading to a Dy line (A = 589.1nm) is 16 ns.
Thus the natural linewidth (FWHM) will be

Avy = —— ~ 10 MHz (4.40)
2 tsp
which corresponds to AA ~ 0.001 nm.
Gaussian
Fig. 4.7 The Lorentzian and Lorentzian
Gaussian lineshape functions

having the same FWHM “
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4.5.2 Collision Broadening

In a gas, random collisions occur between the atoms. In such a collision process, the
energy levels of the atoms change when the atoms are very close due to their mutual
interaction. Let us consider an atom which is emitting radiation and which collides
with another atom. When the colliding atoms are far apart, their energy levels are
unperturbed and the radiation emitted is purely sinusoidal (if we neglect the decay
in the amplitude due to spontaneous emission). As the atoms come close together
their energy levels are perturbed and thus the frequency of emission changes during
the collision time. After the collision the emission frequency returns to its original
value.

If 7. represents the time between collisions and A<z, the collision time then one
can obtain order of magnitude expressions as follows:

interatomic distance

At ~ -
average thermal velocity

1A

AN ~2x10 s
500 m/s

mean free path _5x107*m

T~ ~
¢ average thermal velocity 500 m/s

~107°

Thus the collision time is very small compared to the time between collisions and
hence the collision may be taken to be almost instantaneous. Since the collision time
A7, is random, the phase of the wave after the collision is arbitrary with respect
to the phase before the collision. Thus each collision may be assumed to lead to
random phase changes as shown in Fig. 4.8. The wave shown in Fig. 4.8 is no longer
monochromatic and this broadening is referred to as collision broadening.

In order to obtain the lineshape function for collision broadening, we note that
the field associated with the wave shown in Fig. 4.8 can be represented by

Fig. 4.8 The wave coming
out of an atom undergoing
random collisions at which

there are abrupt phase
changes
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E(1) = Eg e/ @+9) (4.41)

where the phase ¢ remains constant for 7o < ¢t < f9 + t. and at each collision the
phase ¢ changes randomly.

Since the wave is sinusoidal between two collisions, the spectrum of such a wave
will be given by

fo+1c
Bwy = [ Byeent) miongy
2w Jy

4.42
1 ) ellwo—o)te _ (4.42)
= —E el[(w()*w)f0+¢]
2 (wy — w)
The power spectrum of such a wave will be

- Eo\? sin’ [(w — wp)t./2

Iw)oo |E@)]* = (22 I 0)2 /2] (4.43)
T (a) — a)o)

Now, at any instant, the radiation coming out of the atomic collection would be
from atoms with different values of 7.. In order to obtain the power spectrum we
must multiply /(w) by the probability P(z.)dz, that the atom suffers a collision in
the time interval between 7, and 7. 4 d7. and integrate over t. from O to oo. It can
be shown from kinetic theory that (see, e.g., Gopal (1974))

1
P(t)d7, = (—) e "/Mdr, (4.44)
70
where 1o represents the mean time between two collisions. Notice that
o (0.¢]
/ P(t.)dr. =1, / t.P(t.)dt. = 19 (4.45)
0 0

Hence the lineshape function for collision broadening will be

g(w) / N I(w) P(zc)dt,
0

B <E0>2 1 1
\r 2 (a)—wo)z—l—l/tg
which is again a Lorentzian. The normalized lineshape function will thus be
70 1

do = — ——————d 4.46
glw)dw = — Ep——eE w (4.46)

and the FWHM will be
Aw. =2/19 4.47)

Thus a mean collision time of ~ 107 s corresponds to a Av of about 0.3 MHz.



4.5 Line Broadening Mechanisms 79

The mean time between collisions depends on the mean free path and the aver-
age speed of the atoms in the gas which in turn would depend on the pressure and
temperature of the gas as well as the mass of the atom. An approximate expression
for the average collision time is

1 (2)‘ﬂ(mm3Tﬂﬂ
=513 —_—

87 pa?

where M is the atomic mass, a is the radius of the atom (assumed to be a hard
sphere), and p is the pressure of the gas.

Example 4.8 In a He—Ne laser the pressure of gas is typically 0.5 torr. (Torr is a unit of pressure
and 1 Torr = 1 mm of Hg). If we assume a ~ 0.1 nm, 7 = 300 K, M = 20 x 1.67 x 10727 kg , we
obtain 1y ~ 580 ns.

Problem 4.1 In the presence of both natural and collision broadening, in addition to the sudden phase
changes at every collision, there will also be an exponential decay of the field as represented by Eq.
(4.35). Show that in such a case, the FWHM is given by

Aw=—+ — (4.48)
Isp o

4.5.3 Doppler Broadening

In a gas, atoms move randomly and when a moving atom interacts with electromag-
netic radiation, the apparent frequency of the wave is different form that seen from a
stationary atom; this is called the Doppler effect and the broadening caused by this
is termed Doppler broadening.

In order to obtain g(w) for Doppler broadening, we consider radiation of fre-
quency o passing through a collection of atoms which have a resonant frequency
wo and which move randomly (we neglect natural and collision broadening in this
discussion). In order that an atom may interact with the incident radiation, it is nec-
essary that the apparent frequency seen by the atom in its frame of reference be
wy. If the radiation is assumed to propagate along the z-direction, then the apparent
frequency seen by the atom having a z-component of velocity v, will be

o=l -2 (4.49)
C

Hence for a strong interaction, the frequency of the incident radiation must be such
that @ = wg. Thus

w=wo(l — 2 ~ gl + =) (4.50)
C C

where we have assumed v, << c. Thus the effect of the motion is to change the
resonant frequency of the atom.
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In order to obtain the g(w) due to Doppler broadening, we note that the proba-
bility that an atom has a z component of velocity lying between v, and v; + dv; is
given by the Maxwell distribution

L 2
Podv. = () exp (=22 ) . 451)
2mkgT 2kgT

where M is the mass of the atom and 7 the absolute temperature of the gas. Hence
the probability g(w)dw that the transition frequency lies between @ and @ + dw is
equal to the probability that the z component of the velocity of the atom lies between
v, and v; + dv, where

(0 — wp)
V, = ——¢
(2]

Thus

¢ M \2 Mc? (0 — wp)?
do— £ _ M oz ol 1y 452
g(@)dow = 7 (2nkBT) eXp[ AT o © (452)

which corresponds to a Gaussian distribution. The lineshape function is peaked at
o, and the FWHM is given by

2T 2
Awp =2y (2 In2 (4.53)

In terms of Awp Eq. (4.52) can be written as

1
2 (In2\? (@ — wp)?

Figure 4.7 shows a comparative plot of a Lorentzian and a Gaussian line having the
same FWHM. It can be seen that the peak value of the Gaussian is more and that the
Lorentzian has a much longer tail. As an example, for the D; line of sodium A =
589.1nmat7T=500K, Avp = 1.7 x 10° Hz which corresponds to AAp & 0.02A.
For neon atoms corresponding to A = 6328A (the red line of the He—Ne laser) at
300 K, we have Avp ~ 1600 MHz where we have used Mne &~ 20x1.67x 1077 kg.
For the vibrational transition of the carbon dioxide molecule leading to the 10.6 pm
radiation, at 7 = 300 K, we have

Avp ~ 5.6 x 10'Hz = AAp ~ 0.19A
where we have used Mco, ~ 44 x 1.67 x 10~?"kg

In all the above discussions we have considered a single broadening mechanisms
at a time. In general, all broadening mechanisms will be present simultaneously and
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the resultant lineshape function has to be evaluated by performing a convolution of
the different lineshape functions.

Problem 4.2 Obtain the lineshape function in the presence of both natural and Doppler broadening

Solution From Maxwell’s velocity distribution, the fraction of atoms with their center frequency lying
between ' and o’ + do’ is given by

1 2 0
f)do = ( M )2 £ exp { Me (‘““)0)} do’ (4.55)
0

2wk T

These atoms are characterized by a naturally broadened lineshape function described by

;o 2sp 1
o-o0)=— ———— (4.56)
T+ (0 - o)?4d,

Thus the resultant lineshape function will be given by
g(w) = / fl@H(w - o)do' (4.57)

which is nothing but the convolution of f(w) with h(w)

Example 4.9 Neodymium doped in YAG and in glass are two very important lasers. The host YAG is
crystalline while glass is amorphous. Thus the broadening in YAG host is expected to be much smaller
than in glass host. In fact the linewidth at 300 K for Nd: YAG is about 120 GHz while that for Nd:glass is
about 5400 GHz.

4.6 Saturation Behavior of Homogeneously
and Inhomogeneously Broadened Transitions

In Section 4.5 we discussed the various line broadening mechanisms belong-
ing to both homogeneous and inhomogeneous broadenings. In this section, we
briefly discuss the difference in saturation behavior between the two kinds of
broadenings.

Let us first consider a homogeneously broadened laser medium placed inside a
resonator and let us assume that there is a resonator mode coinciding exactly with
the center of the line. Initially as the pumping rate is below threshold, the gain in the
resonator is less than the losses and the laser does not oscillate. As the pumping rate
is increased, first to reach threshold is the mode at the center as it has the minimum
threshold. We have seen earlier that when the laser is oscillating in steady state,
the gain is exactly equal to the loss at the oscillating frequency. Thus at steady
state even when the pumping power is increased beyond threshold, the gain at the
oscillating frequency does not increase beyond the threshold value; this is because of
the fact that the losses remain constant. In fact, increasing the pumping power will
be accompanied by an increase in the power in the mode which in turn would be
accompanied by a stronger saturation of the laser transition, thus reducing the gain
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at the oscillation frequency again to the value at threshold. It may be mentioned that
the gain could exceed the threshold value on a transient basis but not under steady
state operation.

Now in a homogenously broadened transition all the atoms have identical line-
shapes peaked at the same frequency. Thus all atoms interact with the same
oscillating mode and the increase in pumping power cannot increase the gain at
other frequencies and thus the laser will oscillate only in a single longitudinal mode
(see Fig. 4.9). This observation has been verified experimentally on some homo-
geneously broadened transitions such as Nd:YAG laser. The fact that a laser with
homogeneously broadened transition can oscillate in many modes is due to spatial
hole burning. This can be understood from the fact that each mode is a standing
wave pattern between the resonator mirrors. Thus there are regions of high popu-
lation inversion (at the nodes of the field where the field amplitude is very small)
and regions of saturated population inversion (at the antinodes of the field where the
field has maximum value). If one considers another mode which has (at least over
some portions) antinodes at the nodes corresponding to the central oscillating mode,
then this mode can draw energy from the atoms and, if the loss can be compensated
by gain, this mode can also oscillate.

In contrast to the case of homogeneous broadening, if the laser medium is inho-
mogeneouly broadened then a given mode at a central frequency can interact with
only a group of atoms whose response curve contains the mode frequency (see
Fig. 4.10). Thus if the pumping is increased beyond threshold, the gain at the
oscillating frequency remains fixed but the gain at other frequencies can go on
increasing (see Fig. 4.10). Thus, in an inhomogeneously broadened line one can
have multimode oscillation and as one can see from Fig. 4.10. Each oscillating mode
“burns holes in the frequency space” of the gain profile. These general conclusions
regarding homogeneously and inhomogeneoulsy broadened lines have been verified
experimentally.

Oscillating
mode Gain curve

< Lossline

Fig. 4.9 In a homogeneously
broadened transition, gain can
compensate loss at only one
oscillating mode leading to
single longitudinal mode
operation
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Fig. 4.10 As the pumping is
increased beyond threshold,

under steady-state operation _
Y P Oscillating

value but the gain at other

the .gair.l at the Variops modes Gain curve
oscillating frequencies cannot

- [\ Lossline
frequencies may be much

above the threshold value.

The various frequencies are

increase beyond the threshold \ A
said to burn holes in the gain
curve \

)

Various techniques for single longitudinal mode oscillation of inhomogeneously
broadened lasers are discussed in Chapter 7.

Let us now consider an inhomogeneously broadened laser medium and let us
assume that only a single mode exists within the entire gain profile. Let us also
assume to begin with that the frequency of the mode does not coincide with the line
center and that we slowly change the frequency of the mode so that it passes through
the center of the profile to the other side of the peak in the gain profile. In order to
determine the variation of the power output as the frequency is scanned through the
line center, we observe that a mode of the laser is actually made up of two traveling
waves traveling along opposite directions along the resonator axis. Thus when the
mode frequency does not coincide with the line center, the wave travelling from left
to right in the resonator will interact with those atoms whose z-directed velocities
are near to [see Eq. (4.49)]:

® — w1

pp= 27920, (4.58)
w21

while the wave moving from right to left would interact with those atoms whose
z-directed velocity would be
w — w21

o= ———2e (4.59)
w21

Thus there are two groups of atoms with equal and opposite z-directed velocities
which are strongly interacting with the mode. As the frequency of the mode is tuned
to the center these groups of atoms change with the frequency, and at the line center,
the mode can interact only with the groups of atoms having a zero value of z-directed
velocity. Thus the power output must decrease slightly when the mode frequency is
tuned through the line center. In fact, this has been observed experimentally and is
referred to as the Lamb dip — the presence of a Lamb dip in a He—Ne laser was
shown by McFarlane, Bennet, and Lamb (1963).
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4.7 Quantum Theory for the Evaluation of the Transition Rates
and Einstein Coefficients

For the calculation of transition rates we consider the atom to be in the presence of
an oscillating electric field given by

E(r) = € Ey cos wt (4.60)

which is switched on at t = 0; € represents the unit vector along the direction of the
electric field. The frequency w is assumed to be very close to the resonant frequency
[(E2 —E)/ FL] corresponding to the transition from state 1 to 2 (see Fig. 4.1). We
will show that the presence of the higher excited states can be neglected because of
the corresponding transition frequencies are far away from w. In the presence of the
electric field, the time-dependent Schrodinger equation becomes

ow
ihg =(Hy+H )V (4.61)
where
H' = —eE.r = —eEy(é.r) cos wt (4.62)

represents the interaction energy of the electron with the electric field and Hp (which
is independent of time) represents the Hamiltonian of the atom; e (< 0) represents
the charge of the electron.? Since Hy is independent of time, the solution of the
Schrddinger equation

oV
ih— = HyW (4.63)
ot
is of the form
W= yu(r)e Enh (4.64)

where 1,(r) and E, are the eigenfunctions and eigenvalues of Hy:

Hoyn(r) = Epy(r) (4.65)

The functions v,(r) are known as the atomic wave functions and satisfy the
orthonormality condition

0 ifn#m

4.66
1 ifn=m (4.66)

fw:(r)‘ﬁn1(r)df = Syn = i

3We are considering here a single electron atom with r representing the position of the electron
with respect to the nucleus. Thus the electric dipole moment of the atom is given by p = e r
because the direction of the dipole moment is from negative to the positive charge. The interaction
energy of a dipole placed in an electric field E is — p.E is which leads to Eq. (4.62).
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The solution of Eq. (4.63) can be written as a linear combination of the atomic wave
functions:

Y(r, 1) = Z Cn(t)lﬂn(l‘)e_iw”t (4.67)
where
= & 4.68)
wy = W 4.

and the coefficients are now time dependent to account for transitions among the var-
ious energy levels due to the perturbation. Substituting from Eq. (4.67) in Eq. (4.63)
we obtain

th(

— eE() er ZCn(t)l/fn(r)e_"“” cos wt
n

— iwy n) ~ieont Yn(r) = ZE G (I)Wn(r)e_lwnt

where we have used Eq. (4.65). It is immediately seen that the second term on
the left-hand side exactly cancels with the first term on the right-hand side. If we
multiply by ¥ and integrate we would get

d¢, 1 . .
h m — 5}50 Z DmnCn(t) (gl(wmn"l‘w)t + el(wnm_w)t) (469)
n

where use has been made of the orthogonality relation [Eq. (4.66)] and

E, —E,

Wmn = Wy — Wp = T 4.70)
Dy = &Py @.71)
=—e / V(@1 (r)de = el / Y (O, (ryde (4.72)

We wish to solve Eq. (4.69) subject to the boundary condition

Ci(t=0)=1
(4.73)
C,(t=0)=0 forn #k
ie., at t = 0, the atom is assumed to be in the state characterized by the wave
function . Equation (4.69) represents an infinite set of coupled equations, and
as a first approximation, one may replace Cy(7) by C,(0) on the right-hand side of
Eq. (4.69). Thus

h_dc - %EODmk (ei<wmk+w>f + e"<wmk*w”) (4.74)
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Integrating, one obtains

c (t) c (0) ~ EOD ei(wmk+a))t —1 ei(wmkfw)t -1 (4 75)
" " 20" | (O + @) (i, — @) '
or, form # k
oty —iB0D, | itomcronn sin (Wi +w) /2 Sion—op2 S0 (@nk—©) 1/2
h (Omk + ) (Omk — ®)

(4.76)
It can be easily seen that for large values of ¢, the function

sin (W — o) t/2
(Wmk — )

is very sharply peaked around @ ~ wp,x and negligible everywhere else (see
Fig. 4.11). Thus for states for which w, is significantly different from w, C,,(f)
would be negligible and transitions between such states will not be stimulated by
the incident field. This justifies our earlier statement that the presence of only those
excited states be considered which are close to the resonance frequency.

In an emission process, wy > w, and hence wnk is negative; thus it is the first
term on the right-hand side of Eq. (4.76) which contributes. On the other hand, in
an absorption process, w,x > 0 and the second term in Eq. (4.76) contributes.

We consider absorption of radiation and assume that at # = O the atom is in state
1, the corresponding wave function being 1 (7). We also assume o to be close to
w21 [= (E2 — E1) /] — see Fig. 4.1. The probability for the transition to occur to
state 2 is given by

sin({wyy—w}t/2)
{wme—w}

0.8}

0.6}

0.4}

0.2¢ . 1
N AN A\
Fig. 4.11 For large values of —0.2| 1 on 2_1'c (ka—w)_
t, the function W [3 3
is very sharply peaked around 0.4
©=w -20 -15 -10 -5 0 5 10 15 20
= Wmk
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1C(0)* =

) 2
1 D3, B {sm [(@2 — @) /2]1 } (4.77)

4 (w21 —w) /2

The above expression represents the probability for stimulated absorption of radia-
tion. In deriving Eq. (4.77) we have assumed that |C2(1)|* << 1; thus the result is

accurate when -
2 /2.2 <—D212E 0)
D3, Egt g

<<l or —— <<1 (4.78)
n? (021 — »)?
A more exact result for a two-state system will be discussed in Section 4.8.
We next assume that the quantity (wp; — w) has a range of values either on
account of the field having a continuous spectrum or the atom is capable of
interaction with radiation having a range of frequencies.

4.7.1 Interaction with Radiation Having a Broad Spectrum

We first consider the field having a continuous spectrum characterized by u(w)
which is defined such that u(w) dw represents the energy associated with the field
per unit volume within the frequency interval w and w + dw. Since the average
energy density associated with an electromagnetic wave is (1 / 2)80E3 where &g
is the permittivity of free space, we replace E in Eq. (4.77) by (2/#0) u(w)dw
and integrate over all frequencies, which gives us the following expression for the
transition probability:

2
_ 1 D3 sin [(w21 — w) /2]
Mo=s-25 / u(w) { @ =) 2 do (4.79)

Assuming that u(w)varies very slowly in comparison to the quantity inside the
square brackets, we replace u(w) by its value at @ = wj; and take it out of the

~ 1 D ( ) Sin E

2

hz

(4.80)

—ZLuwan)t

where § = “’2‘ 219 The above expression shows that* the probability of transition

is proportional to time; thus the probability per unit time (which we denote by wy)

It may be noted that Eq. (4.80) predicts an indefinite increase in the transition probability with
time; however, the first-order perturbation theory itself breaks down when I'y; is not appreciably
less than unity. Thus Eq. (4.80) gives correct results as long as I'y; < 1.
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would be given by
T 2
Wi R — h2 —2Lu(wy)) (4.81)
Now (omitting the subscripts) we have
D=¢&P =P cosb (4.82)

where 6 is the angle that € (i.e., the electric field) makes with the dipole moment
vector P. Assuming that the dipole moment vector is randomly oriented, the average
value of D? is given by

_ 1
D’ = P> <00529> = 3P2 (4.83)

where use has been made of the following relation:

2 1w
cos 9 f/cos 6 sinf do d¢p = (4.84)
Thus
n P2
w2 = 3o —u(@21) (4.85)

If there are N atoms per unit volume in state 1 then the total number of absorptions
per unit time per unit volume would be Nyw1,, which would be equal to
T P?

3 7 — u(w21) (4.86)

Comparing Eqs. (4.86) and (4.1), we obtain

3 m P2 4x? /w i
= —_— - = — r T
12 3eg B2~ 302 \4dmey 2T

The corresponding expression for stimulated emission is obtained by starting with
the first term on the right-hand side of Eq. (4.76) and proceeding in a similar fashion.
The final expression is identical to Eq. (4.87) except for an interchange of indices 1
and 2.

Using Eq. (4.87) we get the following expression for the A coefficient

A—4 &2
" 3 \dweg hc

It may be of interest to note that

2

(4.87)

2

Srydr (4.88)
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2
1 1
C )~ — (4.89)
dreg he 137
Using this value, we obtain
41 o fw*rWd ’ (4.90)
=-——— T .
3137 2 27+l

As an example we calculate the A coefficient for the 2P— 1S transition in the hydro-
gen atom, i.e., the transition from the (n =2, /= 1,m =0) statetothe (n =1,/=0,
m = 0) state. For these states (see, e.g., Ghatak and Lokanathan (2004))

1 2 r
0

and

v <_) (i)‘” ) (4.9
V2= ey P s P\ T2 ) [ \a) < 92)

where ag = (h? /m) (4me/e*) ~ 0.5 x 107%m. In order to evaluate the matrix
element, we write

X =rsinf cos ¢

y = rsinfsin¢ (4.93)
z=rcosb
Now,
1 1 o0 T
/ Yixyndr = - /rzdre%’/z“or2 X /cos@ sin? 6 do
42 a
V2 0 \o 0
2
X fcos¢d¢ =0
0

because the integral over ¢ vanishes. Similarly

/ Vi yyodr =0 (4.94)

The only non-vanishing integral is
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o0
/ Yizyadt = —— / P2dre—371740,2
2a0
0
n 2
\S
X /c0520 sinfdo | x /d¢ :4ﬁ<§) a0
0 0
Thus®
2 7\ 10
V yiryade| =2 (5) a (4.95)

Further for the 2P— 1S transition

13 [ ¢ 3¢ (&1 3x3x108 1 16 _1
- _ — |l — &~ 1.5%x10"°s

h8ag \ 4meg 8ao 4meg he 8 x 0.51 x 10—10 137
(4.96)
Substituting in Eq. (4.90), we obtain
41 (15x100)° _ 2\ >
Ar -—%25 (-) (0.5 x 10—10)
3137 (3 x 109) 3 4.97)

=6 x 10%7!
The mean lifetime of the state, 7, is the inverse of A giving
T~ 1.6x 107

Thus the lifetime of the hydrogen atom in the upper level corresponding to the
2P— 1S transition is about 1.6 ns. Transitions having such small lifetimes are
referred to as strongly allowed transitions.

In contrast, the levels used in laser transitions are such that the upper laser level
has a very long lifetime (~10-107° s). A level having such a long lifetime is
referred to as a metastable level, and such transitions come under the class of
weakly allowed or nearly forbidden transitions. The strength of an atomic transi-
tion is usually expressed in terms of the f~value defined by the following equation:

Dy |2 (4.98)

5 It can be shown that | I wl*rljfgdt|2 has the same value for transition from anyone of the states
m=2,l=1,m=0or(n=2,I=1l,m=-)or(n=2,I=1,m=-1)to(n=2,1=0,m=0)
state. However, the matrix element for the transition from (n = 2, [ = 0, m = 0) state to the (n = 1,
[ =0, m = 0) state is zero. This implies that the corresponding dipole transition is forbidden.
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For strongly allowed transitions, f is of the order of unity, for example, for the
2P— 1S transition in the hydrogen atom, f = 0.416. On the other hand, for the
transitions from the upper laser level, f ~ 1073-107°.

4.7.2 Interaction of a Near-Monochromatic Wave with an Atom
Having a Broad Frequency Response

We next consider a nearly monochromatic field interacting with atoms characterized
by the lineshape function g(w). For such a case the probability for the atom being in
the upper state would be given by

2 2 . ;o 2
ria= 32208 [ | O

1 2 E2
= 1 ;_112 Og(a))2nt

7 P?

= — wt
3y glw)u

(4.99)

where in the last step we have replaced D% , and E(z) by %PZ and 2u,, / &0, respectively.
Since

BBy = 2L T 4.100

2= ZI_EE_hw%W (4.100)

we obtain the following expression for the transition rate (per unit time) per unit

volume:
2.3

e
Wi =Ni—— 4.101
2=MNp 5 Upg(®) ( )

which is consistent with Eq. (4.18).

4.8 More Accurate Solution for the Two-Level System

A more accurate solution of the time-dependent Schrodinger equation can be
obtained if we assume that the atom can exist in only two possible states charac-
terized by 1 (r) and ¥, (r). Thus Eq. (4.67) gets replaced by

U(r, 1) = Ci(OY1(r)e 1 + Ca(t)ya(r)e 2 (4.102)

If we substitute from Eq. (4.102) into Eq. (4.61), multiply by v/ and integrate, we
would get [cf. Eq. (4.74)]
dcy

- _ 1 —i(—)t | i/ to)
ih—t = SED12Ca(0) (e te ) (4.103)
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Similarly

dcC 1 o o
zh—2 — EEODIZCI(I) (el(a) +w)t 4 el(w fa))l)

dt

where use has been made of the fact that

/Wi’(l‘lﬁld‘r Z/Iﬁ;l’lpzd‘c =0

and

(4.104)

(4.105)

In the rotating wave approximation, considering absorption we neglect the terms

e~i(@+o)1 gnd (@ +@)! in Egs. (4.103) and (4.104) and obtain

dCl l . /
— = ——EoDnCa(t i(w—a")t
o 57, EoD12 2(t)e

dC2 l : /

T EDi»Ci(t —i(o—aw')t
” 57, EoD12 1(De

If we assume a solution of the form
Cl (t) — eiQt

then from Eq. (4.107),

oty = — 22 (@-waty
EoD12

Substituting in Eq. (4.106), we get

; 2h<2 (R —w+0o) " EoD
—1 —wtw)=——
EoDq» 2h 021
or
92
Q(Q—a)+a/)—70=0
where

(4.106)

(4.107)

(4.108)

(4.109)

(4.110)

@.111)
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and
D =Djz =Dy
Equation (4.110) gives
1 1/2
Qo= 3 {— (0 —w) £ [(a)’ — a))2 + Qg] }
Thus the general solution will be
Ci(t) = A1 4 Ape 2!
2 i(w —w)t iQt iQot
Cz(t):—Q—e (Alﬂle "+ Ay Qe z)
0
If we now assume that the atom is initially in the ground state, i.e.,

C1(0)=1, C0)=0

then
2
Al =——A
1 o 2
and
Q — 2 , 2 27112 Ao
P=Ar+ A = A= =2 = (o - of] " 2
1+4A =4 a (0 — )" + Q5 a,
or
2
AZZW
where

1/2
Q= [(a)/ - a))2 + 9(2)]
On substitution we finally obtain

Qo i Q't
C(t) = —iée’(“’ ~M/2 gin (7>

Thus the transition probability for absorption is given by

93

4.112)

(4.113)

4.114)

4.115)

(4.116)

4.117)

(4.118)

(4.119)

(4.120)

4.121)
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Fig. 4.12 Variation of the ol o o 16 w,
transition probability with 0 frae——— = = =
time for a two-level system 0.l S 14 w,
et B —

for different frequencies of O Gk =
the electromagnetic field. The o2t el el L

el 1.2 w,
curves correspond to Q. / . )_
the function DEy/h = 0.1e'. 0] B e

The solid line corresponds to
Eq. (4.121) and the dotted
curve corresponds to an
accurate numerical
computation (Reprinted with
permission from Salzman
(1917). © 1971 American
Institute of Physics)

Transition Probability

which has been plotted in Fig. 4.12. Also shown in the figure are the results of the
exact numerical calculations without resorting to the rotating wave approximation.
At resonance w = o' and one obtains

ot

G0 = sin? (QT) 4.122)

which shows that the system flip flops between states 1 and 2. A comparison of Egs.
(4.122) and (4.77) shows that the perturbation theory result is valid if

DnEy \° DyEy\> 1
270 <1 or 2170 << 1 (4.123)
h h (0 — a))2

It may be of interest to note that the solutions obtained in this section are exact
when w = 0 (i.e., a constant electric field) and if Dy is replaced by 2D»; in the
solution given by Eq. (4.121). This follows from the fact that for w = 0, the exact
equations [Eqgs. (4.103) and (4.104)] are the same as Eqgs. (4.106) and (4.107) with
D»; replaced by 2D3;.
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Problems

Problem 4.3 Consider the two-level system shown in Fig. 4.1 with E; = —13.6eV and E; = —3.4¢eV.
Assume Ay & 6 X 1085~ 1. (a) What is the frequency of light emitted due to transitions from Ey and
E1? Assuming the emission to have only natural broadening, what is the FWHM of the emission? What
is the population ratio Np /N1 at T = 300 K?

[Answer : (a)v &~ 2.5 x 1019Hz, Av = Ay /27 = 108Hz, Ny /Ny ~ ¢34

Problem 4.4 Given that the gain coefficient in a Doppler-broadened line is
a(v) = a(vg) exp [741n 2(v — vo)z/(Avo)z]

where v is the centre frequency and Avg is the FWHM and that the gain coefficient at the line centre
is twice the loss averaged per unit length, calculate the bandwidth over which oscillation can take place.
[Answer: Avg].

Problem 4.5 Consider an atomic system as shown below:

3 Ey =3eV
2 E,=1eV
1 E; =0eV

The A coefficient of the various transitions are given by

A =7x10"s7! Az =107s71, Ay =1087!

(a) What is the spontaneous lifetime of level 3?

(b) If the steady-state population of level 3 is 1015 atoms/cm?, what is the power emitted spontaneously
in the 3 — 2 transition? [Answer: (a) 7gp = 1.2 x 10785 (b) 2.2 x 1010 W/m3]

Problem 4.6 Consider the transition in neon that emits 632.8 nm in the He-Ne laser and assume a
temperature of 300 K. For a collision time of 500 ns, and a lifetime of 30 ns, obtain the broadening due
to collisions, lifetime, and Doppler and show that the Doppler broadening is the dominant mechanism.

Problem 4.7 Consider an atomic system under thermal equilibrium at T = 1000 K. The number of
absorptions per unit time corresponding to a wavelength of 1 pm is found to be 102251 What would be
the number of stimulated emissions per unit time between the two energy levels? [Ans: 102251

Problem 4.8 Consider a laser with plane mirrors having reflectivities of 0.9 each and of length 50 cm
filled with the gain medium. Neglecting scattering and other cavity losses, estimate the threshold gain
coefficient (in m™ 1) required to start laser oscillation. [Ans: 0.21 m~ 1]

Problem 4.9 An atomic transition has a linewidth of Av = 108Hz. Estimate the approximate value of
g(w) at the center of the line. [Ans: ~ 1.6 x 10_95_1]
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Problem 4.10 There is a 10% loss per round trip in a ruby laser resonator having a 10 cm long ruby
crystal as the active medium. Calculate the cavity lifetime, assuming that the mirrors are coated on the
ends of the ruby crystal. Given: Refractive index of ruby at the laser wavelength is 1.78 [Ans: 11.3 ns]

Problem 4.11 In a ruby crystal, a population inversion density of (N, —Nj) =5 x 10 7em™3 is generated
by pumping. Assuming g(vg) =5 X 10712, tp =3 x 1073, wavelength of 694.3 nm and a refractive
index of 1.78, obtain the gain coefficient y(vg). By what factor will a beam get amplified if it passes
through 5 cm of such a crystal? [Ans: 5 x 10~2em™!, 1.28]

Problem 4.12 An optical amplifier of length 10 cm amplifies an input power of 1 to 1.1 W. Calculate the
gain coefficient in mL. [Ans: 0.95 m_l]

Problem 4.13 Doppler broadening leads to a linewidth given by

2kpT
Avp =2vy,/ — In2
Estimate the broadening for the 632.8 nm transition of Ne (used in the He—Ne laser) assuming 7'= 300 K
and atomic mass of Ne to be 20. What would be the corresponding linewidth of the 10.6 pm transition
of the CO, molecule? [Ans: 1.6 x 109Hz, 6 x 107Hz]

Problem 4.14 In a typical He—Ne laser the threshold population inversion density is 10%m™3. What is
the value of the population inversion density when the laser is oscillating in steady state with an output
power of 2 mW?

Problem 4.15 Given that the gain coefficient in a Doppler-broadened line is

41n2(v — vp)?
(Avp)?

y(v) = yo exp {

and that the gain coefficient at the center of the line is four times the loss averaged per unit length, obtain
the bandwidth over which oscillation will take place. [Ans: v/2Aug]

Problem 4.16 A laser resonator 1 m long is filled with a medium having a gain coefficient of 0.02 m
If one of the mirrors is 100 % reflecting, what should be the minimum reflectivity of the other mirror so
that the laser may oscillate? [Ans: ~ 96%]



Chapter 5
Laser Rate Equations

5.1 Introduction

In Chapter 4 we studied the interaction of radiation with matter and found that
under the action of radiation of proper frequencies, the atomic populations of var-
ious energy levels change. In this chapter, we will be studying the rate equations
which govern the rate at which populations of various energy levels change under
the action of the pump and in the presence of laser radiation. The rate equations
approach provides a convenient means of studying the time dependence of the
atomic populations of various levels in the presence of radiation at frequencies cor-
responding to the different transitions of the atom. It also gives the steady-state
population difference between the actual levels involved in the laser transition and
allows one to study whether an inversion of population is achievable in a transi-
tion and, if so, what would be the minimum pumping rate required to maintain a
steady population inversion between two levels, the gain that such a medium would
provide at and near the transition frequency, and the phase shift effects that such
a medium would introduce are discussed in detail in Chapter 6. Thus Chapter 6
discusses the behavior of a system having two levels when there is a population
inversion between the two levels, and this chapter deals with the means of obtaining
an inversion between two levels of an atomic system by making use of other energy
levels. The rate equations can also be solved to obtain the transient behavior of the
laser, which gives rise to phenomena like Q-switching and spiking.

The atomic rate equations along with the rate equation for the photon number in
the cavity form a set of coupled nonlinear equations. These equations can be solved
under the steady-state regime and one can study the evolution of the photon number
as one passes through the threshold pumping region.

In Section 5.2 we discuss a two-level system and show that it is not possible
to achieve population inversion in steady state in a two-level system. Sections 5.3
and 5.4 discuss three-level and four-level laser systems and obtain the dependence
of inversion on the pump power. In Section 5.5 we obtain the variation of laser
power around threshold showing the sudden increase in the output power as a func-
tion of pumping. This is a very characteristic behavior of a laser. Finally in Section
5.6 we discuss the optimum output coupling for maximizing the output power of a
laser.

K. Thyagarajan, A. Ghatak, Lasers, Graduate Texts in Physics, 97
DOI 10.1007/978-1-4419-6442-7_5, © Springer Science+Business Media, LLC 2010
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5.2 The Two-Level System

We first consider a two-level system consisting of energy levels E; and E; with
Np and N, atoms per unit volume, respectively [see (Fig. 5.1)]. Let radiation at
frequency w with energy density u be incident on the system. The number of atoms
per unit volume which absorbs the radiation and is excited to the upper level will be
[see Eq. (4.18)]

2.3

T
T = ————=ug(w)N1 = WiaN; (5.1
ha’tgpng
where
2.3
T
Wi = —ug() (52)
hartgng

The number of atoms undergoing stimulated emissions from E> to Ej per unit
volume per unit time will be [see Eqgs. (4.16) and (4.18)]

[y = Wy Ny = WipN, (5.3)

where we have used the fact that the absorption probability is the same as the stim-
ulated emission probability. In addition to the above two transitions, atoms in the
level E, would also undergo spontaneous transitions from E» to Ej. If A1 and S»;
represent the radiative and non-radiative transition! rates from E, to Ej, then the
number of atoms undergoing spontaneous transitions per unit time per unit volume
from E; to E; will be 71N, where

Ty = A1 + S21 (5.4)
Thus we may write the rate of change of population of energy levels E> and E; as

dN,
el Wi2(N1 — N2) — TN, (5.9

El v Nl

Fig. 5.1 A two-level system

'In a non-radiative transitions when the atom de-excites, the energy is transferred to the
translational, vibrational or rotational energies of the surrounding atoms or molecules.
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dN;g
el —Wi2(N1 — N2) + T21 N> (5.6)

As can be seen from Eqgs. (5.5) and (5.6)
d
d_t(N 1+N2)=0
= Ni + Ny = aconstant =N (say) 5.7

which is nothing but the fact that the total number of atoms N per unit volume is
constant. At steady state

dN; 0= dN> 5.8)
d ~  dr '
which gives us
N 1%
M2 e (5.9)
N1 Wi+ 1Ty

Since both Wi, and T>; are positive quantities, Eq. (5.9) shows us that we can
never obtain a steady-state population inversion by optical pumping between just
two levels.

Let us now have a look at the population difference between the two levels. From
Eq. (5.9) we have

N-N Ty
Ny + N 2Wip + Ty
or if we write AN = Ny — N, we have
AN 1
e — (5.10)
N 1+ 2Wi2/T5

In order to put Eq. (5.10) in a slightly different form, we first assume that the
transition from 2 to 1 is mostly radiative, i.e., A1 > S»; and T &~ Aj;. We
also introduce a lineshape function g(w) which is normalized to have unit value at
w = wy, the center of the line, i.e.,

- 8(w)
fo) = > (5.11)
8(wo)

Since g(w) < g(wop) for all w, we have 0 < g(w) < 1. Substituting the value of Wy,
in terms of u from Eq. (5.2) and observing that u = nol/c, where [ is the intensity
of the incident radiation at w, we have

Wia 723 ng . 1

— = ———]—g(w)g(wy)—

15 hw3lspn8 Cc g( )g( O)Azl

(5.12)

2.3

T g0
= ——g(wy)g(w
R SC08
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where we have used the fact that A%y, = 1. Hence Eq. (5.10) becomes

AN 1
s (5.13)
N 1+ /1)8(w)
where
hw3ng
= (5.14)

P 2122 g(w)

is called the saturation intensity. In order to see what s represents let us consider
a monochromatic wave at frequency wq interacting with a two-level system. Since
g(wo) = 1, we see from Eq. (5.13) that for I < I, the density of population dif-
ference between the two levels AN is almost independent of the intensity of the
incident radiation. On the other hand for / comparable to /5, AN becomes a func-
tion of I and indeed for I = I, the value of AN is half the value at low incident
intensities.

We showed in Section 4.3 that the loss/gain coefficient for a population difference
AN = N; — Nj between two levels is given by [see Eq. (4.26)]

2.2

g(w)AN
a)ztspng

(5.15)
o

T 1+ (I/L)gw)
where

n2c?

@ tspn()

corresponds to the small signal loss, i.e., the loss coefficient when I < I5. We
can see from Problem 5.1 that with « given by Eq. (5.15), the loss is exponential
for I <« I while it becomes linear for I >> I;. Thus we see that the attenuation
caused by a medium decreases as the incident intensity increases to values com-
parable to the saturation intensity. Organic dyes having reasonably low values of
I(~ 5 MW/cm?) are used as saturable absorbers in mode locking and Q-switching
of lasers (see Section 7.7.1).

Problem 5.1 Using Eq. (5.15) in Eq. (4.25) obtain the variation of I with z.
[Answer:

1 g(w
In — + &(1—10) = —apz
Iy Iy

where I is the intensity at z= 0.]
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5.3 The Three-Level Laser System

In the last section we saw that one cannot create a steady-state population inversion
between two levels just by using pumping between these levels. Thus in order to
produce a steady-state population inversion, one makes use of either a three-level or
a four-level system. In this section we shall discuss a three-level system.

We consider a three-level system consisting of energy levels E1, E>, and E3 all of
which are assumed to be nondegenerate. Let N1, N>, and N3 represent the population
densities of the three levels [see (Fig. 5.2)]. The pump is assumed to lift atoms from
level 1 to level 3 from which they decay rapidly to level 2 through some nonradiative
process. Thus the pump effectively transfers atoms from the ground level 1 to the
excited level 2 which is now the upper laser level; the lower laser level being the
ground state 1. If the relaxation from level 3 to level 2 is very fast, then the atoms
will relax down to level 2 rather than to level 1. Since the upper level 3 is not a laser
level, it can be a broad level (or a group of broad levels) so that a broadband light
source may be efficiently used as a pump source (see, e.g., the ruby laser discussed
in Chapter 11).

Rapid decay

Pump N,

WY L aser
T MWWV

p —_—
E, v N, hv,

Fig. 5.2 A three-level system. The pump excites the atoms from level E; to level E3 from where
the atoms undergo a fast decay to level E. The laser action takes place between levels E> and E|

If we assume that transitions take place only between these three levels then we
may write

N =N;+N>+Ns (5.17)

where N represents the total number of atoms per unit volume.
We may now write the rate equations describing the rate of change of N1, N and
N3. For example, the rate of change of N3 may be written as

dn.
= WolNi = N3) = T3N3 (5.18)

where W, is the rate of pumping per atom from level 1 to level 3 which depends
on the pump intensity. The first term in Eq. (5.18) represents stimulated transitions
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between levels 1 and 3 and 73,3 represents the spontaneous transition from level
3 to level 2:
T3 = A3 + 83 (5.19)

Az and S3; correspond, respectively, to the radiative and nonradiative transition
rates between levels 3 and 2. In writing Eq. (5.18) we have neglected 731 /N3 which
corresponds to spontaneous transitions between levels 3 and 1 since most atoms
raised to level 3 are assumed to make transitions to level 2 rather than to level 1.

In a similar manner, we may write

dc% = Wi(N1 — N2) + N3T32 — NaT) (5.20)
and
dNy
o Wp(N3 — Ni) + Wi(N2 — Np) + Na Ty (5.21)
where
W= 522—3;2(2)14218(60)11 (5.22)

represents the stimulated transition rate per atom between levels 1 and 2, I; is the
intensity of the radiation in the 2 — 1 transition and g(w) represents the lineshape
function describing the transitions between levels 1 and 2. Further,

T2 = A21 + 821 (5.23)

with Ap; and S representing the radiative and nonradiative relaxation rates between
levels 1 and 2. For efficient laser action since the transition must be mostly radiative,
we shall assume A1>> S71.

At steady state we must have

dN dn; dn.
—loo="2=22 (5.24)
dr dr dt
From Eq. (5.18) we obtain
Wp
N3 = —N; (5.25)
Wy + T3
Using Eqgs. (5.20), (5.21), and (5.25) we get
wi(T W, W,T:
L — 1(T32 + Wp) + WpT32 (5.26)

Wy + T)(Wi + Tay)
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Thus from Egs. (5.17), (5.25), and (5.26) we get

Nr—N; [(Wp(T32 — T21) — 132721 ] (5.27)
N [BWpW1 + 2WpTo1 + 2T30 W1 + T2 Wy + 132721 ] '

From the above equation, one may see that in order to obtain population inver-
sion between levels 2 and 1, i.e., for (N2 — N7) to be positive, a necessary (but not
sufficient) condition is that

T3y > 1o (5.28)

Since the lifetimes of levels 3 and 2 are inversely proportional to the relaxation rates,
according to Eq. (5.28), the lifetime of level 3 must be smaller than that of level 2
for attainment of population inversion between levels 1 and 2. If this condition is
satisfied then according to Eq. (5.27), there is a minimum pumping rate required to
achieve population inversion which is given by

T3275
Wpt = ———— (5.29)
T T Ty
If T35 > Tou,

Wit = T2y (5.30)

and under the same approximation, Eq. (5.27) becomes

Ny, — N W, — T Wy + T

2 1 (Wp — T21)/(Wp + T21) (531)

N 3Wp+2T3;
[1 + Tsz(Wp+T21>W1]

Below the threshold for laser oscillation, W is very small and hence we may write

Ny =Ny (Wp —T21)
N (Wp + 121)

(5.32)

Thus when W7 is small, i.e., when the intensity of the radiation corresponding to the
laser transition is small [see Eq. (5.22)], then the population inversion is independent
of 11 and there is an exponential amplification of the beam. As the laser starts oscil-
lating, W1 becomes large and from Eq. (5.31) we see that this reduces the inversion
N, — Nj which in turn reduces the amplification. When the laser oscillates under
steady-state conditions, the intensity of the radiation at the laser transition increases
to such a value that the value of No» — N is the same as the threshold value.

Recalling Eq. (5.31), we see that for a population inversion N» — Ny, the gain
coefficient of the laser medium is

2.2

T
V= —5——>58@)N2— N1)
[} tspno
(5.33)
Y0
3Wp+2T32

I+ Tz»z(Wp+T21)Wl
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where

(5.34)

is the small signal gain coefficient. If we now carry out a similar analysis to that in
Section 5.2, we may write

Y0
- 535
Y =T W) (5:35)
where
8(w) = g(w)/g(wo)
ho’n2  Tap(W, + Tar) (5.36)

T 722 Agg(w0) W, + 2T32)

I being the saturation intensity [see the discussion following Eq. (5.16)].
If T3, is very large then there will be very few atoms residing in level 3.
Consequently, we may write

N =N+ N+ N3~ N;+ Ny (5.37)

Substituting in Eq. (5.32), we get
Ny, — Ny _ Wp — 121
No+Np Wp+ Ty

or

WpN1 = TN (5.38)

The left-hand side of the above equation represents the number of atoms being lifted
(by the pump) per unit volume per unit time from level 1 to level 2 via level 3 and
the right-hand side corresponds to the spontaneous emission rate per unit volume
from level 2 to level 1. These rates must be equal under steady-state conditions for
W1 =~ 0, i.e., below the threshold.

We shall now estimate the threshold pumping power required to start laser oscil-
lation. In order to do this, we first observe that the threshold inversion required is
usually very small compared to N (i.e., N, — N1 < N — see the example of the ruby
laser discussed in Chapter 11). Thus from Eq. (5.38), we see that the threshold value
of W, required to start laser oscillation is also approximately equal to 721 Now the
number of atoms being pumped per unit time per unit volume from level 1 to level
3 is WpN. If v, represents the average pump frequency corresponding to excitation
to E3 from E1, then the power required per unit volume will be

P = W,N1hvy (5.39)
Thus the threshold pump power for laser oscillation is given by

Py = T21N1hvp (5.40)
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Since N — N1 < N and N3 ~ 0, N| & N, = N/2. Also assuming the transition
from level 2 to level 1 to be mainly radiative (i.e., A21>>S21), we have

Py~ Nhvy /215 (5.41)

where we have used Ay; = 1/1;p.
As an example, we consider the ruby laser for which we have the following values
of the various parameters:

N~ 16x10%em™ 1, ~3x107%s v, ~625x10""Hz  (5.42)
Substitution in Eq. (5.41) gives us

P ~ 1100 W/em® (5.43)

If we assume that the efficiency of the pumping source to be 25% and also that
only 25% of the pump light is absorbed on passage through the ruby rod, then the
electrical threshold power comes out to be about 18 kW/cm? of the active medium.
This is consistent with the threshold powers obtained experimentally.

Under pulsed operation if we assume that the pumping pulse is much shorter
than the lifetime of level 2, then the atoms excited to the upper laser level do not
appreciably decay during the duration of the pulse and the threshold pump energy
would be

N
Upt = Eh\)p

per unit volume of the active medium. For the case of ruby laser, with the above
efficiencies of pumping and absorption, one obtains

Up ~ 54 Jem®

It may be noted here that even though ruby laser is a three-level laser system,
because of various other factors mentioned below it does operate with not too large
a pumping power. Thus, for example, the absorption band of ruby crystal is very
well matched to the emission spectrum of available pump lamps so that the pump-
ing efficiency is quite high. Also most of the atoms pumped to level 3 drop down to
level 2 which has a very long lifetime which is nearly radiative. In addition the line
width of laser transition is also very narrow.

5.4 The Four-Level Laser System

In the last section we found that since the lower laser was the ground level, one has
to lift more than 50% of the atoms in the ground level in order to obtain population
inversion. This problem can be overcome by using another level of the atomic sys-
tem and having the lower laser level also as an excited level. The four-level laser
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Ny
Fast nonradiative
transition

Ay MV

hvp

E, Ny

Fig. 5.3 A four-level system; the pump lifts atoms from level E; to level E4 from where they
decay rapidly to level E3 and laser emission takes place between levels E3 and E>. Atoms drop
down from level E> to level E|

system is shown in Fig 5.3. Level 1 is the ground level and levels 2, 3, and 4 are
excited levels of the system. Atoms from level 1 are pumped to level 4 from where
they make a fast nonradiative relaxation to level 3. Level 3 which corresponds to
the upper laser level is usually a metastable level having a long lifetime. The tran-
sition from level 3 to level 2 forms the laser transition. In order that atoms do not
accumulate in level 2 and hence destroy the population inversion between levels 3
and 2, level 2 must have a very small lifetime so that atoms from level 2 are quickly
removed to level 1 ready for pumping to level 4. If the relaxation rate of atoms from
level 2 to level 1 is faster than the rate of arrival of atoms to level 2 then one can
obtain population inversion between levels 3 and 2 even for very small pump pow-
ers. Level 4 can be a collection of a large number of levels or a broad level. In such a
case an optical pump source emitting over a broad range of frequencies can be used
to pump atoms from level 1 to level 4 effectively. In addition, level 2 is required to
be sufficiently above the ground level so that, at ordinary temperatures, level 2 is
almost unpopulated. The population of level 2 can also be reduced by lowering the
temperature of the system.

We shall now write the rate equations corresponding to the populations of the
four levels. Let N1, N2, N3, and N4 be the population densities of levels 1, 2, 3, and
4, respectively. The rate of change of N4 can be written as

dNy

vl Wp(N1 — Ng) — Ty3Ny (5.44)

where, as before, WpN| is the number of atoms being pumped per unit time per unit
volume, W}, Ny is the stimulated emission rate per unit volume,

Ty3 = Ag3 + Sa3 (5.45)
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is the relaxation rate from level 4 to level 3 and is the sum of the radiative (A43) and
nonradiative (S43) rates. In writing Eq. (5.44) we have neglected (742) and (T41) in
comparison to (743), i.e., we have assumed that the atoms in level 4 relax to level 3
rather than to levels 2 and 1.

Similarly, the rate equation for level 3 may be written as

dN3
el Wi(N2 — N3) + Ty3N4 — T32N3 (5.46)
where
7T2C2
Wi = ——Angi(w) (5.47)
hw ng

represents the stimulated transition rate per atom between levels 3 and 2 and the
subscript 1 stands for laser transition; gj(w) is the lineshape function describing
the 3 <> 2 transition and /; is the intensity of the radiation at the frequency w =
(E3 — E»)/h. Also

T3 = A3 + 83 (5.48)

is the net spontaneous relaxation rate from level 3 to level 2 and consists of the
radiative (A3;) and the nonradiative (S32) contributions. Again we have neglected
any spontaneous transition from level 3 to level 1. In a similar manner, we can write

dN,

e —Wi(N2 — N3) + T3N3 — To1 N2 (5.49)
dn,
Tl —Wp(N1 — Ng) + 121NV (5.50)
where
Tr1 = Az + S21 (3.51)

is the spontaneous relaxation rate from 2 — 1.
Under steady-state conditions

le_sz_dN3 dN4_O
dt  dr At dr

(5.52)

We will thus get four simultaneous equations in N1, N2, N3, and N4 and in addition
we have

N =N+ N> + N3+ Ny (5.53)

for the total number of atoms per unit volume in the system.
From Eq. (5.44) we obtain, setting dN4/dt = 0

N. W,
2=_ P (5.54)
Nt (Wp +Ts3)
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If the relaxation from level 4 to level 3 is very rapid then T43 > W, and hence
N4 <« Njp. Using this approximation in the remaining three equations we can obtain
for the population difference,
N3 — N> - Wp(TZI —T32)
N Wp(T21 + T32) + T3 1oy + WiQW,, + T2y)

(5.55)

Thus in order to be able to obtain population inversion between levels 3 and 2, we
must have

T21 > T3 (5.56)

i.e., the spontaneous rate of deexcitation of level 2 to level 1 must be larger than the
spontaneous rate of deexcitation of level 3 to level 2.
If we now assume T >> T3, then from Eq. (5.55) we obtain
N3 — N> N Wp 1
N Wp + T3 1+ Wi(T21 + ZWP)/Tzl(Wp + T32)

(5.57)

From the above equation we see that even for very small pump rates one can obtain
population inversion between levels 3 and 2. This is contrary to what we found in a
three-level system, where there was a minimum pump rate, Wy, required to achieve
inversion. The first factor in Eq. (5.57) which is independent of W [i.e., independent
of the intensity of radiation corresponding to the laser transition — see Eq. (5.47)] —
gives the small signal gain coefficient whereas the second factor in Eq. (5.57) gives
the saturation behavior.

Just below threshold for laser oscillation, W) & 0, and hence from Eq. (5.57) we
obtain

AN W

S (5.58)
N (Wp+T3)

where AN = N3 — N is the population inversion density. We shall now consider
two examples of four-level systems.

Example 5.1 The Nd:YAG laser corresponds to a four-level laser system (see Chapter 11). For such a
laser, typical values of various parameters are

Ao =1.06pm (v =283 x 10/4Hz), Av=1095x10""Hz,

(5.59)
tp=23x 1074 N=6x10"cm™3, ny=182
If we consider a resonator cavity of length 7 cm and Ry = 1.00, R = 0.90, neglecting other loss factors
(ie,a; =0)
2nod
o= ——0% 8% 107%

7ClnR1R2



5.4 The Four-Level Laser System 109

We now use Eq. (4.32) to estimate the population inversion density to start laser oscillation corresponding
to the center of the laser transition:

2,3
ving 1 tgp

(AN); = —_—
T8 g ke
(5.60)
4203 1,
= 730712&/ﬂ
c te
where for a homogenous transition (see Section 4.5)
g(wp) = 2/7Aw = 1/72Av (5.61)
Thus substituting various values, we obtain
(AN) ~ 4 x 10 cm™3 (5.62)

Since (AN); < N, we may assume in Eq. (5.58) T3, > W), and hence we obtain for the threshold
pumping rate required to start laser oscillation

N 15
_4xob
T 6x 1019 T 23 x 1074

(AN) (AN) 1
W~ —— T~ ——

~03s!

At this pumping rate the number of atoms being pumped from level 1 to level 4 is WpN and since
N3, N3 and Ny are all very small compared to N1, we have N| &~ N. For every atom lifted from level 1 to
level 4 an energy hvp has to be given to the atom where vp is the average pump frequency corresponding
to the 1 — 4 transition. Assuming vp ~ 4 x 10'4 Hz we obtain for the threshold pump power required
per unit volume of the laser medium

Py, = WpiN1hvp ~ WiNhvy
=03x6x 1012 x6.6x 10734 x4 x 1014
~ 4.8 W/em®

which is about three orders of magnitude smaller than that obtained for ruby.

Example 5.2 As a second example of a four-level laser system, we consider the He—Ne laser (see Chapter
11). We use the following data:

20 = 0.6328 x 10~ *cm(v = 4.74 x 10'*Hz), 569
tp=10"s, Av=10"Hz, ny~ 1 '

If we consider the resonator to be of length 10 cm and having mirrors of reflectivities R = Ry = 0.98,
then assuming the absence of other loss mechanisms («; = 0),

te = —2ngd/cInR 1Ry
¢ (5.64)
~ 1.6 x 10" °s

For an inhomogeneously broadened transition (see Section 4.5)
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2 /In2\?
glwg) = — (*)

Aw b4 (5.65)
~ 1.5x 10710
Thus the threshold population inversion required is
(AN); ~ 1.4 x 10%cm™ (5.66)
Hence the threshold pump power required to start laser oscillation is
Py = WpiN1(E4 — Ey)
(AN); (5.67)
~ hvp
tsp

where again we assume (AN); < N and T3, ~ A3y = 1/tgp. Assuming vp ~ 5 X 1015 Hz, we obtain

1.4 x 107 x 6.6 x 10734 x 5 x 1015
10~7 (5.68)

Py, =

~ 50 mW/ecm?

which again is very small compared to the threshold powers required for ruby laser.

5.5 Variation of Laser Power Around Threshold

In the earlier sections we considered the three-level and four-level laser systems and
obtained conditions for the attainment of population inversion. In this section we
shall discuss the variation of the power in the laser transition as the pumping rate
passes through threshold.

We consider the two levels involved in the laser transition in a four-level laser”
and assume that the lower laser level has a very fast relaxation rate to lower levels
so that it is essentially unpopulated. We will assume that only one mode has suffi-
cient gain to oscillate and that the line is homogenously broadened so that the same
induced rate applies to all atoms (see Section 4.5). Let R represent the number of
atoms that are being pumped into the upper level per unit time per unit volume [see

2 A similar analysis can also be performed for a three-level laser system but the general conclusions
of this simple analysis remain valid.
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Fig. 5.4 The upper level is R

pumped at a rate R per unit

volume and the lower level is

assumed to be unpopulated

due to rapid relaxation to E N,

2

other lower levels

(Fig. 5.4)]. If the population density of the upper level is N>, then the number of
atoms undergoing stimulated emissions from level 2 to level 1 per unit time will be

[see Eq. (4.16)] 5 3

T
Frp =I'yV=
ha)3n(3)

Ar1ug(w)N,V (5.69)
where u is the density of radiation at the oscillating mode frequency w, V rep-
resents the volume of the active medium, and ng is the refractive index of the
medium.

Instead of working with the energy density u, we introduce the number of photons
n in the oscillating cavity mode. Since each photon carries an energy fw, the number
of photons r in the cavity mode will be given by

n=uV/how (5.70)
Thus
723
Fr) = ——=Ar1g(w)Non = KnNp (5.71)
wzng
where
K= (n2c3/w2ng)A21g(w) (5.72)

The spontaneous relaxation rate from level 2 to level 1 in the whole volume will be
T>1N,>V where

121 = A2 + S0 (5.73)

is the total relaxation rate consisting of the radiative (A1) and the nonradiative (S21)
components. Hence we have for the net rate of the change of population of level 2

d
E‘(NZV) = —KnNy — Th1N,V + RV

or
dN> _ KnN;

— = — 151N R 5.74
o v 21N> + (5.74)
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In order to write a rate equation describing the variation of photon number » in the
oscillating mode in the cavity, we note that n change due to

a) All stimulated emissions caused by the n photons existing in the cavity mode
which results in a rate of increase of n of KnN; since every stimulated emission
from level 2 to level 1 caused by radiation in that mode will result in the addition
of a photon in that mode. There is no absorption since we have assumed the
lower level to be unpopulated.

b) In order to estimate the increase in the number of photons in the cavity mode
due to spontaneous emission, we must note that not all spontaneous emission
occurring from the 2 — 1 transition will contribute to a photon in the oscillat-
ing mode. As we will show in Section 7.2 for an optical resonator which has
dimensions which are large compared to the wavelength of light, there are an
extremely large number of modes (~ 10%) that have their frequencies within the
atomic linewidth. Thus when an atom deexcites from level 2 to level 1 by spon-
taneous emission it may appear in any one of these modes. Since we are only
interested in the number of photons in the oscillating cavity mode, we must first
obtain the rate of spontaneous emission into a mode of oscillation of the cavity.
In order to obtain this we recall from Section 4.2 that the number of spontaneous
emissions occurring between w and @ + dw will be

Gardw = Az Nag(w)dwV (5.75)

We shall show in Appendix E that the number of oscillating modes lying in a
frequency interval between w and w + dw is

2
Nw)do = ng# Vdo (5.76)

where ny is the refractive index of the medium. Thus the spontaneous emission
rate per mode of oscillation at frequency w is

Goridw 723

So1 = A _ T C o()AnN;
21 N(w)do nngg(w) 21N2

5.77)
= KN,

i.e., the rate of spontaneous emission into a particular cavity mode is the same
as the rate of stimulated emission into the same mode when there is just one
photon in that mode. This result can indeed be obtained by rigorous quantum
mechanical derivation (see Chapter 9).

¢) The photons in the cavity mode are also lost due to the finite cavity lifetime.
Since the energy in the cavity reduces with time as ™"/’ (see Section 4.4) the
rate of decrease of photon number in the cavity will also be n/f,.
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Thus we can write for the total rate of change of n

M _ KNy + KNy — (5.78)
—_— = n —_— .
dt 2 tc
Eqgs. (5.74) and (5.78) represent the pair of coupled rate equations describing the
variation of N> and n with time.

Under steady-state conditions both time derivatives are zero. Thus we obtain
from Eq. (5.78),

n 1

n+1 K_tc

Ny = (5.79)
The above equation implies that under steady-state conditions N> < 1/Kt.. When
the laser is oscillating under steady-state conditions n > 1 and N, & 1/Kt.. If we
substitute the value of K from Eq. (5.72) we find that (for n > 1)

2,3 1

wng t
Ny ~ 0 =P

72c3 t. g(w) (5-80)
which is nothing but the threshold population inversion density required for laser
oscillation (cf. Eq. (4.32)). Thus Eq. (5.79) implies that when the laser oscillates
under steady-state conditions, the population inversion density is almost equal to
and can never exceed the threshold value. This is also obvious since if the inversion
density exceeds the threshold value, the gain in the cavity will exceed the loss and
thus the laser power will start increasing. This increase will continue till saturation
effects take over and reduce N, to the threshold value.
Substituting from Eq. (5.79) into Eq. (5.74) and putting dN /dt = 0, we get

K o2y <1 R) R _o (5.81)
n+nll——|)—-—= .
21 R, R;
where
R = 12 (5.82)
"7 ki, ’

The solution of the above equation which gives a positive value of # is

1
VI [ (R o R 2+ 4K R |? .
n=-—-— — — - — —_— .
2K R[ Rt VTZI Rl

The above equation gives the photon number in the cavity under steady-state
conditions for a pump rate R.
For a typical laser system, for example an Nd:glass laser (see Chapter 11),

V= 100m3, nog ~ 1.5

A~ 1.06pum,  Av~~3x10”Hz
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so that

K A3 1

= ~13x10718 5.84
V151 8v2n(3) Va Av % ( )

where we have used 71 & Az;. For such small values of K/VT31, unless R/R; is
extremely close to unity, we can make a binomial expansion in Eq. (5.83) to get

~ _R/R R
n~ 1oRR, for RT<1_A
VD (R R (5.85)
where A > 2K/ VT21)%. Further
1

VT21\? R
n~ (22 for — =1 (5.86)

K R;

Figure 5.5 shows a typical variation of n with R/R,. As is evidentn =~ 1 for R < R,
and approaches 10'% for R > R,. Thus R; as given by Eq. (5.82) gives the threshold
pump rate for laser oscillation.

Fig. 5.5 Variation of photon
number 7 in the cavity mode
as a function of pumping rate 10" |-
R; R corresponds to the -
threshold pumping rate. Note oL
the steep rise in the photon 10
number as one crosses the —
threshold for laser oscillation 107
. L
105
103
10t -
[ 1 | [ AR
0.1 05 10 20 40 100

RIR,

Problem 5.2 Show that the threshold pump rate R; given by Eq. (5.82) is consistent with that obtained in
Section 4.4.

From the above analysis it follows that when the pumping rate is below threshold
(R < Ry) then the number of photons in the cavity mode is very small (~1). As
one approaches the threshold, the number of photons in the preferred cavity mode
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(having higher gain and lower cavity losses) increases at a tremendous rate and
as one passes the threshold, the number of photons in the oscillating cavity mode
becomes extremely large. At the same time the number of photons in other cavity
modes which are below threshold remains orders of magnitude smaller.

In addition to the sudden increase in the number of photons in the cavity mode
and hence laser output power, the output also changes from an incoherent to a
coherent emission. The output becomes an almost pure sinusoidal wave with a
well-defined wave front, apart from small amplitude and phase fluctuations caused
by the ever-present spontaneous emission.> It is this spontaneous emission which
determines the ultimate linewidth of the laser.

If the only mechanism in the cavity is that arising from output coupling due to
the finite reflectivity of one of the mirrors, then the output laser power will be

nhy
Pout = — (5.87)
le
where n/t. is the number of photons escaping from the cavity per unit time and hv
is the energy of each photon. Taking K /VT>; as given by Eq. (5.84) and 1, ~ 10785,
for R/R; = 2 we obtain

Poyy = 144 W

Example 5.3 It is interesting to compare the number of photons per cavity mode in an oscillating laser
and in a black body at a temperature 7. The number of photons/mode in a black body is (see Appendix D)

1

"= RelteT — 1 5-88)

Hence for A = 1.06 um, 7 = 1000 K, we obtain

1

~ ~ -6
N sy 14X 10

n

which is orders of magnitude smaller than in an oscillating laser [see (Fig 5.5)].

From Eq. (5.85) we may write for the change in number of photons dn for a
change dR in the pump rate as

dn _ VT 1 —w
dR~ K R °
or
dn
VdR = - (5.89)
C

where we have used Eq. (5.82). The LHS of Eq. (5.89) represents the additional
number of atoms that are being pumped per unit time into the upper laser level and

3In an actual laser system, the ultimate purity of the output beam is restricted due to mechanical
vibrations of the laser, mirrors, temperature fluctuations, etc.
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the RHS represents the additional number of photons that is being lost from the
cavity. Thus above threshold all the increase in pump rate goes toward the increase
in the laser power.

Example 5.4 Let us consider an Nd:glass laser (see Chapter 11) with the parameters given in page 119
and having
d=10cm

Ry =0.95, Rr, =1.00
For these values of the parameters, using Eq. (4.31) we have

2nod

-2~ 196 x 1078
cln RiRy

fe &
and 5 5
VT Vv 4v-Vn
) PO S ) (5.90)
K Ktsp c3 g(a))

Thus for R/R; = 2, i.e., for a pumping rate twice the threshold value (see Eq. (5.85))

n=VTy /K ~177x 102

Hence the energy inside the cavity is

E = nhy
6 (5.91)
~14x107°)

If the only loss mechanism is the finite reflectivity of one of the mirrors, then the output power will be

nhv
Pout = o ~ 74 W

C

Problem 5.3 In the above example, if it is required that there be 1 W of power from the mirror at the left
and 73 W of power from the right mirror, what should the reflectivities of the two mirrors be? Assume
the absence of all other loss mechanisms in the cavity.

[Answer: R; = 0.9993, R, =0.9507]

Example 5.5 In this example, we will obtain the relationship between the output power of the laser and
the energy present inside the cavity by considering radiation to be making to and fro oscillations in the
cavity. Figure 5.6a shows the cavity of length 1 bounded by mirrors of reflectivities 1 and R and filled by
a medium characterized by the gain coefficient . Let us for simplicity assume absence of all other loss
mechanisms. Figure 5.6b shows schematically the variation of intensity along the length of the resonator
when the laser oscillates under steady-state conditions. For such a case, the intensity after one round trip
14 must be equal to the intensity at the same point at the start of the round trip. Hence

R =1 (5.92)

Also, recalling the definition of cavity lifetime (see Eq. (4.31) with &y = 0), we have

21 1
fe=—"—InR=— (5.93)
C oc

Now let us consider a plane P inside the resonator. Let the distance of the plane from mirror M
be x. Thus if /1 is the intensity of the beam at mirror My, then assuming exponential amplification, the
intensity of the beam going from left to right at P is
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Fig. 5.6 (a) A resonator of length / bound by mirrors of reflectivities 1 and R and filled by a
medium of gain coefficient . (b) Curves 1 and 2 represent the qualitative variation of intensity
associated with the waves propagating in the forward and backward directions within the cavity.
The sudden drop in intensity from /5 to /3 is due to the finite reflectivity of the mirror M

Iy = Le** (5.94)
Similarly, the intensity of the beam going from right to left at P is

I = Ile(leea(l—x) — 11R62ale—ax

(5.95)
=1 oo
Hence the energy density at x is
I - 1
u(x) = i =1 (e‘” + e_‘”) (5.96)
c c
If A is the area of cross section, then the total energy in the cavity is
1
W=//udAdx=A/ udx
0
(5.97)

Al

=Ll (R
oc

= AlLtee® (1 - R)

where we have used Eqs. (5.92) and (5.93) and have assumed, for the sake of simplicity, uniform intensity
distribution in the transverse direction. Now the power emerging from mirror M, is

Poyt = IZA(I -R)
=1LA (1 -R) (5.98)
=W/t

which is consistent with Eq. (5.87)

5.6 Optimum Output Coupling

In the last section we obtained the steady-state energy inside the resonator cavity
as a function of the pump rate. In order to get an output laser beam, one of the
mirrors is made partially transparent so that a part of the energy is coupled out. In
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this section we shall obtain the optimum reflectivity of the mirror so as to have a
maximum output power.

The fact that an optimum output coupling exists can be understood as follows.
If one has an almost zero output coupling (i.e., if both mirrors are almost 100%
reflecting) then even though the laser may be oscillating, the output power will be
almost zero. As one starts to increase the output coupling, the energy inside the
cavity will start to decrease since the cavity loss is being increased but, since one is
taking out a larger fraction of power the output power starts increasing. The output
power will start decreasing again if the reflectivity of the mirror is continuously
reduced since if it is made too small, then for that pumping rate, the losses will
exceed the gain and the laser will stop oscillating. Thus for a given pumping rate,
there must be an optimum output coupling which gives the maximum output power.

In Section 4.4 we showed that the cavity lifetime of a passive resonator is

|
- = i (2a1d — In R\R>)
fe "0 (5.99)
1
Th 1,
where
I_cu 1 ¢ InRR (5.100)
—_—=—, — = - n .
t; ng e 2dnyg 172

t; accounts for all loss mechanisms except for the output coupling due to the finite
mirror reflectivities and 7, for the loss due to output coupling only. Thus, the number
photons escaping the cavity due to finite mirror reflectivity will be n/f, and hence
the output power will be

nhy

Poy =
e

_ v VD [RK (11 o
_te K To1 \t; ¢t

where we have used Eqgs. (5.82), (5.85), and (5.99). The optimum output power will
correspond to the value of t, satisfying dPyy¢/0t, = O which gives

1
L (ﬂ)z 1 (5.102)

fe To1t; L

(5.101)

Using Eqgs. (5.99) and (5.82), the above equation can be simplified to

1 1 /R
—=- <— — 1) (5.103)
te ti \ Ry



Problems 119

Substituting for ¢, from Eq. (5.103) in Eq. (5.101) we obtain the maximum output
power as

172
Pax = hvRV | 1 — <—) (5.104)

It is interesting to note that the optimum ¢, and hence the optimum reflectivity is a
function of the pump rate R.

Even though the output power passes through a maximum as the transmittivity
T = (1-R) of the mirror is increased, the energy inside the cavity monotonically
reduces from a maximum value as 7 is increased. This may be seen from the fact
that the energy in the cavity is

VT (KRt
E = nhv = i( ¢ _ 1) hv (5.105)
K 121

Thus as T is increased, #. reduces and hence E reduces monotonically finally
becoming zero when

_Ia

-~ =
°7 KR

(5.106)

beyond which the losses become more than the gain.

Problems

Problem 5.4 Using Eq. (5.103) calculate the optimum reflectivity of one of the mirrors of the resonator
(assuming the other mirror to have 100% reflectivity) for R = 2R;. Assume the length of the resonator to

be 100 cm, ng = 1 and the intrinsic loss per unit length to be 3 x 10 5em

Problem 5.5 Consider an atomic system as shown below:

3 E3=3eV
2 E2=16V
1 E1=0eV

The A coefficient of the various transitions are given by
Az =7 x107s7! A3 = 107571, Ay = 10857

(a) Show that this system cannot be used for continuous wave laser oscillation between levels 2 and 1.
(b) Suppose at t = 0, Ny atoms are lifted to level 3 by some external mechanism describe the change
of populations in levels 1, 2, and 3.

Problem 5.6 Using Eq. (5.103) calculate the optimum reflectivity of one of the mirrors of the resonator
(assuming the other mirror to be 100% reflecting) for R = 2R;. Assume the length of the resonator to
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be 50 cm, ny = 1 and the intrinsic loss per unit length to be 3 x 10~*mL. If the power output at the
optimum coupling is 10 mW, what is the corresponding energy inside the cavity?

[Answer: R & 0.9997, energy = 1.1 x 10777

Problem 5.7 Consider a laser with plane mirrors having reflectivities of 0.9 each and of length 50 cm
filled with the gain medium. Neglecting scattering and other cavity losses, estimate the threshold gain
coefficient (in m™1) required to start laser oscillation.

Problem 5.8 The cavity of a 6328 A He—Ne laser is 1 m long and has mirror of reflectivities 100 and
98%; the internal cavity losses are negligible. (a) If the steady-state power output is 10 mW, what is the
energy stored in the resonator? (b) What is the linewidth of the above passive cavity? (c) If the oscillating
linewidth is 1500 MHz, how many longitudinal modes would oscillate?

Problem 5.9 Consider a two-level system shown below:

— E,=2eV
Ay =107 571
— _E; =0

a) What is the frequency of light emitted due to transitions from E» to E1?

b) Assuming the emission to have only natural broadening, what is the FWHM of the emission?

c) What is the population ratio No/Ny at 300 K?

d) An atomic system containing N atoms/cm?of the above atoms is radiated by a beam of intensity /o
at the line center. Write down the rate equation and obtain the population difference between E, and
E1 under steady-state condition. Calculate the incident intensity required to produce a population
ratio Ny =2 Ny,

Problem 5.10 The active medium of a three-level atomic system is characterized by the following spon-
taneous emission rates: Ay = 108 S_I,A31 = 106s‘1,A32 =10%s71. (Neglect non-radiative transitions.)
Can we use the atomic system to realize a laser? (YES or NO). Justify your answer.

Problem 5.11 Consider a three-level laser system with lasing between levels E, and Ej. The level E,
has a lift time of 1 ps. Assuming the transition E3 — Ej to be very rapid, estimate the number of atoms
that needs to be pumped per unit time per unit volume from level Eq to reach threshold for achieving

population inversion. Given that the total population density of the atoms is 101%m3.



Chapter 6
Semiclassical Theory of the Laser

6.1 Introduction

The present chapter deals with the semiclasscial theory of the laser as developed
by Lamb (1964). In this analysis, we will treat the electromagnetic field classically
with the help of Maxwell’s equations and the atom will be treated using quantum
mechanics. We will consider a collection of two-level atoms placed inside an opti-
cal resonator. The electromagnetic field of the cavity mode produces a macroscopic
polarization of the medium. This macroscopic polarization is calculated using quan-
tum mechanics. The polarization then acts as a source for the electromagnetic field
in the cavity. Since this field must be self-consistent with the field already assumed,
one gets, using this condition, the amplitude and frequencies of oscillation. We will
obtain explicit expressions for the real and imaginary parts of the electric suscepti-
bility of the medium. The real part is responsible for additional phase shifts due to
the medium and leads to the phenomenon of mode pulling. On the other hand, the
imaginary part of the susceptibility is responsible for loss or gain due to the medium.
Under normal conditions, the population of the upper level is less than that of the
lower level and the medium adds to the losses of the cavity. In the presence of popu-
lation inversion, the medium becomes an amplifying medium; however, a minimum
population inversion is necessary to sustain oscillations in the cavity. We will show
that in the first-order theory, the electric field in the cavity can grow indefinitely, but
using a third-order theory we would show that the field would indeed saturate rather
than growing indefinitely.

Since the analysis is semiclassical in nature, the effects of spontaneous emission
do not appear. Thus, the analysis does not give the ultimate linewidth of the laser
oscillator which is caused by spontaneous emissions.

6.2 Cavity Modes

We consider a laser cavity with plane mirrors at z = 0 and z = L (see Fig. 6.1).
The electromagnetic radiation inside the cavity can be described by Maxwell’s
equations, which in the MKS system of units are

K. Thyagarajan, A. Ghatak, Lasers, Graduate Texts in Physics, 121
DOI 10.1007/978-1-4419-6442-7_6, © Springer Science+Business Media, LLC 2010
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Fig. 6.1 A plane parallel MIRROR MIRROR
resonator bounded by a pair
of plane mirrors facing each ACTIVE
other. The active medium is N\ >
placed inside the resonator MEDUIM
N /
Z=0 Z=L
B
VXxE=-— (6.1)
at
oD
VxH=Jr+— 6.2)
at
V-D=pr (6.3)
V-B=0 (6.4)

where py represents the free charge density and J; the free current density;
E,D,B, and H represent the electric field, electric displacement, magnetic induc-
tion, and magnetic field, respectively. Inside the cavity we may assume

pr =0 6.5)
B = uoH (6.6)
D = &FE + P 6.7)
J;=oE 6.8)

where P is the polarization, o the conductivity, and ¢y and p¢ are the dielectric
permittivity and magnetic permeability of free space. It will be seen that the conduc-
tivity term leads to the medium being lossy which implies attenuation of the field;
we will assume that other losses like those due to diffraction and finite transmission
at the mirrors are taken into account in o. Now,

V x (VxE)=—M03(VxH)=—M0ﬂ—Moa2—D (6.9)
ot ot ar?
or
Vx(VxE)+ MOGE + Souoaz—E = —Moaz—P (6.10)
ot ar? ar?

If we assume the losses to be small and the medium to be dilute, we may neglect the
second term on the left-hand side and the term on the right-hand side of the above
equation to approximately obtain

2

a
V x (V x E) 4+ gouo

2 =0 (6.11)
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Further since P is small, Eq. (6.3) gives

0=V -D~gV-E (6.12)
Thus
VxVxE=-V’E4+V(V-E)~ —V’E (6.13)
or
5 3’E
VxVxEx-VE=-— (6.14)
0z

where, in writing the last equation, we have neglected the x and y derivatives; this
is justified when intensity variations in the directions transverse to the laser axis is
small in distances ~ A, which is indeed the case (see Chapter 7). Thus Eq. (6.11)
becomes
’E 1 3°E
——+=—=0 6.15
022 % ar? ©.15)

where ¢ = (gou0)~"/? represents the speed of light in free space. If we further

assume a specific polarization of the beam, Eq. (6.15) becomes a scalar equation:

’E 1 3’E
"7 = 3aa 6.16
02~ 2o (6.16)
which we solve by the method of separation of variables:
E(z, 1) =Z(@T@) (6.17)
to obtain
1d2Z 1 1dT 5
73 = 37aa2 =K 6.18
Zdz2 AT dP (say) 6.18)
Thus
Z(z) = A sin (Kz +6) (6.19)

where the quantity K corresponds to the wave number. At the cavity ends (i.e., at
z=0and z = L), the field [and hence Z(z)] will vanish, giving

and

K=—, n=1273,... (6.20)
L



124 6 Semiclassical Theory of the Laser

We designate different values of K by K,, (n = 1,2,3,...). The corresponding time
dependence will be of the form

where
Q, =K, c = — (6.21)

Thus the complete solution of Eq. (6.16) would be given by

E(zt) =) Aycos (Qu)sin (K,2) (6.22)

If we next include the term describing the loses, we would have (instead of Eq. 6.16)

I’E E 1 d’E 623
— — O' —_—= — .
02 M%7 T 22

We assume the same spatial dependence (~ sin K,,z) and the time dependence to be

of the form ¢'+7 to obtain
A2 — oo Fin, — 22 =0 (6.24)

or

1 1/2
A, = 3 |:i,uoac2 + (—M%ozc4 + 49,21) :|

(6.25)
~ +Q, + io /2
Thus the time dependence is of the form
exp (—it) e Tt (6.26)
20

the first term describing the attenuation of the beam. In the expression derived above,
the attenuation coefficient does not depend on the mode number n; however, in
general, there is a dependence on the mode number which we explicitly indicate by
writing the time-dependent factor as'

Q .
exp (— szq t) Tt (6.27)
n

where

IBecause of the losses, the field in the cavity decays with time as exp (—Qnt / 2Qn) and hence the
energy decays as exp (—Qnt/Q,,).Thus, the energy decays to l/e of the value at = 0 in a time
te = 0y / 2, which is referred to as the cavity lifetime (see also Section 7.4).
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€0
On = ;Qn (6.28)

represents the quality factor (see Section 7.4). Thus the solution of Eq. (6.23)
would be

Qy .
E(z1) = ZAn exp (—Et) cos (S2,1) sin (Kuz2) (6.29)

Finally, we try to solve the equation which includes the term involving the
polarization:

9%E 0E 1 9%E a%p 6.30)
—5 —M00 — — 55 = H0——> .
02 M0 % T2 THOGa
[cf. Egs. (6.16) and (6.23)]. We assume E to be given by
1 , .
E=3 D {En (1) exp [—i (@nt + pn (0)] + c.c.} sin K,z (6.31)

n

where c.c. stands for the complex conjugate (so that E is necessarily real), E, (t)
and ¢,(¢) are real slowly varying amplitude and phase coefficients, and w, is the
frequency of oscillation of the mode which may, in general, be slightly different
from €2,,. We assume P to be of the form

P = % Xn: {Py (1,2) exp [—i (wnt + ¢n (1))] + c.c.} (6.32)

where P, (f,z7) may be complex but is a slowly varying component of the polar-
ization. On substitution of E and P in Eq. (6.30), we get® (after multiplying
by ¢?)

2

.o o 2 w
Q2E, —i (£> nEp — 2iwnEy — (0n + ¢p)” En = 8—(’:,;,, 0 (6.33)

2 L
pa(t) = —/ Py, (t,2) sinK,zdz
L Jy

where we have neglected small terms involving E,, ¢n, P, Endn, 0 En, 0 G, pnpns
and p,, which are all of second order. Now, since w, will be very close to £2,, we
may write

Q2 — (wn + ¢n)” ~ 204 (0 — 00 — ) (6.34)

2 Actually we have equated each Fourier component; this follows immediately by multiplying
Eq. (6.32) by sin K,z and integrating from O to L.
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Thus, equating real and imaginary parts of both sides of Eq. (6.33), we get

. 1w,
(@n + G — ) By () = —= 2 Re (py (1)) (6.35)

2 100
B+t E =Py ‘ (6.36)

n()+2Q;1 n ( —_zgom(pn()) .
where
g, = 2 (6.37)
o

When p, = 0, o, = R, and E,, (f) will decrease exponentially with time — consis-
tent with our earlier findings. In general, if we define the susceptibility x through
the equation

Pn (1) = €0 xnkn (1) = €0 (Xy/, + iXy/l/) E, (1) (6.38)

where x, and x,’ represent, respectively, the real and imaginary parts of x,, then

. 1
wp + Gy = 2y — Ewnx,; (6.39)
and
. 1 w, 1 ,,
E, = —5 ZEn — Ea)nxn E, (1) (6.40)

The first term on the right-hand side of Eq. (6.40) represents cavity losses and the
second term represents the effect of the medium filling the cavity. It can be easily
seen that if x,’ is positive, then the cavity medium adds to the losses. On the other
hand if x,” is negative, the second term leads to gain. If

—Xn = (6.41)

the losses are just compensated by the gain and Eq. (6.41) is referred to as the
threshold condition. If —x,/ > 1/}, there would be a buildup of oscillation.

From Eq. (6.39), one may note that if we neglect the term ¢, the oscillation
frequency differs from the passive cavity frequency by —%wn X, Which is known
as the pulling term. In order to physically understand the gain and pulling effects
due to the cavity medium, we consider a plane wave propagating through the cavity
medium. If y, represents the electric susceptibility of the medium for the wave, then
the permittivity ¢ of the medium would be

3We will show in Section 6.3 that X,/ is negative for a medium with a population inversion.
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e=¢0+¢e0xn = €0 (1 + xn) (6.42)

This implies that the complex refractive index of the cavity medium is

1/2 .
e 1 1 i
& = (1 1/2 1 - =] -/ L 4
(80> (1 + xn) ( +2xn> 3%t 5K (6.43)

The propagation constant of the plane wave in such a medium would be

8 o e\ o 1+1 , +l,a) P
= — — = — — ——
c \eo c 2 %n 2! K

=a+is (6.44)

where
w , low ,
ot:; I+ =x,]: 8 ==—x, (6.45)

Thus, a plane wave propagating along the z-direction would have a z dependence of
the form

Pt = ¢l 6.46)

In the absence of the component due to the laser transition x, = x,, = 0 and the
plane wave propagating through the medium undergoes a phase shift per unit length
of w/c. The presence of the laser transition contributes both to the phase change and
to the loss or amplification of the beam. Thus if x, is positive, then & is positive
and the beam is attenuated as it propagates along the z-direction. On the other hand
if x,/ is negative, then the beam is amplified as it propagates through the medium.
As the response of the medium is stimulated by the field, the applied field and the
stimulated response are phase coherent.

In addition to the losses or amplification caused by the cavity medium, there is
also a phase shift caused by the real part of the susceptibility x,. We will show in
the next section that x,, is zero exactly at resonance, i.e., if the frequency of the
oscillating mode is at the center of the atomic line and it has opposite signs on
either side of the line center. This additional phase shift causes the frequencies of
oscillation of the optical cavity filled with the laser medium to be different from
the frequencies of oscillation of the passive cavity (i.e., the cavity in the absence of
the laser medium). The actual oscillation frequencies are slightly pulled toward the
center of the atomic line and hence the phenomenon is referred to as mode pulling.
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6.3 Polarization of the Cavity Medium

In the last section, we obtained equations describing the cavity field and the oscil-
lation frequency of the cavity in terms of the polarization associated with the cavity
medium. In the present section, we consider a collection of two-level atoms and
obtain an explicit expression for the macroscopic polarization (and hence the elec-
tric susceptibility) of the cavity medium in terms of the atomic populations in the
two levels of the system. The time-dependent Schrédinger equation is given by.

LoV
ih— = HV (6.47)
ot
where H is the Hamiltonian and W represents the time-dependent wave function of
the atomic system. ‘
Let Ho represent the Hamiltonian of the atom and let ¥y (r) e '’ and
Y (r) e7'@2! be the normalized wave functions associated with the lower level 1
and the upper level 2, respectively, of the atom. Then

Hoyri (r) = E1¢ (r) (6.482)
Hova (r) = Exyn (r) (6.48b)
where £y = hw) and E; = hw; are the energies of the lower and the upper

levels, respectively. The interaction of the atom with the electromagnetic field is
described by

H = —¢Er (6.49)

which is assumed to be a perturbation on the Hamiltonian Hy; here E represents the
electric field associated with the radiation. In the presence of such an interaction we
write the wave function as

V() =Ci(0) ¥1(r) + C2 (1) Y2 (x) (6.50)

where Cj (f) and C; (f) are time-dependent factors. The physical significance of
C1 (1) and G5 (¢) is that |C; (1)|? and |C2 (1)|? represent, respectively, the probability
of finding the atom in the lower state ir; and in the upper state ¥, at time ¢. Also,
since we are considering a collection of N,, atoms per unit volume and each atom
has a probability |C} (¢)|? of being found in the level | at time 7, the mean number
of atoms per unit volume in the lower level 1, namely N; would be

N1 =Ny |G () (6.51a)
Similarly, the mean number of atoms per unit volume in the level 2, N>, would be

Ny =N, |C2 (D)2 (6.51b)
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Using Egs. (6.48) and (6.50), Eq. (6.47) gives

ih Z Cpin = Z (hewn + H') Cathn (6.52)

n=1,2 n=1,2

Multiplying both sides by ¥ and integrating over spatial coordinates, one obtains
ihCy = E1Cy + H},C + H},C> (6.53)
where
H,, = / Yo H'Ydt (6.54)

Similarly by multiplying Eq. (6.52) by 5" and integrating one obtains

ihCy = E2Cs + Hb,C + H) € (6.55)
But
Hj, = —e.E. / Vi () ryp(r)de =0 (6.56)
because r is an odd function. Similarly
H), =0 and Hj, = HY} (6.57)
Thus
. 1
Ci ()= - [E1C1 (t) + H,C2 (1)] (6.58a)
and
. 1
G () = 7 [E2C (1) + H)y, Cy (1)] (6.58b)

In deriving the above equations, we have not considered any damping mechanism.
We wish to do so now by introducing phenomenological damping factors. Even
though we are considering only two levels of the atomic system, the phenomeno-
logical damping factors take account of not only spontaneous transitions from the
two levels but also, for example, collisions, etc. This we do by rewriting Egs. (6.58a)
and (6.58b) as

. i 1 i
G () =—zE1C —onCi @) — 7—1H{2C2 0 (6.59a)

: i 1 i
(1) = 5 E2C2 = 512Ca (1) = 2 3, C1 (1) (6.59b)
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where y; and y» represent damping factors for levels 1 and 2, respectively. In order
to see more physically, we find that in the absence of any interaction when H}, =
0= Hél the solutions of Egs. (6.59a) and (6.59b) would be

E

C1 (t) = const X exp (—i%t) e~ n/2n (6.60a)
2.\ o~/

C> (1) = const X exp —i—t)e 72 (6.60b)

Hence the probability of finding the atom in levels 1 and 2 (which are, respectively,
proportional to |C1|2 and |C2|2) decays as e 71" and e~ 72!, respectively. Thus, the
lifetimes of levels 1 and 2 are 1 / y1 and 1 / 2, respectively.

We now define the following quantities*:

p11 = C1Cy, p12 = C1C; (6.61)
p21 = CiCy, p22 = C53Cy (6.62)

Notice that pj; and py, are nothing but the probabilities of finding the system in
states 1 and 2, respectively. Since we know the time dependence of C; and C, we
can write down the time variation of the quantities pi1, etc. Thus,

o1 = C]C}k -|-C1C“1k

E i
S <z€l n %) C1Cf = H O
E i
- <—z?1 + %) CiC1+ T HBCIC
or
i

hHglmz + c.c.) (6.63)

o1l =—yip11 + (

where c.c. represents the complex conjugate. Similarly

. I
P22 = —y2p22 — (ﬁHélplz + c.c.) (6.64)
. . i
P21 = — (iwz1 + y12) P21 + ﬁHél (p22 — p11) (6.65)
where
E, — E
w = 2 ! and Y12 = % (666)

4The four quantities p11, p12, P21, and ppo form the elements of what is known as the density
matrix p.
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Now,
H), = —¢E. / Yrryde (6.67)
and if we consider single-mode operation with E along with the x-axis then
H) = —¢eE, / Yixydt = —E,P (6.68)
where
P = ef Yixydr (6.69)
and

1 . .
E, = EEn (1) exp {—i[wnt + ¢, (1))} sin K,z + c.c. 6.70)
= E, (t) cos [wpt + ¢y (1)] sin K,z

Further when the system is in the state W (7), the average dipole moment is given by

P, = e/ WxW dr

71
= [ (€tur+ ) v + oy ar 670
= P (p21 + p12)
where we have used the relation
/ Yixyndr =/ Yixy dt (6.72)

which can always be made to satisfy by appropriate choice of phase factors. Thus,
in order to calculate P, we must know p1> and its complex conjugate py1. We first
present the first-order theory which will be followed by the more rigorous third-
order theory.

6.3.1 First-Order Theory

In the first-order theory, we assume (022 — p11) to be dependent only on z and to be
independent of time’:

P22 —p11 =N () (6.73)

Referring to Egs. (6.51a) and (6.51b), we see that N, (p22 — p11) represents the
difference (per unit volume) in the population of the upper and lower states. Thus,

SThis will be justified in Section 6.3.2
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Eq. (6.65) becomes
i j .
pa1 = = (w21 + y12) p21 = 5=PEy () (70 4 cc) sinK,zN @) (6.74)

where we have used Eqs. (6.68) and (6.70). Now, if we neglect the second term on
the right-hand side of the above equation, the solution would be of the form

p21 (1) = p3Y exp [~ (w21 + y12) 1] (6.75)

We next assume the solution of Eq. (6.74) to be of the above form with pé(])) now
depending on time. On substitution in Eq. (6.74), we obtain

. i 1 ] [ .
par = PpEn ON @) sinKoz {exp [~ (wn —on + i) —ida] o

+exp [i (wn + w21 — iy12) t = idhn ]}
We neglect the time dependence of E, and ¢, and integrate the above equation to
get
exp [—i (W, — w21 +iy12) 1 — ihn]
wn — w21 + iY12

exp [i (wn + w21 — iy12) t — ichy
wp + w21 +iy12

O~ PN oE o sink
P21 "“ﬁ (2) E, (1) sinKyz

(6.77)

We neglect the second exponential term in the curly brackets in the above equation
as it has very rapid variations and we obtain

) 1 . cexp{—il(w, —w21) t + ¢ (D]}

~ P—N () E,, (t) sin K,z e"? . 6.78

Pai 2h @ En (@) ! (wn — w21) +iy12 (79
Thus,6:

1 N (z)sinK,z E, (1) )
~P— - exp [—i (wut +
021 21 (@n — wa1) + ivia pl—i(wy on)]
or
1 N@)sinK,z E, (t) _.
pot ~ P N OIEZE D ity o it ) (679)

2h T,

5The constant of integration in Eq. (6.77) would have led to an exponentially decaying term in
Eq. (6.79).
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where

wp — W21 . 12
cos 0, = o= sin6,, = ne
n F}’l

(6.80)

) ,71/2
Mo = (@ — o) + v (6.81)
Thus, from Eq. (6.71) we get for the average dipole moment per atom
Py =P (021 + p12) = P(p21 +c.c.)

If we assume that there are N, atoms per unit volume in the cavity, then the
macroscopic polarization would be given by

P =N,P,

_ leﬁ |:N(z) sin K,z

o = E, (1) e Onemi@nttn) 4 c.c.:| (6.82)

where we have used Eq. (6.79). Comparing with Eq. (6.78), we get

N, P2 E, (/) N (2) sin ane_ien

P, (t,2) ir, (6.83)
and
2 L
DPn ([) = _/ P, (t, Z) sin Kz dz
L Jy
2En () _jg
P hr, e "“"NN, (6.84)
where
_ 2 rL 1 [t
N==Z / N (2) sin’ Kpzdz ~ — / N (z) dz (6.85)
L Jy L Jy

In writing the last step, we have assumed that N (z) (which represents the population
inversion density) varies slowly in an optical wavelength. Comparing Eq. (6.84)
with Eq. (6.38), we get

X/ :P2NNU Wy — W21
" heo (wn — 0)21)2 + y122

(6.86)

and

" _ _p2 NNU Y12

n = A _ 2 2
€oh (wn — w21)” + ¥j5

(6.87)

The above two equations represent the variation of the real and imaginary parts of
the susceptibility with the mode frequency w,,.
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Fig. 6.2 Variation of x;, and X
X, which represent,
respectively, the real and
imaginary parts of the electric
susceptibility of the medium,
as a function of w, — w215 X,
is peaked at w, = w71 and
thus maximum gain appears
at w, = wy]

In Fig. 6.2 we have plotted the variation of x;, and x,’ with w, for a medium with
a population inversion (i.e., N > 0).
Substituting for x,’ in Eq. (6.40), we get

wp a)nPZNNU Y12
20, 2e0h (wa— o) +vh

E,()=|- En(t) (6.88)

Thus, for the amplitude to grow with time, the quantity inside the square brackets
should be positive or

PzﬁNu Y12 - 1
eoh (wq — ) +vh O

(6.89)

When the two sides of the above inequality are equal, then the losses are exactly
compensated by the gain due to the cavity medium and this corresponds to the
threshold condition.

The sign of the second term in the square brackets in Eq. (6.88) depends on the
sign of N. It may be recalled that N is proportional to the population difference
between the upper and the lower states’. Thus if N is negative, i.e., if there are more
atoms in the lower level than in the upper level, then the second term contributes
an additional loss. On the other hand, if there is a population inversion between the
levels 1 and 2 then N is positive and the medium acts as an amplifying medium. In
order that the mode may oscillate, the losses have to be compensated by the gain
and this leads to the threshold condition, for which we must have

In fact NN, represents the population inversion density in the cavity medium, i.e., it is equal to
(N2 — Np) of Chapter 5 [see discussion after Eq. (6.73)].
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eoh (o — 021)* + v

NN, = (N2 — Nj), =
t ( )t PZ)’]Z Q;l

6.90
coh (6.90)

" 75 () P20,

where the subscript ¢ implies the threshold value and g (w) represents the normalized
lineshape function.

Y12 1
g ) =22 s (6.91)
T (wp —w21)” + ¥,
which is identical to Eq. (4.37) with 2¢,, = 1 / y12. Further
2 82 2
P> =¢? [/ w;‘mpldt} =3 /wgrl//ldr
(6.92)

. nsohc3A . weohcd 1

3 w3ty

where fg, is the spontaneous relaxation time of level 2. Substituting for P? in Eq.
(6.90), we get an expression for (N, — Ny), identical to Eq. (4.32) for the case of
natural broadening.

The minimum value of threshold inversion would correspond to w, = w>; (i.e.,
at resonance) giving®

— eohiy12
== 6.93
Next, we substitute for x, from Eq. (6.86) in Eq. (6.39) to obtain
Wp H— w2 — Wy
wp, — Q= P°NN, (6.94)
T 2heg Y (wn — 021)* + v

where we have neglected the term qgn, in Eq. (6.39). Thus, in the presence of the
active medium, the oscillations do not occur at the passive cavity resonances but are
shifted because of the presence of the y, term. In general, this shift is small and one
can obtain the approximate oscillation frequencies as

anz_ w1 — 2
2he0 U (Q — 02 + v

o ~ Q, + (6.95)

8Notice that for w, # w1, 1.e., for a mode shifted away from resonance, the value of N, increases
with increase in the value of |w,, — w1 ].
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If @, coincides exactly with the resonance frequency wp; then w, = €, and in
such a case the frequency of oscillation in the active resonator is the same as in the
passive case. If 2, < w»y, then for an inverted medium w,, > €2,. Similarly for
Q, > w1, w, < 2. Thus, in the presence of the active medium, the oscillation
frequencies are pulled toward the line center.

At threshold, we substitute for N, from Eq. (6.90) to obtain

(w21 — wy) (6.96)

Q On
O — Qp X —"
" 2000

where we have assumed w,, & wy1. We define a parameter

_ wn/ZQ;
Y12

S (6.97)

which is known as the stabilizing factor?, so that
wp — Qp X S (w21 — wy)
or
Qp + Swip
N — 6.98

Wp 1+s ( )
For a gas laser S ~ 0.01 — 0.1 so that the oscillation frequency lies very close to the
normal mode frequency of the passive cavity mode.

6.3.2 Higher Order Theory

‘We have shown earlier that if the laser operates above threshold [see Eq. (6.89)], the
power will grow exponentially with time [see Eq. (6.88)]. This unlimited growth
is due to the assumption that the population difference remains constant with time
[see Eq. (6.73)]. However, as the power increases, the population of the upper level
would decrease (because of increase in stimulated emission), and hence in an actual
laser, the power level would saturate at a certain value. We will show this explicitly
in this section!”.

Similar to the rate equations discussed in Chapter 5, we start with the equations

describing the population of the two levels:

X I
o11 = A1 —y1p11 + <ﬁH§1,012 + c.c.> (6.99a)
. i
02 = A2 — V2020 — <ﬁH§1,012 + c.c.) (6.99b)

91t represents the ratio of the cavity bandwidth to the natural linewidth.

105ee also Section 5.5 , where we showed that on a steady-state basis the inversion can never exceed
the threshold value.
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Fig. 6.3 1 and A, represent E,
the rates of pumping of the

T2
lower and upper levels, Ao \l
respectively, and y; and y;
represent their decay >

constants
)\/1 \ Y1

Just as in Section 5.4, the quantities | and A, represent constant rates of pumping
of atoms into levels 1 and 2, respectively (see Fig. 6.3). In order to solve the above
equations, we substitute for p1, from the first-order solution obtained in the previous
section. Thus

E ([) elgn el(wnt+¢ll)

i
—Hj p12 = [ —E,P cos (wnt + ¢y) sman] N( )

h
i S E2(f .
et 1D (s — pur)sin® Kz cos (wnt + ) e+ 1)
n
Hence
. )
i E; () .
;LHémlz +c.c. = ﬁ—’li sin? K,z (022 — p11) G (6.100)
n
where

G = — cos (wnt + ¢n) [iei(wnz+¢n+9n> _ ,-e—i(wnz+¢n+0n)]

= 2cos (wut + ¢p) sin (wpt + ¢y + 6,)

= 2cos> (wnt + ¢y) sin B, + sin 2 (wut + ¢p,) cos 6,

. Y12
A sinf, = —

n

(6.101)

where we have replaced G by its time average value. Substituting in Eq. (6.99a),
we get

P11 = A1 — yip11 + R (p22 — p11) (6.102)

Similarly

022 =Xy — y20220 — R (p22 — p11) (6.103)
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where

2
Y12 ppSin K,z

R="= 6.104
27?2 S ( )
At steady state we must have p;; = p22 = 0, and
R M
p11 — — (P22 — p11) = — (6.1052)
Y1 Y1
R Ao
P+ — (P22 — p11) = — (6.105b)
Y2 V2
or
N (2)
- = —F 6.106
P22 — P11 1+R/RX ( )
where
A A
Nop=2-2 (6.107)
2 Y1
and
1 1\!
R, = (— + —) _nnr (6.108)
Yooy 2712

It follows from Eq. (6.106) that the population inversion depends on the field value
also. In the absence of the field, R = 0 and the population difference density is
simply N (z) Ny; however, as the field strength E;,, (and hence R) increases, the pop-
ulation difference decreases. Since R (z) has a sinusoidal dependence on z [see Eq.
(6.104)], the population difference also varies with z. Whenever K,z is an odd mul-
tiple of w / 2 [i.e., wherever the field has a maximum amplitude — see Eq. (6.70)],
the population difference has a minimum value, which is often referred to as hole
burning in the population difference and the holes have a spacing of half of a
wavelength.

If instead of Eq. (6.73), we now use Eq. (6.1006) for p2 — p11, Eq. (6.79) would
be replaced by

_ P E;sinK,z N(2)
2h Iy 1 +R/Rs

. e,iﬂn e*i(wnt+¢’1) (6 109)

Thus [cf. Eq. (6.84)]

. L
P2E, (t) e~ 2 N (2) )
)= — N, | — ——— sin“ K,zdz 6.110
D (1) hr, vl L I R/RS n ( )
0
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We next assume E, (and hence R) to be small enough so that

1+R _1~1 R 6.111)
R,) R ‘

Substituting this in Eq. (6.110) and carrying out a term-by-term integration, we
obtain

; L

2 N 2

z / _N@ sin’ K,z dz & 7 f N (2) sin® Kz dz
0

L) 1+R/R;
0
Py 1 (2 f
_ v 1 _/N(Z)SinatandZ (6.112)
Ryiys T2 | L
0

212 2
~N |12 i
4 K2 2
vive by

where we have used Eq. (6.85) and the relation

L L
2 2 3_
7 [ N (z) sin* K,zdz = I / N(z)dz (sin4 K,,z> ~ ZN (6.113)
0 0
Thus,
P2E, _., - 3 P2E2 y2
N~ —2Le NN, (1= = n 12 6.114
Dn (1) hr, e v ( 2 h2y1 v T ( )
or
—1
P’E, _j < 3 P2EZ v}
N~ —Le NN, (14 = n 12 6.115
pn (D) hr, e u( +4ﬁ2)/]]/2 F}/zl ( )

where in the last step we have assumed the two terms inside the square brackets
in Eq. (6.114) to be the first two terms of a geometric series. This way the gain
saturates as the electric field increases indefinitely. Eq. (6.115) may be compared
with Eq. (6.84); hence instead of Egs. (6.86) and (6.87), we get

P2NN, 3 PE2 y2\ 7
- O |1+ -1 == 6.116
™ gD, S T3 R2yiys T} ( :

P2NN, 3 P2E2 y2 -
X!~ — Ysing, [1+>——2 212 (6.117)
r 477,2)/1)/2 F,%
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Substituting this value of x, in Eq. (6.40), we get at steady state,

— —1

) 1 1 P2NN. 3 PEZ yl
0=fy=|—=2" 4 —w,m—sing, (14> 112 E, (6.118)
20, 2" hgl, 2

which after simplification gives

412 N —wa)?
o | Yy ez e (6.119)
3p? Nim V122

where N, is given by Eq. (6.93). The above equation gives the dependence of
the saturation value of the intensity as a function of the detuning (w, — wp1). At
resonance w, = wy| and we get

4h2 N
Jor R £L Y e (6.120)
32 \N,

It is clear from the above equation that the intensity of the field inside the cavity
increases linearly with the pumping rate above threshold.

It should be pointed out that in the above equation, Ny, is proportional to the
pumping rate at threshold [see Eq. (6.107)] and happens to be equal to the inversion
density at the threshold [see Eq. (6.73)]. On the other hand, N is proportional to the
pumping rate corresponding to the actual laser operation which is greater than N,.
Thus if we assume y; > y», then NN, is nothing but R / T5; of Section 5.5. Using
this value of N one obtains

4R2y1y2 (R
E2~— — 1 6.121
"3 op? <Rt ) ( )

where we have used the relation
R; = Ny Tr1 =~ NyNy» (6.122)

Further, in order to relate the photon number of the cavity to E%, we note that the
energy density of the field in the cavity is given by %SoEl% and the total energy in the
cavity of volume V would be %80 VE%. If the frequency of the cavity mode is w,,, the
number of photons in the cavity mode would be

1 EXv
= —go- 21— 6.123
n 280ﬁwn ( )
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Substituting this in Eq. (6.121) and using the fact that K defined in Eq. (5.72) is
identical to'!

P2
K=" (6.124)
heoyi2
we obtain
4 1 (R
n= vy (8 (6.125)
3 \2y12/) K\ R,

For y1 > y» (i.e., the lower level has a very short lifetime as compared to the upper
state)

2 . nr

nr (6.126)
2y i+ s
Thus Eq. (6.125) becomes
4 R
n=-vZ2 (2 _4 (6.127)
3" K \R,

which is the same as Eq. (5.85) obtained in the last chapter (y» correspond to
T51 of Section 5.5), apart from the factor 4/3 which has appeared because of the
consideration of the spatial dependence of the modal field in this chapter.

Hyse has been made of Eq. (6.92)






Chapter 7
Optical Resonators

7.1 Introduction

In Chapter 4 we discussed briefly the optical resonator, which consists of a pair
of mirrors facing each other in between which is placed the active laser medium
which provides for optical amplification. As we discussed, the mirrors provide opti-
cal feedback and the system then acts as an oscillator generating light rather than just
amplifying. In this chapter we give a more detailed account of optical resonators. In
Section 7.2 we will discuss the modes of a rectangular cavity and show that there
exist an extremely large number of modes of oscillation under the linewidth of the
active medium in a closed cavity of practical dimensions (which are large com-
pared to the wavelength of light). Section 7.3 discusses the important concept of
the quality factor of an optical resonator. In this section we obtain the linewidth
corresponding to the passive cavity in terms of the parameters of the resonator.
We also introduce the concept of cavity lifetime. In Section 7.4 we discuss the
ultimate linewidth of the laser oscillator — this is, as discussed earlier in Chapter
6, determined by spontaneous emissions occurring in the cavity. In practice the
observed linewidth is much larger than the ultimate linewidth and is determined by
mechanical stability, temperature fluctuations, etc. Section 7.5 discusses some tech-
niques for selecting a single transverse and longitudinal mode in a laser oscillator.
In Sections 7.6 and 7.7 we discuss the techniques for producing short intense pulses
of light using Q-switching and mode locking. Using the mode locking techniques
one can obtain ultrashort pulses of very high peak power which find widespread
applications.

In Section 7.8 we give a scalar wave analysis of the modes of a symmetrical
confocal resonator which consists of a pair of concave mirrors of equal radii of
curvatures and separated by a distance equal to the radius of curvature. We will
show that in such a structure, the lowest order transverse mode has a Gaussian field
distribution across its wave front. Most practical lasers are made to oscillate in this
mode. In Section 7.9 we give the results for the beamwidth and the field distributions
corresponding to a general spherical resonator.

K. Thyagarajan, A. Ghatak, Lasers, Graduate Texts in Physics, 143
DOI 10.1007/978-1-4419-6442-7_7, © Springer Science+Business Media, LLC 2010
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7.2 Modes of a Rectangular Cavity and the Open
Planar Resonator

Consider a rectangular cavity of dimensions 2a x 2b x d as shown in Fig. 7.1.
Starting from Maxwell’s equations [see Egs. (2.1), (2.2), (2.3), and (2.4)] one can
show that the electric and magnetic fields satisfy a wave equation of the form
given by

n(z) 9’E .

VE — 2 =
2 912

(7.1)
where c represents the velocity of light in free space and ng represents the refractive
index of the medium filling the rectangular cavity. Equation (7.1) has been derived
in Chapter 2.

If the walls of the rectangular cavity are assumed to be perfectly conducting then
the tangential component of the electric field must vanish at the walls. Thus if 72
represents the unit vector along the normal to the wall then we must have

Exn=0 (7.2)

on the walls of the cavity.

Let us consider a Cartesian component (say x component) of the electric vector;
this will also satisfy the wave equation, which in the Cartesian system of coordinates
will be given by

9’Ex  9°E,  9°E,  nj 0%E,

o T 3y2 Y2 T2

(7.3)

In order to solve Eq. (7.3) we use the method of separation of variables and write

E; = X(0)Y(WZ(@)T(1) (1.4)

—
U
S

2b

Fig. 7.1 A rectangular cavity
of dimensions 2a x 2b x d y
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Substituting this in Eq. (7.3) and dividing by E; We obtain

192X 19%Y  19°Z  n§ 9°T

st ts TS = 5027 7.5
Xox2  Yay2 Zdz2 AT o (7.5)
Thus the variables have indeed separated out and we may write
19%X
—— =k 7.6
X 0x2 x (7.6)
197y 2 an
Y ayZ y ’
19°Z
— = 7.8
Z 972 ‘ 78)
and
2 92
ny 0°T 5
—=— = —k 7.9
2T 312 (79)
where
2 2,124 42
k™ =ky + kg + k: (7.10)
Equation (7.9) tells us that the time dependence is of the form
T(r) = Ae™ ! (7.11)

where w = ¢ k/ng represents the angular frequency of the wave and A is a constant.
It should be mentioned that we could equally well have chosen the time dependence
to be of the form ¢/, Since E, is a tangential component on the planes y = 0, y =
2b, 7 =0, and z = d, it has to vanish on these planes and the solution of Egs. (7.7)
and (7.8) would be sin kyy and sin k,z, respectively, with

nmw qm
ky = —, k; = —, ,q=0,1,2,3,... 7.12
y 2b z d n,q ( )
where we have intentionally included the value 0, which in this case would lead to
the trivial solution of E, vanishing everywhere (The above solutions are very similar
to the ones discussed in Example 3.3). In a similar manner, the x and z dependences
of E, would be sin kxx and sin k,z, respectively, with

mi
ky = —, m=0,1,2,3,... (7.13)
2a
and k, given by Eq. (7.12). Finally the x and y dependences of E; would be sin kxx
and sin kyy respectively.
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Now, because of the above forms of the x dependence of E, and E, dE, / dy, and
0E; / 0z would vanish on the surfaces x = 0 and x = 2 a. Thus on the planes x = 0
and x = 2a, the equation V.E = 0 leads to dE,/ 9x = 0.Hence the x dependence
of E; will be of the form cos kxx with kx given by Eq. (7.13). Notice that the case
m = 0 now corresponds to a nontrivial solution.

In a similar manner, one may obtain the solutions for E, and E;. The complete
solution (apart from the time dependence) would therefore be given by

E\ = Epy cos kyxsinkyy sink,z
Ey = Eyy sin kyx cos kyy sin k;z (7.14)

E; = Ey; sin k,x sin kyy cos k;z

where Eox, Eoy, and Eo, are constants. The use of Maxwell’s equation V.E = 0,
immediately gives

Egk=0 (7.15)

where k = Xky + Yky + Zk,. Since the coefficients Eox, Eoy and Eo, have to satisfy
Eq. (7.15) it follows that for a given mode, i.e., for a given set of values of m, n,
and g only two of the components of E( can be chosen independently. Thus a given
mode can have two independent states of polarization.

Note that when one of the quantities m, n, or g is zero, then there is only one
possible polarization state associated with the mode. Thus if we consider the use
withm =0, n #0, g #0, then E, = Eq, sinkyysink,z, E, = 0, E; = 0. Thus the
only possible case is with the electric vector oriented along the x-direction.

Using Eqgs (7.10), (7.12), and (7.13), we obtain

2.2 2
) kT« 2 2 2
o= _n—%(kx+ky+kz>

B At [ m? N n2 N q2
ok \4a? 4 2

2 2 2\ 172
O L 216
nyg \4a®  4b2 42 '

which gives us the allowed frequencies of oscillation of the field in the cavity. Field
configurations given by Eq. (7.14) represent standing wave patterns in the cavity and
are called modes of oscillation of the cavity. These are similar to the acoustic modes
of vibration of an acoustic cavity (like in a musical instrument such as a guitar and
veena) and represent the only possible frequencies that can exist within the cavity.

or

Example 7.1 As a specific example we consider a mode with

m=0,n=1,andg=1
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Thus kx = 0, ky =1/ 2b,k; = m / d and using Eq. (7.14), we have

T b4
Ex = Eqy sinkyysink;z = Ey sin <%y> sin (fz)

d
Ey=0
E, =0
Using the time dependence of the form ¢! and expanding the sine functions into exponentials, we may
write
E— = ( emi@i=kyy—k:2) 4 =i(wt—kyy+kz) | ~ior+kyy—kzz) | efi(a)tJrknyrkzz)) (7.17)
(20)

Thus the total field inside the cavity has been broken up into four propagating plane waves; in Eq. (7.17)
the first term on the right-hand side represents a wave propagating along the (+y, +z) direction, the
second along (+y, —z) direction, the third along (-y, +z) direction, and the fourth along (-y, —z) direction,
respectively. These four plane waves interfere at every point inside the cavity to produce a standing wave
pattern. However, since ky and k; take discrete values, the plane waves which constitute the mode make
discrete angles with the axes.

Example 7.2 If we take a cavity with a = b = 1 cm and d = 20 cm and consider the mode with m =0, n
=1,qg=10°
then

ke = 0,ky = 7/ 2em™ ! k; = 1087 / 20cm ™!

implying
k~10%7/20cm™ " and v = ck/27 = 7.5 x 1014 Hz

which lies in the optical region. For such a case
—1 (K o
0y = cos X ~ 89.9994

k.
0, = cos ™! <?> ~ 0.0006°

and 0y = 0 because of which 0y, + 6, = 90°. It may be noted that the component waves are propagating
almost along the z-axis. In general,

cos? Ox + cos? Oy + cos? 0, =1

Further for m # 0, n # 0, g # 0 the cavity mode can be thought of as a standing wave pattern formed
by eight plane waves with components of k given by (:I:kx, +ky, :I:kz).

Example 7.3 Let us now consider a few hundred nanometer-sized rectangular cavity (also referred to as
a microcavity) filled with free space. Let 2a = 2b = d = 500 nm. We now calculate the wavelengths
(A = ¢/v) of oscillation corresponding to some of the lower order modes which can be obtained from
Eq. (7.16) as

X (nm)

1000

1000

1000
707.1
707.1
707.1
5774
500

N—O—=—oo~—|3
O=—O~RO—~=O|3
O—= =~ O —=Oo0O R
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Note that since the cavity dimensions are of the order of optical wavelength, in the optical wavelength
region, the wavelengths of oscillation of the modes are well separated. Also the cavity cannot support
any mode at wavelengths longer than 1000 nm. If we place an atom in such a cavity and if the atom has
energy levels separated by energy difference corresponding to a wavelength of say 800 nm with emission
spectral width of about 10 nm, then since there are no possible modes in the cavity corresponding to this
wavelength region, the atom would be inhibited from emitting radiation. Thus it is possible to inhibit
spontaneous emission from atoms and increase the lifetime of the level. Microcavities of dimensions
comparable to optical wavelength are now being extensively investigated for various applications includ-
ing suppressing spontaneous emission or for enhancing spontaneous emission, for lowering threshold for
laser oscillation, etc. (see, e.g., Vahala (2003) and Gerard (2003)).

If we had chosen even one of the dimensions to be much larger then the mode spacing would be
much smaller. As an example if we assume 2a = 2b = 500 nm and d = 10,000 nm, then the wavelength
corresponding to various low-order modes would be

m n q A (nm)
1 0 0 1000

0 1 0 1000

1 1 0 707.1
1 0 1 998.8
0 1 1 998.8
1 1 1 706.7
2 0 0 500

0 0 21 952.3
0 0 22 909.1
0 0 23 869.5
0 0 24 833.3

It can be noted that since the value of d is large compared to wavelength around 900 nm, the mode
spacing is small.

Using Eq. (7.16) we can show (see Appendix E) that the number of modes per
unit volume in a frequency interval from v to v + dv will be given by

Snng 2
p(v)dv = 7V dv (7.18)
c

where ng represents the refractive index of the medium filling the cavity. For a typ-
ical atomic system dv~3 x 10° Hz at v = 3 x 10'* Hz and the number of modes
per unit volume would be (assuming ng = 1)

87 n 8xmx1x 3x10142
p()dv = #vzdv = ( (8)3 ) x 3 x 10° ~ 2 x 10%cm™3
¢ 3x 10

Thus for cavities having typical volumes of 10 cm?, the number of possible oscil-
lating modes within the linewidth will be 2 x 10° which is very large. To achieve a
very small number of possible oscillating modes within the linewidth of the atomic
transition, the volume of the cavity has to be made very small. Thus to achieve
a single mode of oscillation within the linewidth the volume of the cavity should
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be of the order of 5 x 107 cm?. This corresponds to a cube of linear dimen-
sion of the order of 17 wm. Optical microcavities having such small dimensions
can be fabricated using various techniques and are finding applications for studying
strong interactions between atoms and radiation (cavity quantum electrodynamics),
for inhibiting spontaneous emission, or for enhancing spontaneous emission and
as filters for optical fiber communication systems. For a nice review, readers are
referred to Vahala (2003).

In the case of conventional lasers the volume of the cavity is large and thus the
number of oscillating modes within the linewidth of the atomic transition is very
large. Thus all these oscillating modes can draw energy from the atomic system and
the resulting emission would be far from monochromatic. In order to have very few
oscillating modes within the cavity, if the dimensions of the cavity are chosen to be
of the order of the wavelength, then the volume of the atomic system available for
lasing becomes quite small and the power would be quite small.

The problem of the extremely large number of oscillating modes can be over-
come by using open cavities (as against closed cavities) which consist of a pair of
plane or curved mirrors facing each other. As we have seen earlier, a mode can
be considered to be a standing wave pattern formed between plane waves propa-
gating within the cavity with k given by (£k, £ky, +k;). Thus the angles made
by the component plane waves with the x-, y- and z-directions will, respectively, be,
cos ' (mx / 2a), and cos ! (nA / 2b), cos ' (gA / d). Since in open resonators, the side
walls of the cavity have been removed, those modes which are propagating almost
along the z-direction (i.e., with large value of ¢ and small values of m and n) will
have a loss which is much smaller than the loss of modes which make large angles
with the z-axis (i.e., modes with large values of m and n). Thus on removing the side
walls of the cavity, only modes having small values of m and n (~0, 1, 2..,) will have
a small loss, and thus as the amplifying medium placed inside the cavity is pumped,
only these modes will be able to oscillate. Modes with larger values of m and n will
have a large loss and thus will be unable to oscillate.

It should be noted here that since the resonator cavity is now open, all modes
would be lossy. Thus even the modes that have plane wave components travel-
ing almost along the z-direction will suffer losses. Since m and n specify the field
patterns along the transverse directions x and y and ¢ that along the longitudinal
direction z, modes having different values of (m, n) are referred to as various trans-
verse modes while modes differing in g-values are referred to as various longitudinal
modes.

The oscillation frequencies of the various modes of the closed cavity are given
by Eq. (7.16). In order to obtain an approximate value for the oscillation frequencies
of the modes of an open cavity, we may again use Eq. (7.16) with the condition m,
n << q. Thus making a binomial expansion in Eq. (7.16) we obtain

1/2

_ (g () d (7.19)
g = 5o \d T\ @ T2 ) 8q '

The difference in frequency between two adjacent modes having same values of m
and n and differing in ¢ value by unity would be very nearly given by
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c
2n0d

Ay, ~ (7.20)

which corresponds to the longitudinal mode spacing. In addition if we completely
neglect the terms containing m and n in Eq. (7.19) we will obtain

C
2nod

vy, X g (7.21)

The above equation is similar to the frequencies of oscillation of a stretched string
of length d.

Example 7.4 For a typical laser resonator d~100 cm and assuming free space filling the cavity, the
longitudinal mode spacing comes out to be ~150 MHz which corresponds to a wavelength spacing of
approximately 0.18 pm (= 0.18 x 102 m)ata wavelength of 600 nm.

Problem 7.1 Show that the separation between two adjacent transverse modes is much smaller than Avg.

Solution The frequency separation between two modes differing in m values by unity would be

A c d [ B ( 1)2] A rd 1
Uy N —— —(m — ~ Avy—— - =
m 2110 8a2q m m q 8a2 m 3

where we have used ¢ &~ 2d/ A [see Eq. (7.21)]. For typical values of A = 600 nm, d = 100 cm,

a=1 cm,)‘—d2 =7.5 x 10~4. Thus for m ~1, Avy << Avg.
8a

It is of interest to mention that an open resonator consisting of two plane mir-
rors facing each other is, in principle, the same as a Fabry—Perot interferometer or
an etalon (see Section 2.9). The essential difference in respect of the geometrical
dimensions is that in a Fabry—Perot interferometer the spacing between the mirrors
is very small compared to the transverse dimensions of the mirrors while in an opti-
cal resonator the converse is true. In addition, in the former case the radiation is
incident from outside while in the latter the radiation is generated within the cavity.

Earlier we showed that the modes in closed cavities are essentially superpositions
of propagating plane waves. Because of diffraction effects, plane waves cannot rep-
resent the modes in open cavities. Indeed if we start with a plane wa