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Preface

The good response received by this book from various institutes and universities, has encouraged me to
make some additions and a few minor changes in this edition. The basic structure of the book and the
philosophy of presentation of the subject matter, of course, have remained unchanged. A substantial
amount of additional material, mostly dealing with applications, has been incorporated.

To start with, the vector transformations in different coordinate systems, have now been included.
The topics of Electrostatics and Magnetostatics had already been dealt with, fairly adequately, and
hence remain unaltered. Some historical comments have been introduced at various places in the book,
in order to enhance the understanding of the process of development of the subject. A proof for the
independent boundary conditions as derived from the integral form of the Maxwell’s equations has
now been presented in a separate appendix. Since the Bessel functions and the Legendre functions are
widely used in waveguides and antennae, an appendix dealing with the properties of these functions,
has now been provided. The chapter on the vector potential has been significantly expanded as the
need for a clearer understanding of the properties of the vector potentials, has now become increasingly
important because more and more three-dimensional electromagnetic problems (not merely static
problems) are being solved numerically. The simplicity of the vector potential for two-dimensional
problems is no longer there, as in three-dimensional problems, the magnetic vector potential (A) would
have more than one component. In this context, Carpenter’s electric vector potential (T) might be of
some help in some of the eddy current problems, but there are quite a number of problems where the A
vector might be a preferred choice. A device which has not been much exploited in the numerical
solutions is the Hertz vector (Ze or Zm). Hence a section dealing with its derivation and interpretation
has been included in this chapter. One of the great attractions of the Hertz vector has been that it
combines in itself the capabilities of the vector potential as well as the scalar potential and thus
eliminates the need for using the two potentials for the complete solution. Though the Hertz vector has
been used mostly for wave problems so far, this is not an essential restriction for this vector, as its
general definition does include the conducting region parameter (s) and hence can be used for solving
the eddy current problems where required.

A practical problem on induction heating has now been added to the chapter on Magnetic
Diffusion as an illustration of the analysis of a practical device. Though the topic of wave propagation
had been dealt with adequately and comprehensively, the topics of wave guidance and radiation have
now been expanded with emphasis on the practical aspects. This requirement has come up due to new
development like optical fibres, and I have used the present opportunity to make suitable additions to
both in waveguides and antennae. I have also included the theory of Bicylindrical coordinate system as
a separate appendix to provide the physical basis of the circuit approach to the cylindrical transmission
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line systems. The characteristics of antennae and arrays have now been considered in some detail, so
that the mathematical basis has now been better balanced by practical details. The chapter on special
relativity now includes the effects of Lorentz transformation on both forces and energy. Originally the
chapter on ‘Numerical Analysis’ dealt with the variational basis of the FEM. This has now been
supplemented by a simple description of the procedural details of the method so as to enable the reader
to use the method without going into the heavy mathematics underlying the method. A short
description of the FDTD (finite difference in time domain) has been added because this method is now
being used to analyse microstrip antennae. However a short description of the method of moments
(MOM) has been put in a separate appendix because even though it is being used numerically, it is
basically an integral method. The inclusion of this method is justified because quite a large range of
problems relating to antennae are being solved by MOM. A new chapter on ‘Modern Topics and
Applications’ has now been added which covers both the high-frequency and the low-frequency
applications. This chapter contains brief descriptions of topics ranging from microwaves and satellite
communications to maglev systems for transportations. Finally the Appendix 6 which dealt with non-
conservative fields, has now been expanded further to have a relook at the concept of self-inductance.

I would like to express my sincere thanks to Prof. S.V. Kulkarni of the Department of Electrical
Engineering, IIT Bombay, who was instrumental in organizing my stay as a visiting faculty member in
his department, and also for his interest in the subject of Electromagnetism. I had many stimulating
discussions with him which have helped me in selecting the material for this edition. My sincere thanks
are also due to Prof. R.K. Shevgaonkar, then head of the department, who very kindly asked me to act
as a referee for his NPTEL course on ‘Electromagnetic Waves’. His refreshing and lucid approach to the
topic along with his book on Electromagnetic waves have been the source of inspiration for me to make
the necessary additions to the topics of Electromagnetic Waves described here. I am indebted to
Prof. R.P. Aiyer of the Advanced Centre for Research in Electronics (ACRE) for the section on FDTD
and for his general interest in the electromagnetic problems. It was Prof. Agashe’s interest in the
Relativistic aspects that encouraged me to incorporate the additional material in the chapter dealing with
that topic. I take this opportunity to thank him for his interest and for the discussions I had with him.

I would also like to express my thanks to all the members of the ‘Field Computation Lab’ for their
interest in the electromagnetic problems. The discussions I had with them have resulted in some of the
additions to this book. Though I cannot name all of them, I must mention the help and interest of Messrs
Avinash Bhangaonkar, Ravindra Bhide and K. Kaushik. I am also indebted to Mr. E. Ramaswamy of
Crompton Greaves, Mumbai for his interest and stimulating discussions on various aspects of
electromagnetism, particularly on topics related to non-conservative fields of Appendix VI in this
book. I would take this opportunity to thank my old friend Mr. T.K. Mukherjee, originally of BHEL,
then Crompton Greaves and now Executive Director, CG Core-El, who introduced me to Prof. S.V.
Kulkarni and thus started this whole sequence of events.

My thanks are also due to Mr. S. Ramaswamy, Regional Sales Manager, Mr. Darshan Kumar,
Senior Editor, and Ms. Pushpita Ghosh, Managing Editor of Prentice-Hall of India for their interest and
support in bringing out this edition successfully. Last but not the least, my thanks are due to my
daughter Mrinmayee for her constant encouragement and support for completing this job and my wife
Lalita for her patience and forbearance during this period.

I have tried to eliminate the printing errors and omissions as far as possible, but it is likely that
some would have been missed out. I shall be grateful to all the readers who would kindly bring to my
notice any such missed-out errors, which can then be eliminated in subsequent printruns and editions.

A. PRAMANIK



xxv

This book is the culmination of a long experience in both industrial research as well as teaching
in academic and professional world in more than one country, dealing with mostly
electromagnetic problems in engineering. There are, of course, a number of good books on
electromagnetism for students and engineers and scientists in industries and research institutes.
But most of these books have a strong bias towards wave problems and high frequency
engineering. There has been, in general, a tendency to gloss over in-depth exposition of eddy
current problems in most of these books, with a few minor exceptions. Even there, mostly simple
and highly idealized problems, away from real-life situations, have only been considered. While
working in industrial research in the UK and India, in the area of applied electromagnetism
dealing with problems of eddy current effects and associated loss and force calculations
in generating and allied equipment, a need for a book on electromagnetism dealing
comprehensively with eddy current aspects was strongly felt. The feeling for this need was
further enhanced while teaching electromagnetism to engineering students in the UK (to both
power engineering as well as high frequency electronics) at undergraduate and postgraduate
levels as well as to design and development engineers in industry in India.

Most of the present textbooks and reference books on electromagnetism have dealt in great
details the problems of wave propagation, transmission, reflection and refraction in different
media, while paying relatively scant attention to magnetic diffusion and current distributions in
conducting media. The present book has tried to correct this imbalance without in any way
sacrificing the details of the study of electromagnetic waves. Any book on electromagnetism
would require a certain minimum level of mathematical knowledge on the part of the readers,
though the necessary mathematical knowledge has been kept to a minimum. The book assumes
a knowledge of basic differential and integral calculus and elementary differential equations, and
an introductory chapter on applications of vector calculus has been added to help and remind
the readers about those aspects of vectors which are necessary and are used in the study of the
subject. However it must be reminded that though a certain minimum amount of elementary
mathematics has to be used in a textbook on electromagnetics, the main emphasis in this book
has been on the “physics” (or “inside physics”) of the various phenomena discussed herein. From
this point of view, the students of applied mathematics and theoretical physics may find a certain
lack of mathematical rigour and elegance at some places in the book, but this has been found
necessary in order to keep in mind the need for explaining the physical aspects. Advanced
mathematical concepts, wherever they have been used, have been usually explained before
showing their usage in applications. Use of tensor calculus has been avoided in the most of the
text, till the last but one chapter which deals with the relativistic aspects of electromagnetism,
necessary for explaining the behaviour of homopolar machines.

This book follows a quasi-historical approach to the subject starting with the presentation
of electrostatics, even though the fundamental basis of electromagnetism is “Maxwell’s
electromagnetic field equations”. The reason for this approach has been that a knowledge of the
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historical progress of the development of the subject enables the learner to appreciate the logical
progress that took place in the development of the subject. However in a textbook for students,
it is not possible to adhere to strict historical sequence, because of certain conceptual difficulties
that arise during the learning of various topics. Hence after starting with electrostatics followed
by electric current and then magnetostatics, it has been necessary to bring in quasi-static
magnetic fields before completing the study of magnetostatics. One of the main reasons for such
a break-up is that a topic like inductance cannot be explained completely on the basis of
magnetostatics only and hence quasi-static magnetism and electromagnetic induction have to be
brought in before completing static magnetism. Another such topic which has to be brought in
earlier is the concept of magnetic vector potential, which logically follows from Maxwell’s
equations. In this context, this book presents, for the first time (in the history of electro-
magnetism), the concept of electric vector potential, as developed by C.J. Carpenter, because of
its wide applicability in solving eddy current problems. Also, while discussing the energy
transfer process, the energy vectors other than Poynting vector have been described in some
detail, as for example Slepian vectors. This has been done because in spite of the simplicity,
elegance and wide acceptance of the Poynting vector, it does not explain fully the inside
mechanism of the energy transfer process and some of the Slepian vectors seem to offer a more
acceptable explanation of the processes. There are other topics, such as mechanical forces due to
time-varying currents, magnetic field analysis of electro-mechanical energy transfer and a variety
of eddy current problems that have been overlooked in books on electromagnetics, which have
been now included here. Finally, the approach to electromagnetism via special relativity has now
assumed greater importance from practical viewpoint. This is because it (this approach) clears up
a lot of ambiguity and confusion in explaining of number of examples of electromagnetic
induction, including the homopolar device of Faraday’s disc type motor which is assuming
greater practical importance with the applications of superconducting dc machines.

This book provides a comprehensive treatment of the subject for the students. Even though
the present move in teaching is for shorter courses on electromagnetism, the need for a
comprehensive book with latest developments included becomes greater because the student has
to do a greater amount of self-study to complement the shorter teaching hours.

A book like this can only be produced with plenty of assistance from the author’s
colleagues during his professional life. First and foremost I would like to thank very sincerely
and deeply my guide and friend Mr. J.G. Henderson of the department of Electronic and
Electrical Engineering, the University of Birmingham, who first introduced me to electro-
magnetic problems and then guided and helped me during my research in academic world as
well as in industry. I also wish to record my thanks to Mr. J.M. Layton and Dr. T.S.M. MacClean
(Reader in Electromagnetism) of the same department for stimulating and interesting discussions
I had with them during my stay in the department. I acknowledge gratefully the help I received
regarding the presentation of guided waves. My thanks are also due to Mr. A.B.J. Reece who
headed the Electromagnetics Lab of Nelson Research Laboratories of English Electric Co. (now
part of G.E.C., U.K.) for his help and guidance on end-winding problems of hydrogenerators and
turbogenerators, while I was working with him. I would like to express my thanks and
gratefulness to Late Prof. G.W. Carter of the department of Electrical and Electronic Engineering,
the University of Leeds, for his help and discussions in collecting my material for this book.
I freely acknowledge his contributions to the chapter “Relativity and Electromagnetism”. In fact
on his day of retirement Prof. Carter presented me with all his notes and papers on relativity as
well as electromagnetism (including some of the early edition of papers by his late father,
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Dr. F.W. Carter) which are my treasured possessions now. I have borrowed-freely and copiously
in preparing the Chapter 20 of this book. My sincere thanks are also due to Prof. P.J. Lawrenson,
F.R.S. of the same department for many discussions and for his work and help on conformal
transformation problems, as well as for the finite difference analysis of various electromagnetic
problems. Some of the other colleagues whose help and discussions I would like to acknowledge
are Dr. J.M. Stephenson, Mr. M. McDermott, Dr. J.R. Richardson and Mr. D. Dring.

I would also like to thank my ex-colleagues in the Electromagnetic Phenomena Laboratory
of Bharat Heavy Electricals Ltd. Corporate Research and Development, at Hyderabad for the
various stimulating discussions and arguments I had with them, during my stewardship of the
Laboratory. I would like to mention particularly Mr. M.M. Bhaway, Mr. C. Prem Kumar and
Dr. S.C. Bhargava of the Laboratory for their queries and discussions on various projects and
topics. For the field plots of Chapter 21, I am thankful to Mr. Bhaway and Dr. Parthasarathy of
my laboratory. I would also like to acknowledge the discussions I had with Dr. K. Eswaran and
Mr. R.V.S. Krishna Dutt of Applied Analysis Laboratory of the same organization. Finally,
I would like to thank and acknowledge the help of Dr. M.V.K. Chari, Director of Research,
General Electric, Schenectady for the sections on Finite Element method. Dr. Chari delivered a
4-week course on FEM at BHEL–R&D, during his visit to our laboratories and I have borrowed
heavily and freely from his material, which I do acknowledge.

Prof. S.C. Dutta Roy of IIT Delhi deserves my sincere thanks for his encouragement in
writing this book and also for his help during the process of publication.

Last but not the least, my thanks are due to both my daughter Mrinmayee and my wife
Lalita for their help and patience during the preparation of this book. My daughter has helped
me with numerous discussions as a physicist during the writing of the book and without her help
as a computer expert it would have been impossible to computerize the book. My wife’s
patience, forbearance and tolerance has seen me through the preparation of the manuscript and
also during this long process of printing. I also would like to record my thanks to editorial
and production departments of Prentice-Hall of India (particularly to editor Mr. Darshan Kumar)
for their patience and their bearing with me during the printing of this book, and Mr. S.
Ramaswamy, Marketing Executive, Prentice-Hall of India for his help to expedite the process of
publishing.

A. PRAMANIK
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Vector Analysis

0.1 INTRODUCTION

The study of the theory of electromagnetic fields needs the knowledge and the usage of certain
mathematical concepts as tools for better understanding of the subject. Elements of differential
and integral calculus are essential for defining the basic concepts of the theory. Some other
mathematical background such as vector algebra and calculus, complex numbers, conformal
transformation, some transforms, matrix algebra, and aspects of numerical analysis also help very
significantly in achieving clarity of understanding—thereby making possible a simple formal
development of the subject. In the present study, the emphasis is on the understanding of the
physical aspects of the theory rather than the lengthy mathematical manipulations. In such an
approach, the concepts of vectors play a central role in the study of electromagnetic fields.

In the present text, the vectors have been used as mathematical tools from the very
beginning. Though in today’s pre-engineering mathematics courses the students are introduced to
vector algebra, it is felt that a concise introduction here to the algebra and the calculus of vectors
would greatly help and simplify the study of the subject as presented in this book. The present
introduction to vector methods will be utilized to emphasize the physics of, and its application to,
practical systems and situations.

0.2 VECTORS AND VECTOR ALGEBRA

There are two classes of physical quantities, each with its characteristic properties and an
appropriate algebra.

Scalar quantities. These have magnitude only and do not involve direction. To specify a scalar
quantity completely, it is necessary to know (i) a unit of the same kind and (ii) a number stating
how many times the unit is contained in the quantity, i.e. a scalar can be specified by a single
number. Examples of scalar quantities are: mass, volume, density, temperature, electric potential,
charge, and so forth. They are indicated by non-bold face letters, for instance, S.

Vector quantities. These have both magnitude and direction. For the complete specification of a
vector quantity, it is necessary to know (i) a unit of the same kind, (ii) a number giving the
magnitude of the quantity in terms of this unit, and (iii) a statement of the direction. Examples of
vector quantities are: velocity, acceleration, force, stress, displacement, electric force, magnetic
induction, and so on. They are indicated by boldface type, for instance, V.

0



2 ELECTROMAGNETISM: THEORY AND APPLICATIONS

The product of a vector and a scalar is defined as a vector whose magnitude is equal to the
numerical product of the magnitude of the original vector and the magnitude of the scalar, and
whose direction coincides with that of the original vector or is opposite to it depending on
whether the scalar is positive or negative. Thus a vector ¥ (–1) is equivalent to reversing its
direction, i.e.

V ¥ (–1) = – V (0.1)

There are two classes of quantities represented by vectors:

(i) Force, displacement, velocity, and the like in which the vector is drawn in the direction
of the quantity concerned. That is, linear action in a particular direction. Such vectors
are called polar vectors.

(ii) Angular velocity, angular acceleration, and the like in which rotary action of some
kind takes place about an axis (the positive direction of the vector is obtained by the
rule of the right-handed screw). These are called axial vectors. Note that the vectors
cannot represent the finite rotations of a body about a fixed axis.

There is little difference in the mathematical treatment of these two classes of vectors.

0.2.1 Addition and Subtraction of Vectors

The vector addition follows the parallelogram law, i.e.

V = A + B (0.2)

where ΩVΩ= q+ −2 2 2 cosA B AB

Vector addition is commutative, i.e.

V = A + B = B + A

Vector addition is also associative, i.e.

(A + B) + C = A + (B + C) = (A + C) + B, and so on.

Vector subtraction is obtained by reversing the sign of the vector that is being subtracted.

Figure 0.1 Vector addition.
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0.2.2 Components of a Vector

By reversing the process of addition, any vector can be expressed as a sum of n vectors, of which
(n – 1) are arbitrary and the last one closes the polygon. In general, the vectors need not be
coplanar.

An useful example is the component vectors along the orthogonal axes of the Cartesian
coordinate system. This is because a vector in a three-dimensional space is completely known if
its origin is specified and its projections on three mutually perpendicular directions are known.
Hence a given vector can be expressed in terms of its three unit vectors in the directions of an
orthogonal coordinate system, i.e.

V = Vx + Vy + Vz = ixVx + iyVy + izVz (0.3)

where ix, iy, iz are the unit vectors in the directions x, y, and z, respectively. In the present
discussion, we will follow the right-handed screw convention for the positive directions of x, y,
and z. (The need for a consistent coordinate system will become obvious when we consider vector
multiplications as the vectors are directional quantities.)

From Figure 0.2,
Vx = V cos qx

Vy = V cos qy (0.4)

Vz = V cos qz

0.2.3 Multiplication of Vectors

There are two types of vector multiplication.

0.2.3.1 The scalar product of vectors

The scalar product of the vectors A and B is defined as

A ◊ B = AB cos q (0.5)

Figure 0.2 Orhogonal components of a vector.
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A common physical example in mechanics is that of work done by a force A in moving an
object through a distance B along a straight line. Thus,

Work done = magnitude of the displacement ¥ the component of the force in
the direction of the displacement.

Note that:
A ◊ B = B ◊ A (0.6)

That is, the dot, or scalar, multiplication obeys the commutative law.

(A + B) ◊ C = A ◊ C + B ◊ C (0.7)

That is, the dot product obeys the distributive law.

(A ◊ B)C π A(B ◊ C) (0.8)

That is, the dot product does not obey the associative law.
Also, applying the dot product to the unit vectors of the Cartesian coordinate system,

we get

ix ◊ ix = iy ◊ iy = iz ◊ iz = 1 (0.9)

and
ix ◊ iy = iy ◊ iz = iz ◊ ix = 0 (0.10)

Example 0.1 Evaluate A ◊ B in terms of the components of A and B in the coordinate system.

SOLUTION

A ◊ B = (ixAx + iyAy + izAz) ◊ (ixBx + iyBy + izBz) = AxBx + AyBy + AzBz (0.11)

0.2.3.2 The vector product of vectors

The vector product, or cross product, of A and B is a vector C, i.e.

C = A ¥ B (0.12)

such that the vector C is normal to the plane defined by A and B (Figure 0.4). The positive
direction of C is defined by the right-handed screw rule, that is, as the screw rotates from A to B
through the smaller angle q, the motion of the screw is in the positive direction of C.

where q is the angle between the vectors A and B (Figure 0.3). Thus A ◊ B (also called the dot
product) is a scalar and is the numerical product of the magnitude of B and the component of A
in the direction of B, or is the product of the magnitude of A and the component of B in the
direction of A.

Figure 0.3 Scalar product of the vectors A and B.
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The magnitude of C is defined as

C = AB sin q (0.13)

Thus C is equal to the area of the parallelogram formed by A and B. It also follows from the
definition that

A ¥ B = -B ¥ A (0.14)

Thus the vector product does not obey the commutative law. Also,

(A ¥ B) ¥ C π A ¥ (B ¥ C) (0.15)

Therefore, the vector product does not obey the associative law as well.

A diagrammatic proof. Let the vector A be parallel to the xy-plane, the vector B be parallel to
the y-axis, and the vector C be parallel to the yz-plane [see Figure 0.5(a)]. In this case, (A ¥ B) is
parallel to the z-axis and so the product (A ¥ B) ¥ C will be parallel to the x-axis. Now (B ¥ C)
is parallel to the x-axis, and so A ¥ (B ¥ C) will be parallel to the z-axis [see Figure 0.5(b)].

\ (A ¥ B) ¥ C π A ¥ (B ¥ C)

Figure 0.4 Vector product of the vectors A and B.

Figure 0.5 Vector triple product.
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But the vector product obeys the distributive law, i.e.

(A + B) ¥ C = A ¥ C + B ¥ C (0.16)

Applying vector multiplication to the unit vectors of the rectangular Cartesian coordinate
axes, we get

ix ¥ ix = iy ¥ iy = iz ¥ iz = 0 (0.17)
and

ix ¥ iy = iz, iy ¥ iz = ix, iz ¥ ix = iy (0.18)

Using these unit vectors, the cross product of the vectors A and B can be expressed as

A ¥ B = (ixAx + iyAy + izAz) ¥ (ixBx + iyBy + izBz)

                = ix(AyBz - AzBy) + iy(AzBx - AxBz) + iz(AxBy - AyBx)

                    = 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

x y z

x y z

x y z

A A A

B B B

i i i

(0.19)

0.2.3.3 Triple products

The triple scalar product. Given three vectors A, B, and C, the product A ◊ (B ¥ C) is called the
triple scalar product. Then

A ◊ (B ¥ C) = 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

x y z

x y z

x y z

A A A

B B B

C C C

(0.20)

This is the volume of the parallelepiped formed by the three vectors. Also, for any three vectors
A, B, and C

A ◊ (B ¥ C) = B ◊ (C ¥ A) = C ◊ (A ¥ B) = - A ◊ (C ¥ B) = - B ◊ (A ¥ C) = - C ◊ (B ¥ A) (0.21)

Since, when the three vectors are coplanar, the volume of the parallelepiped is zero; this
scalar product therefore also defines the condition required for coplanar vectors.

The triple vector product. The product A ¥ (B ¥ C)

= (ixAx + iyAy + izAz) ¥ {ix(ByCz - BzCy) + iy(BzCx - BxCz) + iz(BxCy - ByCx)}

= ix{Ay(BxCy - ByCx) - Az(BzCx - BxCz)} + iy{Az(ByCz - BzCy) - Ax(BxCy - ByCx)} +

iz{Ax(BzCx - BxCz) - Ay(ByCz - BzCy)}

= ix{Bx(AyCy + AzCz) - Cx(AyBy + AzBz) + BxAxCx - CxAxBx} +
iy{By(AzCz + AxCx) - Cy(AzBz + AxBx) + ByAyCy - CyAyBy} +

iz{Bz(AxCx + AyCy) - Cz(AxBx + AyBy) + BzAzCz - CzAzBz}

= ix{(A ◊ C)Bx - (A ◊ B)Cx} + iy{(A ◊ C)By - (A ◊ B)Cy} + iz{(A ◊ C)Bz - (A ◊ B)Cz}

= (A ◊ C)B - (A ◊ B)C
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\ A ¥ (B ¥ C) = (A ◊ C)B - (A ◊ B)C (0.22)

Similarly,

(A ¥ B) ¥ C = – C ¥ (A ¥ B)

                                              = – {(C ◊◊◊◊◊ B )A ----- (C ◊◊◊◊◊ A)B}

                                               = (A ◊◊◊◊◊ C)B ----- (B ◊◊◊◊◊ C)A (0.23)

0.3 THREE ORTHOGONAL COORDINATE SYSTEMS

So far, we have used the rectangular Cartesian coordinate system to represent vectors. There are at
least two more orthogonal systems, which are widely used for vector operations. However, it must
be remembered that vectors are physically independent of any system of coordinates by which
they may be expressed. They are said to be ‘invariant’ and the coordinate systems are really
unnecessary in vector analysis. However since a vector in the three-dimensional space is
completely represented by its three orthogonal components, its representation by using suitable
orthogonal coordinate axes greatly helps in understanding as well as in making mathematical
manipulations more concise and simple. Here we will briefly describe the basic features of the
most widely used coordinate systems. For a relatively more detailed discussion of the generalized
coordinate systems and the corresponding vector operations, the reader is advised to refer to
Appendix 4.

0.3.1 Rectangular Cartesian Coordinates (x, y, z)

We shall use the right-handed Cartesian system, i.e. if x turns to y through the smaller
angle between them, then the positive direction of z is given by the right-handed screw rule
(see Figure 0.6 for right- and left-handed coordinate systems).

Figure 0.6 Right-handed and left-handed Cartesian coordinate systems.

The length elements are: dx, dy, dz (or dx, dy, dz).
The unit vectors in the directions of the coordinate axes are: ix, iy, iz (or i, j, k).
The surface elements in the coordinate planes are: dxdy, dydz, dzdx. The volume element is:

dxdydz.

(a) Right-handed system (a) Left-handed system
x

y

z

x

y

z
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The length elements are: dr, rdf, dz.
The surface elements parallel to the coordinate planes are: rdrdf, rdfdz, drdz.
The volume element is: rdrdfdz.
The relationships between the Cartesian and the cylindrical coordinate systems are:

r = +2 2x y

f = tan-1 y
x

z = z
and

x = r cos f
y = r sin f
z = z (0.24)

0.3.3 Spherical Polar Coordinate System (r, q, f)

This system is obtained by rotating the radius vector about the origin (Figure 0.8).
The length elements along the coordinate axes are: dr, rdq, r sin q df.
The unit vectors along the coordinate axes are: ir, iq, if.
The surface elements parallel to the coordinate planes are: rdrdq, r2 sin qdqdf, r sin q drdf.
The volume element is: r2 sin q dr dq df.
The relationships between the spherical and the Cartesian coordinate systems are:

r = + +2 2 2x y z

0.3.2 Cylindrical Polar Coordinate System (r, f, z)

This system is obtained by taking a radius vector in the xy-plane and rotating it about the z-axis,
that is, translation of the xy-plane normal to the z-axis (Figure 0.7).

Figure 0.7 Elements in a cylindrical polar coordinate system.
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P
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q = tan-1 
2 2x y

z

+

f = tan-1 y
x

and
x = r sin q cos f
y = r sin q sin f
z = r cos q (0.25)

The relationships between the spherical and the cylindrical coordinate systems are:

r = +2 2r z

q = tan-1 r
z

f = f
and

r = r sin q
f = f
z = r cos q (0.26)

0.4 VECTOR CALCULUS

0.4.1 Differentiation of Vectors

Suppose that the vector V is a vector function of the scalar variable t. When t changes from t to
t + dt, V becomes V + dV, and the average rate of change of V with respect to t as dt Æ 0 is

Figure 0.8 Spherical polar coordinate system.
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d

d
d→

⎛ ⎞= ⎜ ⎟⎝ ⎠0
lim
t

d

dt t

V V
(0.27)

In the Cartesian coordinates, V = ixVx + iyVy + izVz, then

y zx
x y z

dV dVdVd

dt dt dt dt

⎛ ⎞ ⎛ ⎞⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

V
i i i (0.28)

For example, If V is the vector of displacement and t represents time, then dV/dt is the velocity
and d2V/dt2 is the acceleration.

If V = A + B, then

= +d d d

dt dt dt

V A B
(0.29)

If the scalar S = A ◊◊◊◊◊ B is differentiated, then

= ⋅ + ⋅dS d d

dt dt dt

A B
B A (0.30)

If the vector V = A ¥ B is differentiated, then

d d d

dt dt dt
= × + ×V A B

B A (0.31)

This relation can be proved by expansion.

0.4.1.1 Partial differentiation

This may be required when the vector is a function of more than one scalar independent variable.
For instance, consider a vector V which is a function of the Cartesian coordinates x, y, z of a point
in space. Then (∂V/∂x) is the rate of change of V with respect to x when y and z remain constant.
Similarly for (∂V/∂y) and (∂V/∂z).

If x, y, and z change simultaneously by the differential increments dx, dy, and dz, the total
differential dV of V will be

d dx dy dz
x y z

V V V
V

⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠∂ ∂ ∂⎝ ⎠

Similarly if r is a radius vector from the origin, that is, r = ixx + iyy + izz, then its differential
increment is given by dr = ixdx + iydy + izdz. Thus dV can also be written as (symbolically):

d dx dy dz
x y z

V V
⎡ ⎤⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠∂ ∂ ∂⎝ ⎠⎣ ⎦

(0.32)

If the operator — (called ‘del’ or ‘nabla’) is defined by

— ∫ x y zx y z

⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
i i i (in Cartesian coordinates) (0.33)

then regarding it as a kind of vector, we get

dV = (— ◊ dr) V (0.34)
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Similarly, we can also define the integral of a scalar function over a prescribed path in the
three-dimensional space.

Line integral. Let C be a curve joining the points P and Q and f(x, y, z) be a function of position
defined over a region of space including C. Then the line integral of f(x, y, z) over the curve C is

Q( )

1P( )

( , , ) lim

s n

i i
n

is

x y z ds sd
→ ∞

=

= ∑∫ f f (0.36)

where dsi is the ith interval over the length PQ of the curve C, and fi is the value of f(x, y, z) at
that interval. The requirement of continuity and the single-valued nature of f(x, y, z) are also
assumed. Thus for a vector function, say B, over a path OA (Figure 0.10), the line integral will be

A A

O O

cosd B dsq⋅ =∫ ∫B s

0.4.2 Integration—Line, Surface, and Volume Integrals

These are all extensions of the definition of the usual one-dimensional integral as the limit of a
sum. Recapitulating, if a function f(x) is defined over a range a to b of values of x, then the
integral is given by

1

( ) lim

b n

i i
n

ia

x dx xd
→ ∞

=

= ∑∫ f f (0.35)

where the interval a to b has been subdivided into n continuous intervals of lengths dx1, dx2, …,
dxi, …, dxn (Figure 0.9).

Figure 0.9 Integration of f(x).

y
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f x( )

fi

x a = xi x b = 
dxidxi
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In the most common types of surface integrals, the function f(x, y, z) represents the normal
component of the vector. For example, the total current flowing through a surface S can be
expressed as a surface integral of the normal component Jn of the current density J. That is,

I = n

S

J dS∫∫
  = 

S S

J d d⋅ = ⋅∫∫ ∫∫n S J S

  = cos
S

J dSq∫∫
where n is the unit normal vector.

Figure 0.11 Surface integral.

Figure 0.10 Line integral for a vector function.

When the path is a closed one, this integral is written as

C

d◊Ú B s

Surface integral. This is also defined along similar lines. Given a surface S and a function
f(x, y, z) defined in a region including S, the surface integral of f(x, y, z) is an additive function of
the elements of the area of S. As usual, S is subdivided into n contiguous elements (Figure 0.11)
of areas dS1, dS2, …, dSi, …, dSn, and assuming that f(x, y, z) is continuous and single-valued over
a region including S, then the surface integral is given by

1

( , , ) lim
n

i i
n

iS

x y z dS Sd
→ ∞

=

= ∑∫∫ f f (0.36a)

where fi is the value of f(x, y, z) at some point within the element of area dSi.

A

B

q

ds

O

dS

S

n q
J
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Usually for any vector the above integral is the flux of J through S. If S is a closed surface
integral over S, it gives the total flux of J out of S, and is denoted by

S

d◊ÚÚ J S

In this case, the unit vector n is usually taken to be outwardly directed.

Volume integral. Similarly, the volume integral of a function f (x, y, z) is an additive function of
the volume of integration and can be obtained by considering similar differential elements dvi of
the volume v. This is denoted as

( , , )
v

x y z dv∫∫∫ f

A sign of circle is added to the sign of integration when the volume of integration under
consideration is the entire space. As will be seen later, these three types of integrals can be
interrelated.

0.5 THE VECTOR OPERATOR — AND ITS USES

The differential operator — was introduced by Sir William Rowan Hamilton and developed by
P.G. Tait. It is of paramount importance in all three-dimensional physical problems. This symbol
was originally named ‘nabla’, though it is now more commonly known as ‘del’ as introduced by
J. Willard Gibbs. In Cartesian notation,

del x y zx y z

⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞= ∇ ≡ + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
i i i

and can be applied as a directive differentiator to either a scalar or a vector function of space.
There are three fundamental operations with — which are of physical interest.

0.5.1 The Gradient of a Scalar

This first operator pertains to scalar functions of space, which are of significant importance in the
study of electromagnetic phenomena, for instance, electric potential.

Consider a scalar function U—a single-valued function of position. The spatial behaviour of
U can be defined geometrically by means of a family of constant U surfaces. For example, if U is
the distance from a given reference point, then the constant U surfaces are concentric spheres. The
normal trajectories to this family of surfaces are the lines in the direction in which U changes
most rapidly. Thus it should be possible to represent at each point, both the direction of the
trajectory and the corresponding maximum rate of change of U by means of an appropriately
defined vector. This vector is called the ‘gradient of U’ or ‘grad U’.

From Figure 0.12,

dU dU

dr dn
=  cos q and dn = dr cos q

Thus,

grad
U

U
n

∂=
∂

n (0.37)
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Now in Cartesian coordinates, consider the vector —U, i.e.

x y z
U U U

U
x y z

⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞∇ ≡ + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
i i i (0.38)

The vector rates of change of U in the directions of the coordinate axes are ix(∂U/∂x), iy(∂U/∂y),
and iz(∂U/∂z), respectively. Their sum will be a vector with magnitude and direction of the most
rapid rate of change of U. It can be shown that this is equivalent to the vector ‘gradient’ defined
as follows:

From the differential increment of the radius vector

dr = ix dx + iydy + izdz

\ (grad U) ◊ dr = = cos
U U

dr
n n

q∂ ∂⎛ ⎞ ⎛ ⎞⋅⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
n dr

                                            = 
U

dn
n

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

 = dU

and

dU = 
U U U

dx dy dz
x y z

∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

                             = x y z x y z
U U U

dx dy dz
x y z

⎧ ⎫⎧ ⎫∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + ⋅ + +⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭
i i i i i i

                                    = —U ◊ dr (0.39)

\ grad U = —U ∫ x y z
U U U
x y z

∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
i i i

Figure 0.12 Gradient of a scalar.
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( )
B B B

B A

A A A

grad d U dr dU U U⋅ = ⋅ = = −∫ ∫ ∫V l

Thus the value of this integral is independent of the path of integration. Hence considering this
integral over a closed path,

( ) ( ) ( )B A A B

ABA

grad 0U dl U U U U◊ = + = - + - =Ú Ú Ú (0.40)

Thus, when a vector field can be expressed as the gradient of a scalar field, the line integral of the
vector between two points is independent of the path followed and equals the difference of the
values of the scalar at its ends. Also, for such a vector field the line integral along any closed path
is zero. A vector field so derived from the gradient relationship of a scalar is sometimes called a
scalar potential field. This vector is also known as ‘lamellar’.

0.5.1.1 Directional derivative

The quantity (A. grad S), when A is a unit vector, is called the directional derivative of the scalar
S in the direction of the unit vector A and equals the rate of change of S in the direction of A.
More generally when A is not necessarily a unit vector,

(A ◊◊◊◊◊—)S = A◊◊◊◊◊ grad S = x y z
S S S

A A A
dx dy dz
∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

The scalar operator (A ◊◊◊◊◊ grad) can also be applied to a vector B, giving

(A◊◊◊◊◊—) B = (A ◊◊◊◊◊ grad) B

= ix(A ◊◊◊◊◊ grad Bx) + i y(A ◊◊◊◊◊grad By) + i z(A◊◊◊◊◊ grad Bz) (0.41)

giving in all nine terms.

0.5.2 The Divergence of a Vector

In Section 0.5.1, the del (—) operator was operated on a scalar field to produce a vector function.
Now we shall operate it (—) on a vector field to produce a scalar function. So let us consider the
field of a vector A. Over a closed surface S, enclosing a volume v, the outward flux of A (denoted
as F) through S is

Figure 0.13 Line integral between two points.

Next, let V = grad U = —U.
Taking the line integral of V from A to B (as shown in Figure 0.13),

A

V
B
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Let the value of the vector at the centre of this element box be

A = ixA + iyAy + izAz

Considering the two parallel faces (DyDz), the total flux of A through these two faces is

1 1
2 2

x x
x x

A A
A dx dy dz A dx dy dz

x x

⎧ ⎫ ⎧ ⎫∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ − −⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭
 = xA

dx dy dz
x

∂
∂

Similarly, the contribution to the flux of A from the remaining two pairs of parallel faces
will be:

From the faces (dzdx): yA

y

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

dxdydz

From the faces (dxdy): zA
z

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

dxdydz

F = n

S S

A dS dS= ◊ÚÚ ÚÚ A n (0.42)

where n is the unit vector normal to S.
The divergence of the vector field A is defined as

div A = 
0

lim
v

S

dS
vÆ

Ê ˆ◊
Á ˜
Á ˜Ë ¯
ÚÚ A n

                    = 
→0

flux of  out of 
lim

volume enclosed by v

S
S

A
(0.43)

Differential form of derivation of divergence in Cartesian coordinates. In the vector field
mentioned above, consider an element of volume enclosed by the lengths Dx, Dy, Dz (parallel to
the coordinate axes). (See Figure 0.14.)

Figure 0.14 Divergence of a vector point function.

z

x y

Ay – (1/2)(∂Ay/∂y)dy

Az + (1/2)(∂Az/∂z)dz

Ay + (1/2)(∂Ay/∂y)dy

Az – (1/2)(∂Az/∂z)dz
Ax + (1/2)(∂Ax/∂x)dx
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Thus, the total flux of A from the box element is

y zx
A AA

dx dy dz
x y z

⎧ ⎫∂⎛ ⎞ ∂∂ ⎛ ⎞⎛ ⎞⎪ ⎪+ +⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

\ div A = y zx
A AA

x y z

⎧ ⎫∂⎛ ⎞ ∂∂ ⎛ ⎞⎛ ⎞⎪ ⎪+ +⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

= { }x y z x x y y z zA A A
x y z

⎧ ⎫∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + ⋅ + +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭
i i i i i i

= — ◊◊◊◊◊ A (0.44)

If no flux is coming out of a volume, then ————— ◊◊◊◊◊ A = 0.
Such a field is called ‘Solenoidal’ (from the Greek word ‘Solen’= tube). Since div A is the

flux of the vector A,

S v

dS dv◊ = —◊ÚÚ ÚÚÚA n A (0.45)

This is the ‘Gauss’ theorem’, which stated in words is:

The flux of any vector quantity over any arbitrary closed surface is equal to the strength of
the enclosed sources, that is, the flux of A through S is equal to the volume integral of div A over
the enclosed volume v.

The Gauss’ theorem is the basis for the integral definition of divergence.

0.5.3 The Curl of a Vector

This is the third application of the del operator where it is operated on a vector field such that
another vector field is obtained. In a vector field A there is a point P about which we describe a
closed path C enclosing an area S (Figure 0.15).

Figure 0.15 Contour for the curl.

Consider now the line integral of A over this contour. The direction of integration is such
that the area S enclosed by the contour is kept to the left during the traverse of the path. A new
vector ‘curl of A’ (∫ curl A) is defined such that its magnitude is

| curl A | = 
0

lim
S

C
Æ

◊Ú A dl (0.46)

S

P

dl

C
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Let the value of the vector A at the centre of the rectangle PQRS be:

A = ixAx + iyAy + izAz

Contributions to the line integral along PQ and RS from the x-component of A have the values:

1
2

x
x

A
A y

y
d∂⎛ ⎞⎛ ⎞− ⎜ ⎟⎜ ⎟ ∂⎝ ⎠ ⎝ ⎠

 along PQ

and

1
2

x
x

A
A y

y
d∂⎛ ⎞⎛ ⎞+ ⎜ ⎟⎜ ⎟ ∂⎝ ⎠ ⎝ ⎠

 along RS

and the contributions along QR and SP have the values:

1
2

y
y

A
A x

x
d

∂⎛ ⎞⎛ ⎞+ ⎜ ⎟⎜ ⎟ ∂⎝ ⎠ ⎝ ⎠
 along QR

1
2

y
y

A
A x

x
d

∂⎛ ⎞⎛ ⎞− ⎜ ⎟⎜ ⎟ ∂⎝ ⎠ ⎝ ⎠
 along SP

\ The line integral along PQRS will be

1 1
2 2

x x
x x

A A
A y A y x

y y
d d d

⎡ ⎤⎧ ⎫ ⎧ ⎫∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− − +⎢ ⎥⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦
 +

Since curl A is a vector, its direction is perpendicular to the plane of C with the positive
sense fixed with respect to the direction of integration by the right-hand screw rule. Hence it can
have components in the x, y, and z directions.

Derivation of curl in rectangular Cartesian coordinates. Any area as discussed above can be
resolved into components in the three planes defined by the coordinate axes . Also, it should be
noted that when the area under consideration is perpendicular to the vector field, none of the field
is directed along any part of the bounding edge of the area and hence the line integral round it is
zero. When the area under consideration is parallel to the field, the value of the vector around the
boundary may change and the line integral can have a finite nonzero value. Consider the area PQRS
of sides dx and dy (Figure 0.16).

Figure 0.16 Contour for the line integral for deriving the curl.

z

x y

Q

P

S

Rdy

dx

dy

d x
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1 1
2 2

y y
y y

A A
A x A x y

x x
d d d

⎡ ⎤⎧ ⎫ ⎧ ⎫∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪⎢ + − − ⎥⎜ ⎟ ⎜ ⎟⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪ ⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭⎣ ⎦

   = y x
A A

x y
x y

d d
⎧ ⎫∂⎛ ⎞ ∂⎛ ⎞⎪ ⎪−⎜ ⎟⎨ ⎬⎜ ⎟∂ ∂⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

The area of the element is dxdy.

\  z-component of curl A = y x
A A
x y

⎧ ⎫∂⎛ ⎞ ∂⎛ ⎞⎪ ⎪−⎜ ⎟⎨ ⎬⎜ ⎟∂ ∂⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
Similarly,

y-component of curl A = zx AA
z x

⎧ ⎫∂∂ ⎛ ⎞⎛ ⎞⎪ ⎪−⎨ ⎬⎜ ⎟⎜ ⎟∂ ∂⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
and

x-component of curl A = yz AA

y z

⎧ ⎫∂⎛ ⎞∂⎛ ⎞⎪ ⎪− ⎜ ⎟⎨ ⎬⎜ ⎟∂ ∂⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

\ curl A = yz zx
x y

AA AA
y z z x

⎧ ⎫∂ ⎧ ⎫⎛ ⎞∂ ∂∂⎛ ⎞ ⎛ ⎞⎛ ⎞⎪ ⎪ ⎪ ⎪− + −⎜ ⎟⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎪ ⎪⎝ ⎠⎝ ⎠ ⎝ ⎠⎪ ⎪⎝ ⎠ ⎩ ⎭⎩ ⎭
i i

y x
z

A A
x y

⎧ ⎫∂⎛ ⎞ ∂⎛ ⎞⎪ ⎪+ −⎜ ⎟⎨ ⎬⎜ ⎟∂ ∂⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
i

= 

x y z

x y z

x y z

A A A

⎡ ⎤
⎢ ⎥

∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥
⎢ ⎥⎣ ⎦

i i i

Using the del operator,

— ¥ A = { }x y z x x y y z zA A A
x y z

⎧ ⎫∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + × + +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭
i i i i i i

= curl A (0.47)

The physical meaning of the curl vector may be seen as the measure of the rotational capability
or the vorticity of the original vector. A very important property of the field of curl A is that it is
purely rotational, i.e. its divergence is identically zero. Thus,

div curl A = 0 (0.48)

This property will be checked in a later section by performing the required operations on the
Cartesian components of A. Another important property of the curl operation follows from its
integral definition and the line integral of the grad vector which over any closed path is

curl grad U = 0 (0.49)
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This is a vector identity. Such a vector field whose curl is zero is called a ‘conservative’ field. It
is so called because the energy is conserved in a force field having this property, for any motion
that ends at the point of origin, for instance, the net work done by an electrostatic field on a unit
charge is equal to zero when the charge is returned to its point of origin. Hence the work done by
the field in moving the charge from one point to another is independent of the path followed. In
mathematical terms, a conservative vector can be represented as the negative gradient of a scalar
potential function.

0.6 SOME INTEGRAL THEOREMS OF VECTORS

Initially recapitulating:

0.6.1 Gauss’ Theorem

For the vector A

div
S S v v

dS d dv dv
Ï ¸Ô Ô◊ = ◊ = ∫ —◊Ì ˝
Ô ÔÓ ˛

ÚÚ ÚÚ ÚÚÚ ÚÚÚ(A n) A S ( A) ( A) (0.50)

where v is the volume enclosed by the closed surface S. Gauss’ theorem relates the surface integral
of A with the volume integral of — ◊ A.

0.6.2 Stokes’ Theorem

For a vector A

curl
S S C

dS d d◊ = — ¥ ◊ =ÚÚ ÚÚ Ú( A) ( A) S A l
(0.51)

where S is the surface enclosed by the closed curve C. Stokes’ theorem relates the line integral of
A with the surface integral of — ¥ A.

0.6.3 Green’s Theorem

Let U and V be two scalar functions which together with their gradients and Laplacians are non-
singular within a volume v and on the enclosing surface S, that is, continuous and finite in the
region of integration, and can be differentiated twice. Hence applying the Gauss’ theorem to the
vector (V grad U = V (— U)), we have

{ }div grad
v

V U dv∫∫∫  = { }grad
S

V U d◊ÚÚ S (0.52)

But
div {V grad U} = grad V ◊ grad U + V —2U (Refer to Section 0.7) (0.53)

Hence substituting Eq. (0.53) in Eq. (0.52), we obtain

( ) ( ){ }2grad grad
v

V U V U dv⋅ + ∇∫∫∫ = { }grad
S

V U d◊ÚÚ S

= ( ){ }/
S

V U n dS∂ ∂ÚÚ (0.54)
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This equation is known as the ‘Green’s first identity’. By considering similar operations on
the other vector {U grad V} obtained by interchanging U and V, we obtain

( ) ( ){ }2grad grad
v

U V U V dv⋅ + ∇∫∫∫ = { }grad
S

U V d◊ÚÚ S

= ( ){ }/
S

U V n dS∂ ∂ÚÚ (0.55)

Subtracting Eq. (0.55) from Eq. (0.54), we have

( ) ( ){ }2 2

v

V U U V dv∇ − ∇∫∫∫ = ( ) ( ){ }grad grad
S

V U U V d- ◊ÚÚ S

= ( ) ( ){ }/ /
S

V U n U V n dS∂ ∂ - ∂ ∂ÚÚ (0.56)

This is known as the ‘Green’s second identity’ or the ‘Green’s theorem’. The above surface
integral is of the outward normal component of the vector within the brackets over the closed
surface S and the volume integral is of the scalar quantity within the brackets on the left-hand
side over the volume v enclosed by the surface S. This relationship between the surface integral
and the volume integral is called the ‘Green’s theorem’. It is of use in deriving the properties of
the ‘Green’s functions’ and provides a mathematical basis for the ‘method of images’.

0.6.4 Vector Analogue of Green’s Theorem

A useful vector analogue of Eqs. (0.54) and (0.55) has been proved by Stratton. In Section 0.6.3,
the starting point was the vector (V (grad U)), which was built from the two scalar functions U and
V. Now we have two vector functions P and Q both of which are finite and continuous
in the region of integration and can be differentiated twice, and started with the vector field
(P ¥ (— ¥ Q)), that is, a vector which is the cross product of the vector P with the curl of the
second vector Q. Let us now consider the divergence of this new vector to which we again apply
the Gauss’ theorem. Thus,

( ){ } ( ){ }
v S

dv dÈ ˘—◊ ¥ — ¥ = ¥ — ¥ ◊Î ˚ÚÚÚ ÚÚP Q P Q S (0.57)

But

— ◊ {P ¥ (— ¥ Q)} = (— ¥ Q) ◊ (— ¥ P) – P ◊ (— ¥ — ¥ Q)} (Refer to Section 0.7) (0.58)

Hence, we obtain

( ) ( ) ( ){ } ( ){ }
v S

dv d— ¥ ◊ — ¥ - ◊ — ¥ — ¥ = ¥ — ¥ ◊ÚÚÚ ÚÚQ P P Q P Q S (0.59)

By interchanging the vectors P and Q as before,

( ) ( ) ( ){ } ( ){ }
v S

dv d— ¥ ◊ — ¥ - ◊ — ¥ — ¥ = ¥ — ¥ ◊ÚÚÚ ÚÚP Q Q P Q P S (0.60)
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Subtracting Eq. (0.60) from Eq. (0.59), we obtain

( ) ( ){ }
v

dv⋅ ∇ × ∇ × − ⋅ ∇ × ∇ ×∫∫∫ Q P P Q

= ( ){ } ( ){ }
S

dÈ ˘¥ — ¥ - ¥ — ¥ ◊Î ˚ÚÚ P Q Q P S (0.61)

This is the vector analogue of the Green’s theorem, that is, Eq. (0.56). Its usefulness lies in the
derivation of the images of magnetic systems. The images in magnetic systems are somewhat more
complicated than those of electrostatic systems because the sources in electrostatic systems are
charges which can be represented as scalar quantities, whereas the sources of the magnetic fields
are in terms of currents which have to be represented vectorially. We will discuss these points in
depth while dealing with them later.

0.7 APPLICATIONS OF THE OPERATOR ‘DEL’ ( = —)

0.7.1 The Operator Div Grad

If S is a scalar function of position in space, then grad S = —S is a vector function which gives
both the magnitude and the direction of the greatest rate of change of S. Since this is a vector, it
can have a divergence, that is,

div grad S = — ◊ (—S) = — ◊ —S = —2 S (0.62)

In Cartesian coordinates,

div grad S = x y z x y z
S S S

x y z x y z

⎧ ⎫ ⎧ ⎫∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + ⋅ + +⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭
i i i i i i

                         = 
∂ ∂ ∂+ +
∂ ∂ ∂

2 2 2

2 2 2

S S S

x y z
(0.63)

and the operator

∂ ∂ ∂≡ + + ≡ ∇
∂ ∂ ∂

2 2 2
2

2 2 2
div grad

x y z
(0.64)

is called the Laplace’s operator and has many applications in electromagnetism.

0.7.2 Divergence of a Vector Product

This operation is required in calculating the flux of energy in an electromagnetic field. Let A and
B be two vectors. Hence in the Cartesian coordinate system, the vector product V is:

V = A ¥ B = ix(AyBz – AzBy) + iy(AzBx – AxBz) + iz(AxBy – AyBx)

                                = ixVx + iyVy + izVz (0.65)
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Hence,

div V = — ◊ V = 
y zx V VV

x y z

⎧ ⎫∂⎛ ⎞ ∂∂ ⎛ ⎞⎛ ⎞⎪ ⎪+ +⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

= y yz z
z y y z

A BB A
B A B A

x x x x

∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂⎛ ⎞ ⎛ ⎞+ − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

z zx x
x z z x

A BB A
B A B A

y y y y
∂ ∂∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ + − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

y yx x
y x x y

B AA B
B A B A

z z z z

∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂⎛ ⎞ ⎛ ⎞+ + − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

= yz zx
x y

AA AA
B B

y z z x

⎧ ⎡ ⎤∂ ⎡ ⎤⎛ ⎞∂ ∂∂⎛ ⎞ ⎛ ⎞⎛ ⎞⎪ − + −⎢ ⎥⎜ ⎟⎨ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎣ ⎦⎪ ⎣ ⎦⎩

y x
z

A A
B

x y

⎫⎡ ⎤∂⎛ ⎞ ∂⎛ ⎞ ⎪+ −⎢ ⎥⎜ ⎟ ⎬⎜ ⎟∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠ ⎪⎣ ⎦⎭

yz zx
x y

BB BB
A A

y z z x

⎧ ⎡ ⎤∂ ⎡ ⎤⎛ ⎞∂ ∂∂⎛ ⎞ ⎛ ⎞⎛ ⎞⎪− − + −⎢ ⎥⎜ ⎟⎨ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎣ ⎦⎪ ⎣ ⎦⎩

y x
z

B B
A

x y

⎫⎡ ⎤∂⎛ ⎞ ∂⎛ ⎞ ⎪+ −⎢ ⎥⎜ ⎟ ⎬⎜ ⎟∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠ ⎪⎣ ⎦⎭

= B ◊ curl A – A ◊ curl B = B ◊ (— ¥ A) – A ◊ (— ¥ B)

or
— ◊ (A ¥ B) = B ◊ (— ¥ A) – A ◊ (— ¥ B) (0.66)

0.7.3 Divergence and Curl of SA

Consider a vector field which itself is the product of a scalar field S and a vector field A at every
point. Hence,

div (SA) = — ◊ (SA)

( ) ( ) ( )y zx SA SASA

x y z

∂ ∂∂
= + +

∂ ∂ ∂

y zx
x y z

A AA S S S
S A A A

x y z x y z

∂⎛ ⎞∂∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
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= ( )div x x y y z z x y z
S S S

S A A A
x y z

⎧ ⎫∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + ⋅ + +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭
A i i i i i i

= S div A + A ◊◊◊◊◊ grad S

= S (— ◊ A) + A ◊◊◊◊◊ (—S)

\ — ◊ (SA) = S(— ◊◊◊◊◊ A) + A ◊◊◊◊◊ (—S) (0.67)

Next
curl (S ◊◊◊◊◊ A) = — ¥ (SA)

                         = 

x y z

x y z

x y z

SA SA SA

⎡ ⎤
⎢ ⎥

∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥
⎢ ⎥⎣ ⎦

i i i

\ {curl (SA)}x = ( ) ( )z ySA SA
y z

∂ ∂−
∂ ∂

= yz
z y

AA S S
S A A

y z y z

⎡ ⎤∂⎛ ⎞ ⎡ ⎤∂⎛ ⎞ ∂ ∂⎛ ⎞ ⎛ ⎞− + −⎢ ⎥⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥ ⎣ ⎦⎝ ⎠⎣ ⎦
Similarly,

{curl (SA)}y = zx
x z

AA S S
S A A

z x z x

⎡ ⎤ ⎡ ⎤∂∂ ⎛ ⎞ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + −⎢ ⎥⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎣ ⎦
and

{curl (SA)}z = 
y x

y x

A A S S
S A A

x y x y

⎡ ⎤∂⎛ ⎞ ⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + −⎢ ⎥⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥ ⎣ ⎦⎝ ⎠⎣ ⎦

\ curl (SA) = S curl A + (grad S)— ¥ A = S curl A – A ¥ grad S

Hence,
— ¥ (SA) = S(— ¥ A) – A ¥ (—S) (0.68)

0.7.4 The Operator Curl Grad

Grad S is a vector and it is possible to interpret the operator (curl grad) as being applied to a
scalar point-function. In Cartesian coordinates,

curl grad S = curl x y z
S S S
x y z

⎧ ⎫∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞+⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭
i i + i

= 

x y z

x y z

S S S
x y z

⎡ ⎤
⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦

i i i
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= x
S S

y z z y

⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞−⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
i

                                     y
S S

x z z x

⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ −⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
i

                                     z
S S

x y y x

⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ −⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
i

= 0 {= — ¥ (—S)} (0.69)

This is a vector identity and is the characteristic of a lamellar field, that is, the line integral of the
scalar function S around any closed path is zero. Note that the scalar S is the scalar potential of
the lamellar vector field (—S).

0.7.5 The Operator —2 with Vector Operand

A vector point function V can be expressed in terms of its rectangular components, and then each
component can be considered as a scalar function of position, i.e.

—2 V = ix —2Vx + iy —2Vy + iz —2Vz (0.70)

This result is of great importance in electromagnetics and hydromechanics.

0.7.6 The Operator Grad Div

For a vector field V, (div V) is a scalar field and hence has a gradient, which will be a vector. This
new vector field, of which (div V) is the potential, is lamellar because curl grad is zero. Thus,

            grad div V = — (— ◊ V)

= y zx
x y z

V VV
x y z x y z

⎧ ⎫∂⎛ ⎞⎧ ⎫ ∂∂ ⎛ ⎞∂ ∂ ∂ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎪ ⎪+ + + +⎜ ⎟⎨ ⎬ ⎨ ⎬⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎪ ⎪⎝ ⎠⎩ ⎭
i i i

= 
⎧ ⎫ ⎧ ⎫∂ ∂∂ ∂∂ ∂⎪ ⎪ ⎪ ⎪+ + + + +⎨ ⎬ ⎨ ⎬∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

2 22 22 2

2 2

y yz zx x
x y

V VV VV V
x y x z x y y zx y

i i

                          
⎧ ⎫∂ ∂∂⎪ ⎪+ + +⎨ ⎬∂ ∂ ∂ ∂ ∂⎪ ⎪⎩ ⎭

2 22

2

y zx
z

V VV
x z y z z

i (0.71)

0.7.7 The Operator Div Curl

For any vector field V, curl V will also be a vector field whose divergence can be evaluated.
Hence,
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div curl V = — ◊ (— ¥ V)

= yz zxVV VV
x y z y z x

⎡ ⎧ ⎫∂ ⎧ ⎫⎛ ⎞∂ ∂∂⎛ ⎞ ⎛ ⎞∂ ∂ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪⎢ − + −⎜ ⎟⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎪ ⎪⎢ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎪ ⎪⎝ ⎠ ⎩ ⎭⎩ ⎭⎣

0y xV V
z x y

⎤⎧ ⎫∂⎛ ⎞ ∂∂ ⎛ ⎞⎛ ⎞ ⎪ ⎪+ − ⎥ =⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎥⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭⎦
(0.72)

This again is a vector identity. Thus a vector field which is the curl of another vector field, is
always a Solenoidal field. As its divergence is zero, it has no sources.

0.7.8 The Operator Curl Curl

From the expression of (curl V), the x-component of this operator will be:

(curl curl V)x = y zx x
x

V VV V
y x y z z x

⎡ ⎤⎧ ⎫∂ ⎧ ⎫⎛ ⎞ ∂∂ ∂ ⎛ ⎞∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪⎢ − − − ⎥⎜ ⎟⎨ ⎬ ⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎪ ⎪⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎝ ⎠ ⎩ ⎭⎩ ⎭⎣ ⎦
i

= 
2 22 2 2 2

2 2 2 2

y zx x x x
x

V VV V V V
x y x zx x y z

⎡ ⎤⎧ ⎫⎛ ⎞ ⎧ ⎫⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂ ∂ ∂⎪ ⎪ ⎪ ⎪⎢ ⎥⎜ ⎟+ + − + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥∂ ∂ ∂ ∂⎪ ⎪⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎩ ⎭⎝ ⎠⎩ ⎭⎣ ⎦
i

The above two expressions are the x-components of (grad div V) and —2V. Hence considering all
the three components:

curl curl V = — ¥ — ¥ V = grad div V – —2V (0.73)

The operator equivalence is

— ¥ — ¥ ∫ — (— ◊) – —2 (0.74)

The above operator has applications in many electromagnetic problems.

0.7.9 Gradient of a Scalar Product

The scalar product S of the two vectors A and B in the Cartesian coordinate system is:

x x y y z zS A B A B A B= ◊ = + +A B (0.11)

Hence,

grad ( )S S= — = — ◊A B

Ï ¸∂ ∂Ê ˆ Ê ˆ ∂ ∂∂ ∂ Ê ˆ Ê ˆÊ ˆ Ê ˆÔ Ô= + + + + +Ì ˝Á ˜ Á ˜ Á ˜ Á ˜Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯Ô ÔÓ ˛

y y z zx x
x x x y y z z

A B A BA B
B A B A B A

x x x x x x
i

      
y y z zx x

y x x y y z z

A B A BA B
B A B A B A

y y y y y y

Ï ¸∂ ∂Ê ˆ Ê ˆ ∂ ∂∂ ∂Ê ˆ Ê ˆ Ê ˆ Ê ˆÔ Ô+ + + + + + +Ì ˝Á ˜ Á ˜ Á ˜ Á ˜Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯Ô ÔÓ ˛
i
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y y z zx x

z x x y y z z

A B A BA B
B A B A B A

z z z z z z

Ï ¸∂ ∂Ê ˆ Ê ˆ ∂ ∂∂ ∂ Ê ˆ Ê ˆÊ ˆ Ê ˆÔ Ô+ + + + +Ì ˝Á ˜ Á ˜ Á ˜ Á ˜Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯Ô ÔÓ ˛
i

From Section 0.5.1.1, we have the ‘directional derivative’ scalar operator{i.e. (A . —) or (B .—)}
operating on a vector, giving

( ) ( grad ) ( ) ( grad )x x y y z zB B B◊— = ◊ + ◊ + ◊A B i A i A grad i A

∂ ∂ ∂Ï ¸
= + +Ì ˝∂ ∂ ∂Ó ˛

x x x
x x y z

B B B
A A A

x y z
i

     
∂ ∂ ∂Ï ¸

+ + +Ì ˝∂ ∂ ∂Ô ÔÓ ˛
y y y

y x y z

B B B
A A A

x y z
i

    
∂ ∂ ∂Ï ¸

+ + +Ì ˝∂ ∂ ∂Ó ˛
z z z

z x y z
B B B

A A A
x y z

i

and similarly

( ) ( grad ) ( grad ) ( grad )x x y y z zB A A A◊— = ◊ + ◊ + ◊A i B i B i B

∂ ∂ ∂Ï ¸
= + +Ì ˝∂ ∂ ∂Ó ˛

x x x
x x y z

A A A
B B B

x y z
i

        
y y y

y x y z

A A A
B B B

x y z

∂ ∂ ∂Ï ¸
+ + +Ì ˝∂ ∂ ∂Ô ÔÓ ˛

i

        
z z z

z x y z
A A A

B B B
x y z

∂ ∂ ∂Ï ¸
+ + +Ì ˝∂ ∂ ∂Ó ˛

i

So, if we rewrite — ◊( )A B  in terms of the above two quantities we will find that each component

of this gradient will be:

{ }( ) ( grad ) ( .grad )x x x x
x x y z x y zx

B B A A
B A A A B B

y z y z

∂ ∂ ∂ ∂È
— ◊ = ◊ - - + - -Í ∂ ∂ ∂ ∂Î

A B i A B

              
y y z z

y y z z

A B A B
B A B A

x x x x

˘∂ ∂Ê ˆ Ê ˆ ∂ ∂Ê ˆ Ê ˆ
+ + + + ˙Á ˜ Á ˜Á ˜ Á ˜ Ë ¯ Ë ¯∂ ∂ ∂ ∂Ë ¯ Ë ¯ ˙̊

      ( )È ∂Ï ¸ ∂∂ ∂Ï ¸= ◊ + - + -Í Ì ˝ Ì ˝∂ ∂ ∂ ∂Ô ÔÍ Ó ˛Ó ˛Î
grad y zx x

x x y z

B BB B
B A A

x y x z
i A

               ( grad ) y zx x
x y z

A AA A
A B B

x y x z

˘∂Ï ¸ ∂∂ ∂Ï ¸+ ◊ + - + - ˙Ì ˝ Ì ˝∂ ∂ ∂ ∂Ô Ô ˙Ó ˛Ó ˛ ˚
B

( grad ) ( curl ) ( grad ) ( curl )x x x x x xB A= ◊ + ¥ + ◊ + ¥i A A B i B B A
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Similarly for y- and z-components, i.e.

{ }( ) ( grad ) ( curl ) ( grad ) ( curl )y y y y y yy
B A— ◊ = ◊ + ¥ + ◊ + ¥A B i A A B i B B A

and

( ){ } ( grad ) ( curl ) ( grad ) ( curl )z z z z z zz
B A— ◊ = ◊ + ¥ + ◊ + ¥A B i A A B i B B A

Hence, adding these three components,

( ) ( grad) curl ( grad) curlA— ◊ = ◊ + ¥ + ◊ + ¥A B B A B B A B A
(0.74a)

= ◊ — + ¥ — ¥ + ◊ — + ¥ — ¥( ) ( ) ( ) ( )A B A B B A B A

0.7.10 Curl of a Vector Product

The vector product of the two vectors A and B in the Cartesian coordinate system is:

C = A ¥ B

( ) ( ) ( )x y z z y y z x x z z x y y xA B A B A B A B A B A B= - + - + -i i i (0.19)

Hence,

= — ¥ ¥Curl ( )C A B

( ) ( )x x y y x z x x zA B A B A B A B
y z

Ï ¸∂ ∂= - - -Ì ˝∂ ∂Ó ˛
i

  ( ) ( )y y z z y x y y xA B A B A B A B
z x

∂ ∂Ï ¸+ - - -Ì ˝∂ ∂Ó ˛
i

   ( ) ( )z z x x z y z z yA B A B A B A B
x y

Ï ¸∂ ∂+ - - -Ì ˝∂ ∂Ó ˛
i

Therefore, its x-component will be:

(curl )
y yx x

x x y x x y

B AA B
B A B A

y y y y

ÈÏ ¸∂ ∂Ê ˆ Ê ˆ∂ ∂Ê ˆ Ê ˆÔ Ô= + - -ÍÌ ˝Á ˜ Á ˜Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂ ∂Ë ¯ Ë ¯Ô ÔÍÓ ˛Î
C i

                   
z zx x

x z z x
A BB A

B A B A
z z z z

˘Ï ¸∂ ∂∂ ∂Ê ˆ Ê ˆÊ ˆ Ê ˆ- + - - ˙Ì ˝Á ˜ Á ˜Á ˜ Á ˜Ë ¯ Ë ¯Ë ¯ Ë ¯∂ ∂ ∂ ∂ ˙Ó ˛˚

 
y yz z

x x x

B AB A
A B

y z y z

È ∂ ∂Ê ˆ Ê ˆ∂ ∂
= + - +Í Á ˜ Á ˜∂ ∂ ∂ ∂Ë ¯ Ë ¯ÍÎ

i

           
x x x x

y z y z
A A B B

B B A A
y z y z

˘∂ ∂ ∂ ∂Ê ˆ Ê ˆ
+ + - + ˙Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂ ∂ ˚

(div ) (div )x x
x x x x x x

B A
A A B B

x x

∂ ∂Ï ¸ Ï ¸= - - - +Ì ˝ Ì ˝∂ ∂Ó ˛ Ó ˛
i B i A
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                                ( grad ) ( grad )x x
x x x x x x x x

A B
A B B i A

x x

∂ ∂Ï ¸ Ï ¸◊ - - ◊ -Ì ˝ Ì ˝∂ ∂Ó ˛ Ó ˛
i B i i A

Writing in terms of the scalar directional derivative operators and cancelling out the +ve and
–ve terms,

(curl ) = (div ) (div ) ( grad ) ( grad )x x x x x x x x xA B A B- + ◊ - ◊C i B i A i B i A

We can get similar expressions for the y- and z- components of curl C.
Hence adding all the three components,

= — ¥ ¥curl ( )C A B

div div ( grad) ( grad)= - + ◊ - ◊A B B A B A A B

( ) ( ) ( ) ( )—◊ - —◊ + ◊— - ◊—= A B B A B A A B (0.74b)

0.8 TYPES OF VECTOR FIELDS

There is a certain amount of confusion and ambiguity in the minds of students when they talk
of ‘fields’. There is a tendency to assume implicitly that the ‘field’ is a ‘region of space’ which
is quite wrong as would be seen from the following statement. The electric field in the
space enclosed by a charged hollow metal sphere is zero. This is not to say that this space is
zero. It is in fact a particular property of this space which is at zero level. Hence by the word field,
we mean a particular property of the space (i.e. ensemble of measurements as a particular
property).

0.8.1 Solenoidal and Irrotational Field (Lamellar)

Given, div V = 0 and curl V = 0 (0.75)

Since curl V = 0, this implies that V = grad S where S is the scalar potential.

\ div grad S = —2S = 0 (0.76)

This equation is called the Laplace’s equation, and such fields are called Laplacian.
Examples of such fields are: electrostatic fields in free space, gravitational fields in free space,
equilibrium thermal fields, magnetostatic fields in current-free region, static current field within a
linear homogeneous isotropic conductor, and so forth.

0.8.2 Irrotational but not Solenoidal Field

In this case, curl V = 0 but div V π 0 (0.77)

Here again V = grad S, S being the scalar potential.

But div grad S = —2S π 0 (0.78)

This equation is called the Poisson’s equation and such fields are called Poissonian. Examples of
such fields are: electrostatic fields in a charged medium, electrons in a thermionic tube,
gravitational force inside a mass.
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0.8.3 Solenoidal but not Irrotational Field

In this case, div V = 0 but curl V π 0 (0.79)

Since curl V π 0

V = curl A
where A is the vector potential. (0.80)

\ div V = div curl A = 0 (This is a vector identity.)
and

curl V = curl curl A π 0

= grad div A – —2A π 0 (0.81)

If, however, div A = 0, then the above equation reduces to

—2A π 0 (0.82)

This equation is similar to Poisson’s equation, but in terms of a vector potential. Examples
of such fields are: magnetic field within a conductor carrying a steady current, rotational motion
of an incompressible fluid, time-varying electromagnetic field in a charge-free and current-free
region.

0.8.4 Neither Irrotational Nor Solenoidal Field

This type of field satisfies the conditions:

curl V π 0 and div V π 0 (0.83)

In this case, V = grad S + curl A (0.84)

where S is the scalar potential and A is the vector potential.

\ div V = div grad S + div curl A π 0

But div curl A = 0, therefore, div grad S π 0. This is the Poisson’s equation to determine S. Also

curl V = curl grad S + curl curl A π 0

But curl grad S = 0.
\ curl curl A π 0 (0.85)

The relation (0.85) can be reduced to the form —2A π 0, by assuming div A = 0, and then by
solving for A. This is the most generalized type of field. Such a general field vector can be
decomposed into two fields, one being lamellar with the scalar potential S, and the other
Solenoidal with the vector potential A. This is sometimes known as ‘Helmholtz’ theorem. An
example of such fields is that of rotational motion of compressible fluids.

0.8.4.1 A proof of the Helmholtz theorem

The Helmhotlz theorem is stated as: A vector function is determined uniquely if the values of its
curl and divergence are known at all points.

Proof: Let F be a vector function, whose curl and div are known at all points, i.e.
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curl F = � � F = P and div F = � � F = Q (0.86)

F cannot be determined as yet. So we assume that F is not determined uniquely by the
Eq. (0.86), Hence, we can say

��� (F + F0) = P and � � (F + F0 ) = Q (0.87)

where F0 is a vector which is some function of position. As per the theorem, we will have to prove
that F0 = 0.

From Eqs. (0.86) and (0.87), we have

��� F0 = 0 and � � F0 = 0 (0.88)

We assume that � � F0 = Q0 where Q0 is an arbitrary function of position, though we know that
Q0 = 0. So instead of Eqs. (0.88), we have

��� F0 = 0 and � � F0 = Q0 (0.89)

with Q0 = 0 in the final result. From the curl equation, we get

F0 = – �V (0.90)

where V is an arbitrary scalar function of position. Therefore, substituting in the second equation
of (0.89), we get

div grad V = � � (�V ) = �2V = – Q0 (0.91)

This is the Poisson’s equation, whose solution is given by

V = 
( )00

4 4
v v

dvQ dv
r r� �

⎧ ⎫∇⋅⎛ ⎞ ⎪ ⎪= ⎨ ⎬⎜ ⎟
⎝ ⎠ ⎪ ⎪⎩ ⎭

∫∫∫ ∫∫∫
F

The integration has to be performed over the whole space v. Now if � � F0 = 0 everywhere, then
V = 0 over the whole space. Therefore, F0 = 0.

Thus, the vector F is uniquely defined, if its curl and divergence are known.

��� ����	 
�������	 �	 
�����

Vectors are quantities which are functions of space coordinates (magnitude and direction).
However it is possible to superimpose on vectors, the functions of time as well. Particularly, since
we shall be dealing with time-varying electromagnetic fields, the variation of these vectors
(electric vectors such as electric field intensity, electric flux density, and current density, usually
denoted by E, D, and J respectively; and magnetic vectors such as magnetic field intensity,
magnetic flux density, usually denoted by B and H respectively) with the time, is an important
parameter which has to be looked into. The time variations can be classified into two types:
(a) any arbitrary time variation which can be of transient type, i.e. a sudden step function or delta
function; (b) a periodic repeatable variation, i.e. a time-harmonic function, the most commonly
used one in electromagnetism being the sinusoidal time-variation. This type of time-variation is
used widely both in low frequency electrical machines as well as in high frequency electro-
magnetic waves and in radiation. So at present we will, for sometime, restrict our attention to
‘sinusoidally time-varying vectors’.
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0.9.1 Complex Representation of Time-harmonic Vectors

Let us suppose that the frequency of the source (which in our case would be time-varying charges
and/or currents) producing the vector field (which would be the electric field E and the magnetic
field B), is f. The product 2p f = w is usually referred to as the angular frequency. The (field)
vectors will vary at all points with the same frequency. Thus such vectors can be written as

E(x, y, z, t) = E(x, y, z) cos [wt + qE (x, y, z)]

B(x, y, z, t) = B(x, y, z) cos [wt + qB(x, y, z)] (0.92)

the vectors E and B being functions of space coordinates and time. The phases qE and qB are also
functions of the coordinates and it should be noted that the field vectors are not necessarily at the
same phase at all points at a given instant of time.

The formal analysis of such time-harmonic vectors becomes greatly simplified by a clever
mathematical technique very often used in electrical engineering. The essence of this method is
based on the following identities from the ‘complex variable theory’:

cos x = 
exp ( ) exp ( )

2
w w+ -j t j t

and sin x = 
exp ( ) exp ( )

2
w w- -j t j t

j

for any x, where j = 1− .

Hence the vectors E and/or B can be written as

E(x, y, z, t) = E(x, y, z) exp { ( , , )} exp { ( , , )}
2

w q w q+ + - +È ˘
Í ˙Î ˚

E Ej t x y z j t x y z (0.93)

Also, we note that

[ ]exp ( ) exp ( ) exp ( )w q w q± + = ± ±j t j t j

where exp (± jq ) is a function of space coordinates only. Hence if we have to write an equation of
the form (choosing one of the Maxwell’s field equations)

curl E = — ¥ E = 
t

∂−
∂
B

(0.94)

it becomes, by using the complex variable notations,

{ }exp ( ) ( , , ) exp ( , , )w qÈ ˘— ¥ Î ˚Ej t E x y z j x y z

{ }exp ( ) ( , , ) exp ( , , )w qÈ ˘+ - — ¥ -Î ˚Ej t E x y z j x y z

= { }( , , ) exp ( , , ) exp ( )w q w- Bj B x y z j x y z j t

{ }( , , ) exp ( , , ) exp ( )w q w+ - -Bj B x y z j x y z j t (0.95)

Since Eq. (0.95) must be satisfied for all values of t, we have to equate separately the coefficients
of exp ( jw t) and exp (– jw t), which gives us

  ( ) ( ){ } ( ) ( ){ }, , exp , , , , exp , ,E BE x y z j x y z j B x y z j x y zq w qÈ ˘ È ˘— ¥ = -Î ˚ Î ˚ (0.96)
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and

{ } { }( , , ) exp ( , , ) ( , , ) exp ( , , )E BE x y z j x y z j B x y z j x y zq w qÈ ˘ È ˘— ¥ - = -Î ˚ Î ˚ (0.97)

Thus, when the vectors vary with time, according to the simple harmonic law, both
Eqs. (0.96) and (0.97) become equivalent to Eq. (0.94). It is more customary to use Eq. (0.96). The
usual notation to denote a complex vector is to use a suffix c or a cap, i.e. Ec or Ê.

When the complex vectors are determined in a problem, their instantaneous values can be
determined easily. For example, if the complex vector Ec(x, y, z) is known, its real value can be
written in the form

Ec(x, y, z) = E(x, y, z) exp { } + ( , , )w qÈ ˘Î ˚Ej t x y z (0.98)

where E(x, y, z) denotes a real function. Since

 [ ] { }exp ( ) exp ( , , ) exp  + ( , , )E Ej t j x y z j t x y zw q w qÈ ˘= Î ˚

                               = cos {wt + qE(x, y, z)} + j sin {wt + qE(x, y, z)}

the correct value of E(x, y, z, t) is obtained by multiplying the equation by exp ( jw t) and taking
the real part of the resulting expression, i.e.

E(x, y, z, t) = Re{Ec(x, y, z) exp ( jw t)}

                      = E(x, y, z) cos {w t + qE (x, y, z)} (0.99)

{Note: Re stands for ‘the real part of’.}

0.9.2 Complex Representation of Rotating Vectors

A certain amount of caution is required when using complex notation and the representation of
time-harmonic (or sinusoidally varying with time) vectors. For example, when we are representing
all the Cartesian components of the vectors (in our case we have mostly the electromagnetic
vectors) oscillating with the same angular frequency w, we can represent each component by
a ‘rotating vector’ in the complex plane. This complex plane should not be confused with the
two-dimensional Cartesian x-y plane, nor the complex plane rotation with the rotation of a two-
dimensional vector in the Cartesian plane. We will try to illustrate this point, even at the cost of
some duplication in our present discussion. At first we will consider the so-called rotation (or in
fact oscillation) in the complex plane. We will also use the electric and the magnetic field vectors
(i.e. E and B, respectively), though what we say here would be applicable in general to all vectors
varying sinusoidally with time. Let us consider a particular location in space, i.e. the
x-component of the (electric) vector, i.e. the real part or the reference component of the rotating
vector in the complex plane which is given by

0 exp ( )w=x xE E j t , where ( )0 0 0exp argx x xE E j E= (0.100)

Similarly the other components of E, i.e. Ey and Ez and the magnetic field components of B,
i.e. Bx, By and Bz can be represented on the complex plane (Figure 0.17).

It should be noted that Figure 0.17 shows not the actual components of the E and B vectors,
but the real parts of the rotating vectors that give the actual electromagnetic vibrations. If the
positions of the rotating vectors in Figure 0.17 at the time zero correspond to (Ex

0, Ey
0, Ez

0) and
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(Bx
0, By

0, Bz
0), then these complex quantities give the amplitudes and the phases of the six

vibrations, and constitute their ‘complex amplitudes’. This rotation is thus described by a
complex oscillation function, exp (jw t), with w real or complex. This technique simplifies the
operations of differentiation and integration with respect to time. Thus (a) differentiation with
respect to time involves multiplication by jw and (b) integration with respect to time reduces to
division by jw.

0.9.3 Magnitudes of Vectors in Complex Representation

During our discussion of sinusoidally time-varying vectors, for which is each Cartesian
component oscillating with a specified angular frequency w, we are involved in using in three-
dimensional space the vectors for which each Cartesian component is a rotating vector in the
complex plane (see Section 0.9.2). It is very important to differentiate a vector W in the complex
plane, having real and quadrature components as U, V, respectively, expressed as

W = U + jV (0.101)

from a vector A in the three-dimensional space, having Cartesian components Ax, Ay, Az, expressed as

A = ixAx + iyAy + izAz (0.102)

It is important to differentiate between the magnitude of a vector in the complex plane and the
magnitude of a vector in the three-dimensional Cartesian space.

The magnitude of the two-dimensional complex plane vector is

2 2U VW = + (0.103)

with U, V being both real quantities.
The magnitude of the three-dimensional vector [Eq. (0.102)] will be expressed as A, where

2 2 2 2= x y zA A A A+ + (0.104)

in which each of the Cartesian components, Ax, Ay, Az will be in general, complex and hence A is
also complex. Therefore, although A in Eq. (0.104) is the magnitude of the three-dimensional
vector given by Eq. (0.102), it is nevertheless a vector in the complex plane of magnitude A where

2 2 2 2= x y zA A A A+ + (0.105)

Figure 0.17 Complex plane representation of ‘rotating vector’. The figure shows the reference
component, or the real parts of the three-dimensional Cartesian components of the E and B

vector at a particular point in space.
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It must be clearly understood that the quantity on the right-hand side of Eq. (0.105), i.e.

2 2 2
x y zA A A+ +  is not the same as 

2 2 2
x y zA A A⎡ ⎤+ +⎣ ⎦ . This latter quantity is the sum of the

squares of the magnitudes of the complex numbers Ax, Ay, Az which constitute the Cartesian
components of the three-dimensional vector A (each Cartesian component being complex),

whereas the quantity 2 2 2
x y zA A A+ +  is obtained by squaring each of the complex numbers

Ax, Ay, Az, which are then added together in the complex plane and then the magnitude of the
complex number is evaluated.

A convenient way of obtaining 2 2 2
x y zA A A+ +  is as follows: Starting with the ‘complex

conjugate’ vector, which is also three-dimensional complex, i.e.

A* = ixA
*
x + iy A*

y + iz A*
z (0.106)

we take the scalar product of vectors A and A* as

A ◊ A* = AxA*
x + AyA

*
y + AzA

*
z

2 2 2
x y zA A A= + + (0.107)

It should be further noted that in general,

A2 π A ◊ A* (0.108)

When we are handling oscillatory electromagnetic fields, each Cartesian component of each
oscillatory electromagnetic vector is represented in the complex plane as the reference component
of a rotating vector. It is very important not to confuse between the three-dimensional vector
algebra involving scalar and vector products with the two-dimensional vector algebra in the
complex plane involving complex products and quotients.

0.9.4 Complex Representation of a Vector Rotating in
Cartesian Plane

So far we have been discussing the rotation of the complex vectors in the complex plane. This
behaviour can be looked at as either rotation or oscillation in that (complex) plane and must be
clearly distinguished from the rotation in the Cartesian plane. So we shall now show how we can
consider such ‘physical’ rotation. When we are using a Cartesian coordinate system, a vector E
varying sinusoidally with time can be represented as (which we have already discussed earlier),

E = ix Re[Ex exp ( jw t)] + iy Re[Ey exp ( jw t)] + iz Re[Ez exp ( jw t)]

= Re[(ixEx + iyEy + izEz) exp ( jwt)]

where w is the angular frequency variable, Ex, Ey, Ez are complex quantities, and Re indicates the
operation of taking the real part. The time-dependence of E can also be expressed in a simpler
and more compact form as

E = 
w ww

⎡ ⎤+ −
=⎡ ⎤ ⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦

*
c c

c
exp ( ) exp ( )

Re exp ( )
2

j t j t
j t

E E
E

where Ec = ixEx + iyEy + izEz, i.e. Ec is a complex vector in the sense that its components Ex, Ey,
and Ez are complex quantities. Its complex conjugate Ec

* is also a complex vector whose



36 ELECTROMAGNETISM: THEORY AND APPLICATIONS

components are the conjugates of the components of Ec. It should be carefully noted that, in
general, the magnitude of E does not vary sinusoidally with time. It varies sinusoidally (with
time) only in the special case in which the direction of E is time-invariant, i.e. when Ex, Ey, and
Ez have the same phase angle. In fact the magnitude of E may be time-invariant, as in the
following case of this two-dimensional vector E in which Ec = ix jA + iy A.

In this case, the two non-vanishing components of E are 90° out of phase; the magnitude of
E is at all times equal to A and its direction rotates in counterclockwise at the angular velocity w,
as shown in the Figure 0.18.

0.9.5 The Relationship between 
d

dt t

∂
∂

A A
and

So far in the previous sections (from 0.9.1 to 0.9.4) we have considered only the time-harmonic
variation of the vectors, but now for the present discussion, the above-mentioned constraint does
not exist.

For the present problem, there is a ‘fixed’ reference coordinate system (x-, y-, z- rectangular
Cartesian system) and in this region there exists a vector field A, where

A = ixAx + iyAy + izAz

For simplicity of understanding, we define ‘a point in a moving body’ in the region of the field
under consideration. (However it must be clearly understood that the concept of the moving body
in the field is not a necessary requirement for the present derivation, and the field at point
external to the moving body would be equally valid for the analysis.) Now the time-rate of
change of the vector A at a point  (x, y, z) in the above-mentioned body can be evaluated in two
different ways.

(i) The time-rate of change of A at a point fixed in the reference coordinate system, past

which the body is moving, is denoted by 
∂
∂t

A
—the partial derivative with respect to

time with the values of x, y and z in the function A = f(x, y, z, t).
(ii) The time-rate of change of A at a point fixed in the body, and thus moving with it so

that all the variables x, y, z and t can be changing, would be denoted by .
d

dt

A
 This is

then equivalent to the time-rate of change of A with reference to a coordinate system
fixed in the moving body.

Figure 0.18 A two-dimensional rotating vector.
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Ex = Re[ jA exp ( jw t)]

Ey = Re[A exp ( jw t)]
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To find the relationship between 
∂
∂t

A
 and 

d

dt

A
 (refer to Figure 0.19), let a point fixed in the

moving body have a velocity v which is given by

v = ixvx + iyvy + izvz

Suppose, initially A has a constant value at such a point which is moving with the body, so that

= 0
d

dt

A
.

But, in general, A varies with the position of the point in the body, and its value at the point
P ¢ will be different from that at P (refer to Figure 0.19).

v

y

x

z

P

dz

dy

dxP¢

Figure 0.19 The points P and P ¢ to illustrate the relationship between and .
d

t dt

∂
∂
A A

Let the point P ¢ (in the body) move to the fixed point P in a time interval dt, so that

PP v v vx x y y z zt t t td d d d= = + +¢ v i i i

x y zx y zd d d= + +i i i

Let the value of the vector at the point P at the time-instant t be A. Then at the instant t + dt,
it would have changed to the value A¢ which had existed at the point P ¢ at the time-instant t.
Thus the x-component of A has changed by an amount dAx which is given by:

d d d d∂ ∂ ∂Ï ¸
= - + +Ì ˝∂ ∂ ∂Ó ˛

x x x
x

A A A
A x y z

x y z

There will be similar expressions for the other two components of dA, i.e. dAy and dAz. Hence
adding all the three components vectorially, we get

x x y y z zA A Ad d d d= + +A i i i
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x x x
x

A A A
x y z

x y z
d d d∂ ∂ ∂Ï ¸

= - + +Ì ˝∂ ∂ ∂Ó ˛
i

   
y y y

y

A A A
x y z

x y z
d d d

∂ ∂ ∂Ï ¸
- + +Ì ˝∂ ∂ ∂Ô ÔÓ ˛

i

   d d d
∂ ∂ ∂Ï ¸

- + +Ì ˝∂ ∂ ∂Ó ˛
z z z

z
A A A

x y z
x y z

i

( )= - ◊—v A

where (v )◊—  is the scalar directional derivative operator (refer to Section 0.5.1.1.).

So, if A is changing at the point fixed in the body, and moving with it at a rate ,
d

dt

A
 then

in the limit as d Æ 0,t  this rate will be same at all the points on the infinitesimal path PP ¢.
Hence, when d Æ 0,t  the value of A at the point P at the instant t + dt = the value of

A existing at the point P ¢ at the instant t plus the changes in A at the moving point as it moves
from  P ¢ to P.

\ The total time-rate of change at a point fixed in the reference coordinate system

{ }( )
d

dt
= + - ◊—

A
v A

i.e. ( )
d

t dt

∂ = - ◊—
∂
A A

v A

which is the required relation.
So, we remind again that though the concept of ‘the moving point being in the body’ has

been used in this analysis, the result is not restricted to points ‘only in a moving material body.’
This analysis applies equally to any point in the external field of a moving field-source and fixed
in relation to the source. Thus the body described here includes both a field source and its field,
be it external or internal.

This result has nothing to do with the theory of Relativity, since only one observer is
involved. The vector A has been measured by the observer whose reference system is the

coordinate axis system (x-, y-, z-) and he alone is calculating both 
∂
∂t

A
 and 

d

dt

A
.

The theory of Relativity deals with the value of A which is measured in a reference system
moving with the body, and can be different from that measured in the system (x-, y-, z-).

Note:

1. When the velocity vector v is a constant, ( grad) ( ) curl ( )◊ = —◊ - ¥v A v A v A
This has been done in Problem 0.16 of Electromagnetism—Problems with Solutions,
2nd Edition, 2008.

2. Also compare the result of this section (along with the above derivation of the note 1)
with the derivation of generalization of the ‘Faraday’s law of Electromagnetic

Induction’ discussed in Sections 10.2 to 10.4 (pp. 313–322).
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0.9.6 Conversion of a Vector from One Coordinate System to
Another

We will consider briefly the interconvertibility of the vectors between the three most commonly
used coordinate systems, though this conversion could also be written in terms of the general
curvilinear coordinate system as well.

0.9.6.1 Conversion between rectangular Cartesian coordinate
system and spherical polar coordinate system

We will first write down the expressions in terms of the unit vectors in these two coordinate
systems though these expressions are quite general and hold for any vectors. First, we express the
unit vectors of the spherical polar coordinate system in terms of the unit vectors in the rectangular
Cartesian system as:

sin cos sin sin cosx y zr q f q f q= + +i i i i

q q f q f q= + -cos cos cos sin sinx y zi i i i

f f f= - +sin cosx yii i

Hence writing in compact matrix form for any vector (A, say)

sin cos sin sin cos

cos cos cos sin sin

sin cos 0

x

y

z

r

q

f

q f q f q
q f q f q

f f

È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙= - Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙-Î ˚Î ˚ Î ˚

A A

A A

A A

Next expressing the unit vectors of the Cartesian system in terms of the spherical polar system, we
get:

sin cos cos cos sinx r q fq f q f f= + -i i i i

sin sin cos sin cosy r q fq f q f f= + +i i i i

cos sinz r qq q= -i i i

Hence, writing in matrix form for any vector,

sin cos cos cos sin

sin sin cos sin cos

cos sin 0

x

y

z

r

q

f

q f q f f
q f q f f

q q

È ˘ È ˘-È ˘
Í ˙ Í ˙Í ˙=Í ˙ Í ˙Í ˙
Í ˙ Í ˙Í ˙-Î ˚ Î ˚Î ˚

AA

A A

AA

0.9.6.2 Conversion between rectangular Cartesian coordinate system
and cylindrical polar coordinate system

Expressing the unit vectors of the cylindrical polar system, in terms of those in the rectangular
system, we have



�� ��������	
��������������	���	�����	����

� �� �cos sinr x yi i i

  � � �� � �sin cosx yi i i

z z�i i

Hence expressing in the matrix form,

�

� �

� �

� � � �� �
� � � �� �� �� � � �� �
� � � �� �� 	 � 	� 	

cos sin 0

sin cos 0

0 0 1

r x

y

zz

A A

A A

AA

Next, expressing the unit vectors of the rectangular coordinate system in terms of the cylindrical
coordinate system,

�� �� cos – sinx ri i i

�� �� �sin cosy ri i i

z z�i i
Hence, for the general vector in terms of matrix equation

�

� �

� �

� �� � �� �
� �� � � �� � �� � � �
� �� � � �� 	� 	 � 	

cos sin 0

sin cos 0

0 0 1

x r

y

z z

A A

A A

A A

������� ��	
����	� ������	� ����	������� ������ ������	���� ����� �	�
��������� ������ ������	���� ����

Starting with the unit vectors of the spherical polar system,

sin cosr z�
� �� �i i i

�
� �� �cos sinr zi i i

� ��i i
Hence

sin 0 cos

cos 0 sin

0 1 0

r

z

�

� �

�

� �

� �

� �� � � �
� �� � � �� � � �� � � �
� �� � � �� 	� 	 � 	

A A

A A

A A

Expressing the unit vectors of the cylindrical polar system in terms of the spherical polar system,
we have

sin cosr � �� �� �i i i

� ��i i

cos sinz � �� �� �i i i
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Hence

sin cos 0

0 0 1

cos sin 0

r

z

r

f q

f

q q

q q

È ˘ È ˘È ˘
Í ˙ Í ˙Í ˙=Í ˙ Í ˙Í ˙
Í ˙ Í ˙Í ˙-Î ˚ Î ˚Î ˚

AA

A A

AA

0.9.6.4 General comments

It should be noted that only in the rectangular Cartesian system, all the three unit vectors (parallel
to the coordinate axes) are equal in magnitude and have ‘fixed’ directions. In the cylindrical
coordinate system, only iz has fixed direction whilst both ir and if keep on changing their
directions, However, all the three unit vectors in the spherical coordinate system keep on changing
their directions as they move from one point to another. Hence the derivatives of ir, if, ir, iq, if with
respect to coordinate directions are non-zeroes, as shown in Appendix 4, Section A.4.14.

 PROBLEMS

0.1 Under what circumstances are the vectors A ¥ (B ¥ C) and B ¥ (A ¥ C) equal?

0.2 If the vector A has constant magnitude, show that the vectors A and 
d

dt

A
 are

perpendicular, provided 
d

dt

A π 0.

0.3 If V is a scalar function of x and y, show that the divergence of the vector field
F = iz ¥ grad V is always zero.

0.4 The direction of a vector A is radially outwards from the origin, and its magnitude is
krn, where

r2 = x2 + y2 + z2

Find the value of n for which div A = 0.
Ans.: n = – 2

0.5 A vector A is given in cylindrical coordinates as

A = ir 2 cos f + ifr

Evaluate the line integral of A around the contour in the z = 0 plane bounded by
+ x- and + y-axes and the arc of the circle of radius 1 unit. Check the answer by
performing the appropriate surface integral of curl A.

0.6 A point P moves so that its position vector r relative to another point O satisfies the
equation

d

dt

r
 = wwwww ¥ r

where w  is a constant vector. Prove that P describes a circle with constant velocity.
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The Electrostatic
Field in Free Space
(in Absence of
Dielectrics)

1.1 INTRODUCTION

The science of electromagnetism deals with mutual interactions of electric charges, both at rest as
well as in motion. The branch of electromagnetism which deals with the interactions of the
charges at rest is called electrostatics. In this text we will deal mostly with large aggregates of
elemental electric charges. Such elemental charges are the building blocks of atoms of all
substances, i.e. the electrons which are negatively charged and rotate round the nucleus which
contains positively charged protons and neutrons which are electrically neutral. Normally the
atoms of a body are electrically neutral, the positive charges of the protons being equal to the
total negative charges of the electrons. When a body is charged, some of its atoms are taken out
of their neutral condition by either adding or subtracting one or more electrons. The atom is then
said to be ionized, positively if there is a deficiency of electrons, and negatively if there is an
excess of electrons.

Since here we are going to concentrate on the interactions between large ensembles of these
charges (i.e. atoms), we shall not consider the interactions between the charged particles inside the
individual atoms—a topic which is the subject matter of the theories of microscopic properties of
matter. We restrict ourselves to only the macroscopic aspect of the phenomenon. Since the number
of charged particles in any volume to be considered is going to be quite large, the concept of
infinitesimally small volume in the rigorous mathematical sense is not permitted. A limit has to be
imposed on the size of the ‘infinitesimally small volume’. It has to be very small, but still large
enough to contain a large number of elemental charges. Such a small volume is known as
‘physically small volume’ and its length dimensions are much larger than the sub-atomic
distances. It is not possible to give a unique order of magnitude for the physically small volume,
but a volume of 10-6 cubic centimetres can be considered as an upper limit. Since roughly
speaking a cubic centimetre of a rigid body contains between 1022 and 1024 atoms*, the specified
small volume would contain some 1016 to 1018 atoms. Although the exact number of atoms for
different substances would vary greatly, the upper limit mentioned above for the physically small
volume is a reasonable one.
*The basis for this limit is the Avogadro constant which has the value 6.2252 ¥ 1023 per mole.
Refer to Physics by Resnik & Halliday, Vol. 1, p. 550.

1



CHAPTER 1 THE ELECTROSTATIC FIELD IN FREE SPACE 43

Even though from the macroscopic point of view, physical quantities inside any ‘physically
small volume’ can vary significantly from one point to another, such variations are of no
importance when considering interactions between large aggregates of electrical charges. It is
sufficient to know the average values of the quantities in a physically small volume. Such an
approach is known as the macroscopic approach, and the averaged physical quantities are also
called macroscopic. The present text will deal with macroscopic phenomena, but to understand
and to explain the mechanism of certain interactions, it may be necessary at times to consider the
model of the atomic structure of matter.

We shall start the present chapter by discussing the interactions between the electric charges
in free space and subsequently introduce the effects of the material media of different kinds.
One type of substances is known as dielectrics or insulators in which there are practically
no freely movable charges in their structures. Substances having only a relatively small number
of free charges in their structures are known as semiconductors. Those substances in which
there are elemental electric charges, practically free to move inside them, are known as
conductors. Examples of this type are metals (in which the electrons in the outer shell are very
loosely attached to the rest of the atom) and electrolytic solutions (with movable charges
called ions).

1.2 THE LAW OF FORCE BETWEEN CHARGED PARTICLES
(COULOMB’S LAW)

The experimenters of the eighteenth century knew that the objects could be charged with
electricity so that they would attract or repel each other. Comparing these forces with the
gravitational attraction, these pioneers must have argued about a similar law for the electrostatic
forces. It was a French engineer, Charles A. Coulomb who announced an experimental verification
of this law in 1785. The law was enunciated as follows:

The force between two charged particles at rest is proportional to the product of the
charges and inversely proportional to the square of the distance between them.

The force acts along the line joining the particles, and is a repulsion if the charges are of the
same sign, and an attraction if their signs are opposite. This law holds good when the charges are
in vacuo, or when the particles are surrounded by air, or any other gas, or by a large class of
liquids or solids known as dielectrics. It should be however noted that the extension of this law to
particles embedded in solids is a generalization from experience, for it is impossible to measure
directly the force in such a case. The surrounding medium, whilst it affects the magnitude of the
force, does not affect the form of the law. Hence the force F between the particles bearing the
charges Q1 and Q2 and separated by a distance r, is given by

F = 
l 1 2

2

Q Q

r
(1.1)

where the multiplier l depends on the surrounding medium. The law assumes that the surrounding
medium is uniform not only between the charges, but also to a distance (in all directions) great
compared with r. The precise value of l depends on this assumption. Since all charges are built
from protons or electrons which are elementary particles of equal charge, the charge of the proton
or the electron can be considered as the natural unit for charges. However the unit used in practice
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is ‘coulomb’ which is equal to 6.242 ¥ 1018 times the electron charge, and this unit is connected
with the basic units of mass, length, and time. The force between the particles bearing the charges
Q1, Q2 coulombs, and separated by a distance r metres, is given in vacuo by

×
=

9
1 2

2

(8.988 10 )
newtons

Q Q
F

r
(1.2)

In air at normal temperature and pressure, this force is less by only 0.06 per cent and hence
for all practical purposes, vacuum and air need not be differentiated. (In this context vacuum is
often referred to as free space.) In the SI system of units, this constant is expressed as l =
1/4p e0, where e0 is called the permittivity of free space (or absolute permittivity) and has the
value

e
p

−= × =
×

12
0 9

1
8.854 10

36 10
 coulomb2/newton-m2 (or farads/metre—to be proved later) (1.3)

As coulomb is a large quantity, comparing it with the c.g.s. electrostatic unit, we have

1coulomb = 2.998 ¥ 109 electrostatic units

So it will be seen that it is convenient to approximate coulomb by 3 ¥ 109 e.s. units and l
by 9 ¥ 109, so that these become easy to memorize.

The force F expressed as a vector can be written as

F12 = p e
1 2

122
0

1
4

Q Q

r

⎛ ⎞
⎜ ⎟
⎝ ⎠

u (1.4)

where u12 is the unit vector directed from the charge Q1 to Q2 , and F12 is the vector force by
which the charge Q1 acts on the charge Q2 (Figure 1.1).

Figure 1.1 The two point charges and the reference directions of the vectors
entering in the Coulomb’s law.

In practical terms, the electrostatic forces are much larger than the gravitational forces. For
example, the gravitational attraction between particles of masses m1, m2 kilograms separated by r
metres is

−×=
11

1 2
2

(6.67 10 )
Ng

m m
F

r
(1.5)

which is equal to the electrostatic force between the charges of 0.86 ¥ 10-10 C at the same
spacing.

1.3 THE PRINCIPLE OF SUPERPOSITION

When there are more than two point charges, the total force on any one of them is the vector sum
of the forces on it due to each charge considered separately. This is known as the ‘principle of
superposition’. This is again an experimental fact.

F21 F12Q1 Q2
u21

r

u12
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1.4 THE ELECTRIC FORCE (PER UNIT CHARGE) AND THE
CONCEPT OF ELECTRIC FIELD

The electric force at a point is defined as the force experienced at that point by a particle bearing
a unit positive charge placed at that specified point. It is denoted by the vector E and its
magnitude by E. The region of the space where such a force exists is the region of the electric
field, and the vector E is called the ‘electric field intensity’.

To start with, in the region of interest, if there are two point charges (as shown in Figure
1.1), the force at the location of the point charges is given by Eq. (1.4). Now let the charge Q2 be
1 C, then

1
2

0

the force at that point
4

Q

rpe
= (1.7)

This is defined as the electric field at that point, that is, E (the electric field intensity). It is a
vector in the same direction as F12.

\ E = pe
Ê ˆ
Á ˜Ë ¯

1
12

04 k

Q

r
r (1.8)

where r1 is the unit vector in the direction of the line joining Q1 with the unit charge at the
location of Q2. Also,

F12 = Q2E (1.9)

Thus if there are n point charges Q1, Q2, Q3, º, Qn distributed in a region, then the force on
the charge Q at a point A is given by (Figure 1.2).

A A 2
01 4

n
k

k
kk

QQ

rp e=

= ∑F r (1.6)

where rk is the distance between Qk and Q, and rkA is the unit vector in the direction of rk.

Figure 1.2 Distributed charges.
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Q2 Qk
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Qn
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r1
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rk
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The unit of E is newton/coulomb, and this will later be shown to be volts/metre.
If there are more than two point charges in the region, that is, n point charges as shown in

Figure 1.2, then the electric field intensity at the point A is given by

       EA = 
=

∑ 1 A
1

n

k k
k

Er (1.10)

where

EkA = 
p e 2

04
k

k

Q

r

To visualize mentally the electric field, we use the concept of the ‘lines of force’. A line of
force is a continuous curve, whose direction at every point is that of the vector E. Hence the lines
of force from a single point charge would be radial straight lines extending outwards. Lines of
force for point charges are shown in Figure 1.3. The whole space of the field is imagined to be
filled with such lines and a charge brought into the field would experience a force whose
direction is that of the line of force at that point where the extraneous charge is brought in. Here
we meet with a conceptual difficulty. It should be noted that this intruding charge is not a passive
device. It is by itself a source of electric force and the existing lines of force in its vicinity would
get distorted by its presence. And yet when we say that the force on this extraneous charge is QE,
the value of E to be used is that value which the electric force would have if the intruding charge
were not there. The point we should note is that as a method of calculating the force on the
charged particle, this works correctly, but as a picture of what is happening in the electric field it
is unsatisfactory.

+Q –Q

(a) (b)

Figure 1.3 Graphical representation of electric lines of force of a point charge
(a) +Q, (b) –Q, each in isolation.

1.5 THE ELECTRIC FIELD OF CONTINUOUS SPACE
DISTRIBUTION OF CHARGES (GAUSS’ THEOREM)

We started our discussion of electrostatic forces with two discrete point charges and extended our
arguments to the space distribution of n point charges. The next logical step would be now to
consider ‘continuous space distribution of charges’, which of course is the basis for the
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macroscopic theory as applicable to a large number of problems in engineering. In such an
approach, the macroscopic properties of these charges become important and so the volume
charge density rC has to be defined as

C
sum of all charges in a physically small volume

the enclosing volume element
v

v
= dr d

Considering the whole region v occupied by the charges (totalling to Q), let the region be
divided into similar volume elements. Then from Eq. (1.10) the electric field intensity can be
written as

12
04v

v

r

r d
p e

Ê ˆ
= Á ˜Ë ¯ÂE r (1.11)

As the element dv tends to become smaller and smaller, the summation sign can be replaced
by the volume integral over the region v, i.e.

12
0

1
4

v

dv

r

r
p e

È ˘Ï ¸ Ê ˆÍ ˙= Ì ˝ Á ˜Ë ¯Í ˙Ó ˛Î ˚
ÚÚÚE r (1.12)

By similar arguments, the field intensity due to a surface distribution of charges rS over a
surface S can be shown to be

S
12

0

1
4

S

dS

r

r
p e

È ˘Ï ¸ Ï ¸Í ˙= Ì ˝ Ì ˝
Í ˙Ó ˛ Ó ˛Î ˚
ÚÚE r (1.13)

and due to a line element of charges,

12
0

1
4

l

dl

r

r
p e

È ˘Ï ¸ Ï ¸Í ˙= Ì ˝ Ì ˝
Í ˙Ó ˛ Ó ˛Î ˚
ÚE r (1.14)

These three distributions are shown pictorially in Figure 1.4.

Figure 1.4 Distribution of charges.

(a) Volume distribution of
charges

(b) Surface distribution of charges (c) Line distribution of charges
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To make a physical analogy, when the integral is taken over a closed surface, the result
equates the net outflow of the vector across the specified volume, for example, if the vector
represents the velocity of a fluid, then the value of the integral is the net outflow of the fluid
across the volume.

1.5.2 Gauss’ Theorem

In general terms, the Gauss’ theorem states that:

The flux of a vector quantity over any arbitrary closed surface is equal to (or proportional
to) the strength of the enclosed sources of the vector.

In the context of the electric field intensity and the electric charge, let us assume that a total
charge Q is distributed over a volume v. Therefore, the charge density r is

Q
v

r =

Also, let S be a closed surface enclosing this volume v, and P be a point on this surface. The
next step is to evaluate the integral

S

◊ÚÚ dE S

over this surface S.
Consider an infinitesimally small element of charge r dv (= Qk) at the point O as shown in

Figure 1.6. Then,

1.5.1 The Flux of E Across a Surface

Before we consider Gauss’ theorem as applied to the electric field intensity E, we look at the
concept of ‘the flux of E across a surface’. Let a surface S be divided into a meshwork of small
elements, of which a typical one is dS. Even though S may be curved, the element dS is so small
that it can justifiably be assumed to be flat and the line PN to be normal to dS. The line PM is the
direction of E (the electric force) at the point P, and it makes an angle q with the normal PN.
Then (E cos q dS) is the flux of E across the surface dS; and the sum of all the fluxes across the
surfaces d S (i.e. S  E cosq dS) is the flux of E across the surface S. As the surface elements tend
to become smaller and smaller, this quantity becomes

n

S

E dS∫∫ or

S

d⋅∫∫ E S

Figure 1.5 Surface S.
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a
pe pe

⋅
⋅ = =1

2 2
0 0

cos

4 4
k kQ d Q dS

d
r r

r S
E S (1.15)

where

r = the distance between the elemental charge Qk in v and the point P on the closed
surface S

r1 = the unit vector in the direction of r

a = the angle between r and d S.

Now,

2

cosS

r

d a
= solid angle subtended by Qk at dS on S.

= surface of the portion of the sphere of unit radius with its centre
at O, cut by the cone subtended by dS with the vertex at O. (1.15a)

Integrating over the whole surface S, the integral = Qk ◊ 4p ◊ 12, with (4p ◊ 12) being the total
solid angle subtended by Qk over the whole surface S. Then by using the principle of
superposition, we can consider all the charges enclosed by the closed surface S (which can be a
space distribution of charges, in this case totalling to Q).

\ e
S

◊ =ÚÚ
0

Q
dE S (1.16)

Thus the Gauss’ theorem gives a relation between the electric field and the charges in
the system, which depends on the characteristic property of the medium, i.e. e0 in this case.

It should be noted that the shape of the volume considered is no restriction on this theorem,
or if there are charges outside the volume under consideration. If the shape of the volume is
such that the elemental cone cuts the closed surface more than once, say, three times, or any
odd number of times (when the point O is inside the volume), then also Eq. (1.16) holds. If the
charges are outside S, then the flux of the electric field intensity due to such charges would be
zero.

Since Gauss’ theorem gives a relationship between the flux of the electric field intensity E

Figure 1.6 Construction for Gauss’ theorem.

S

N

a
P

r1

dS
O

Q vk = rd
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C

D
dz

B

dy

A

B¢

and the enclosed charge Q, which depends on the characteristic property of the medium, we
introduce a new vector D called the ‘electric flux density’ vector, such that, in vacuo,

D = e0 E (1.17)
so that by Gauss’ theorem

S

◊ =ÚÚ d QD S
(1.18)

where Q is the enclosed charge in the system. The reason for the choice of the name of D becomes
obvious from Eq. (1.18).

Thus, so far we have derived the vector E starting from point charges, and subsequently
using Gauss’ theorem, we have extended these ideas to space distributions of charges, and hence
the ‘field concept’ and in the process an auxiliary vector D has now been introduced. So
essentially any problem dealing with the evaluation of E or D for a system of charges, becomes
now a matter of dreaming up a suitable ‘Gaussian Surface’, which is defined as a convenient
surface to which Gauss’ theorem can be applied.

1.5.3 An Alternative Proof of Gauss’ Theorem in Differential Form

Equation (1.18) can be expressed in a different form if we imagine the closed surface S to be the
surface of a rectangular brick which may be very small. Figure 1.7 shows a brick with sides dx, dy,
d z parallel to the coordinate axes of a right-handed coordinate system.

Figure 1.7 Elemental volume for Gauss’ theorem in the rectangular coordinate system.

If there is a charge cloud of density rC (C/m3) in this region, then the charge within S is
rCdxdyd z.

To calculate the flux through the surface, let us consider first the parallel faces ABCD and
A¢B¢C¢ D¢ . Their areas are d yd z each, and so they give:

(ABCD) Æ Inward flux = Dxdydz

(A¢B¢C¢D¢) Æ Outward flux = Dx + d d d∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

xD
x y z

x

Therefore, the net outward flux from the two faces = (∂Dx /∂x)dxd yd z. And the other two sets of
faces give similar expressions as above.

Thus, the Gauss’ theorem takes the form:

Dx + (∂Dx /∂x)dx

Dx

dx

D¢

C¢

Outward flux
Inward flux

A¢

d y
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y zx
D DD

x y z

∂⎛ ⎞∂∂ + +⎜ ⎟∂ ∂ ∂⎝ ⎠
dxdyd z = rCdxd ydz

or
∂ ∂∂

+ +
∂ ∂ ∂

y zx
D DD

x y z
= rC (1.19)

The left-hand side of Eq. (1.19) is, 
0

net outward flux of from
lim

volume enclosed byx y z

D
d d d

S
S→

The above quantity, a scalar, derived from the vector D is known as the divergence of D (i.e.
div D). In general, therefore,

div D = d d
S

Æ
ÚÚ

0
lim

n

v

D dS

v
(1.20)

where dn is the volume within S. Equation (1.19) shows that in Cartesian coordinates

∂ ∂∂
= + +

∂ ∂ ∂
div y zx

D DD
x y z

D (1.21)

but the importance of the general integral Eq. (1.20) is that it is not confined to the Cartesian
coordinates. Other coordinates systems will be used later.

Now, Eq. (1.19) can be restated in the form

div D = rC (1.22)

which does not imply any particular coordinate system. (This is also a restricted form of one of
the Maxwell’s equations.)

1.6 ELECTRIC POTENTIAL (OR ELECTROSTATIC
POTENTIAL)

To facilitate the calculation of electric fields, the concept of electric potential is introduced,
which is defined as follows:

The work done by the extraneous forces against the forces of the field in moving a unit
charge from a point A to a point B is called the increase of the electric potential between
A and B (i.e. the potential difference between A and B).

Using the vector notations, the electric potential is defined as

B

A

d− ⋅∫ E l

PHYSICAL INTERPRETATION OF ELECTRIC POTENTIAL

E = force on a unit charge placed at the point under consideration
d l = vector length of the element where the charge is placed
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E l = work done in moving a unit charge from the point A to the point B (1.23)

Thus, this is a measure of the potential energy in the system, i.e. the energy distribution in
the system. Its unit is:

Work done is in joules
Charge is in coulombs

� =joules (J)
Potential Difference (P.D.) = volts (V)

coulombs (C)

A proof for the work done is independent of the path chosen for the line integral, and
depends only on the terminal points. Let us consider the field due to a single point charge Q
(Figure 1.8).

E at the point P on the path is given by
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\ − ⋅∫
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(1.24)

Thus the work done is independent of the path chosen for the line integral. This can be
extended to more complex charge distribution systems. Therefore, the expression

B

A

dl− ⋅∫ E

is a measure of the energy distribution in the field, i.e. a measure of the variations in the level of
the potential energy at different points in the field. Separating the idea of the ‘variation of level’
from its physical basis of energy distribution, ‘the variation of level’ can be used as a scalar field
associated with the original vector force field E.

Therefore, the potential difference between the points A and B is defined as

B

AB

A

V d= − ⋅∫ E l (1.25)

It should, however, be noted that this is not a definition of the absolute potential of a point.
However, we can extrapolate from this definition to find the absolute potential. If the starting
reference point is moved to infinity which is taken as the zero level (Figure 1.9), then this defines
the absolute potential of a point, i.e.

A B

A B,V dl V dl
∞ ∞

= − ⋅ = − ⋅∫ ∫E E (1.26)

Figure 1.9 Absolute potential in terms of the potential of the point at infinity.

This definition agrees with the previously given definition of the potential difference (P.D.),
i.e.

A

B

•
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B B A

AB B A

A

V d d d V V
∞ ∞

= − ⋅ = − ⋅ + ⋅ = −∫ ∫ ∫E l E l E l (1.27)

This follows from the fact that the line integral of E around a closed path is zero, i.e.
• Æ A Æ B Æ • is zero; a conclusion which was also implicit in the result derived in Eq. (1.24).
Emphasizing this point, it follows that since the work done in conveying a charged particle from
one point to another is independent of the path traversed, the work done in traversing a closed
path would be zero (i.e. the line integral of E along a closed path is zero). Thus,

◊ =Ú 0
C

dE l
(1.28)

Or referring back to the vector operators, it follows that

curl E = — ¥ E = 0 (1.29)

This is the consequence of the conservation of energy in this type of field. Such a field, which
satisfies the above equation is called a ‘conservative field’.

1.6.1 Electric Field and Electric Potential

It is seen that when the electric field E in a region is given, the potential field can be found; or
vice versa if the potential field V is known, how do we find the E field?

By the definition of potential difference, over a small length d l if the potential drop is d V,
then

d V = – E ◊◊◊◊◊ d l

\ E = –
V
l

∂
∂

Or considering the component in the x-direction, say, we have

d V = –Ex d x

\ Ex = – 
V
x

∂
∂

Similarly,

Ey = –
V
y

∂
∂

and Ez = –
V
z

∂
∂

\ At any point,
E = ix Ex + iy Ey +

 iz Ez

= – ix 
V
x

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

 –  iy 
V
y

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

 – i z 
V
z

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

= +x y z
V V V
x y z

⎧ ⎫∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞− +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭
i i i

= –grad V = –—V (1.30)
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∂⎛ ⎞
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= dV = (grad V ) ◊ dl

Hence,
B

B A

A

(grad )V V V dl− = ⋅∫
that is, the function V is independent of the path traversed. Therefore, over a closed path,

 ( ) ( )◊ = + = - + -Ú Ú Ú
B A

B A A B

ABA A B

(grad )V d V V V Vl

      = 0

Thus it is seen that the potential field is also irrotational. In fact the terms ‘conservative’
and ‘irrotational’ are synonymous. Then the question arises as to why both terms are in use when
they mean the same thing. Conventional usage has been that irrotational refers normally to
velocity fields whilst conservative refers to force fields such as E or gravity.

1.6.2 Potential Function and Flux Function

As a help to analyzing problems, ‘a potential function V (or y )’ is defined so that the change in
this function between any two points is proportional to the change in the potential between them.
Its value at any point, with respect to some origin of potential, is a direct measure of the potential
at that point; and a line joining all points having the same value of potential is called an

That is, E is the maximum rate of change of V at that point. Or alternatively, consider the inverse
problem, i.e. to determine the increment of the function V from some point A to another point B.
Hence consider any line (Figure 1.10) joining AB, and let l be the distance measured along it
from A.

Figure 1.10 Potential difference.

dl

U1
B

grad V

A
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equipotential line. No work is done in moving a charge along such a line. Since no work is done
when a charge is moved in a direction perpendicular to the field strength, the equipotential lines
are perpendicular to the flux lines.

Similarly, a flux line is defined such that U (or f) = constant, defines the flux line. Two
lines U = U0 and U = U0 + n have n units of flux passing between them.

These definitions imply that the differences in flux and potential functions represent
quantities of flux and potential differences. The zeros of both these functions are chosen
arbitrarily. When the lines drawn for constant values of potential and flux functions are so chosen
that U and V change in equal steps, then in such a field map the regions enclosed between the
successive intersecting lines are ‘curvilinear squares’. Since the potential and the flux functions
are orthogonal, one function can be derived from the other by using the following equation:

= =

⎛ ⎞ ⎛ ⎞× = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠constant constant

1
V U

dy dy
dx dx

It will be seen later that the flux and the potential functions for the field of a line charge and the
field of two charged concentric circular conductors are the same, both fields having concentric
circular equipotential lines and straight radial flux lines, i.e.

V = 
0

ln
2

Q
rp e

⎛ ⎞
⎜ ⎟
⎝ ⎠

and (1.30a)

U = 
2
Q qp

⎛ ⎞
⎜ ⎟⎝ ⎠

where Q is the charge per unit length of the line charge, or is the charge per unit length of the
concentric conductors.

1.6.3 Potential Field Expressed as Poisson and Laplace Equations

From Gauss’ theorem, we have seen that

div D = — ◊ D = rC (charge density),
and

D = e0 E (in free space)

Also, we now have
E = – grad V = – (—V)

\ div E = — ◊ E = - C

0

r
e

and

div (grad V ) = — ◊ (—V) = - C

0

r
e

or

—2V = – C

0

r
e (1.31)

Equation (1.31) is the Poisson’s equation.
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If the charge density rC = 0, then

—2V = 0 (1.32)
which is the Laplace’s equation.

In the rectangular Cartesian coordinate system,

2 2 2
2

2 2 2
=

x y z

∂ ∂ ∂∇ + +
∂ ∂ ∂

Equations (1.31) and (1.32) are the two very useful equations in physics and engineering. In fact,
any electrostatic problem is essentially the problem of solving these equations for the given
boundary conditions.

1.7 SOME USEFUL EXAMPLES OF CALCULATION OF
FIELDS BY GAUSS’ THEOREM AND POTENTIALS

1.7.1 A Group of Charged Particles

From Eq. (1.24) and the corresponding Figure 1.8, the work done due to a single charged particle,
in moving a unit charge from the point A to the point B is given by

B A
0 B A

1 1
4

Q
V V

r rpe
⎛ ⎞− = −⎜ ⎟
⎝ ⎠

If there are n charges in the system, then the work done is (Figure 1.11).

VB – VA  = 
0 B A1

1 1
4

n
Q

r rpe
⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠∑ (1.33)

As usual we assume the zero potential as being at a very great distance from this group, and

Figure 1.11 A group of charged particles.

allow the point A to move to infinity, i.e. VA = 0, then

VB = 
0 B1

1
4

n
Q

rp e
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠∑
or, in general

 V = 
0 1

1
4

n
Q
rp e

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ∑ (1.34)
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By Gauss’ theorem,
Flux of D out of S = enclosed charge = Q

Since the spheres are concentric,
D ◊ 4p r2 = Q

\ D = 124

Q

r

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

r
p

and E = 12
04

Q

r

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

r
pe

(1.35)

This is for points outside the sphere (i.e. r ≥ a). For points inside the hollow sphere, applying a
Gaussian surface inside the sphere, charge enclosed = 0.

\ Ei = 0 and Di = 0 (1.36)

It is to be noted that for external points the sphere behaves as if all the charges are located
at the centre of the sphere.

The next step is to find the potential and from Eqs. (1.35) and (1.36), it is evident that E is
a function of r only.

\ V = d− ⋅∫ E l

= –
2

04

r
Q

dr
rpe

∞
∫ , for any point external to the sphere.

1.7.2 A Hollow Charged Sphere of Radius a, and Carrying a
Charge Q

In general E and D can be calculated by the vector addition of contributions from each charge in
the field. But when the charges are distributed on the surface of solid bodies, the process of vector
addition resolves into that of integration which may not always be an easy one. However, in some
cases this can be bypassed by using the Gauss’ theorem.

For the charged sphere, we have to find the field at a point P whose distance from the centre
of the sphere is r. We think of a Gaussian surface which in this case is a concentric sphere of
radius r on which the point P lies (Figure 1.12). This is S.

Figure 1.12 A charged sphere.
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Charge on the hatched strip is

2
(2 sin ) ( )

4

Q
a a

a
p q dq

p
 = 

2
Q

 sin q dq

and the length
AP = (r2 + a2 – 2ra cos q)1/2

Hence the contribution of the strip to the potential at P is

2 2 1/2
0

sin
2

4 ( 2 cos )

Q

r a ra

q dq

pe q

⎛ ⎞
⎜ ⎟⎝ ⎠

+ −
(1.39)

Therefore, adding up all such contributions,

VP = 
2 2 1/2

0

sin
8 ( cos )

Q d

r a ra

p
q q

p e q0

⎛ ⎞
⎜ ⎟+ −⎝ ⎠∫ (1.40)

On integrating, the answers come out the same as in Eqs. (1.37) and (1.38). This problem
shows how the choice of a suitable Gaussian surface simplifies the method of solving it.

2
0 0 0

1
4 4 4

r r
Q dr Q Q

r rr ∞∞

−⎡ ⎤= − = − =⎢ ⎥⎣ ⎦∫pe pe pe (1.37)

For internal points, since Ei = 0, only the constant of integration remains, which from the
interface condition at r = a, is

04a i
Q

V V
ape= = (1.38)

that is, all the points inside the sphere are at the same potential which is equal to that on the
surface.

It is also possible to evaluate the potential distribution, ab initio, without determining the
complete E field. Consider an elemental strip of charge distribution on the surface of the sphere,
as shown in Figure 1.13.

Figure 1.13 Elemental charge distribution on the sphere.
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By Gauss’ theorem,

Flux of D out of S = enclosed charge = Q coulombs/metre

Since the cylinders are coaxial,

D ◊ 2p r ◊ l = Q, l = 1

\ D = 12
Q

rp
⎛ ⎞
⎜ ⎟⎝ ⎠

r and E = 1
02

Q
rp e

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

r (1.41)

for points outside the cylinder (r ≥ a).
For points inside the hollow cylinder, applying a similar Gaussian surface, the charge

enclosed = 0.

\ Di = 0 and Ei = 0 (1.42)

The next step is to evaluate the potential,

R

R

0 0
ln

2 2

r

r

rQ Q
V d dr

r rpe pe
⎛ ⎞ ⎛ ⎞= − ⋅ = − = − ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠∫ ∫E l (1.43)

where rR is a reference point at a distance rR from the axis.
Note that the limit of the integral cannot be taken as •, as in this problem the cylinder is

taken to be infinitely long and hence the charges exist at •.
On the surface of the cylinder,

Va = R

0
ln

2
rQ
ap e

⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

(1.44)

On the inside of the cylinder Ei = 0, and hence for all inside points, V = Va.

1.7.3 Uniformly Distributed Charge on an Infinite Circular Cylinder

Let Q be the charge on the surface of the cylinder of radius a, per unit length. The suitable
Gaussian surface would be a concentric cylinder of radius r and of unit length (Figure 1.14). This
is S. (The end effects have been neglected.) By symmetry, the lines of force are radial, and E and
D are functions of r only.

Figure 1.14 Infinitely long charged cylinder.
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By symmetry, D is radial and normal to the axis of the cylinder.

\ D ◊ 2p r ◊ 1 = Q

\ D = 12
Q

rp
⎛ ⎞
⎜ ⎟⎝ ⎠

r and E = 1
02

Q
rpe

⎛ ⎞
⎜ ⎟
⎝ ⎠

r (1.45)

To evaluate the potential,

0
ln

2

r
Q

V d rpe
∞

⎛ ⎞= − ⋅ = −⎜ ⎟
⎝ ⎠∫E r (1.46)

It should be noted that the above expression is that part of V which varies with r. There will
be an infinite constant of integration. Again the reason for this is that the line charge extends to
infinity and so the absolute potential cannot be defined as the work done in bringing a unit
charge from infinity. Equipotential surfaces will be coaxial cylinders and on a normal plane these
would intersect as concentric circles.

1.7.5 A Group of Parallel Line Charges

By using the principle of superposition (Figure 1.16), we obtain

VP = ( )1 1 2 2 3 3
0

1
ln ln ln ln

2 n nQ r Q r Q r Q rp e
⎛ ⎞− + + + +⎜ ⎟
⎝ ⎠

(1.47)

1.7.4 Infinitely Long Straight Line Charge

While a point charge may be realized in an electron, an infinitely long line charge would be a
figment of imagination. Yet the practical importance is that it represents the problem of the
charged wire in overhead transmission lines. The line carries a charge of Q C/m. The suitable
Gaussian surface is a concentric cylinder of radius r and of unit axial length (Figure 1.15). The
end effects have been neglected.

Figure 1.15 Infinitely long line charge.
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Figure 1.16 A group of parallel line charges.
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Consider the special case of when there are two line charges,

VP = ( )1 1 2 2
0

1
ln ln

2
Q r Q r

� �

⎛ ⎞− +⎜ ⎟
⎝ ⎠

(1.48)

A particular case of this is when the two charges are equal and opposite, i.e. Q1 = Q and
Q2 = �Q. Then,

VP = – ( )1 2
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Q
r r

� �

⎛ ⎞ −⎜ ⎟
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                                         = 
2

0 1
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r��
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⎝ ⎠⎝ ⎠
(1.49)

The equipotentials will be given by

2

1

r
r

 = constant (1.50)
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Consider an infinite plane surface uniformly charged with a surface charge density of �S. By
symmetry the lines of force are normal to this surface and E is a function of the distance normal
to this plane, and E(x) = –E(�x) . The Gaussian surface is a cylindrical surface bisected by the
charged plane as shown in Figure 1.17.
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1.7.7 Electric Dipole

An electric dipole (Figure 1.19) is a pair of equal and opposite charges held apart at a spacing
which is small compared with the distances at which the field is calculated.

Let the point charges be ± Q and the distance between them be 2d, then

m = moment of the dipole = 2dQ

The potential at the point P is

VP = 
0

1 1
4 PQ PQ

Q
p e

⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟′⎝ ⎠⎝ ⎠
where

PQ = r – d cos q and PQ ¢ = r + d cos q
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1 1
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r d r dpe q q
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S
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⎜ ⎟
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and E(x) = ix
S

02
r
e

⎛ ⎞
⎜ ⎟
⎝ ⎠

(1.51)

\ The electric field is constant and does not depend on the distance of the point from the
charged sheet. As in the previous example (Section 1.7.5), it can be shown that the finite part of
the potential is

S

02
x

V = −
r

e (1.52)

Considering a special case of the two parallel planes (Figure 1.18) which are oppositely
charged, i.e. +rS and -rS, we get E in the space between the two planes as

E = S

0

r
e and E(outside) = 0 (1.53)

Again it should be noted that the infinite charged plane is an ideal concept, and yet the
above representation simulates the parallel plate capacitor away from its edges.

Figure 1.18 Two parallel charged planes.
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In the limit,

VP = 2
0

cos

4

m

r

q
p e

(1.54)

To evaluate E, we use the spherical coordinate system, with its origin at the centre of the
dipole. Hence,
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(1.55)

Thus, the E field falls as the inverse cube of the distance.
The chief engineering application of the dipole is in the theory of aerials. It also has other

applications in physics.

PROBLEMS

1.1 What maximum charge can be put on a sphere of radius 1 m, if the breakdown of air is
to be avoided.

(For breakdown of air, | E | = 3 ¥ 106 V/m)
Ans.: Qmax = 3.3 ¥ 10–4 C

Figure 1.19 Electric dipole (r >> d).
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1.2 Eight identical spherical drops of mercury charged to 12 V above the earth potential are
made to coalasce into a single spherical drop. What is the new potential?

Ans.: V2 = 48 V

1.3 An infinite plane sheet of charge gives an electric field s/(2e0) at a point P, a distance
a from it. Show that half the field is contributed by charge whose distance from P is less
than 2a; and that in general all but f per cent of the field is contributed by charge
whose distance from P is less than 100a/f.

1.4 Two point charges Q1 and Q2 are located at the origin and the point (x2, y2, 0),
respectively. Find the force on the charge Q1, expressed in newtons, if Q1 and Q2 are in
mC, and the distances is in metres.

1.5 Two concentric circular cylinders of radii r1 m and r2 m, respectively, carry uniform
surface charges of rS1 and rS2 mC respectively. Both the cylinders carrying the charges
extend to infinity along the z-axis (± •). Specify the necessary Gaussian surfaces
required to evaluate the electric flux density in all the regions.

1.6 Derive Coulomb’s law, starting from Gauss’ theorem. State any reasonable assumptions
which you think are necessary for the derivation.
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2.1 CONDUCTORS AND INSULATORS

So far we have discussed the interactions between charged particles or bodies without referring to
the properties of the bodies themselves. From the point of view of electrostatics we can classify all
substances according to the ease with which electric charges move in them. Thus charges can be
transferred from point to point in metals, but not in dry cotton or rubber. Thus the metal is a
conductor of electricity whilst the other type is described as an insulator. The difference between
the two is that, in metals or conductors, the electrons are easily detached from the atoms; in the
insulators, the detachment is difficult. To illustrate the point, if a piece of metal wire is placed
lengthwise in field, a potential difference would be set up between the ends of the wire. This
would cause the free electrons to move along the length of the wire. There would be interruptions
due to collisions with atoms, but a general drift of electrons sets in and an electric current starts
flowing in the wire. This happens extremely quickly, possibly in a millionth of a second. The wire
thus behaves like a pipe along which charge can flow from one end to the other. The terms
conductor and insulator are relative, and would depend on the type and the duration of the
experiments. However metals, carbon, aqueous salt solutions, etc. can be considered as good
conductors and dry gases as good insulators.

2.2 CONDUCTORS IN THE ELECTROSTATIC FIELD

Since the charges in a conductor are mobile, even a small electric field applied to any conductor
would set the charges in motion. Hence if a field is truly electrostatic, then there can be no
electric force in or within the conducting body. So for a conductor under electrostatic conditions,
there can be no potential difference in it. Thus the conductor surface is an equipotential surface
and the whole interior would be at the same potential.

At this point we remind ourselves about ‘the constant of a medium’. We have already
stated that for vacuo and air, this is the ‘absolute permittivity of free space’ denoted by e0. For all
media, in general, this is expressed as

D = eE (2.1)

Conductors and
Insulators in
Electrostatic Field2
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where

 e = e0er (2.2)

er = the relative permittivity of the medium.

We shall discuss about er in detail when we consider the properties of insulators. In
conductors, er = 1.

Going back to the conducting body under consideration, let us consider a Gaussian surface
S inside it [Figure 2.1(a)]. Because E = 0 inside the conductor, the flux of E out of S = 0. Hence
by Gauss’ theorem,

Q
e∇ ⋅ =E (2.3)

where Q is the charge enclosed by S. Therefore, either e is infinite or Q is zero. Infinite e would
mean that each charge is surrounded by conductor so that E = 0 (i.e. no electric force). Zero Q
means that there is no charge within the body of the conductor but there can be charges on the
conductor surface. This has been verified experimentally. Also, indirect evidence shows that e is
finite. Therefore, inside the conducting material

E = 0 and D = 0 (2.4)

Now let us consider a coin-shaped Gaussian surface on the surface of the conductor [Figure 2.1(b)]

Figure 2.1 Gaussian surfaces inside and on the surface of a conducting body.

(a) Conductor body (b) Conductor surface

such that one of its flat surfaces parallel to the conductor surface lies just inside the conductor
and the other face just outside it. If the area of its flat surface is d S and the surface charge density
is s, then the charge enclosed by this surface element is (s d S). For the Gaussian surface under
consideration, D is zero on the inner flat surface, no contributions across the edge, and the only
contribution is from the outer flat surface.

\ D = s and E = 
s
e (2.5)

Thus charges on conductors lie entirely on their surfaces and distribute themselves so as to make
the conductor surfaces equipotential. Electric flux emerges normally from the positively charged
surfaces and enters the negatively charged surfaces similarly.

Next, by considering a tubular Gaussian surface whose sides are lines of force and whose
ends are within the two conductors, we find that there is no flux of D from such a surface, because

S

d S
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D is parallel to the sides and is zero at the ends. Hence this surface encloses no charge. Such a
tube which combines an element of positive charge to an equal element of negative charge is
called a ‘Faraday tube’. There is a continuous fall in potential as one traverses this tube from the
positive end to its negative end.

2.3 RELATION BETWEEN ELECTROSTATIC POTENTIAL
AND CHARGES ON CONDUCTING BODIES

2.3.1 The Case of an Isolated Conductor

Let us consider an isolated charged body. The charges would be so distributed on the body that
its surface would be equipotential, and inside it E = 0. If the total charges on the body are
increased, the redistribution of the charges would be such that the above conditions still get
fulfilled. Thus, the relative distribution of charges on an isolated conducting body is
independent of the total charge on the body. The potential of the isolated conducting body
would depend on the total charge on this body. Thus if Q is the total charge on the body and V
its corresponding potential, then

Q = CV (2.6)

where C is a constant depending on the shape of the body and is called the capacitance of the
body, characterizing the ‘capacity’ of the isolated body with respect to the charge accumulated
per unit of potential.

Equation (2.6) defines the capacitance of an isolated conductor as well as shows a method
of determining the capacitance. As a simple example, we know that the potential of a spherical
conductor with charge Q on it is given by [see Eq. (1.38)]

04
Q

V
rpe=

where r is the radius of the sphere.

\ Its capacitance = 04
Q

C r
V

pe= = (2.7)

Capacitance is a very important concept and its unit is coulomb/volt (C/V) and is called farad (F).

2.3.2 The Case of Two Bodies with Equal Charges of Opposite Signs

This is a system which is often encountered in practice. Charges of equal magnitude but of
opposite signs on two bodies would be obtained if the two bodies are connected to a source of
electromotive force which pumps charges of one sign from one body to the other. Thus if a charge
of + Q is taken from one body and transferred to another body, then a charge of - Q is left on the
first body. In practice such a system is called ‘capacitor’ and the two conducting bodies of the
system are referred to as the ‘electrodes’. A very simple relationship between the charge Q and the
potential difference between its electrodes (= V ) exists. This is written as

Q = CV = C(V1 - V2) (2.8)
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where V1 and V2 are the potentials of the two electrodes, respectively. As mentioned in Section
2.3.1, the unit of capacitance C is farad (= coulomb/volt).

2.3.3 Methods of Evaluating Capacitance (C)

Equation (2.8) tells us how to evaluate C in addition to giving its definition. There are basically
two methods of evaluating C. The steps are as follows:

METHOD A

Assume charges ± Q on the two electrodes of the capacitor.
By using the Gauss’ theorem, find D and hence E.
Find the potential difference (P.D.) between the two electrodes, which is given by ÚE ◊◊◊◊◊ dl.
Hence,

P.D.
Q

C =

METHOD B

Assume a potential difference (P.D.) between the electrodes and hence the potential distribution.
Find E from the equation E = - grad V, and hence D.
By using the Gauss’ theorem, find Q—the enclosed charge on one of the electrodes.
Hence,

= charge
P.D.

C

The next logical step would now be to discuss the capacitance of a number of different
arrangements of electrodes. But before we do that, a further generalization is possible, i.e. so far
we have considered the intervening space between the two electrodes to be either vacuum or air
which have the permittivity as e0. However, it is possible to have this space or gap filled with any
insulating material. The effect of this change would be to change the ‘free space constant e0’
by the permittivity of the new material. Before we do make this change, we shall now study the
behaviour of insulators under the effect of electric fields and then come back to the calculation of
capacitances.

2.4 THE BEHAVIOUR OF INSULATORS (OR DIELECTRICS)
IN A STATIC ELECTRIC FIELD

It has been stated earlier that insulators (or as they are also called dielectrics) are those substances
which do not possess free electric charges. This does mean that when they are introduced in an
electric field, the field would not get affected by them.

In order to understand the mechanism by which a dielectric material affects an electric field
in which it is introduced, we shall look at the behaviour of a single atom of this material. In the
absence of the electric field such an atom is electrically neutral. This is strictly true for far points,
i.e. for distances which are large compared with the sub-atomic distances. For such small
distances, the atom does exert an electric field. So when we look at the atom from large distances,
the atom appears to be as if it were made up of two concentric uniformly charged spheres carrying
equal charges of opposite signs. Such a system produces zero E field at all points outside the
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atom [Figure 2.2(a)]. Next we consider in detail what happens when an external electric field E
falls on this dielectric material. Since the atom of the material consists of positive and negative
charges, so, when the field is applied, the positive charges will be pulled in one direction and the
negative charges in the opposite direction. In the neutral condition (i.e. when there was no
external electric force) the elastic forces in the atom tended to keep the two imaginary charged
spheres concentric. When the external field is applied, these two charged spheres tend to move in
opposite directions and there is a displacement of their centres which depends on the intensity of
the external applied field. Since the centres of the two spheres are no longer at the same point
[Figure 2.2(b)], the electric field at distant points is no longer zero. It is now equal to the field

Figure 2.2 (a) Model of a neutral atom; (b) the same atom in an external electric field.
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produced by the two point charges at a distance d from one another. It should be noted that this
distance d is much smaller than the distance of the observer from the atom. Such a system of two
closely-placed point charges of equal magnitude but of opposite signs is called an ‘electric
dipole’ (see Section 1.6.6). Thus the secondary electric field created by a neutral atom of a
dielectric in an external electric field is the same as that due to a dipole. So when a dielectric
material is introduced in an external electric field, the secondary electric field due to the deformed
atoms of the dielectric is the same as the sum of the corresponding electric dipoles situated in a
vacuum. In this case the substance is said to be polarized and the process is known as
polarization.

This type of polarization takes place with a very wide class of dielectrics. But there is
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another class of dielectrics in which the molecules are dipoles even when there is no externally
applied electric field. Such permanent dipole molecules are called polar molecules, an example of
which is water. In the absence of any externally applied electric field, these dipoles are so
distributed statistically in space that there is no net macroscopic field under normal conditions.
When an external electric field is applied, there is a tendency for all dipoles to align themselves
in the direction of the applied field, thus creating a secondary electric field which is the same as
the electric field due to a large number of electric dipoles. Hence all dielectric substances when
brought into an electric field can be considered equivalent to a large number of tiny electric
dipoles. The secondary macroscopic electric field due to a polarized dielectric can thus be
regarded as the field of these dipoles located in vacuum. Thus the analysis of the behaviour of
dielectric substances in an electrostatic field reduces to the analysis of a system of dipoles located
in vacuum. So now we have to determine from the potential and the electric field due to a single
dipole, to those due to a large aggregate of elemental electric dipoles.

2.4.1 The Potential and Electric Field due to an Aggregate of
Dipoles (Polarization Vector)

We have, from Section 1.6.6, the potential at a point, due to a dipole (Q, d) in vacuo as

2
0

cos

4

Q d
V

r

q
pe

=

And p = Qd is defined as the dipole moment.
If u is the unit vector in the direction of the point under consideration from the dipole

(Figure 2.3), then,

2
04

V
rpe

⋅= p u
(2.9)

Figure 2.3 An electric dipole.
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In a polarized dielectric medium, the density of the electric dipole moment P is

dv

dv
=
∑ p

P (2.10)

at the volume element dv, due to all polarized atoms in that element.
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This is the definition of the ‘Polarization Vector’. The electric field intensity due to the
dipole is given by [from Eq. (2.9)],
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q pe

∂= − = − =
∂ (2.12)

The dipole moment of the elemental volume dv is

dp = P dv (2.13)

\ The potential due to the polarization of this element is given by

2
04

dv
dV

rpe
⋅= P u

(2.14)

\ The potential due to all the elemental dipoles inside a volume v is

( )
pe

⋅
= ∫∫∫ 2

0

1
4

dv
V

r

P u
(2.15)

Thus P at a point is some function of the total E field at that point. So we find that the E field
is a function of the P vector at each point and P at a point is function of the total E field. Then
the question is how is P to be determined? Experimentally it is found that

P = e0 ce E (2.16)

where ce is the electric susceptibility of the medium. It is a characteristic of each dielectric. For
non-polar dielectrics, the mechanism of polarization is of internal atomic nature and hence
independent of temperature. For polar insulating materials the thermal vibrations of the polarized
molecules prevent their alignment with the electric field and hence their susceptibility decreases
with temperature. In some crystalline structures, such as quartz, strong internal forces interfere with
the forces produced by the externally imposed electric field. The result is that the direction of P
is not necessarily the same as that of E. Such dielectrics are called anisotropic dielectrics.
However, we shall deal mostly with isotropic materials.

2.4.2 Charge Distribution Equivalent to a Polarized Dielectric

So far we have shown that if viewed macroscopically, a polarized substance can be considered as
an aggregate of elemental electric charges located in vacuum. It can also be shown that the
secondary electric field of these elemental electric dipoles can be ascribed to a certain volume and
surface distributions of charges situated in vacuum. For this purpose, consider a surface element
dS in a polarized dielectric (Figure 2.4). Let the polarization vector in the neighbourhood of dS
be P, the angle between the direction of the two being a. In the process of polarization, this surface
dS is crossed by a number of positive charges in one direction, and a certain number of negative
charges in the opposite direction. Let the displacement of the positive charges from their
equilibrium point be d+ and that of the negative charges in the opposite direction be d–. Then

d+ + d– = d
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If N is the number of molecules per unit volume, then the total charge that crossed the surface dS
in its positive direction in the process of polarization is

dQ = N(+Q) d+ dS cos a - N(-Q)d- dS cos a
= NQd dS cos a = NQd ◊◊◊◊◊ dS (2.17)

But by definition, P = NQd, and

\ dQ = P ◊◊◊◊◊ dS (2.18)

Now, let us consider a very small closed surface DS, then the total positive charge that left the
volume enclosed by DS (= Dv) in the process of polarization is

=
S

Q d
D

D ◊ÚÚ P Sw (2.19)

The charge that remained inside DS is - DQ. The density of this charge is

P = S

d
Q
v v

r D

◊
D

- = -
D D

ÚÚ P Sw
(2.20)

In the limit the above expression becomes,

rP = - div P = - — ◊◊◊◊◊ P (2.21)

This is the volume density of the ‘bound’ charges. It should be noted that rP is not the density of
the free electric charges, but the mean density of the charges firmly bound to their atoms. In the
process of polarization the balance of the positive and the negative charges in a physically small
volume gets disturbed. Because the polarization varies from point to point, more charges might
leave the volume than enter it. Charges thus created in a polarized dielectric are called
‘polarization charges’. These are also referred to as ‘bound charges’ to denote the fact that they
are not freely movable.

Figure 2.4 Movement of polarization charges for a distance (d+ + d–)

d+

d–

a

P

dS = und



74 ELECTROMAGNETISM: THEORY AND APPLICATIONS

Similarly on the boundary surface of a dielectric and vacuum there would exist
uncompensated bound charges existing in a thin layer. By analogy with Eq. (2.21), this surface
charge density is referred to as the surface density of polarization or of bound charges (= rSP).
This analysis can similarly be further extended to the boundary surface of two different dielectrics.

2.5 GENERALIZED FORM OF GAUSS’ THEOREM

We have thus obtained the electric field intensity created by free and polarization charges
according to the same formulae which have been derived for the electrostatic field of charges
situated in vacuum. Hence all the deductions discussed in Chapter 1 remain valid here as well. So
replacing the charge density r by (r + rP) and the surface charge density rS by (rS + rSP), Gauss’
theorem in integral form becomes:

P
0

1
= ( )

S v

d dvr re◊ +ÚÚ ÚÚÚE Sw (2.22)

where v is the volume enclosed by the closed surface S.
Since rP = - div P, by substituting in the above equaton, we have

0 + div
S v v

d dv dve r◊ =ÚÚ ÚÚÚ ÚÚÚE S Pw (2.23)

By using the divergence theorem,

0( )
S v

d dve r+ ◊ =ÚÚ ÚÚÚE P Sw (2.24)

This is the Generalized Gauss’ theorem in integral form.
Transforming the surface integral into a volume integral,

e r+ =∫∫∫ ∫∫∫0div ( )
v v

dv dvE P

0div ( )e rE P+ = (2.25)

where r is the free charge in the medium.
This is the Gauss’ theorem in differential form; and it shows that the vector (e0E + P) has

the remarkable property that its flux through any closed surface is equal to the total ‘free’ charges
enclosed by that surface. So now we redefine the electric displacement vector D as

D = e0E + P (2.26)

whose validity is completely general. Thus the Gauss’ theorem can be written in terms of the
general definition of the displacement vector as

S v

d dvr◊ =ÚÚ ÚÚÚD Sw (2.27)

and
div D = r (2.28)
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When P can be expressed in terms of E, then

D = (e0E + P) = e0(1 + ce)E (2.29)

The sum (1 + ce) is referred to as the dielectric constant or the relative permittivity and is denoted
by e r. Thus,

er = 1 + ce (2.30)

The product e0 er
 is called the permittivity of the dielectric and its notation is e, i.e.

e = e0 er = e0(1 + ce) (2.31)

This is the definition of permittivity. For linear dielectrics,

D = e0 er E = eE (2.31a)

Some of the relative permittivities of common dielectrics are listed in Table 2.1.

Table 2.1 Relative permittivity of some dielectrics

Medium                              Relative permittivity

Vacuum 1.0000
Air at 1 atm. 1.00059
Transformer oil 2.24
Distilled water at °C 88.0
Distilled water at 20°C 80.0
Glass 3.8–6.8
Mica 6.0
Rubber 2–3.5
Nylon 3.5

Distilled water is a typical example of a polar dielectric.

2.6 SOME PHYSICAL PROPERTIES OF DIELECTRICS

A brief account of some of the macroscopic properties of dielectrics is given here.

2.6.1 Dielectric Strength

This is the lowest value of the electric field intensity for which a dielectric loses its insulating
property and becomes a conductor.

There is a certain critical value of the electric field intensity for every dielectric. For field
intensities less than this critical one, the dielectric behaves as an insulator and for intensities
greater than the critical value the dielectric behaves as a conductor. This behaviour can be easily
understood if we remember that under normal conditions the force between the electrons and the
nuclei in an insulator is sufficient to bind them together. When the insulator is introduced in an
electrostatic field of sufficient intensity, the electric force acting on some of the electrons may be
large enough to tear them away from the rest of the atom. Thus free electrons (or electric charges)
appear in the structure of the dielectric resulting in large electric currents. This is known as the
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It also happens that E is large enough in certain parts of the dielectric, in which case there
may be local sparking or discharging currents (known as corona) instead of general dielectric
breakdown. However these are undesirable phenomena, though there are some practical useful
applications of this type of breakdown. Some examples are lightening rods and provision of sharp
edges on aeroplanes.

2.6.2 Dielectric Relaxation

In some substances having polar molecules, the alignment of dipoles under the influence of an
external electric field and also the return to their initial statistical distribution after the field is
switched off, requires a certain period of time. This time is referred to as the ‘relaxation time.’ This
relaxation time varies greatly for different substances. There are several practical important
consequences of this phenomenon. An example is the time required for charging and discharging
capacitors with such dielectrics.

2.6.3 Triboelectricity

Historically the first experiment with electric phenomena was performed by rubbing a piece of
amber with some type of cloth. The result was that both the pieces of amber and the cloth
attracted light pieces of various substances. It is now known that this attraction is due to the
appearance of electric charges on the surfaces of the amber and the cloth. This phenomenon is
called triboelectricity (the word is of Greek origin, meaning electricity created by rubbing), and is
not confined only to amber and cloth. Also the rubbing does not produce electricity, but merely
promotes it. A likely explanation of this mechanism is that when two different insulators are
rubbed, at the surface of the contact the outer electrons in the molecules may be acted upon by
additional forces due to nearby molecules of a different type. This force acts against the binding
forces in the molecules and tears the electrons away from the original molecule. So, when the two
pieces of insulators are separated, they are charged.

‘dielectric breakdown’. Representative values of dielectric strength of some common dielectrics
are given in Table 2.2. For gases this value depends on the method of the experiment.

Table 2.2 Dielectric strength of some common dielectrics in kV/mm

Dielectric Dielectric strength

Air 3.20

N2 3.30

O2 2.90

CO2 2.90

H2 1.90

He 1.00

Glass 10–50

Quartz porcelain 20–40

Clay porcelain 20–40

Steatite 25–40

Rubber 40

Mica 50

Thermoplasts LDPE 75

HDPE 100

XLPE 50

Hard PVC 30

Soft PVC 10

Dielectric Dielectric strength
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2.7 CAPACITANCE: CAPACITORS

Capacitors have already been defined in Section 2.3.2. The capacitor is a system in which two
conductors carrying equal and opposite charges are separated by non-conducting space. Initially
this space was considered as vacuum or air. Now following our study of dielectrics, we see that
the system can be further generalized by allowing the intervening space to be occupied by any
insulating material (or dielectric). The method of calculating the capacitance of the system, which
is going to be our present topic of discussion, will not be affected by this generalization as only
the absolute permittivity e0 needs to be replaced by e0e r (= e), because the free space in the gap
has been replaced by a material substance which would contain bound charges. The effects of
these bound charges are adequately accounted for by the above substitution. Figures 2.5 and 2.6

Figure 2.5 Free charges on a two-conductor system.

Figure 2.6 Free charges on the conductor surfaces and bound charges on dielectric surfaces.
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pictorially explain this modification. It should be noted that at any point on the boundary surface
the density of the bound charges would be less than the density of free charges. We shall now
discuss a number of different arrangements of capacitors. A point to be noted regarding the
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substitution of e0 by e to take account of the effects of the dielectric is really equivalent to
accounting for all charges, both free and bound, in the material of the space by a summation or
integration effect.

2.8 CALCULATION OF CAPACITANCE

As will be seen later, the capacitors are also devices for storing the electric or the electrostatic
energy.

2.8.1 Parallel Plate Capacitor

Consider plates of area A, separation d, with a dielectric of permittivity e = e0e r. (See Figure 2.7.)
Take a small element of surface d S on one plate away from the disturbing effects of the edges.

Figure 2.7 A parallel plate capacitor.
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dS

e0er

Dielectric

1

2

The tubes of flux traverse the dielectric uniformly across its thickness from one plate to the other.
If the uniform charge density on the plates is denoted by s, then by Gauss’ theorem,

D = s (2.32)

on the plates as well as across the dielectric.

\
D

E
s

e e= = (2.33)

\ The P.D. between the plates = E ¥ the length of the gap, because E is constant across
the gap.

\ P.D.
ds

e
= (2.34)

\ Capacitance, 0 rcharge
P.D. /

AA A
C F

d d d
⎛ ⎞= = = = ⎜ ⎟
⎝ ⎠

e es e
s e (2.35)

If it is required to build such a capacitor with C as near to the theoretical value as possible, then
the edge effects can be overcome by constructing one of the electrodes with a guard ring
(Figure 2.8). The potential of the guard ring would be the same as that of the central electrode but
has to be supplied from a separate source. Flux fringing occurs at the edges of the guard ring, but
the flux density over the central electrode remains uniform.
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We now consider a capacitor made up of two square metal plates (each of side b), mounted
opposite to each other in such a way that their planes intersect in a line parallel to, and at a
distance a from the nearer edge of each plate. The angle between the intersecting planes is �, the
surrounding medium being air. We neglect the edge effects. Since the plates AB and CD are
equipotential surfaces, the field lines would be arcs of circles with the centres at the point of
intersection of the two plates, i.e. the point O. If the applied potential difference between the
plates is V, then at a radius r [as shown in Figure 2.8(a)],
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 [= �S(r), by Gauss’ theorem]

where �S(r) is the surface charge at the radius r, on the plate surface.
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\ The total charge on the plate

Q = r∫∫ S( )
S

r dS

      = 0

r a b

r a

V
b dr

r
e
a

= +

=
∫

            = 
0 ln

b V a b
a

e
a

+⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠

\             C = 0 ln 1
bQ b

V a
e
a

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠
(2.35a)

It should be noted that the lines of force in this problem are concentric arcs, the equipotentials are
radial lines between the plates and the surface charge density on the equipotential plates is not a
constant but a function of r.

2.8.2 Concentric Cylinders

This calculation is useful both for coaxial cables as well as for capacitors of concentric cylindrical
design. Let the radii of the concentric cylindrical electrodes be a and b respectively (Figure 2.9),
where a < b.

Figure 2.9 Concentric cylinders.

a

b

To avoid the edge effects we consider a system of infinite length axially, out of which a
piece of unit length is taken. Let the charge on the inner cylinder be Q C/m.

At any radius r, a £ r £ b,

D = 
2 1

Q
rp ⋅

(2.36)
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from Gauss’ theorem and considerations of symmetry.

\ E = pe V/m
2

Q
r

(2.37)

\ The P.D. between the inner and the outer cylinders

 2

b b

a a

Q
d dr

rpe= ⋅ =∫ ∫E r

                                   pe= ln
2
Q b

a
(2.38)

\ pe= =
⎛ ⎞
⎜ ⎟⎝ ⎠

2
F/m

P.D.
ln

Q
C

b
a

(2.39)

2.8.3 Parallel Circular Cylinders

Consider two infinitely long cylinders, each of radius a and carrying charges ± Q C/m
(Figure 2.10). Let the distance between the centres of the cylinders be d. We know from the
problem of the two parallel line charges [Eq. (1.49) of Section 1.6.4] that the potential at a point
P due to such an arrangement is

2
P

1
ln

2
rQ

V
rpe

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠
(2.40)

Figure 2.10 Parallel circular cylinders.
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where the equipotentials were circles. Now when r1 << r2, these circles become more nearly
centred on the centre of the left-hand line charge, and then become coincident with the
equipotential surface of the cylinder of radius a if a << d.

\   V1 on the left-hand cylinder = ln
2
Q d

ape
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

(2.41)
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and

V2 on the right-hand cylinder = ln
2
Q a

dpe
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

                                                       = - ln
2
Q d

ape
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

(2.41a)

\ The P.D. between the two cylinders = ln
Q d

ap e
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

(2.42)

\ Capacitance, C = 
P.D.

ln

Q

d
a

pe=
⎛ ⎞
⎜ ⎟⎝ ⎠

(2.43)

Note that this problem cannot be solved if the cylinders of finite radii are replaced by infinitely
thin line charges.

2.8.4 Wire and Parallel Plane

This problem is solved by the same technique as used in Section 2.8.3. So we again consider the
arrangement of two parallel line charges (Figure 2.11) and have a look at the position of the point

Figure 2.11 Wire and parallel conducting plane.

+Q
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h

r1 = r2 line

– Q

a

P in Figure 2.10, when r1 = r2.
From Eq. (2.40), it follows that VP = 0 for r1 = r2. Hence we now insert a conducting plane

through this line parallel to the line charge. This would have no effect on the field as the
plane is at zero potential. If the wire has the radius a, and the distance between the wire and
the plane is h, then

V1 on the wire = 
2

ln
2
Q h

ape
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

(2.44)
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V2 on the plane = 0

\ P.D. = V1 - V2 = 
2

ln
2
Q h

ape
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

(2.45)

\ Capacitance per unit length of the wire, i.e.

C/metre = 
pe=

− ⎛ ⎞
⎜ ⎟⎝ ⎠

1 2

2
F/m

2
ln

Q
V V h

a

(2.46)

The method used here for solving this problem, treats the second wire of the previous problem to
be equivalent to ‘an image’ of the first wire in the conducting plane. This method is called the
‘method of images’ and is widely used for solving problems in electrostatics as well as in
magnetostatics. We shall discuss the details and the mathematical background of this method
later, though a brief note is added below.

2.8.5 An Introductory Note on the Method of Images

In general terms, the method of electric images implies determining an imaginary distribution of
charges inside a conducting body of an electrostatic system, which would produce outside the
body exactly the same field as that produced by the actual free charges over its surface.

The basic requirement of the method of images is that the effect of the boundaries shall be
correctly represented by the images. The field of the image charges within this region must
be identical with that of the induced charges (which the image charges are replacing).

The necessary condition to determine the uniqueness of the field is that the value of the
tangential or the normal E field be specified at every point of the surface.

2.8.6 Capacitance between Two Spheres of Equal Diameter

Let the spheres be of radius a and the distance between the centres of the two spheres be d, where
d >> 2a (see Figure 2.12). Consider a point P such that its distances from the centres of the
spheres are r1 and r2, respectively, as shown in Figure 2.12.

Figure 2.12 Two spheres of equal diameters.
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Now we know from Eq. (1.37) that the potential at a point P due to an isolated charged
sphere whose centre is distant r from it, is given by

P 4
Q

V
rpe= (2.47)

\ When there are two charged spheres with charges + Q and - Q as in this case, then

P
1 2

1
4

Q Q
V

r rpe
⎛ ⎞= −⎜ ⎟⎝ ⎠ (2.48)

Note that as r1 << r2, VP Æ Q/4per1, i.e. the equipotentials approach to the spherical surfaces
centred on the point charge.

Coming back to the problem of the two spheres (Figure 2.12),

V1 on the left-hand sphere = 
1 1

4
Q

d ape
⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

(2.49)

V2 on the right-hand sphere = 
1 1

4
Q

a dpe
⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

\ The P.D. between the two spheres = V = V2 - V1

                       = 
1 1

2
Q

a dpe
⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

(2.50)

\ Capacitance, C = 
pe=
−

2
F

P.D. 1 1
Q

a d

(2.51)

2.8.7 Capacitance between a Sphere and a Conducting Plane

Once again this is a problem similar to that mentioned in Section 2.8.4. So the ‘method of
images’ can be applied to solve this problem. It can be easily shown that if a sphere of radius a
whose centre is at distance d from the conducting plane, then the capacitance of the system is
given by

pe=
−

4
F

1 1
C

a d

(2.52)

2.8.8 Capacitances in Parallel and in Series

If a number of capacitors of capacitances C1, C2, C3, ... are all connected in parallel, the potential
difference between them will be the same, say V (Figure 2.13).
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The charges on these capacitors would be C1V, C2V, C3V, ... . Thus the total charge Q of the
system will be given by Q = (C1 + C2 + C3 + ...)V. Therefore, the effective capacitance of the
system is

C = 
Q
V

 = C1 + C2 + C3 + ... (2.53)

Thus the system behaves as if it is a single capacitor of capacitance (C1 + C2 + C3 + ...).

Figure 2.13 Capacitors in parallel.
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V

C1 C2 C3

V

Figure 2.14 Capacitors in series.

Let us now consider the system in which the capacitors are connected in series (Figure 2.14).
The capacitors are initially all discharged. Initially, if negative charge - Q is removed from the
electrode a1, it gets charged by + Q. This charges the electrode b1 by - Q, which in turn charges
a2 by + Q, and so on. Thus it is seen that each capacitor acquires the same charge. So from the
corresponding P.D. of each capacitor, the total P.D. of the system would be:

= + + +
1 2 3

. . .Q Q Q
V

C C C

\ =
+ + +

1 2 3

1
1 1 1 . . .

Q
V

C C C

That is, it is effectively a single capacitor of capacitance C given by

= + + +
1 2 3

1 1 1 1 . . .
C C C C

(2.54)

2.9 FIELD IN A REGION CONTAINING TWO DIELECTRIC
MATERIALS: BOUNDARY CONDITIONS IN
ELECTROSTATICS

So far in all the situations considered, we have tacitly assumed that in the intervening space
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between the conductors, there is a single dielectric, that is, while calculating the capacitances we
have taken for granted that the vacuum between the conductors has been replaced by a single
uniform insulating material. This assumption has been the basis for the definition of dielectric,
and also for the generalization of the inverse square law of forces. We shall generalize further to
consider the situation when the medium is not uniform, that is, there is more than one dielectric
present. So we shall now see as to what happens on a surface S where one dielectric (e1) meets

Figure 2.15 Surface of discontinuity.
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another dielectric (e2). (See Figure 2.15.) Such a surface is a surface of discontinuity. On S,
consider a small coin-shaped Gaussian surface S with cross-sectional area dS as shown in
Figure 2.15, enclosing a small portion of S. Then for this closed surface,

(D1n - D2n)dS + contribution from the edge of S = enclosed charge = rS dS (2.55)

where D1n and D2n are the normal components of D1 and D2, respectively, on this interface from
the two sides, and rS is the surface charge density on S. In the limit, the contribution from the
edges of S Æ 0. Also, D1n = D1 cos q1 and D2n = D2 cos q2.

\ D1n - D2n = rS (2.56)

Consider again a rectangular circuit C across the surface S, as shown, and take the line integral of
E along this loop.

\ (E1t - E2t) + edge contributions along dl¢ = 0 (2.57)

This follows from the condition that 0d◊ =Ú E lv ,

∵ E = – grad V

In the limit the edge contributions will again Æ 0.

\ E1t - E2t = 0 (2.58)

where E1t and E2t are the tangential components of E1 and E2, respectively, and hence
E1t = E1 sin q1 and E2t = E2 sin q2. So the conclusions are:

(i) the normal component of D is continuous if there is no charge across the surface of
discontinuity; and

(ii) the tangential component of E is continuous across this surface.
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Some special cases

(a) When there is no surface charge on the interface between the two dielectrics
(Figure 2.16)

Figure 2.16 No surface charge on the interface.

e1 = e0 e1r

q2

q1

D1

D2

e2 = e0e2r

For this case, D1n = D2n and E1t = E2t

Also, D1 = e1E1 = e0e1r E1 and D2 = e2E2 = e0e2rE2

\
1n 1n

1t 1t

0 1r

D D
E D

=

e e

              = 2n 2n

2t 2t

0 2r

D D
E D

=

e e

(2.59)

Also,

1n
1

1t
tan

D
D

= q and 2n
2

2t
tan

D
D

= q

\ From Eq. (2.59), we get

21r r

1 2tan tan
=

ee
q q

or 11 r

2 2r

tan
tan

=
eq

q e
(2.60)

(b) On the interface (carrying a surface charge density rS) of a conductor and a dielectric
medium (Figure 2.17).

Consider a coin-shaped Gaussian surface S on this interface. For this closed surface,

S
ÚÚw D ◊◊◊◊◊ dS = enclosed charge = rS dS

2

1
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Figure 2.17 Conductor and dielectric.

Dielectric (e0e r)
S

Conductor

S

where dS is the cross-sectional area of the Gaussian surface S. Since there is surface charge on the
outer face only of the conducting medium,

Dn = 0, in the conductor (2.61)

It is only in the dielectric medium, that the normal component of D is nonzero.

\ Dn = rS  or  En = S

0 r

r
e e (2.62)

                                                 (= 
r
e

S

0
, if the medium is vacuo or air.)

2.10 CAPACITORS OF MIXED DIELECTRICS AND OF
COMPLEX SHAPES

2.10.1 Parallel Plate Capacitor with Mixed Dielectrics

The spacing between the two plates is (d1 + d2), and the thickness of the dielectric with the
permittivity e1 (= e0e1r) is d1, and that of the dielectric with the permittivity e2 (= e0e2r) is d2

(see Figure 2.18).

Figure 2.18 Parallel plate capacitor with mixed dielectrics.

e2 = e0e 2r

e1 = e0e1r

d2

d1

S

By considering a cylindrical Gaussian surface S with one end inside one of the plates and
the other in the dielectric, we obtain

S
ÚÚ Dw ◊◊◊◊◊ dS = rS dS (2.63)

where dS is the cross-sectional area and rS is the surface charge density on the plate. This is
because there are no contributions to the flux from the sides of the cylindrical surface if the edge
effects are neglected (i.e. assuming the capacitor to extend to infinity).

\ D = rS (2.64)
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\ S
1

0 1r
E =

r
e e and S

2
0 2r

E =
r

e e (2.65)

That is, E is greater where the permittivity is smaller. Therefore, the potential difference (= V)
between the plates is given by

  V = E1d1 + E2d2

           = S 1 2

0 1r 2r

d d⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

r
e e e (2.66)

If the area of the plates is A, and the edge effects are neglected, then the capacitance C is given
by

S 0
1 2

1r 2r

A A
C

V d d
= =

+
r e

e e

(2.67)

This should be compared with Eq. (2.35).

2.10.2 Concentric Cylinders with Mixed Dielectrics

Another type of mixed dielectric capacitor is the one with concentric cylinders. The radii of the
electrodes are a and c (Figure 2.19), where a < c.

Figure 2.19 Concentric cylinders with mixed dielectrics.

e2 = e0e2r

a

E1

e1 = e0e1r

b

c

E2

A dielectric of permittivity e1 (= e0e1r) extends from the inner electrode to the radius b
(where a < b < c), and the second dielectric of permittivity e2 (= e0e2r) extends from the radius
b to the outer electrode at the radius c. The surface of discontinuity is the radial interface at
r = b. As in the problem of Section 2.8.2, the electric flux density at any radius r (a < r < c) is
given by

 = 
2 1

Q
D

r ⋅p (2.68)

where Q is the charge per unit length of the electrode.

\ 1 2
0 1r 0 2r

V/m and V/m
2 2

Q Q
E E

r r
= =pe e pe e (2.69)
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Hence the potential difference between the two electrodes is

= 1 2

b c

a b

d d⋅ + ⋅∫ ∫E r E r

as only the radial component of E exists.

\ P.D. = 
0 1r 2r

1 1
2

b c

a b

Q dr dr
r r

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥+⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦
∫ ∫pe e e

= 
0 1r 2r

1 1
ln ln

2
Q b c

a b

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞+⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦pe e e (2.70)

\ Capacitance, C = 
P.D.

Q

= 0

1r 2r

2

1 1
ln ln

b c
a b

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

pe

e e

(2.71)

This should be compared with Eq. (2.39). It will be noticed that both these types, i.e. parallel
plate and concentric cylinders, with mixed dielectrics behave like two single dielectric capacitors
connected in series.

\
1 2

1 1 1
C C C

= +

2.10.3 Concentric Spheres with Single Dielectric

This problem and the subsequent problem with mixed dielectrics have been solved by a different
method. It has been shown in Section 1.5.2. that the potential field in free space is Laplacian in
nature. This has been proved for free space and it follows directly that this equation holds for
dielectric materials as well. We shall now use the solution of this equation, i.e. Laplace’s
equation, to evaluate the capacitance of concentric spheres.

The two concentric spheres have the radii a, b (a < b), respectively, and the potentials of the
electrodes are Va and Vb, respectively (Figure 2.20).

Since the potential distribution V in the intervening dielectric (carrying no charge) satisfies
the Laplace’s equation, we have —2V = 0. Since the geometry of this capacitor is spherical, we use
the spherical polar coordinate system. In this system,

—2V ∫ 
2

2
2 2 2 2 2

1 1 1
sin 0

sin sin

V V V
r

r rr r r

⎡ ⎤⎛ ⎞⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + =⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎝ ⎠⎣ ⎦
qq qq q f

(2.72)

Because of the symmetry of the problem,

0
V
q

∂ =
∂

and 0
V
f

∂ =
∂
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Figure 2.20 Concentric spheres.
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Vb

a

b

\ Equation (2.72) simplifies to

⎡ ⎤∂ ∂⎛ ⎞ =⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎣ ⎦
2

2

1
0

V
r

r rr
or

∂ ∂⎛ ⎞
⎜ ⎟∂ ∂⎝ ⎠

2 V
r

r r
 = 0

Integrating, 
∂
∂

2 V
r

r
 = A, where A is the constant of integration. We have, integrating again,

2

dr A
V A B B

rr
= + = − +∫

To evaluate the constants of integration A and B, we use the following boundary conditions:

At r = a, V = Va = - A
a

 + B and at r = b, V = Vb = -
A
b

 + B

\  A = 
−

−
( )b aab V V
b a

, B = 
−
−

b abV aV
b a

\ V = -
( ) 1b a b aab V V bV aV
b a r b a

− −
+

− −
(2.73)

From the potential distribution, the electric field intensity E can be evaluated by using

E = - grad V = - 
1 1

sinr
V V V
r r rq fq q f

⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
i i i

in the spherical polar coordinate system.

\ E = - ir
V
r

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

, in this case because of symmetry.

                      = -
2

( ) 1b a
r

ab V V
b a r

−⎡ ⎤ ⎛ ⎞
⎜ ⎟⎢ ⎥− ⎝ ⎠⎣ ⎦

i



92 ELECTROMAGNETISM: THEORY AND APPLICATIONS

\ D = eE = -ir 
e −⎡ ⎤ ⎛ ⎞

⎜ ⎟⎢ ⎥− ⎝ ⎠⎣ ⎦ 2

( ) 1b aab V V
b a r

Hence on the surface of the inner electrode (i.e. at r = a)

Da = 
e −⎡ ⎤ ⎛ ⎞

⎜ ⎟⎢ ⎥− ⎝ ⎠⎣ ⎦ 2

( ) 1b aab V V
b a a

(2.74)

This is the charge per unit area of the surface of the electrode, and the total charge will be 4pa2

times this quantity.

\ Capacitance, C = 
pe=

−
charge 4

P.D.
ab

b a

                                             = 0 r4
1 1
a b

−

pe e
(2.75)

2.10.4 Concentric Spheres with Mixed Dielectrics

This problem can also be solved by the same method, except that on the interface between the two
dielectrics, the relevant interface continuity conditions have to be used to evaluate the constants
of integration. The dimensions and the physical parameters are shown in Figure 2.21.

Figure 2.21 Concentric spheres with mixed dielectrics.

e2 = e0e2r

a

Vc

e1 = e0e1r

b

c

Va

As before, the potential distributions in the dielectric regions are:

V1 = - 1A
r

 + B1, in e1 and V2 = - 2A
r

 + B2, in e2 (2.76)

Then, from E = -grad V = -ir
V
r

∂
∂

, we get

E1 = -ir
1
2

A

r
, a < r < b;  E2 = -ir

2
2

A

r
, b < r < c

\ D1 = - ire0e1r 
1
2

A

r
, a < r < b and D2 = -ire0e2r 

2
2

A

r
, b < r < c
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There are four unknowns and hence we need four boundary conditions to evaluate them. They
are:

                         On r = a, V1 = Va = - 1A
a

 + B1

                          On r = c, V2 = Vc = - 2A
c

 + B2

On r = b, V1 = V2, i.e. - 1A
b

+ B1 = - 2A
b

+ B2

On r = b, Dn is continuous, so Dn1 = Dn2 or Dr1 = Dr2; i.e. e0e1r 
1
2

A

b
 = e0e2r 

2
2

A

b
From these boundary conditions, we get D on the surface of the inner electrode, i.e. at r = a,

D1 = 0
2

2r 1r

( ) 1

1 1 1 1 1 1
c aV V

a
b c a b

−
⎧ ⎫⎛ ⎞ ⎛ ⎞− + −⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎩ ⎭

e

e e

Therefore, the total charge on the inner sphere will be 4p a2 times this quantity.

\ Capacitance, C = 0

2r 1r

4charge

1 1 1 1 1 1c aV V

b c a b

=
− ⎛ ⎞ ⎛ ⎞− + −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

pe

e e

(2.77)

So, as for the other two mixed dielectric capacitors, this one is also effectively like the two
single dielectric capacitors connected in series.

These two problems can also be solved directly by integration which is a much shorter and
a more direct method. This method is now given below:

Assuming a charge Q on the inner sphere, we have

E1 = 
2

0 1r4

Q

rpe e

\ V1 = 
2

0 1r4

b b

a a

Q dr
d

r
⋅ =∫ ∫E r pe e

= 
0 1r

1 1
4

Q
a b

⎛ ⎞−⎜ ⎟⎝ ⎠pe e

= P.D. across the first dielectric e1

Similarly,

V2 = 
2

0 2r4

c
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Q dr

r

⎛ ⎞
⎜ ⎟⎝ ⎠∫ pe e

= 
0 2r

1 1
4

Q
b c

⎛ ⎞−⎜ ⎟⎝ ⎠pe e
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We now generalize the concept of capacitance from two conductors to N conductors. They are all
insulated and initially at zero potential. The earth is also at zero potential, treated as an infinite
charge reservoir of unvarying potential.

Let a charge q1 be conveyed from the earth to the conductor 1. The potential of
conductor 1 will be raised and other conductors will be at intermediate values. Now,

1V ′ = p11q1, 2V ′ = p21q1, ..., NV ′ = pN1q1 (2.78a)

where p11, p21, ..., pN1 are constants.

Similarly, transferring a charge q2 from the earth to conductor 2, will set up potentials as

′′1V = p21q2, ′′2V = p22q2, ..., ′′NV = pN2q2 (2.78b)

By the principle of superimposition, when the charges q1, q2, ..., qN are moved to N conductors
respectively, the final potential distribution will be:

V1 = p11q1 + p12q2 + ... + p1NqN

V2 = p21q1 + p22q2 + ... + p2Nq1

............................................................

VN = pN1q1 + pN2q2 + ... + pNNqN (2.79)

The constants pij are called the coefficients of potential. These N equations can be solved for
charges in terms of potential, i.e.

q1 = c11V1 + c12V2 + ... + c1NVN

q2 = c21V1 + c22V2 + ... + c2NVN

............................................................
qN = cN1V1 + cN2V2 + ... + cNNVN (2.80)

These equations are the counterparts of the definition of C, i.e. q = CV. Here, c11, c12, ... c21, ... are
constants, dependent on the shape and location of the bodies, i.e. c11 signifies the charge on
conductor 1 when it is raised to a potential of 1 V while others are earthed (i.e. kept at zero
potential) etc. So, c11, c22, ..., cNN are called the coefficients of capacitance. The coefficient c21 is
the charge induced on the conductor 2 when the conductor 1 is raised to the potential of 1 V and
the other conductors are earthed. The other constants, c12, c13, ... are called the coefficients of
induction. The coefficients of potential and induction are not all different but equal in pairs i.e.
p12 = p21, c12 = c21, ..., and so on.

Proof: Let the charge q1 be gradually placed on the conductor 1 in small steps of �q. When the
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charge reaches the value q, its potential is p11q. Therefore, the work required to bring up the next
increment �q is p11q�q. Therefore the work required to bring up the whole charge q1 is given by

1 2
11 1

11

0
2

q
p q

p qdq =∫
Similarly, q2 is to be brought up gradually to the conductor 2 in small steps of �q.
When the charge on the conductor 2 is q, its potential is (p21q1 + p22q).
Therefore the work done in bringing up the next increment of charge = (p21q1 + p22q)�q.
Therefore the total work done in raising the charge of the conductor 2 to q2 is

2 2
22 2

21 1 22 21 1 2

0

( )
2

q
p q

p q p q dq p q q+ = +∫ (2.81)

Hence the total work done in bringing up the charges q1 and q2

= 
2 2

11 1 22 2
21 1 22 2

p q p q
p q q+ + (2.82)

If the charging order had been reversed, then the work done

= 
2 2

22 2 11 1
12 2 12 2

p q p q
p q q+ + (2.83)

Since the work done is same in both the cases, we have

p12 = p21 (2.84)

From this it can be shown algebraically, that

c12 = c21 (2.85)
and so on.

The first equation of the system can be rewritten as

 q1 = c11V1 + c12V2 + c13V3 + ... + c1NVN

= (c11 + c12 + ... + c1N)V1 � c12(V1 � V2) � c13(V1 � V3) � ... � c1N(V1 � VN)

or
q1 = C1V1 + C12(V1 � V2) + C13(V1 � V3) + ... + C1N(V1 � VN) (2.86)

where
C1 = c11 + c12 + ... + c1N

          C12 = �c12, C13 = �c13, and so on (2.87)

Similarly for q2, q3, q4, ..., qN.
Thus for the system, C1, C2, C3, ...,  CN are the capacitances between the bodies and the

earth; and C12, C13, ... are the capacitances between the bodies taken in pairs.
This technique can be used for calculating the capacitances associated with practical

problems such as that of, say, a three-phase transmission line, or for analyzing the problem of
electrostatic screening.
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PROBLEMS

2.1 A capacitor is formed of tin-foil sheets applied to the two faces of a glass plate of
thickness 0.4 cm and relative permittivity 6. Very thin layers of air are trapped between
the foil and glass. Given that the air becomes ionized when E = 3 ¥ 106 V/m, find
approximately the potential difference at which the ionization will start in the capacitor.

Ans.: Vb = 2 kV

2.2 A pair of wires of radius a are held at a distance d apart, and each is at a distance h
from a conducting plane. Prove that the capacitance between the two wires, connected
in parrallel, and the plane is 4pe0/[ln{2hd¢/(ad)}] where d¢2 = d2 + 4h2, a << d and h.

2.3 Two long wires, each of radius a, are held at a height h above an earthed conducting
plane, paralled to each other and at a distance b apart. One wire is raised to a potential
V1 with respect to the plane, the other being insulated. Prove that the potential taken up
by this wire is V1{ln (2h¢/b)}/{ln (2h/a)}, where h¢2 = h2 + b2/4.

2.4 Each of the two dielectrics (of relative permittivities e r1 and e r2 respectively) occupies
one-half the volume of the annular space between the electrodes of a cylindrical
capacitor, such that the interface plane between the dielectrics is a r-z plane. Show that
the two dielectrics act like a single dielectric having the average relative permittivity.

2.5 A parallel plate capacitor with free space between the electrodes is connected to a
constant voltage source. If the plates are moved apart from the separation d to 2d,
keeping the potential difference between them unchanged, what will be the change
in D? On the other hand, if the plates are brought closer together from d to d/2 with a
dielectric  of relative permittivity e r = 3, while maintaining the charges on the plates at
the same value, what will be the changes in the P.D.?

Ans.: (i) D2 = D1/2  (ii) V2 = V1/6
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3.1 ELECTROSTATIC FORCES
The first thing to realize about the forces of electrostatic origin is that they are quite small
compared with the forces of, say, magnetic fields. Such forces cannot be used to drive motors, but
can be used only to operate instruments. So the present discussion of mechanical forces due to
electrostatic fields would be a relatively short one.

3.2 ENERGY OF A SYSTEM OF CHARGED CONDUCTORS
The mechanical forces on charged conducting bodies in an electrostatic field can be obtained by
adding up the forces on each pair of conductors, which in turn can be evaluated by the inverse
square law. However the forces are vectors and the resultant force would be the vector sum of all
the component forces. Hence it is more convenient to calculate the energy of the system—a scalar
quantity—from which the forces can be derived.

The energy of a system of charged conductors is the work done, which is required to bring
them to a charged state from a standard state—which is taken as a state of complete discharge. Let
us consider a group of N conductors. When the charges Q1, Q2, Q3, ..., QN have been conveyed
from the earth and deposited on these N conductors, respectively, their potentials will be raised to
V1, V2 , V3, ..., VN. Now we have to evaluate the energy of the system. So, let us suppose that the
energy is being transferred in small steps, i.e. at a given time when the fraction kQ of the final
energy Q (where 0 £ k £ 1) has been transferred, the next fraction is dk. Thus the work done to
bring up this next step is: (At this stage the charges are kQ1, kQ2, kQ3, ..., kQN and the
corresponding potentials are kV1, kV2, kV3, ..., kVN.)

dW = (dkQ1)(kV1) + (dkQ2)(kV2) + ... + (dkQN)(kVN)

                         = kdk(Q1V1 + Q2V2 + ... + QNVN).

\ Work required for the whole charging process is

W =
1

0

k∫ dk(Q1V1 + Q2V2 + ... + QNVN)

Energy and
Mechanical Forces
in Electrostatic
Fields3
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Let the charge dq be on the conductor 1 and its counterpart -dq on the other end of the flux
tube on the conductor 2. (Note: Such a flux tube connecting the charge +dq on one conductor to
-dq on the other conductor is called a ‘Faraday tube’.) If the potentials of these two conductors
are V1 and V2, respectively, then the contribution of these two charges to the energy is

d d dd −= − =1 2 1 2( )
2 2 2
qV qV q V V

W

Now, dq = the flux in the tube (by Gauss’ theorem).

= DdS, where dS is the cross-sectional area of the tube, and

V1 - V2 = SEd l

where
 dl = element of length along the flux tube

 E = electric force at that point.

    = 
1
2

(Q1V1 + Q2V2 + . . . + QNVN)

                              = 
1
2

S (QV ) (3.1)

This is the energy expressed in joules.

\ The energy of a charged capacitor = =
2

2 2
QV CV

                                            = 
2

2
Q

C
(3.2)

3.3 ENERGY STORED IN THE ELECTRIC FIELD

When the energy in a group of charged conductors is expressed in the form W = QV/2, it is being
associated with the charged conductors. This is the potential energy of the system, being
associated with the relative positions of the conductors. However it is possible to express this
energy in terms of the field quantities E and D, i.e. as if the energy is stored in the electric field.
For instance, consider parts of two conductors in the system shown in Figure 3.1.

Figure 3.1 Energy in terms of field quantities.

+dq –dq

V2

dS

dl

V1

1 2
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\ dW = 
d d dS S=

2 2
DE S l DE v

where dv is the volume of the element. Similarly, the contributions from all other charge pairs can
also be added up. No lines of force cross each other and each element (as shown above) belongs
to one Faraday tube only.

\ The total energy of the system

= 
dS

2
DE v

                                          = 
2 2

DE v vd d⋅=∫∫∫ ∫∫∫ D E
(3.3)

This equation holds good when the dielectric is non-uniform. The Faraday tube then gets
refracted, but the arguments used above are still valid. Also, since D = eE,

20
r2

W E dv= ∫∫∫e e (3.4)

Thus the energy appears to be distributed throughout the space of the field, with a density at any
point being (DE/2) J/m3. It should be noted that this is not a proof that the energy is really stored
in the field. It merely implies that it is justifiable to regard the energy to be stored there. ‘The
field energy’ is thus the potential energy of the sources.

3.3.1 An Alternative Derivation for the Field Energy

Over the volume v considered, let there be a charge density r in the system. Then the energy of
the system is

r= ∫∫∫1
2eW V dv (3.5)

where V is the final potential of the element considered. Now the charge density, r = div D, by
Gauss’ theorem.

\
1

div
2eW V dv= ∫∫∫ D (3.6)

From vector analysis, we have

div (V D) = V div D + D ◊◊◊◊◊ grad V

Vr = V div D = div (V D) – D ◊◊◊◊◊ grad V and E = – grad V

\ Vr = div (V D) + D ◊◊◊◊◊ E

\ = + ⋅∫∫∫ ∫∫∫1 1
div ( )

2 2e

v v

W V dv dvD D E (3.7)

The volume v in Eqs. (3.5) and (3.7) must enclose all the charges in the system, but
otherwise is quite arbitrary. This is because, when there is no charge (i.e. r = 0) the integration of
Eq. (3.5) does not affect the final result. So we can assume v to be a large sphere with its centre
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somewhere in the system. Hence the first integral of Eq. (3.7) can be converted into a surface
integral, i.e.

div( )
v S

V dv V d= ◊ÚÚÚ ÚÚD D S

where S is the surface enclosing volume v. The above equation is due to Gauss’ theorem.
Over large distances, V decreases as (1/r) and D decreases as (1/r2) whereas S increases as r2.

So as r Æ •, the surface integral would tend to zero, and so Eq. (3.7) becomes

We = 
1
2

v

dv⋅∫∫∫ D E (3.8)

This is the expression for the energy of the static electric field expressed as an integral over the
whole field. Again it should be noted that this is not a proof that the energy is stored in the
vacuum (free space). However it will be proved later that the energy is located at all points in the
field (including vacuum) for time-varying fields.

3.4 FORCES ON CONDUCTORS AND DIELECTRICS

It is easier to determine the forces on charged conductors compared with those on dielectrics
because in the former problems we need to consider only the free charges on the conductors
whereas for the latter there are additional forces due to polarization effects. So we shall first
consider the conductors.

3.4.1 Forces and Pressures on Conductors

Force and torque are both associated with energy transfer. Since W is the assembly work, the force
in a direction, say, x is given by

Fx = -
W
x

∂
∂

(3.9)

i.e. by the rate of change of energy in the x-direction. Note that this is not the time-rate of change.
If this force is expressed in vector form, then

F = -grad W (3.10)

Let us consider, in an electrostatic field, the electric field intensity E on the surface of a
conductor having a surface charge density rS,

E = En = S

0

r
e (3.11)

This is the boundary condition for En on the conductor surface as obtained in Eq. (2.62). From
this, we then find the pressure on the conductor surface. In this system, the total electric field E
both inside and outside the conductor is the sum of the E fields created by the surface charges in
the immediate vicinity of the point under consideration (= Er

S
) and all other charges in the system

(= ES). The first component Er
S is perpendicular to the surface but away from it from

both the sides (for +rS), because for the two points M and M¢ close to the surface as shown in
Figure 3.2, the surface charge is equivalent to a plane charged sheet. And ES is obviously the
same for both M and M¢.
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\ At M¢ - Er
S
 + ES = 0

and at M, Er
S
 + ES = E

\ ES = Er
S
 = 

2
E

(3.12)

Consider now a cylindrical Gaussian surface S (on the interface under consideration), on the
two ends of which are located the points M and M¢ (Figure 3.3). Take (div E) over the closed
surface S of cross-sectional area A.

\ (Er
S
 at M + Er

S
 at M¢)A = S

0

r
e A, both being outwards

ES being the same at both M and M¢.

\ Er
S
 at M = - Er

S
 at M¢ = S

02
r
e , in magnitude only (3.13)

\ Pressure on the conductor surface

p = 
r rr r
e e

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

2
S S

S S S
0 02 2

dF
E

dS
(3.14)

Figure 3.3 Gaussian surface across the charged conductor surface.
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Figure 3.2 Components of E field near the surface of a charged conductor.
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Since rS = D = e0E on the surface of the charged conductor,

\ p = 
2 2

0

02 2 2
E De

e
⋅= =E D

(3.15)

\ The total force on the charged conductors (situated in vacuum) is

1
= ( )

2
S S

p d d= ◊ÚÚ ÚÚF S E D S (3.16)

These equations can be used to evaluate the force acting on one plate of a parallel plate capacitor
with a plate of surface area S and a distance d between them. Let the charges on the plates be
+Q and -Q. The force F on the plate can be calculated by either method. The pressure on the
inner surface of each plate (neglecting the fringing effect) is

p = 
2 2 2

0 S
2

0 0
2 2 2

E Q

S

e r
e e

= = (3.17)

[(refer to Eq. (1.53)]
On the outer surface, p = 0.

\ F = 
2 2

n2
00

22

Q Q
SS

⎛ ⎞
=⎜ ⎟⎜ ⎟⎝ ⎠

S uee
(3.18)

where un is the unit normal vector to the inner surface of the plate. Hence the force is attractive.

3.5 ELECTROSTATIC FORCES ON DIELECTRICS

SOME GENERAL COMMENTS

When dielectric materials are present in the electric field, in addition to the conducting bodies,
evaluating the forces in the system becomes very complex. This is because we have to determine
the location of all the charges in the system and also the polarization vector, even if there is no
net polarization effect. Also, most of the real dielectrics are compressible. Hence the permittivity
and the polarization charges are functions of the stresses of the dielectrics. This phenomenon is
called ‘electrostriction’. This is a vicious circle because the volume forces in a dielectric are
functions of the polarization charges and the polarization charges are, to some extent, the
functions of the dielectric stresses.

However it is possible to determine the total forces and the torques on the separate bodies of
the system by the method of virtual displacement. Also since the electrostatic forces are very
small, their applications are restricted mostly to delicate electrical instruments, and it is mostly
necessary to have the knowledge of the total forces in the system.

3.6 GENERAL METHOD OF DETERMINING FORCES IN
ELECTROSTATIC FIELDS

When the total forces and the torques on the bodies in electrostatic fields are required, the method
used is based on the ‘principle of virtual displacement’ which in turn is based on ‘the law of
conservation of energy’. This implies that, in electrostatic fields, the electric forces on the bodies
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are balanced by equal mechanical forces, and hence are stationary. This is because, by definition,
all charged bodies and dielectrics in electrostatic fields are static. Let us imagine now that an
electric force moved a charged or dielectric body by an infinitesimal distance dx, then this
imaginary (or virtual) displacement would be accompanied by virtual work dW, such that

x
W

F
x

d
d

= (3.19)

where Fx is the component of the total electric force F in the direction of the displacement dx.
The virtual work dW can be determined in terms of the stored energy in the field by

considering the following two special cases:

1. When the charges on all the bodies, during the virtual displacement, stay constant
2. When the potentials of all the bodies, during the virtual displacement, stay constant.

We consider these two cases separately.

1. Charges on all the conducting bodies are kept constant (i.e. conductors are isolated).
Hence no energy is supplied to the system. So the virtual work done by the electric
forces according to the law of conservation of energy must be accompanied by an equal
amount of change of energy of the system dWe. It is assumed that there is no loss of
energy associated with the virtual displacement.

\ dW = -dWe (3.20)

Since no energy is supplied to the system the energy of the system was larger before the
displacement, and thus the energy of the system has decreased. Hence dW is negative. Therefore
the component Fx (in the direction of x) of the electric force F on any body of the system is

e
x

W
F

x
d
d

= −  (charges kept constant) (3.21)

Similar argument holds for the rotating bodies. The virtual work dW done by the
z-component of the total torque T in rotating a body through a virtual angle df around the z-axis
of rotation is

dW = Tzdf (3.22)

Combining this with Eq. (3.20), we get

e
z

W
T

d
df= −  (charges kept constant) (3.23)

2. The potentials of all the conducting bodies are kept constant during the virtual
displacement, i.e. all the conducting bodies are connected to the sources which supply
the charges during the displacement, so that all the potentials remain at the previous
values in spite of the somewhat different geometry of the system after the displacement.
If the potentials of the conducting bodies are V1, V2, ..., Vn and the supply of the charges
during the virtual displacement are dQ1, dQ2, ..., dQn, then the total work dWS done by
all the sources is

dWS = 
1

n

i i
i

V Qd
=
∑ (3.24)
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In this case, by the law of conservation of energy (assuming no losses), we get

dWS = dW + dWe (3.25)

i.e. work done by the sources dWS = virtual work dW + change of energy in the system.
We have from Eq. (3.1), the increase in the energy of the system if the potentials are

maintained constant and the charges of the bodies changed,

dWe = 
1

1
2

n

i i
i

V Qd
=
∑ (3.26)

\ dWS = 2dWe and dW = dWe

\ Exactly one-half the energy supplied by the sources is used for performing the
mechanical work during the displacement. Hence the energy of the system must increase by the
same amount.

\ Fx = + eW
x

d
d  (potentials of conducting bodies kept constant) (3.27)

Similarly for the torque, we have

Tz = + eWd
df  (potentials of conducting bodies kept constant) (3.28)

3.7 PRESSURE ON BOUNDARY SURFACES

3.7.1 Pressure on Surface of Charged Conductors

We consider a charged conductor in a homogeneous dielectric of permittivity e (= e0er). Let the
electric forces push a small surface DS of the conductor, for a small distance dx in a direction x,
while the charge on the conductor is assumed to remain constant (see Figure 3.4).

\ Decrease in the stored energy in the field

= the energy stored in the elemental volume dv (dv = DSdx cos a)

          = 
1
2

eE2 DS dx cos a

\ dWe = -
1
2

eE2 DS dx cos a

\ Force acting on the surface element DS in the direction of the x-axis is

DF = - eW
x

d
d

               = 
1
2

eE2 DS cos a (3.29)

\ The component of the force parallel to the surface (a = 90°) is zero.
\ On the surface of the conductor, there is only the normal pressure, i.e.

21 1
2 2

F
p E

S
eΔ= = = ⋅

Δ
E D (3.30)

This relation was obtained earlier, for the special case of the dielectric vacuum.
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3.7.2 Pressure on Boundary Surfaces of Two Dielectrics

No tangential forces can act on the surface of two dielectrics, because a virtual displacement of
the boundary parallel to itself causes no change to the electrostatic energy of the system. (This is
because the system remains the same as before. So by Eqs. (3.21) and (3.27), the tangential
component of the force is zero.)

The normal component of the force on the boundary surface depends on the direction of the
E vector in both the dielectrics. So we shall now consider the effects of the two limiting
directions.

1. When the E vector is parallel to the interface (Figure 3.5). Suppose that under the
influence of the pressure, the boundary surface moved a distance dx, assuming that the
potential difference between the two conductors remained unchanged.

\ E will not be changed after the virtual displacement. [Refer to the boundary condition:
continuity of Et across the interface, Eq. (2.58)].

\ Considering a cross-sectional area DS of the interface,

dWe = 2 2
2 2 1 1

1 1
2 2

E S x E S xe d e dD − Δ  = 2
2 1 t

1
( )

2
E S xD−e e d

Note that at constant potential, Fx = + eW
x

d
d

.

\
2

t 2 1 t
1 1

( )
2

e
E

W
p E

S xD
⎛ ⎞⎛ ⎞= = −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

d e ed (3.31)

Figure 3.4 A virtual displacement for a conductor surface.
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d x

dx cos a
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directed from the dielectric 2 to the dielectric 1. This is the force per unit area acting from the
dielectric e2 to the dielectric e1.

The pressure tends to push the boundary surface towards the dielectric of smaller
permittivity.

2. When the E vector is perpendicular to the interface (Figure 3.6). Let the influence of
the pressure cause the boundary surface to move a small distance dx from the dielectric

Figure 3.5 An interface between two dielectrics parallel to the E vector.

+

+

+

+

+

+
–

–

–

–

–

–

e1

e2

Figure 3.6 An interface between two dielectrics perpendicular to the E vector.
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of permittivity e2 to the dielectric of permittivity e1. Due to this virtual displacement of
the boundary, there will be an associated virtual change of energy, dWe, given by

2 2
2 1

2 12 2e
D D

W S xd de e D
⎛ ⎞

= −⎜ ⎟⎜ ⎟⎝ ⎠
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where �S is the surface element of the boundary. This change assumes that the free charges on the
two conductors remain unchanged. The boundary condition of the interface would be D1 = D2 =
Dn, since there are no charges on the interface.

� �We = 2
n

2 1

1 1 1
2

D S x�⎛ ⎞−⎜ ⎟
⎝ ⎠

�
� �

� The pressure on the interface = 
n

1 e
D

W
p

S x�
⎛ ⎞⎛ ⎞= − ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠
�

�

                                             = 2
n

2 1

1 1 1
2

D
⎛ ⎞−⎜ ⎟
⎝ ⎠� �

(3.32)

directed from the dielectric 2 to the dielectric 1.
� The pressure acts in the direction of dielectric of smaller permittivity.
From Eqs. (3.31) and (3.32), we generalize the expressions for the pressure on the interface

when it makes any angle with the E vector, i.e.

� �

� �

2
2 n

2 1 t
1 2

1
( )

2
D

p E
⎛ ⎞

= − +⎜ ⎟⎜ ⎟⎝ ⎠
(3.33)

directed from the dielectric of permittivity �2 to the dielectric of permittivity �1.
As an example, consider the pressure on the surface of the liquid dielectric, when the plates

of a parallel plate capacitor are partially dipped in a homogeneous fluid dielectric, as shown in
(Figure 3.7). If � is the permittivity of the liquid dielectric, then the upward pressure on the
surface of the liquid dielectric will be

  = 2
0 t

1
( )

2
E−� �

                                        = � �
−⎛ ⎞− ⎜ ⎟

⎝ ⎠

2
1 2

0
1

( )
2

V V
d

(3.34)

where V1 � V2 is the P.D. between the plates and d is the gap between them. It should be noted
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that the origin of this pressure is not on the boundary surface, since the polarization charges are
not present; nor is the field non-uniform. Thus whilst the pressure is evaluated correctly, these
expressions say nothing about the location of the forces.

3.8 STABILITY OF THE ELECTROSTATIC SYSTEM
(EARNSHAW’S THEOREM)

We have seen that the force between the electric charges obeys the inverse square law.
Considering the two point charges this force can be repulsive if the charges are of the same sign,
and attractive if the charges are of the opposite signs. If these two charges are regarded as a
system, then we note that, for equilibrium, additional forces need to be applied to oppose the
electrostatic forces which by themselves cannot produce equilibrium. This is called Earnshaw’s
theorem. The formal statement of the theorem and its proof for electrostatic systems is given
below.

In 1839, Earnshaw demonstrated mathematically that, “It is impossible for a pole (or a point
charge) placed in a static field of force to have a position of stable equilibrium when an inverse
square law relates the force and the distance.”

Proof: Consider a particle at a point (x0, y0, z0) in a static field of force F(x, y, z).
\ Force on the particle at this point = F(x0, y0, z0).

If this point is to be a point of stable equilibrium, then

F (x0, y0, z0) = 0 (3.35)

This is the condition of equilibrium; and

— ◊◊◊◊◊ F (x0, y0, z0) < 0 (3.36)

is the condition of stability.
If however F is an irrotational field, then

F(x, y, z) = -— y (x, y, z) (3.37)

where y is a scalar potential.
It should be noted that for the electrostatic fields, the field intensity vector does satisfy the

above condition with its potential V, i.e.

E = -— V = -grad V (3.38)

\ The necessary conditions for the stable equilibrium in terms of the scalar potential are:

— y(x, y, z) = 0 (3.39)
and

—2 y(x, y, z) > 0 (3.40)

These conditions follow from Eqs. (3.35) and (3.36). Now in a charge-free region of the
electrostatic field, the field intensity vector E (x, y, z) is solenoidal as well as irrotational.

\ — ◊◊◊◊◊ E(x, y, z) = 0 (3.41)

and
— ¥ E(x, y, z) = 0 (3.42)
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This shows that Eq. (3.38) is a consequence of Eq. (3.42), and combining Eqs. (3.38) with (3.41),
we get

—2 V(x, y, z) = 0 (3.43)

which indicates that the electrostatic potential V does not satisfy Eq. (3.40) and hence does not
fulfil the condition of stability.

This is true for any charged particle of charge Q placed in the field, i.e.

F(x, y, z) = QE(x, y, z),

\ — ◊◊◊◊◊ F(x, y, z) = 0

\ A charged particle cannot rest in stable equilibrium under the influence of the electric
field alone.

This proof, though basically deals with electrostatic fields at this stage, is quite generally
applicable to all the force fields which obey the ‘inverse square law’. Subsequently in 1939, this
theorem was extended to magnetic fields by Braunbeck. We shall discuss these aspects of the
theorem when we deal with the magnetic fields. This theorem has acquired added importance with
the new applications of electromagnetic levitation schemes to transportation systems (i.e. Maglev)
for both long distance as well as short distance travel using tracked vehicles.

It is to be noted that Earnshaw’s theorem deals with potential energy only. For those
systems which possess other types of energy as well, such as gravitational system of sun and
planets possessing both kinetic and potential energy, stable equilibrium is possible.

PROBLEMS

3.1 When the eight spherical drops of mercury charged to 12 V above the earth potential
are coalasced into a single spherical drops (as in Problem 1.2), what is the change in the
internal energy of the system?

Ans.: W2 = Four times the original energy

3.2 Two thin metal tubes of the same length and of radii a, b, (b > a) are mounted
concentrically, and the inner one can slide axially within the outer one on smooth rails.
Initially the inner tube is partly within the outer, when a potential difference V is
applied between the tubes, it is drawn further in. Estimate the force which causes this
movement, drawing attention to any assumptions required.

Ans.: F = [p e0V
2/ln (b/a)] newtons

3.3 The end of a coaxial cable is closed
by a dielectric piston of permittivity
e, as shown in the adjoining figure.
The radii of the cable and the
conductors are a and b, and the
dielectric in the other part of the
cable is air. What is the magnitude
and the direction of the axial force
acting on the dielectric piston, if the
P.D. between the conductors is V?

Ans.: F = [p V 2(e – e0)/ln (b/a)]

a

b
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3.4 The ends of a parallel plate capacitor are
immersed vertically in a liquid dielectric
of permittivity e and mass density rm.
The distance between the electrodes is d
and the dielectric above the liquid is air.
Find h, the rise in the level of the liquid
dielectric between the plates, when these
are connected to a source of P.D. = V.
Fringing and other side effects can be
neglected

Ans.: h = (e – e0)V2/(2d2rmg)
where g is the gravitational constant.

V

d

e

e0

– – – –
– – – –
– – – –
– – – –

– – – –
– – – –
– – – –
– – – –

– – – –
– – – –

– – – –
– – – –
– – – –
– – – –

– – – –

–
–

–
–

– – – – – – – ––
–

–

–
–
–
–
–

–

–
–

–

– h
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4.1 INTRODUCTION

Solving electrostatic field problems usually implies the determination of the electrostatic potential
at all points in the region, from which the electric field intensity and all other quantities of
interest can be obtained easily. A number of problems in which the charges are known, have been
solved by using Gauss’ theorem in Chapter 2. However there are other problems in which the
charge distributions on some of the bodies (and not all) and the conditions on some of the
boundaries might be known. In most of the electrostatic problems, it should be remembered that
the potential distributions satisfy the Laplace’s equation and hence these problems essentially
reduce to solving this equation. There are different ways of solving this equation for different
types of geometry, and we shall discuss the basic principles of some of these methods in the
present chapter.

4.2 DIRECT SOLVING OF LAPLACE’S EQUATION

4.2.1 Introduction

The electrostatic potential satisfies the Laplace’s equation in charge-free regions and Poisson’s
equation in regions containing charges. The left-hand side of both these equations is the
Laplacian operator, —2, operating on a scalar dependent variable, whereas the right-hand side is
zero for the Laplace’s equation and a nonzero quantity in the Poisson’s equation. So it can be
argued that the solution of the Laplace’s equation is the ‘complementary function’ part of the
general solution of the Poisson’s equation —2 V = K, which of course is a more generalized case in
which we have to evaluate the ‘particular integral’ part of the solution as well. However since the
majority of the electrostatic problems are of Laplacian field type, we shall start our discussion
with the solutions of the Laplace’s equation. Furthermore, the Laplacian operator —2 is the
common operator of most of the equations in electromagnetism, e.g. Laplace’s equation, Poisson’s
equation, Eddy current (or Vector diffusion type) equation, wave equation (in scalar and vector
forms), general Helmholtz equation, etc. Though these are not the only equations that we find in
engineering and physics, they represent a surprisingly large fraction of the equations we come

Methods of Solving
Electrostatic Field
Problems4



112 ELECTROMAGNETISM: THEORY AND APPLICATIONS

across in our study of electromagnetism and cover nearly all the major areas of present interest.
All these equations are of the second order, i.e. none of them contain derivatives of higher order
than the second order. Furthermore, these are all partial differential equations involving more than
one independent variable and are more difficult to solve than ordinary differential equations
which have only one independent variable. In general, there are two practicable methods of
solution, i.e. the integral solution and the separated solution. As an example of the first method,
an integral solution can be obtained for the Poisson’s equation, which involves the
inhomogeneous (i.e. the nonzero right-hand side of the equation) part and the distances
concerned. (Such a solution is called Green’s function). Solutions of similar type can also be
obtained for the homogeneous equations (i.e. in which the right-hand side of the equation is zero,
as in the Laplace’s equation) where the integral function is determined by the boundary
conditions. The integral solutions are more general in nature and are independent of the
coordinate transformations, but they are not the most satisfactory type of solutions as in many
cases the integral cannot be integrated in closed form and numerical values have to be obtained.

The second method of solving the linear partial differential equations (PDEs) is the method
of separation of variables in which the original equation containing several independent variables
is separated into a set of ordinary differential equations (ODEs), each involving one independent
variable. Though this method does not have the generality of the integral solution method
because of the dependence of the method on the coordinate systems, this method is more
satisfactory and easy to use, where it can be used, as the solutions of the ordinary differential
equations are easier to obtain than those of the partial differential equations.

It will be seen that there are an infinite number of different solutions of the Laplace’s
equation or that of the more general type, i.e.

—2y + k2y = 0 (4.1)

The question is not to find a solution but to find the particular solution or solutions
corresponding to the particular problem we wish to solve. These various particular solutions differ
from each other in the nature of the boundary conditions applied, i.e. either the geometry of the
boundary varies or that the specified behaviour of the field at the boundary is different. A
complete and detailed discussion of all possible types of boundaries would be very long and
elaborate. So at present we shall restrict ourselves to the relevant types pertinent to the range of
problems we shall be coming across in this subject.

4.2.2 Boundary Surfaces and Conditions

We have already discussed the electrostatic boundary conditions (Section 2.9) and now we shall
talk about the boundary conditions in more general mathematical terms which would be
applicable to all types of physical boundaries, whether they pertain to the electrostatic fields or
other types, i.e. magnetostatic, electric currents, or electromagnetic. (We shall also discuss each of
these types under the relevant subject heading.)

To start with there are two types of boundary surfaces—‘closed’ and ‘open’. A closed
boundary surface is one which encloses the field everywhere, restricting it to a finite volume of
space. The boundary surface is outside the field and all the energy that escapes from the field is
absorbed by the boundary. An open boundary is such that it does not completely enclose the field
and permits it to extend to infinity in at least one direction, so that the field extends over an
infinite region and with the result that the energy is absorbed by the boundary partly, the rest
escaping to infinity.
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The boundary conditions usually placed on the field are the specifications of the value of
the field variable (which is the dependent variable of the operating equation for the field) at every
point on the boundary surface, or the specification of the normal gradient of the field variable to
the surface at the boundary, or a combination of both. They are:

(a) Dirichlet boundary conditions fix the value of the dependent variable, e.g. for the
electrostatic field, the potential V, or y.

(b) Neumann boundary conditions fix the value of the normal gradient of the dependent
variable, i.e. ∂V/∂n for the electrostatic potential field, or ∂y/∂n.

(c) Cauchy conditions (or mixed boundary conditions) fix the value of both, i.e.

or
V

aV b a b
n n

yy∂ ∂⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

As we shall see later while dealing with the actual problems, each boundary condition is
appropriate for different types of equations and different boundary surfaces. Physical interpretation
of these boundary conditions can be made with reasonable ease while dealing with two-
dimensional scalar and vector field problems, which form the largest section in electromagnetism.
But when we have to deal with three-dimensional problems, and in particular with the vector
variable, the interpretation of these boundaries can become quite complex, and we shall discuss
them as and when we tackle such problems.

4.2.3 Coordinate Systems

We shall start our arguments based on a three-dimemsional system which is the most general
practical situation and the results for the one- and two-dimensional problems are easily derivable
from the three-dimensional systems as special cases of these. One way to specify the solution
uniquely is, if possible, to erect on the boundary a coordinate system suitable to the boundary, i.e.
we choose a coordinate system x1, x2, x3 such that the boundary surface is one of the coordinate
surfaces (say x1 = a constant X). If the boundary surface is reasonably simple, it is always possible
to find at least one suitable orthogonal coordinate system. If there are more than one suitable
systems possible, one of them can be chosen. The partial differential equation can then be
expressed in terms of the chosen coordinate system and the solutions will come out as the
functions of x1, x2, x3. These solutions will be classified according to the boundary conditions
satisfied on the specified boundary surfaces. It will be found that some solutions are merely
multiples of others. Such solutions should not be considered as independent solutions. There
would be different solutions satisfying the surface conditions, say, y = a, ∂y /∂n = b. These
solutions can be arranged in order of the values of the ratio P, where yx(∂y/∂n)x = P. The surfaces
corresponding to P = 0 or y = 0 are called ‘nodal surfaces’ (or nodes). Some of these nodal
surfaces would be such that they are of the type x1 = X, i.e. these solutions can be expressed as

y = F1(x1) f (x2, x3) (4..2)

Out of the f surfaces, there would be some which would be of the type

y = F1(x1) F2(x2) F3(x3) (4.3)

Such solutions are separated into factors, each dependent on one co-ordinate variable. There are
only a limited number of coordinate systems in which we can find a whole family of solutions
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with their nodes behaving like this. An important property of such solutions is that all the
solutions of the PDE can be built up out of the linear combinations of the members of the family
of separated solutions. Those coordinate systems which allow the families of the separated
solutions of a given equation, from which all solutions of the equation can be built up, are called
the separable coordinate systems for the equation in question. And this method is known as the
method of separation of variables.

It can be shown mathematically that there are available eleven coordinate systems in which
the Laplace’s equation (in three dimensions) yields three ordinary differential equations.
(Solutions in one- and two-dimensions are simpler, special cases of the general three-dimensional
solutions.) These solutions have to be combined so as to satisfy the boundary conditions of the
problem at hand. If we succeed, then by virtue of the uniqueness theorem, the solution obtained
is the required one.

Of the eleven coordinate systems mentioned above, the three most commonly known and
also most widely used are the rectangular Cartesian, the cylindrical polar, and the spherical polar
systems. We shall illustrate the method in connection with these three systems only and use the
others with references when specific problems are explained later.

4.2.4 Separation of Variables in a Rectangular Cartesian System

The Laplace’s equation in a rectangular coordinate system, according to Eq. (1.32) is

2 2 2

2 2 2
0

V V V

x y z

∂ ∂ ∂+ + =
∂ ∂ ∂ (4.4)

Following the method we have been discussing above, V(x, y, z) can be expressed in the form

V(x, y, z) = X(x) Y(y) Z(z) (4.5)

where X(x) is a function of x only, Y(y) is a function of y only, and Z(z) a function of z only.
Substituting this form of V in Eq. (4.4), we get

2 2 2

2 2 2

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) 0

d X x d Y y d Z z
Y y Z z X x Z z X x Y y

dx dy dz
+ + =

Dividing this equation by X(x) Y(y) Z(z), it becomes

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2 2 2

2 2 2

1 ( ) 1 ( ) 1 ( )
0

( ) ( ) ( )
d X x d Y y d Z z

X x Y y Z zdx dy dz
(4.6)

Since each of the three terms on the left-hand side of Eq. (4.6) is a function of one coordinate
variable only, and since this equation must be satisfied for all values of x, y, and z, all the three
terms must equal constants. Hence Eq. (4.6) represents three ordinary differential equations, i.e.

2
2

2

1 ( )
( ) x

d X x
k

X x dx

⎛ ⎞ =⎜ ⎟⎝ ⎠
(4.7)

2
2

2

1 ( )
( ) y

d Y y
k

Y y dy

⎛ ⎞ =⎜ ⎟⎝ ⎠
(4.8)
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2
2

2

1 ( )
( ) z

d Z z
k

Z z dz

⎛ ⎞ =⎜ ⎟⎝ ⎠
(4.9)

where
2 2 2 0x y zk k k+ + = (4.10)

The solutions of these three equations are:

X(x) = Ax exp (kx x) + Bx exp (–kx x) if kx
2 > 0

X(x) = Ax sin kx x + Bx cos kx x if kx
2 < 0 (4.11)

Y(y) = Ay exp (kyy) + By exp (–kyy) if ky
2 > 0

Y(y) = Ay sin kyy + By cos kyy if ky
2 < 0 (4.12)

Z(z) = Az exp (kzz) + Bz exp (–kzz) if kz
2 > 0

Z(z) = Az sin kzz + Bz cos kzz if kz
2 < 0 (4.13)

This can be proved by substitution. Ax, Bx, Ay,
 By, Az,

 Bz are arbitrary constants of integration,
which together with the constants kx, ky, and kz can be determined by using the boundary
conditions of the problem in hand. Usually, a single term of these functions cannot satisfy all the
boundary conditions. But the sum of any number of these functions is also a solution of the
Laplace’s equation. So the desired solution is obtained in the form of a finite or infinite series of
these terms. The process will be illustrated by some examples. For simplicity, we shall consider a
two-dimensional problem first.

We wish to find the potential distribution in a rectangular strip of width a and of finite
length b (Figure 4.1).

Figure 4.1 A rectangular region with known potential distributions on the boundaries.

y
V = f(x)

b

V = 0

O V = 0 a x

V = 0

The boundary conditions are:

y = b, V = f(x); y = 0, V = 0; x = a, V = 0; x = 0, V = 0 (4.14)

Since for both the boundaries x = 0 and x = a, V = 0, the solutions of the form exp (±kx x) from
Eq. (4.11) cannot satisfy these conditions. So the solutions of X(x) would be in terms of the
trigonometric functions. Also, because this is a two-dimensional problem in x and y only, kz = 0,
and

= − = −2 2 2
x yk k k (4.15)
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\ The solution is of the form

V(x, y) = (Ax sin kx x + Bx cos kx x)(Ay exp (kyy) + By exp (–kyy)) (4.16)

The condition x = 0, V = 0, gives Bx = 0; and the condition x = a, V = 0, gives sin ka = 0 = sin np,
where n = 1, 2, 3, 4, ... . \ k = np/a.

\ The solution reduces to the form

sin exp expy y
n x n y n y

V A B
a a a

⎡ ⎤⎛ ⎞ ⎛ ⎞= + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦

p p p
(4.17)

Next the condition y = 0, V = 0 gives Ay + By = 0.
\ The solution further simplifies to

p p⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
sin sinhy

n x n y
V A

a a
(4.18)

Since Ay is yet an arbitrary constant, it can absorb constant multipliers at each stage. Furthermore,
n can take all integral values from 1 to •. So the general solution can be written in the form:

p p∞

=

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∑
1,2,...

sin sinhn
n

n x n y
V A

a a
(4.19)

Next from the boundary condition y = b, V = f(x), we get

Vy = b = f(x) =
p p∞

=

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∑

1,2,...

sin sinhn
n

n x n b
A

a a
for 0 < x < a (4.20)

                                = 0 for x = 0 and x = a

The coefficients An can be evaluated by using the concepts of Fourier series. So to evaluate the
coefficients An for any value of n, we multiply Eq. (4.20) by sin (mpx/a), where m is a positive
integer and then integrate the expression thus obtained, with respect to x between the limits
0 to 2a, i.e. the period of sin(npx/a). Thus,

2 2

1,2,3,...0 0

( ) sin sinh sin sin

a a

n

n

m x n b m x n x
x dx A dx

a a a a
p p p p∞

=

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥= ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥
⎣ ⎦

∑∫ ∫f (4.21)

Now,

p p⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∫

2

0

sin sin
a

m x n x
dx

a a

                      

2

0

1 ( ) ( )
cos cos

2

a
m n x m n x

dx
a a

p p⎡ ⎤− +⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦∫
                                  = 0 for m πππππ n

                                  = a for m = n (4.22)

\ From Eq. (4.21), we get

p
p

⎛ ⎞= ⎜ ⎟⎛ ⎞ ⎝ ⎠
⎜ ⎟⎝ ⎠

∫
2

0

1
( ) sin

sinh

a

n
m x

A f x dx
an b

a
a

(4.23)
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Substituting for An from Eq. (4.23) into (4.19), we get the final relation for V(x, y) as

2

1,2,3,... 0

sinh
1

( , ) ( ) sin sin

sinh

a

n

n y
am x n x

V V x y f x dx
a a an b

a

p
p p

p

∞

=

⎡ ⎤⎛ ⎞⎧ ⎫
⎜ ⎟⎢ ⎥⎪ ⎪⎧ ⎫ ⎝ ⎠⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪⎢ ⎥= = ⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎛ ⎞⎪ ⎪ ⎪ ⎪⎩ ⎭⎢ ⎥⎜ ⎟⎪ ⎪⎝ ⎠⎢ ⎥⎩ ⎭⎣ ⎦

∑ ∫ (4.24)

For using the concept of the Fourier series, we have made the assumption that the function f (x) is
a repeatable pattern whose period is that of the orthogonal function sin (npx/a). Thus Eq. (4.24)
is the unique solution of the problem for any given f(x).

If f(x) = V0 sin (px/a), then A1 = V0 , A2 = A3 = ... = 0, and the solution is

0

sinh

( , ) sin

sinh

y
a x

V V x y V
ab

a

p
p

p

⎛ ⎞⎧ ⎫
⎜ ⎟⎪ ⎪⎝ ⎠ ⎛ ⎞⎪ ⎪= = ⎨ ⎬ ⎜ ⎟⎝ ⎠⎛ ⎞⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

(4.25)

If f (x) = V0, then the solution is

0

1,3,5,...

sinh sin
4

( , )

sinhn

n y n x
a aV

V V x y
nn b

a

p p

p p

∞

=

⎛ ⎞⎧ ⎫ ⎧ ⎫⎛ ⎞
⎜ ⎟ ⎜ ⎟⎪ ⎪ ⎪ ⎪⎝ ⎠ ⎝ ⎠⎪ ⎪ ⎪ ⎪= = ⎨ ⎬ ⎨ ⎬
⎛ ⎞⎪ ⎪ ⎪ ⎪⎜ ⎟⎪ ⎪ ⎪ ⎪⎝ ⎠⎩ ⎭ ⎩ ⎭

∑  (4.26)

It should be noted that similarly the solution in three-dimensions would be a double infinite
series in which not more than two coordinate variable functions can be orthogonal (i.e. in the
rectangular coordinate system these would be of trigonometric type) while the remaining variable
(or variables) function(s) would be of non-orthogonal type (i.e. hyperbolic). In a two-dimensional
problem, the solution is a single-infinite series with one coordinate variable function being
orthogonal and the other one being non-orthogonal. The choice of the orthogonal function for a
particular variable is decided upon by the type of the boundary conditions of the problem. For
example, if the boundary conditions on two parallel boundary surfaces normal to a particular
coordinate direction, are identical, then the function of this variable (in that direction) would be
orthogonal. Also, for any such problem discussed so far only one boundary can have a non zero
condition (of any type). If a problem has more than one nonzero boundary, then it is solved by
using the principle of superposition, i.e. only one boundary is allowed to have a nonzero
condition in each sub-problem, which is then solved by the technique already explained. This is
explained pictorially in Figure 4.2. Though the figure shows a problem with Dirichlet type
boundaries only, the method is also equally valid for any problem with any type of boundaries,
i.e. Neumann or Cauchy or any combinations of these conditions on different boundaries. These
comments made so far have been with reference to the electrostatic field problems in rectangular
coordinates, and yet these comments are quite general and equally valid for all Laplacian field
problems in any orthogonal coordinate system, as will be seen later when we deal with practical
problems.

It is to be further noted that in the series solutions which we have obtained till now, each
term is a solution of the Laplace’s equation and the series is required to satisfy all the boundary
conditions.
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Figure 4.2 The most general case of superposition in a rectangular region.
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4.2.5 Separation of Variables in a Cylindrical Polar
Coordinate System

Laplace’s equation in a cylindrical coordinate system has the form

f
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞∇ = + + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2 2
2

2 2 2

1 1
0

r V V V
V

r r r r z
(4.27)

Using the procedure of separating the variables, let V(r, f, z) be represented by the form

V(r, f, z) ∫ R(r) F(f) Z(z) (4.28)

Substituting from Eq. (4.28) into Eq. (4.27), and then dividing the result by R(r) F(f) Z(z), we
have
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f
f f

F
F

⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2 2

2 2 2

1 ( ) 1 ( ) 1 ( )
0

( ) ( )( )

d rdR r d d Z z
rR r dr dr Z zr d dz

(4.29)

By using the arguments similar to those for Eq. (4.4), Eq. (4.29) can be satisfied for any z only if
the last term on the left-hand side of this equation is a constant, i.e.

2
2

2

1 ( )
( ) z

d Z z
k

Z z dz

⎛ ⎞⎛ ⎞ =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
(4.30)

With this substitution, Eq. (4.29) can be rewritten as

f
f f

F
F

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠

2 2
2

2

( ) 1 ( )
0

( ) ( )z
r d rdR r d

k
rR r dr dr d

(4.31)

By similar arguments, the last term of Eq. (4.31) must be a constant, i.e.

f
f

f f
F

F
⎛ ⎞⎛ ⎞ = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

2
2

2

1 ( )
( )

d
k

d
(4.32)

The negative sign of the constant is necessary because only then the function for f will be
orthogonal, i.e. to ensure the periodicity of the function. Then Eq. (4.31) becomes after the
indicated differentiation and some rearrangement

f⎛ ⎞⎛ ⎞ ⎜ ⎟+ + − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

22
2

2 2

( ) 1 ( )
( ) 0z

kd R r dR r
k R r

r drdr r
(4.33)

This equation is known as Bessel’s differential equation, and its solutions are known as the
Bessel’s functions of the first and the second kind respectively. Its solutions are:

f f
= +( ) ( ) ( )k z k zR r AJ k r BY k r (4.34)

where
2

0

2
( ) ( 1)

( 1) ( 1)

k r
z

r
k z

r

k r

J k r
r k r

f

f
fG G

+

∞

=

⎛ ⎞
⎜ ⎟⎝ ⎠

= −
+ + +∑ (4.35)

where G is a Gamma function which is defined as

G G
∞

− −= = − − = −∫ 1

0

( ) ( 1) ( 1) ( 1)!x tx t e dt x x x (4.36)

f f
f

f

f

p
p

−−
=

cos( ) ( ) ( )
( )

sin ( )
k z k z

k z

k J k r J k r
Y k r

k
(4.37)

For kf integer,

( ) ( 1) ( )
k

k z k zJ k r J k rf
f f− = − (4.38)
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Note: In general Jn(x) and Yn(x) are the two independent solutions of the Bessel’s equation

⎛ ⎞⎛ ⎞+ + − =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

2 2

2 2

1
1 0

d y dy n
y

x dxdx x
(4.39)

Jn(x) is the Bessel’s function of the first kind with the argument x and of the order n; and Yn(x) is
the Bessel’s function of the second kind with the argument x and of the order n. For further details
of the Bessel’s equations and their solutions, the interested reader should refer to any book on
applied maths, such as Mathematics in Physics and Engineering by J. Irving and N. Mullineux
(Academic Press) or any other equivalent book. These Bessel’s functions are orthogonal and
oscillatory in nature.

So the general solution of the Laplace’s equation in the cylindrical coordinate system is

V(r, f, z) = {A fkJ (kzr) + B fkY (kzr)}{C cos (kff) + D sin (kff)}{E cosh (kzz) + F sinh (kzz)} (4.40)

Such terms will satisfy the Laplace equation for all values of kf and kz and hence the most
general solution will be a double infinite series with harmonic values of kf and kz, i.e.

V(r, f, z) =
f
S S

zk k
{A fkJ (kzr) + B fkY (kzr)}{C cos (kff) + D sin (kff)}{E cosh (kzz) + F sinh (kzz)} (4.41)

except when kz = 0. For kz = 0, the solution is

V0 = 
f
S
k

 (Arkf + Br–kf){C cos (kff) + D sin (kff)}(E0z + F0) (4.42)

When both kf = 0 and kz = 0, the solution becomes

V00 = (A00 ln r + B00)(C0f + D0)(E0z + F0) (4.43)

Again in the solution of Eq. (4.29), the constant kz
2 is made negative, i.e. kz is replaced by jkz

(where j = −1 ), then Eq. (4.33) becomes

22
2

2 2

( ) 1 ( )
( ) 0z

kd R r dR r
k R r

r drdr r

f⎛ ⎞⎛ ⎞+ + − − =⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠
(4.44)

This equation is called the modified Bessel equation and its solutions are called modified Bessel
functions which are denoted by Ikf (kzr) and Kkf (kzr) and are called the modified Bessel functions
of the first kind and the second kind respectively, and are given by

2

0

2
( ) ( )

( 1) ( 1)

k r
z

k
k z k z

r

k r

I k r j J jk r
r k r

f

f
f f

fG G

+

∞
−

=

⎛ ⎞
⎜ ⎟⎝ ⎠

= =
+ + +∑ (4.45)

and

f f
f

f

p
p

− −⎛ ⎞⎛ ⎞ ⎜ ⎟= ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

( ) ( )
( )

2 sin
k z k z

k z

I k r I k r
K k r

k (4.46)

For kf integer,

f
f f f− −= =( ) ( ) ( )

k
k z k z k zI k r j J jk r I k r (4.47)
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Hence for the integral kf, the definition Kkf (kzr) is treated as a limit, i.e.

f
f p

−

→

−
=

( ) ( )
( ) lim

sin
v z v z

k z
v k

I k r I k r
K k r

v

                         =
( ) ( )( 1)

2

k
k z k zI k r I k r

k k

⎡ ⎤∂ ∂⎧ ⎫ ⎧ ⎫− ⎪ ⎪ ⎪ ⎪⎢ ⎥−⎨ ⎬ ⎨ ⎬∂ ∂⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎣ ⎦

f
f f

f f
(4.48)

The solution of Laplace’s equation now becomes

V(r, f, z) = 
f
S S

zk k
{AIkf (kzr) + BKkf (kzr)}{C cos (kff) + D sin (kff)}{E cos (kzz) + F sin (kzz)} (4.49)

The choice of the solution of the Laplace’s equation, i.e. Eq. (4.41) or (4.49) depends on the type
of the boundary conditions in the specified problem. It should be noted that whilst the Bessel’s
functions Jkf (kzr) and Ykf (kzr) are orthogonal functions and are oscillatory in nature, the modified
Bessel’s functions Ikf (kzr) and Kkf (kzr) are not orthogonal functions and hence are not oscillatory
functions of r. So it will be seen that for the solution of Eq. (4.41), the orthogonal functions are
of the variables r and f and hence the nonzero boundary values would be on a constant z-plane;
whereas for the solution given in Eq. (4.49), the orthogonal functions are of the variables f and z,
and hence the nonzero boundary conditions can be satisfied only on r = constant cylindrical
surfaces. It can then be generalized that for all three-dimensional problems, the solutions, we
obtain by this method, would contain orthogonal functions in not more than two variables only,
and the choice of the coordinate variable for the non-orthogonal function would be decided by
the location of the nonzero boundary conditions. Again when there is more than one nonzero
boundary, then the problem has to be resolved into sub-problems, each containing only one
nonzero boundary, and then use the method of superposition to combine the solutions of the sub-
problems and thus obtain the complete solution of the original problem; similar to what has been
done for the problem in the rectangular Cartesian system shown in Figure 4.2.

4.2.6 Potential Inside a Hollow Cylindrical Ring

We shall now consider a practical problem in the cylindrical coordinate system. Let us find out
the potential at any point in the region bounded by the two cylinders of radii r = a and r = b
(a > b) respectively, both of which are at zero potential, and the two normal planes: the plane
z = 0 at zero potential and the plane z = c whose potential is V = f (r). The boundary conditions
can then be summarized as

r = a, V = 0; r = b, V = 0; z = 0, V = 0; z = c, V = f (r) (4.50)

Since there is no f variation, this problem has axial symmetry, i.e. it is an axi-symmetric problem
and we need consider only the coordinate variables r and z (Figure 4.3).

So the Laplace’s equation for this problem simplifies to

2

2

1
0

r V V
r r r z

∂ ∂ ∂⎛ ⎞ ⎛ ⎞ + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
(4.51)

Its solution will be of the type:

V(r, z) = {AJ0(kzr) + BY0(kzr)}{C cosh (kzz) + D sinh (kzz)} (4.52)
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Figure 4.3 Hollow cylindrical ring with an arbitrary potential distribution V = f (r) on the top
surface z = c.

r = a

r = bV = f(r)

z = c

V = 0

The boundary condition z = 0, V = 0 implies that the coefficients of the cosh terms must be
zero. The boundary conditions r = a, V = 0 and r = b, V = 0 imply that both r = 0 and r Æ • are
excluded and hence both J0(kzr) and Y0(kzr) functions are needed to satisfy these two boundaries.
Hence satisfying the z = 0 boundary condition, the solution simplifies to

V(r, z) = sinh (kzz){AJ0(kzr) + BY0(kzr)}

Next r = b, V = 0, requires the condition AJ0(kzb) + BY0(kzb) = 0.

\
⎡ ⎤= − ⎢ ⎥
⎣ ⎦

0

0

( )
( )

z

z

AJ k b
B

Y k b

\ The solution further simplifies to

⎡ ⎤⎧ ⎫= − ⎨ ⎬⎢ ⎥
⎩ ⎭⎣ ⎦

0
0 0

0

( )
( , ) sinh ( ) ( ) ( )

( )
z

z z z
z

J k b
V r z A k z J k r Y k r

Y k b
(4.53)

Now to satisfy the boundary condition r = a, V = 0, the required condition is

⎧ ⎫− =⎨ ⎬
⎩ ⎭

0
0 0

0

( )
( ) ( ) 0

( )
z

z z
z

J k b
J k a Y k a

Y k b
(4.54)

The roots of this equation will give the values of kz, which let us denote by mk for the values
of k.
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Hence the solution is

mm m mmS
⎡ ⎤⎧ ⎫= − ⎨ ⎬⎢ ⎥

⎩ ⎭⎣ ⎦
0

0 0
0

( )
( , ) sinh ( ) ( ) ( )

( )
k

k k k k
k k

J b
V r z A z J r Y r

Y b
(4.55)

The final boundary condition z = c, V = f(r) will be satisfied if Ak is chosen such that

mm m mmS
⎡ ⎤⎧ ⎫= − ⎨ ⎬⎢ ⎥

⎩ ⎭⎣ ⎦
0

0 0
0

( )
( ) sinh ( ) ( ) ( )

( )
k

k k k k
k k

J b
f r A c J r Y r

Y b
(4.56)

The term inside the square brackets is obviously a solution of the Bessel’s equation. Multiply the
above equation by the bracketed term, which we denote by R0(mkr), for a general value of mk, say
ms, then further multiply by r, and integrate the whole expression with respect to r within the
limits r = b to r = a. Since R0(mka) = R0(mkb) = 0, all the terms on the right-hand side of this
expression will vanish except when mk = ms. (Note the properties of the orthogonal functions.) For
this term, we get

mm m m= =

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤⎢ ⎥= −⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎣ ⎦
∫

2 2
2 20 0

0
sinh ( )

( ) ( )
( ) ( ) 2

R

k
k k

k kr a r bb

dR dR c
rf r R r dr A a b

d r d r

Differentiating R0(mkr) with respect to (mkr) (i.e. by the argument of the function), we get

mm m mm
⎡ ⎤⎧ ⎫′ = − − ⎨ ⎬⎢ ⎥

⎩ ⎭⎣ ⎦
0

0 1 1
0

( )
( ) ( ) ( )

( )
k

k k k
k

J b
R r J r Y r

Y b
(4.57)

\ Solving for Ak, we get

{ } { }

m

m m m

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦=

⎡ ⎤′ ′−⎢ ⎥⎣ ⎦

∫ 0

2 22 2
0 0

( ) ( )

2
( ) ( ) sinh ( )

a

k

b
k

k k k

rf r R r dr

A
a R a b R b c

(4.58)

By specifying f (r) for different types of potential distributions on this surface, the distributions
inside the whole annulus can be obtained.

4.2.7 Separation of Variables in a Spherical Polar
Coordinate System

The three-dimensional Laplace’s equation in the spherical polar coordinate system has the form

q
q q q q f

⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

2 2

2 2

1 sin 1
0

sin sin

r V V V
r r

(4.59)

Let us assume the solution to be of the form

V(r, q, f) = R(r)Q(q)F(f) (4.60)

On substituting and dividing the result by the right-hand side of the above equation, we get

   
q q f

q q q q q f f
Q F

Q F

⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

2 2

2 2

1 ( ) 1 sin ( ) 1 ( )
0

( ) sin ( ) sin ( )

d r dR r d d d
R r dr dr d d d

(4.61)
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If this equation is to be satisfied for all values of r, then the first term on the left-hand side of the
above equation must be a constant, i.e.

⎛ ⎞⎛ ⎞ =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

21 ( )
( ) r

d r dR r
k

R r dr dr
(4.62)

On substituting in Eq. (4.61) and multiplying it by sin2q, we get

2
2

2

sin sin ( ) 1 ( )
sin 0

( ) ( )r
d d d

k
d d d

q q q fq q q q f f
Q F

Q F
⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + =⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

(4.63)

The first term (which is inside the square brackets) is a function of q, and the second term is a
function of f only. If this equation is to be satisfied for all values of q and f, each term must be
equal to a constant. Since the variation of the function with respect to the coordinate variable f
is periodic, i.e. V(r, q, f) = V(r, q, f + 2np), where n = ± 1, ± 2, ± 3, ..., we put

f
f

f f
F

F
⎛ ⎞⎛ ⎞ = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

2
2

2

1 ( )
( )

d
k

d
(4.64)

Making this substitution in Eq. (4.63) and rearranging the terms, we get

( ) ( )2 2sin ( )
sin sin ( ) 0r

d d
k k

d d f
q qq q qq q

Q Q⎛ ⎞ + − =⎜ ⎟⎝ ⎠ (4.65)

If now, the arbitrary constant kr is written in the form

kr = n(n + 1) (4.66)

where n is a new constant, then Eq. (4.62) becomes

⎛ ⎞⎛ ⎞ = +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

21 ( )
( 1)

( )
d r dR r

n n
R r dr dr

(4.67)

The solution of this equation can then be written as

R(r) = Arr
n + Brr

-(n + 1) (4.68)

where Ar and Br are constants of integration. For the sake of simplicity, replacing kf by m, we get
the solution of Eq. (4.64) as

F(f) = Af cos mf + Bf sin mf (4.69)

except for m = 0, when it becomes

F(f) = Af0
f + Bf 0

(4.70)

If the potential function is to be single-valued with respect to the coordinate variable f, then the
constant m must be an integer, i.e.

kf = m = 0, ± 1, ± 2, ± 3, ± 4, ... . (4.71)

Substituting from Eqs. (4.66) and (4.71) in Eq. (4.65), we get

( ) q qq q q
Q⎛ ⎞

⎜ ⎟⎝ ⎠
sin ( )

sin
d d

d d
 + [n(n + 1) sin2q - m2] Q(q) = 0 (4.72)
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Before considering a more general solution of Eq. (4.72), we consider the most important special
case in which V (the potential) is independent of the variable f, so that F is constant and m = 0.
This equation then becomes, on substituting cos q = m,

mm m
Q⎡ ⎤−⎢ ⎥⎣ ⎦

2(1 )
d d

d d
 + n(n + 1)Q = 0 (4.73)

Equation  (4.73) is called the Legendre differential equation and its solutions are called Legendre
functions (or surface zonal harmonics). The two solutions are Pn(m) and Qn(m), the Legendre
functions (or polynomials) of the first and the second kind, respectively. It can be shown that they
are of the form

m m −

=

⎡ ⎤−= − ⎢ ⎥
− −⎢ ⎥⎣ ⎦

∑ 2

0

(2 2 )!
( ) ( 1)

2 ( !) ( )! ( 2 )!

p
s n s

n n
s

n s
P

s n s n s
(4.74)

where p = n/2 or (n - 1)/2 whichever is an integer; and

2 1

0

( )! ( 2 )!
( ) 2

! (2 2 1)!
n n s

n
s

n s n s
Q

s n s
m m

∞
− − −

=

+ +⎡ ⎤= ⎢ ⎥+ +⎣ ⎦∑ (4.75)

The details of these functions can be found in any advanced book on applied mathematics, or in
Static and Dynamic Electricity by W.R. Smythe, or Field Theory for Engineers by P. Moon &
D.E. Spencer, or The Theory of Spherical and Elliptical Harmonics by E.W. Hobson.

Both P and Q have first-order singularities at m = ± 1, but the origin is an ordinary point,
and so a series solution about the origin would be convergent within a circle of unit radius.

So far we have discussed the Laplace’s equation in the spherical coordinates with V
independent of f. The general case of V = V(r, q, f) can be handled in a similar manner. We now
consider the equation (4.72) which after the substitution cos q = m becomes

m mm
Q Q− − +

2
2

2
(1 ) 2( 1)

d d
m

dd
+ (n - m) (n + m + 1) Q = 0 (4.76)

Its solutions are m
nP (m) and m

nQ (m) and are called the Legendre associated functions. For details,
refer to the texts mentioned above. We shall now consider a problem in the spherical coordinate
system.

4.2.8 Electric Field within a Charged Hollow Sphere

Let us consider the electrostatic field within a uniform sphere on the surface of which there is an
arbitrary potential distribution V = f(q). We use the spherical coordinate system with the origin at
the centre of the sphere. The potential inside the sphere depends on the two coordinate variables
r and q only, and so the Laplace’s equation in this case is

2 2
2

2 2 2 2

2 1 cot
0

V V V V
V

r rr r r

q
qq

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞∇ = + + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
(4.77)

This is derivable from Eq. (4.59).
The boundary condition is: r = a, V = f (q) where a is the radius of the sphere. So the general

form of the solution for this two-dimensional problem is
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V = (Arm + Br-m-1)[CPm(cos q ) + DQm(cos q)] (4.78)

Since the potential must be finite at r = 0 and q = 0,

\ B = 0 and D = 0

The solution then simplifies to
V = ArmPm(cos q ) (4.79)

To be able to satisfy the boundary condition, we use the general solution

0

(cos )m
m m

m

V A r P q
∞

=

= ∑ (4.80)

When r = a, V = f(q) = F(cos q) = F(m), using the substitution m = cos q, we have

0

( ) ( )m
m m

m

F A r Pm m
∞

=

= ∑ (4.81)

\
1

1

2 1
( ) ( )

2
m

m m
m

A a F P dm m m
+

−

−

+⎛ ⎞= ⎜ ⎟⎝ ⎠ ∫ (4.82)

The solution of the problem is given by Eq. (4.80) with the values of Am being given by
Eq. (4.82).

4.3 GREEN’S FUNCTION
In Section 4.2, we obtained the solution of the electrostatic field problems by fitting the solution
of the given partial differential equation (PDE) to the specified boundary conditions. The
technique was that of an expansion in eigenfunctions, which is a straightforward way whenever
there is a coordinate system, which suited the boundaries, in which the PDE could separate. The
result would come out, usually, in the form of an infinite series. The problem of this technique
was regarding the convergence of this series. This is because it is essential to add up the series to
be able to get a physical insight into the overall behaviour of the solution. However nowadays
with the availability of high speed computers with powerful memories, this is no longer a major
problem, but in the early days when such facilities were not plentiful, it was preferable to obtain
a closed function solution, even if it was an integral representation. The Green’s function is such
a technique.

Physically what this means is that to obtain the field produced by a distributed source, the
effect of each elementary portion of the source is calculated and then all are added up. If G(r/r0)
is the field at the observer’s point r caused by a unit point source at the source point r0, then the
field at r caused by a source distribution r(r0) is the integral of Gr over the whole range of r0

occupied by the source. The function G is called the ‘Green’s function’. The boundary conditions
can also be satisfied in the same way.

Let us consider the mathematical aspect of the Green’s function before looking into its
physical content. We have from Section 0.6, the Green’s first identity [Eq. (0.54)] as the starting
point. The scalar functions of position are U and V which are continuous and finite and are
differentiable twice in the volume v which is enclosed by the surface S. Hence,

2( )
v S

U
V U V U dv V dS

n
∂Ê ˆ— + — ◊ — = Á ˜∂Ë ¯ÚÚÚ ÚÚ
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or

( div grad grad grad )
v S

U
V U V U dv V dS

n
∂Ê ˆ+ ◊ = Á ˜∂Ë ¯ÚÚÚ ÚÚ

Suppose now V = the electrostatic potential, and —U = D, the electrostatic flux density. Then
—V = -E, where E is the electrostatic field intensity, and —2U = r, the charge density. The above
equation then reduces to

( )n( )
v S

V dv V D dSr - ◊ =ÚÚÚ ÚÚE D (4.83)

which can be rewritten as

( )n
1 1

( )
2 2

v S

V dv V D dSrÊ ˆ Ê ˆ- ◊ =Á ˜ Á ˜Ë ¯ Ë ¯ÚÚÚ ÚÚE D (4.84)

The left-hand side of Eq. (4.84) is the difference between the assembly work of the charge density
r and the field energy [(1/2) E ◊◊◊◊◊ D]. This difference is equal to a surface term given by the right-
hand side. The normal component of D, i.e. Dn can be replaced by a surface charge density rS

such that Dn = -rS. Equation (4.84) can then be rewritten as

S
1 1 1

0
2 2 2

v S v

V dv V dS dvr rÊ ˆ Ê ˆ Ê ˆ+ - ◊ =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ÚÚÚ ÚÚ ÚÚ E D (4.85)

This amounts to saying that the surface S has been replaced by S¢ which is outside S and the
surface charge rS has now been included in the region surrounded by S¢ (Figure 4.4). Now there is

Figure 4.4 Surface charge rS on the boundary S.

S

S ¢

Dn
rS

Zero field

no contribution to the energy from the surface S¢ and the systems of charges r and rS have been
isolated from the rest of the space. So the internal energy of the system has been specified
uniquely. Hence it can be argued that the effect of the outside world is equivalent to the surface
charge rS = -Dn.

This concept of notional surface charge rS is useful as well as is required for defining the
energy of the electrostatic system. If now the third term of Eq. (4.85) is transferred to the right-
hand side, then we get

S
1 1 1
2 2 2

v S v

V dv V dS dvr rÊ ˆ Ê ˆ Ê ˆ+ = ◊Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ÚÚÚ ÚÚ ÚÚÚ E D (4.86)
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The right-hand side term of the above equation is the field energy of the system and this field
energy is now found to be equal to the total assembly work and hence to the potential energy of
the system. It should be noted that if the surface charge rS is not included in the above equation,
then neither the potential energy nor the field energy is uniquely defined for the system.

It should be further noted that there is also an alternative method of isolating the
electrostatic system from the outside world. The surface potential V can be replaced by a double
layer of charge which is equivalent to a step of potential. Then Eq. (4.86) can be rewritten as

21 1 1
2 2 2

v S v

V
V V dv V dS dv

n
e e ∂Ê ˆ Ê ˆ Ê ˆ Ê ˆ- — + = ◊Á ˜ Á ˜ Á ˜ Á ˜∂Ë ¯ Ë ¯ Ë ¯ Ë ¯ÚÚÚ ÚÚ ÚÚÚ E D (4.87)

where e is the permittivity of the region.
So far we have considered the total energy of a system of charges. We shall now use the

Green’s theorem to consider the mutual energy when two or more e.s. systems are bounded by the
same surface. We have the Green’s theorem (or the second identity), from Eq. (0.56), as

2 2( )
v S

U V
V U U U dv V U dS

n n
∂ ∂Ê ˆ— - — = -Á ˜∂ ∂Ë ¯ÚÚÚ ÚÚ (0.56)

Let the volume charge density causing the potential V be r and its equivalent surface charge
density be rS, and the corresponding quantities for the potential U be r¢ and r¢S, respectively, then

S S( ) ( )
v S

V U dv V U dSr r r r¢ ¢- = - -ÚÚÚ ÚÚ (4.88)

or

S S

v S v S

V dv V dS U dv U dSr r r r¢ ¢+ = +ÚÚÚ ÚÚ ÚÚÚ ÚÚ (4.89)

This statement implies that the mutual energy of the two systems can be calculated either by
inserting the charges r¢ and r¢S in the field V or by reversing the process and inserting the charges
r and rS in the field U. If the surface under consideration is at a large distance from the charges,
then V and U decrease at least as 1/r, and, ∂V/∂n and ∂U/∂n as 1/r2; and so the surface integral
decreases as 1/r, and therefore can be neglected. Then Eq. (4.89) simplifies to

v v

V dv U dvr r′ =∫∫∫ ∫∫∫ (4.90)

where the volume integral includes all the sources r and r¢S. In some of those problems where it
may be easier to calculate one of these integrals, it might be a help in calculating the mutual
capacitance of the system.

As an example, consider a small region of high charge density, the total charge being unity.
This can be considered as a point unit charge which mathematically is a ‘Dirac d function’,
defined by the properties:

d(r) = 0, r π 0 (4.91)

    ( ) 1r dvd =¢Ú (4.92)
and

( , , ) ( ) ( , , )f x y z r dv f x y zd =¢ ¢ ¢ ¢Ú (4.93)

where the point r = 0 is included in the volume of integration in the above two equations. The



CHAPTER 4 METHODS OF SOLVING ELECTROSTATIC FIELD PROBLEMS 129

values (x, y, z) are the coordinates of the Dirac function and f is any arbitrary function. The
potential U of a small unit charge is given by

0

1
4

U
rpe= (4.94)

In spherical coordinates,
2

2
2

1 r u
U

r rr

⎛ ⎞∂ ∂⎛ ⎞∇ = ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
(4.95)

If r π 0 , then —2U = 0, because there is no charge density r¢ anywhere except at r = 0. If r = 0
is included in the volume of integration (= v¢ enclosed by the surface S¢), then

2

0 0 0

1 1 1 1
4 4

v S

dv dS
r rpe pe e

¢ ¢

Ê ˆ Ê ˆ¢ ¢— = — = -Á ˜Á ˜ Ë ¯Ë ¯ÚÚÚ ÚÚ (4.96)

The charge density has the property of the Dirac function, and

v

V dv Vr′ =∫∫∫ (4.97)

i.e. the unit charge has a mutual energy with the system of charges r which is equal to the
potential at the point where the unit charge is located. Thus the unit charge provides a means of
finding the potential of a system of charges.

The potential of the unit charge, given by Eq. (4.94) is called the free space Green’s
function and is denoted by G.

If now we consider an unbounded region, then from the Green’s theorem [Eq. (0.56)], it
follows that

2 2

v v

V U dv U V dv∇ = ∇∫∫∫ ∫∫∫ (4.98)

so that

v

V G dvr= ∫∫∫ (4.99)

which could also have been obtained from Eq. (4.97) by transposing V and G and r¢ and r. These
two equations are complementary, in that in Eq. (4.97) it is the energy required to insert the unit
charge in the field of the charges r, whereas in Eq. (4.99) it is the energy required to insert r in
the field of the unit charge. Thus when at a point of the field where the potential V is to be
calculated, the Green’s function provides a method of taking account of the effect of the position
of the element with respect to the point under consideration.

So far we have considered an unbounded system. Now considering a bounded system, by
using the Green’s theorem we have

S 0

v S

G
V G dv G V dS

n
r r e

Ï ¸∂Ê ˆ= + -Ì ˝Á ˜∂Ë ¯Ó ˛ÚÚÚ ÚÚ (4.100)

This requires the knowledge of the potential V and its gradient ∂V/∂n = rS/e0 at the surface S, and
such information may not be always available at the start of a problem. This difficulty can be
partially overcome by adding to the unit charge, some surface layers of charge. Then the Green’s
function is modified to

0

1
4

G
r

cpe= + (4.101)
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where c is the potential of the charge layers, and within the volume v, —2c = 0. By this means, it
is possible to make either G or ∂G/∂n equal to zero on S. But even then the difficulty is not
completely solved. Such points are better illustrated by considering some practical problems.

To summarize what we have discussed so far, the Green’s function is thus a solution for a
case which is homogeneous everywhere except the source point or region . When the source is on
the boundary, the Green’s function can be made to satisfy the inhomogeneous boundary
conditions (nonzero boundary conditions), and when it is in the region, the function may be used
to satisfy the inhomogeneous equation (i.e. the Poisson’s equation).

4.3.1 Green’s Function for a Two-dimensional Region

This problem is similar to that solved in Section 4.2.4. We consider as before a Laplacian
potential field, i.e.

—2V = 0

in a rectangular region (Figure 4.5) which satisfies the boundary conditions

x = 0, V = 0; x = a, V = 0; y = b, V = 0; y = 0, V = f (x)  (4.102)

V = 0

V = f(x) a
x

O

V = 0

b

y

V = 0—2V = 0

Figure 4.5 Rectangular region with specified boundaries.

Following the method of separation of variables (or by the eigenfunctions, as it is called), it
will be found that the solution of this Laplacian field with the nonhomogeneous y = 0 boundary
comes out to be the series

p p
p
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(4.103)

Note that the Fourier coefficient integral inside the serpent brackets is not a function of x, but is
a function of the limits a and b and hence the integrating variable x can be replaced by, say, h.
This is being done so that we should be able to derive the Green’s function by rearranging the
solution in the integral form. Hence,



CHAPTER 4 METHODS OF SOLVING ELECTROSTATIC FIELD PROBLEMS 131
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and the Green’s function integral solution is of the form

  V(x, y) = h hh
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Hence the Green’s function will be the series
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This is the Green’s function for the boundary surface S which in this case is the boundary y = 0.
We can similarly write the Green’s function for the boundary surface y = b in the problem of

Section 4.2.4 by considering Eq. (4.24) and replacing in it the variable x by h in the serpent
brackets as above and then following the subsequent step, i.e.

p
p ph

h p
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and the Green’s function solution of the problem is

h hh
=

⎛ ⎞= ⎜ ⎟⎝ ⎠∫
on

,
( , ) ( )

S y b

x y
V x y f G d (4.108)

4.3.2 Green’s Function for a Rectangular Region with
Poissonian Field

In Section 4.3.1, we derived the Green’s function for a homogeneous equation (Laplacian field)
with a nonhomogeneous boundary. Next we consider a nonhomogeneous field, i.e. a Poissonian
field with homogeneous boundaries. So let us consider the two-dimensional Poisson’s equation

2 2
2

2 2
( , ) 4 ( , )

V V
V x y x y

x y
pr∂ ∂∇ = + = −

∂ ∂
(4.109)

inside the rectangular boundaries (Figure 4.6):

x = 0, V = 0; x = a, V = 0; y = 0, V = 0; y = b, V = 0 (4.110)
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There are two ways of solving this nonhomogeneous PDE, i.e. a single-series solution by the
method described in Section 4.2.4, or by a double-infinite series solution with orthogonal
functions in both x and y variables. We shall consider this solution to start with. The method is
the simplest analytically though the convergence of the double series is rather slow—a
computational problem which is no longer a difficult one because of the availability of today’s
high-speed computers. We can expand V in the terms of the double Fourier series in the form

( , ) sin sinmnm n

m x n y
V x y A

a b
p pS S ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

(4.111)

The choice of the functions of x and y are decided by the types of the boundaries specified for the
problem. It is to be noted that this series is not a solution of the Laplace’s equation —2V = 0, but
it can be shown to be a solution of the Poisson’s equation (4.109). In fact, for it to be a solution
of Eq. (4.109), it has to be a solution of the Laplace’s equation in the specified rectangular region
wherever r(x, y) happens to be equal to zero. For example, if r(x, y) is a delta function at the
point, i.e.

r(x, y) = d(x - x0) d (y - y0) (4.112)

then Eq. (4.111) will be a solution of the Laplace’s equation at all the points in the rectangular
region except for the one point, at (x0, y0). Coming back to the present problem, to solve
Eq. (4.109), we have to expand r(x, y) in the double Fourier series with the same periodicities, i.e.

p pr
∞ ∞

= =
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where
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m n

P d d
ab a b (4.114)

Inserting both the expressions, i.e. from Eqs. (4.113) and (4.111), in the Poisson’s equation
(4.109), the coefficients Amn can then be determined by multiplying the substituted equation by

Figure 4.6 Rectangular region with Poissonian field inside.
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sin (ipx/a) and sin ( jpy/b) and by integrating both sides within the limits 0 to a and 0 to b for all
values of i and j, respectively. The final solution comes out in the form

V(x, y) = 2 2
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is the Green’s function for the inhomogeneous equation with homogeneous boundary conditions.
It is to be noted that the Green’s function is symmetric with respect to the interchangeability of x,
y with x, h. Physically what this means is that the exchange of the source and the observer does
not change G. This is called the principle of reciprocity.

We can also solve Eq. (4.109) in terms of a single-infinite series by the method of separation
of variables. To solve it that way, we set
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where Fm is to be evaluated, and
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Substituting these in Eq. (4.109), an ordinary, nonhomogeneous equation in Fm is obtained,
which is

p p r⎛ ⎞− = −⎜ ⎟⎝ ⎠

22

2
4 ( )m

m m
d F m

F y
ady

(4.119)

The solution of the ODE is in terms of a non-orthogonal hyperbolic function which results in the
solution of the Poisson’s equation in terms of a single infinite series, and the corresponding
Green’s function can be obtained therefrom. It needs a bit of straightforward but tedious process of
expansion of the hyperbolic function of y in terms of the Fourier series in sin (npy/b) to show that
the Green’s function so obtained is identical with that derived in Eq. (4.116). The details of
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The conducting metal plane must be at zero potential, and by the method of images, this
is equivalent to putting a line charge of equal magnitude and opposite polarity at the point
(-x0, y0). Hence the potential at the point P [whose coordinates are (x, y)] would be

P
0

1
ln

2
R

V
R

⎛ ⎞= − ⎜ ⎟
⎝ ⎠pe [Ref. Eq. (2.40)] (4.120)

The Green’s function has to satisfy the homogeneous Dirichlet boundary condition for the
conducting plane, i.e. for x = 0, V = 0.
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1
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2
r R

G x
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(4.121)

in the positive-half of the coordinate plane. On the equipotential plane, R = R0, and hence G = 0,
i.e. the boundary condition is satisfied.

If now, instead of the line charges in front of the conducting plane we have a point charge
at the point (x0, y0, z0), as in Figure 4.8, then the conducting metal plane x = 0 and the unit
positive charge at S (x0, y0, z0) are again equivalent to replacing the plane by an image charge of
negative nature at the point S¢ (-x0, y0, z0)—a point symmetrical to S with respect to the plane
x = 0. Hence the potential at the observer point P (x, y, z) is

P
0

1 1 1
4

V
R Rpe

⎛ ⎞= −⎜ ⎟
⎝ ⎠

(4.122)

working out are left to the interested reader as an exercise. (For hints, the reader may refer to
Morse & Feshbach: Methods of Theoretical Physics, Vol. 1, Chapter 7.)

4.3.3 Green’s Function for an Infinite Conducting Plane

A unit line charge is placed at the point (x0, y0) in front of the infinite conducting plane x = 0,
such that the line charge is parallel to the plane, and both lie in parallel y-z planes (Figure 4.7).

Figure 4.7 Line charge in front of a conducting plane.
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Again on the equipotential plane, x = 0, R = R0, and hence G = 0. These two examples form the
mathematical basis for the method of images applied to the electrostatic problems.

4.4 CONFORMAL TRANSFORMATIONS AND COMPLEX
VARIABLES

Conformal transformation is one of the most powerful methods for solving the Laplacian field
problems analytically and is capable of handling the boundaries of much more complicated
shapes than any other analytical methods. It can be used for analyzing the fields, for instance,
between non-concentric circular cables, exterior to charged conductors of polygonal sections, in
slotted air-gaps of rotating machines, in waveguides of high-frequency transmission lines, and so
on. The solutions are, in general, of simple forms and yield readily, the expressions for the
capacitance in electrostatic fields, and the expressions for the permeance and the flux density in
magnetic fields. The chief limitations to the technique are that it is applicable to two-dimensional
problems only, and the boundaries have to be equipotentials or be coincident with flux lines or a
combination of these two types (i.e. Dirichlet, Neumann, and mixed types).

4.4.1 Functions of Complex Variables and Conjugate Functions

Consider the complex variable
z = x + jy (4.124)

where R and R0 are the distances as shown in the Figure 4.8. Once again the Green’s function has
to satisfy the homogeneous Dirichlet boundary condition on x = 0, and hence

0 0

1 1
, 0
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G x

r R R
⎛ ⎞ ⎛ ⎞= − ≥⎜ ⎟ ⎜ ⎟
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(4.123)

Figure 4.8 A point charge in front of an infinite conducting plane x = 0.
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Then we can have the functions W(z) (e.g. z2, ln z, 1/z, (az + b)/(cz + d), and so on), and

W(z) = U(x, y) + jV(x, y) (4.125)

with a real part U and an imaginary part jV , both U and V being real functions of x and y. For
example,

W(z) = z2 = (x + jy)2 = (x2 - y2) + 2jxy (4.126)
so that

U = (x2 - y2) and V = 2xy (4.127)

The function W(z) = U + jV can then be represented on another complex plane with U as the
abscissa and jV  as the ordinate. Then we have the complex z-plane and the complex W-plane
(Figure 4.10).

where x and y are real functions and j = 1− . This quantity can be represented by a point in the
complex plane with x as the abscissa and jy as the ordinate, as shown in the Figure 4.9. This
z must not be confused with the z-coordinate of either the Cartesian or the cylindrical coordinate
system.

Figure 4.9 Point z = x + jy in the complex plane
(r is the modulus and q the argument of the complex number z).

z = x + jy

x

jy

q
O

q = tan–1 (y/x)
r = (x2 + y2)1/2

Figure 4.10 The function W(z) = U(x, y) + V(x, y) in the W-plane and the derivative (dW/dz)
from the changes in W and z.
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Next we consider the condition necessary for the existence of the derivative (dW/dz) in the
region. The point W in the W-plane corresponds to a point in the z-plane according to the
specified function W(z) (Figure 4.10). When z increases to z + Dz, there is a corresponding increase
in W to W + DW, where Dz and DW are complex quantities. The value of the derivative dW/dz is
the ratio of these increments DW/Dz in the limit as Dz Æ 0. Now, for a given value of z, dW/dz has
to have a unique value, independent of the nature of dz. So we consider the two limiting cases,
i.e. dz = dx and dz = jdy. Hence we get

dW W U j V
dz x x x

∂ ∂ ∂= = +
∂ ∂ ∂

and

1 1dW W U V
dz j y j y y

∂ ∂ ∂⎛ ⎞ ⎛ ⎞= = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
(4.128a)

These two must be equal, i.e.

∂ ∂ ∂ ∂⎛ ⎞= = +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
1U j V U V

x x j y y

\ ∂ ∂ ∂ ∂= = −
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and
U V U V
x y y x

(4.128b)

These are called the Cauchy-Riemann equations. The functions U and V related through these
equations are called conjugate functions. A function W(z) is said to be analytic, if its four partial
derivatives exist and are continuous throughout the region considered, and they satisfy the
Cauchy-Riemann conditions.

Note: The Cauchy-Riemann conditions have been proved for the Cartesian coordinates, but they
are equally valid in other coordinate systems as well, e.g. in circular cylindrical coordinates these
equations are

f f
∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= = −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

1 1
and

U V V U
r r r r

(4.129)

4.4.2 Conformal Transformation

The discussion so far indicates that for the functions of the complex variables of the type

W(z) = f (z) (4.130)

there is a one-to-one relationship of the points in the W(= U + jV ) plane to those in the z(= x + jy)
plane and vice versa. The W-plane can be considered to be a map or transformation or
representation of the z-plane. The existence of a non-zero derivative of W(z), i.e. (dW/dz) at and in
the neighbourhood of z ensures that the function is analytic in the region and has unique
geometrical consequences. From Figure 4.11, let W1 and W2 in the W-plane correspond to z1 and
z2 in the z-plane, and also let their respective distances from W and z in their own planes be
infinitesimal and the corresponding elements be dW1, dW2, and dz1, dz2. So dW1 must be a map of
dz1, and dW2 of dz2; and expressing them in the polar form, we have

1 1 1 1 1 1

2 2 2 2 2 2

exp ( ) exp ( )

exp ( ) exp ( )

dW dS j dz ds j

dW dS j dz ds j

= =
= =

b a
b a (4.131)
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Now, since a non-vanishing derivative dW/dz exists at this point, hence

{ } { }1 1 2 2
1 1 2 2

1 1 2 2
exp ( ) exp ( ) exp ( )

dW dS dW dS
K

dz ds dz ds
b a b a m⎛ ⎞ ⎛ ⎞= − = = − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

j j j (4.132)

Since K and m depend only on the location of the point or the value of z, hence

m = b2 - a2 = b1 - a1

\ b2 - b1 = a2 - a1 = a (say) (4.133)

That is, the angle between the two elements dz1 and dz2 is the same as that between the
corresponding elements in the W-plane, dW1 and dW2, in both magnitude and sense. This means
that the angles between the intersecting curves in the z-plane are preserved between the
corresponding curves in the W-plane. In particular, when the orthogonal families of curves in the
z-plane are mapped to the W-plane, they still remain orthogonal however much their finite
dimensions may change. Such a transformation is called ‘conformal transformation’ or ‘conformal
mapping’ or ‘conformal representation’. It should be noted that any analytic function provides
conformal mapping at all points where its derivative is nonzero, and the converse of this is also
true.

4.4.3 Complex Potential W(z)

Let us evaluate the second derivative of W with respect to x and y:
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W dW z dW
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Figure 4.11 Conformal mapping.
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Thus the function W(z) is a solution of the Laplace’s equation in two dimensions. Separating the
real and the imaginary parts of W, we get

2 2 2 2

2 2 2 2
0 and 0

U U V V

x y x y

∂ ∂ ∂ ∂+ = + =
∂ ∂ ∂ ∂

(4.135)

Thus U and V both independently satisfy the Laplace’s equation in two dimensions, and either of
these two can be made to be the electrostatic potential which also satisfies the Laplace’s equation
in charge-free region.

If now we take the imaginary part of W, i.e. V to be the electrostatic potential, then (V =
constant) will give equipotential curves. So (U = constant) curves would be orthogonal to these
equipotentials, and thus they define the lines of force. The function V is then called the ‘potential
function’, U is called the ‘stream function’ and W is called the ‘complex potential function’.

We shall now derive the electric field intensity E in terms of the complex potential. In the
two-dimensional field

andx y
V V

E E
x y

∂ ∂= − = −
∂ ∂

and so writing in complex form, we have

x y
V V V U U V

E jE j j j
x y x x y y

∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ = − + = − + = − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦
(4.136)

using the Cauchy-Riemann conditions. Now considering the derivative of W with respect to z,
we get
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z
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       = 
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x j y
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                    = E* (i.e. complex conjugate of E) (4.137)

\ dW
E

dz
= (4.138)

\ The complex potential function completely determines a two-dimensional electrostatic
field in a charge-free space.

We have seen that the stream function U is a constant along a line of force (V, being the
potential function). If ds is the length element along an equipotential, then since the stream
functions and the equipotentials are orthogonal, then we have

U V
s n

∂ ∂= −
∂ ∂

(4.139)

where dn is an element of length along the line of force normal to the equipotential at the point
under consideration. The negative sign above merely implies that ds is oriented to the left when
viewed along dn. The above equation is a consequence of the Cauchy-Riemann conditions and
becomes obvious if we visualize the x-axis parallel to dn, and the jy-axis parallel to ds.
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Now, 
V
n

∂−
∂  = E (the electric field intensity at that point).

\ dU = Eds (4.140)

The above quantity is the flux of E crossing the equipotential in the direction of dn through an
area on the equipotential surface whose width is ds and the height is the unit of length measured
on the equipotential surface perpendicular to the plane containing dn and ds. From this we can
calculate the charge density on the surface of an equipotential conductor. Thus we get the flux
and the potential difference from the conjugate functions (U + jV ).

It is being emphasized here that these quantities U, V are basically numbers having no
dimensions, and we can always choose a scale constant so that the value of either V or U gives
directly a value of the potential difference or a quantity of the flux. Furthermore V and U are
inter-changeable, e.g. if U and V are interchanged, then Eq. (4.137) becomes dW/dz = E, and
Eq. (4.138) still holds.

4.4.4 Some Simple Examples

We shall illustrate the power of the above method by solving a few practical problems. For the
details of a large number of useful transformations, the reader is referred to standard textbooks on
complex variables and applied mathematics. For a very comprehensive range of problems (both
electrostatic and magnetic) the reader is recommended to refer to Analysis and Computation of
Electric and Magnetic Field Problems by K.J. Binns & P.J. Lawrenson, Electromagnetic Fields,
Volume 1, by E. Weber, and A Dictionary of Conformal Representation by H. Köber.

Since this method is useful for solving all types of Laplacian fields, it has been widely used
for solving a large number of magnetic field problems. So for the present we restrict ourselves to
solving a few typical electrostatic problems only.

4.4.4.1 Example 1 (Parallel plate capacitor)

Consider the field inside a parallel plate capacitor, neglecting the fringing at the ends (i.e. we
assume an infinite capacitor) (see Figure 4.12.).

Figure 4.12 A parallel plate capacitor with its lower plate grounded and the upper plate
at potential V1. The horizontal lines are equipotentials. The vertical lines are the

lines of force (stream functions). The end effects are neglected.
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The equipotentials are

y = constant, i.e. V = 1V
y

d
⎛ ⎞
⎜ ⎟
⎝ ⎠

(4.141)

and the lines of force are

x = constant, i.e. U = 1V
x

d
⎛ ⎞
⎜ ⎟
⎝ ⎠

(4.142)

Hence the transformation function W(z) would be

( )⎛ ⎞ ⎛ ⎞= + = + =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
1 1( )

V V
W z U jV x jy z

d d
(4.143)

\ 1VdW
E

dz d
= = (4.144)

and the charge density on the upper plate is

e e⎛ ⎞+ = +⎜ ⎟⎝ ⎠
1

0 0
V dU

d dx

\ Capacitance per unit area = 0

1

charge density

V d

e
= (4.145)

In the present analysis, the fringing effects have been neglected; but in a subsequent
problem we shall show how the transformation methods are capable of taking account of such
effects.

4.4.4.2 Example 2 (Two concentric cylindrical conductors)

In spite of the above title, we shall start with a more general problem with the field between the
two charged cylinders and use a two-stage transformation to show the versatility of the method.
The general problem is of great value in determining the breakdown voltage of the air gap, the
necessary insulation, and the capacitance of parallel cylindrical cables. Once the initial problem
has been transformed to the concentric cylinders, then it becomes applicable to the coaxial
cables. The two-stage transformation is from the z-plane to the t-plane and then to the W-plane.
The z-t transformation is a special case of the more general bilinear transformation of the type:

at b
z

ct d

+=
+

(4.146)

i.e.
1

z
t

= or
1

t
z

= (4.147)

The field between the two charged cylindrical conductors is as shown in Figure 4.13. We
consider the non-concentric boundaries of this configuration, placed in the z-plane, as shown in
Figure 4.14(a), with the x, y coordinates shown therein.

The origin of inversion has to be placed d units to the left of the smaller circle of radius R2.
The dimension d has to be so chosen that these two circles are transformed into concentric circles
in the t-plane. The process is as follows: The transformation equation (4.147) is written as:
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Figure 4.13 Field between two charged cylindrical conductors with uniform dielectric.

Figure 4.14 Z-plane to t-plane transformation of the two-cylinder problem.
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t - d = 
1

,d
x jy

−
+

where t = u + jv (4.148)

The expression for the radius can be written as

2
(1 )xd jyd

R t d
x jy

− −= − =
+

\
2 2 2

2
2 2 2

(1 )xd y d
R

x y

− +=
+

which can be rearranged as
2 2

2 2
2 2 2 2

2 2

Rd
x y

d R d R

⎡ ⎤ ⎡ ⎤
− + =⎢ ⎥ ⎢ ⎥

− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
(4.149)

i.e. the smaller circle of radius R2 and centre (d, 0) in the z-plane transforms to a circle in the
t-plane, as shown in Figure 4.14(b), with its centre coordinates as {d/(d2 – R2

2), 0} and radius
r2 = R2/(d

2 – R2). Similarly the larger circle, with its centre at (d - D, 0) and radius R1 transforms
itself to a circle in the t-plane with its centre at [(d – D)/{(d – D)2 – R2

1}, 0], and radius
r1 = R1/{(d – D)2 – R2

1}. For the two circles in the t-plane to have the same centre at (c, 0), so that
the circles become concentric, the required condition is

−=
− − −2 2 2 2

2 1( )

d d D

d R d D R
(4.150)

This equation fixes the required position of the origin of inversion in the z-plane by evaluating
the value of d as

⎛ ⎞+ − + −= ± −⎜ ⎟⎜ ⎟⎝ ⎠

22 2 2 2 2 2
22 1 2 1
22 2

D R R D R R
d R

D D
(4.151)

(Note that the value of d must be so chosen as to make r positive.)
The cylinders in the z-plane have equipotential boundaries, and in the t-plane, the

concentric boundaries must also be equipotential lines with the same potential difference between
them. So the field between the two concentric cylinders centred at the point (c, 0), separated by a
medium of relative permittivity er and carrying a charge of Q units per unit length, is given by

W = Y + jF = 
0 r2

Q⎛ ⎞
⎜ ⎟
⎝ ⎠p e e

 ln (t - c) (4.152)

By considering the equipotential surfaces on the two cylinders, i.e. t1 = c + r1 and t2 = c + r2, the
potential difference can be expressed as

P.D. = Y1 - Y2 = 1

0 r 2

ln
2

rQ

r

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠pe e
(4.153)

Hence the capacitance, per unit length, between the two cylinders is given by

C = 
total flux per unit length (= )

P.D.

Q
 = ( )

0 r

1 2

2

ln /r r

pe e
(4.154)
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To find the potential gradient, i.e. the electric field intensity E in the z-plane,

 = = ×dW dW dt

dz dt dz
E (4.155)

From Eq. (4.152),

0 r

1

2

dW Q

dt t c

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠pe e

      
1 2

1 2

1

ln ( / )r r t c

Y Y⎛ ⎞ ⎛ ⎞−
= ⎜ ⎟⎜ ⎟ ⎝ − ⎠⎝ ⎠ (4.156)

On substituting for Q from Eq. (4.153) and from Eq. (4.147), we have

2

1dt

dz z
= − (4.157)

So Eq. (4.155) can be written as

1 2 1 2
2

1 2 1 2

1 1 1

ln ( / ) ln ( / ) (1 )r r t c r r cz zz

Y Y Y Y
E

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎛ ⎞= =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ − ⎠ ⎝ − ⎠⎝ ⎠ ⎝ ⎠
(4.158)

For the consideration of the breakdown voltage between the cylinders, the maximum value of the
P.D. is important. This occurs at the point on the shortest line between the cylinders at the
boundary with the greater curvature. This point on the z-plane is, z = d - R2 which corresponds to
the point t = c + r2 in the t-plane.

Hence substituting these values in Eq. (4.158), we have

1 2
max 2

1 2 2 2

1

ln ( / ) ( )r r r d R

Y Y
E

⎛ ⎞⎛ ⎞−
= ⎜ ⎟⎜ ⎟⎝ ⎠ −⎝ ⎠ (4.159)

4.4.4.3 Example 3 (A parallel plate capacitor taking account of the
fringing effects at the ends)

This problem is an application of the well-known Schwarz–Christoffel transformation in which the
inside of a polygon is transformed into the upper-half plane (for a general detailed description of
the method, the reader is recommended in particular to The Schwarz–Christoffel Transformation
and its Applications—A Simple Exposition by Miles Walker, apart from the references previously
mentioned). Hence we shall not go into the general discussion about the method, but apply it
directly to this problem.

This problem is an example of transformation for a polygon with three vertices, as we
shall see. The capacitor with plates of negligible thickness, which are at a distance 2d apart,
and assumed to be charged to the potentials Y1 and -Y1, respectively [Figure 4.15(a)]. The
field is symmetrical about the horizontal central line and so the top-half is represented in the
z-plane as shown in Figure 4.15(b), where the real axis (x-axis) corresponds to the central line of
symmetry.

The Schwarz–Christoffel equation is used for transforming the real axis of the t-plane
[Figure 4.15(c)] into the boundary of the z-plane. The upper surface of the plate, shown l m in the
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z-plane is represented by the portion of the real axis of the t-plane between -• and a, the lower
surface of the plate (i.e. m n in the z-plane) by the portion between a and b. The corresponding
points in the two planes then are

t Æ - •, z Æ - • + jd

t = a, z = 0 + jd

t = b, z Æ - •
t Æ + •, z Æ + • + j0

The general equation of the Schwarz–Christoffel transformation is

dz

dt
 = S(t - a)a /(p - 1) (t - b)b /(p - 1) (t - c)g /(p - 1) (4.160)

where a, b, g, d, . . . are the interior angles of the polygon at the successive vertices. The interior
angles in this case are: 0 at z Æ - • and 2p at z = 0 + jd, and hence

Figure 4.15 Transformations of the parallel plate capacitor with fringing at the ends.

(a) Fringing flux of a parallel plate capacitor

(b) Boundaries in the z-plane

(c) Boundaries in the t-plane
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dz

dt
 = S(t - a)(t - b)- 1 (4.161)

The constants S, a, and b have to be so chosen that the transformation equation, to be derived by
integrating Eq. (4.161) gives the required shape and the size of the z-plane boundary. Now, since
in this particular problem the z-plane configuration is independent of the specified single
dimension d, any two of the three unknowns can be given convenient values and the third one
being used to determine d. So to simplify Eq. (4.161), let us assume a = -1 and b = 0. Hence we
get

( 1)dz S t

dt t

+= (4.162)

On integrating, we get
z = S(t + ln t) + K (4.163)

where S and K are constants to be evaluated. So we express Eq. (4.162) in the cylindrical polar
coordinates, i.e.

( )
q

q q
q q q

⎛ ⎞+= = +⎜ ⎟⎜ ⎟⎝ ⎠

1
( ) ( 1)

j
j j

j

re
dz S jre d jS re d

re

Since a movement round a small circle of radius r and centre at the point t = 0 in the t-plane,
corresponds to the movement from the real axis to the line z = jd in the z-plane, hence, as r tends
to zero, the above equation gives

p

q
−∞ +

−∞

=∫ ∫
0

jd

dz jS d (4.164)

\ d
S

p
=

Since a has been made equal to -1, t = 1 corresponds to z = jd, and so substituting in Eq. (4.163),
we get

{ 1 ln ( 1)} ( 1 )
d d

d K Kp
p p

⎛ ⎞ ⎛ ⎞= − + − + = − + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
j j

\ d
K

p
=

and hence

(1 ln )
d

z t t
p

⎛ ⎞= + +⎜ ⎟⎝ ⎠
(4.165)

is the equation of transformation.
The boundaries of the z-plane have a potential difference Y1 which is half of that between

the capacitor plates. Hence now the upper region of the t-plane can be converted to that due to
the two semi-infinite equipotential planes, one lying between 0 and •, and the other between 0
and - • with a difference in potential Y1 between the two halves (dividing at the origin) of the
real axis. The required transformation is the logarithmic function (Figure 4.16), which is

p
Y⎛ ⎞= ⎜ ⎟⎝ ⎠

1 lnW t (4.166)
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Figure 4.16 The logarithmic transformation W = f + jp = (Y1/p) ln t.
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Hence the solution for the z-plane field is obtained by eliminating t between these two equations,
which gives

1

1 exp
d W W

z
Y Y

⎡ ⎤⎛ ⎞ ⎛ ⎞= + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦

p p
p (4.167)

with the corresponding values as

z Æ -•, W Æ -• and z = jd, W = jY1

It should be noted that the choice of a and b as - 1 and 0, respectively (instead of 0 and + 1),
gives the solution in its simplest form.

Capacitance. The capacitance of a parallel plate capacitor, often calculated on the assumption
that the plates extend to infinity, is an underestimation. This is because of two reasons: firstly the
charge density on the inner faces increases near the edges, and secondly the charge on the outer
faces is neglected. Now, at any point on the surface of the plates, the charge density r is equal to
the flux density there, i.e.

r e eY∂ ∂⎛ ⎞= =⎜ ⎟∂ ∂⎝ ⎠
W

x z
(4.168)

where e is the permittivity of the surrounding region.
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From Eq. (4.167), by differentiation,

1 1

exp 1

dW

dz d W

Y

Y

⎡ ⎤
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p

Hence the charge density is

0

exp 1
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Y
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⎛ ⎞ +⎜ ⎟⎝ ⎠

rr
p (4.169)

where r0 = Y1e/d, the charge density based on the assumption of the infinite plates. This equation
shows that the charge density increases towards the edges and becomes infinite at the edge of the
plate, where z = jd, t = 1, W = jY1.

We can also calculate the additional charge on the inner surface of the plate due to fringing,
which is

1

0

0
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This additional charge is equivalent to a lengthening of the uniform field by the amount d/p.
The charge on the outer surface of the plates is

0

1jd j

d
dz dW

Y
Y

−∞ −∞
⎛ ⎞

= = → ∞⎜ ⎟
⎝ ⎠∫ ∫rr

However for a capacitor of finite dimensions, it is possible to calculate this additional charge to a
fair degree of accuracy by assuming the charge distribution near the edges to be identical with
that near the edge of the infinite plate. This is justifiable because the charge density decreases
very rapidly away from the edge, i.e. at a distance from the edge equal to 1.5d, the value of r
is < r0/10. Hence

the charge on the outer surface = 2
l jd

jd

dzr
− +

∫
where 2l is the width of the plate.

Note: The solution for the field of the boundary as shown in the Figure 4.15(b) was used by
Rogowski to determine the electrode shapes suitable for the measurement of the breakdown
strength of the gases and liquids. The electrode shape is chosen to be that of an equipotential line
along which the gradient is < Y1/d—a condition required to ensure that the breakdown occurs in
the uniform portion of the field. (These are known as Rogowski electrodes.)
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4.5 METHOD OF IMAGES

We have briefly introduced this method earlier in Sections 2.8.4 and 2.8.5 while discussing the
field of an infinitely long line charge lying parallel to an infinite conducting plane. The method
of images involves the conversion of an electric field to another equivalent field that is simpler to
calculate. It is particularly useful for evaluating the fields of the point or the line charges near the
boundaries which can be either conducting surfaces or dielectric surfaces. Thus this is a method of
solving Laplacian and Poissonian field problems.

The above method was discovered by Lord Kelvin in 1848 for the purpose of solving
problems in electrostatics in which the bounding surfaces between the media were to be
accounted for. By using the principle of duality (i.e. the conjugate property of two fields), the
method has been extended to the problems in magnetostatics and electromagnetics. However, at
present we shall restrict our discussion to the electrostatic problems only. Lord Kelvin, in his
analysis, showed that:

the field of an electric charge in front of a conducting sheet ∫ the field of the charge
+ the field of its mirror image in the conducting sheet

He used the term ‘image’ based on the similarity of this concept with the ‘optical image’. But
while the optical images are of two kinds, i.e. (a) real and (b) virtual, the electrostatic images are
all virtual.

Thus the method of images implies, in electrostatics, determining an imaginary distribution
of charges inside a conducting body (or even a dielectric body, as the case might be) in an
electrostatic system, which would produce outside the body exactly the same field as that
produced by the actual free charges over its surface; i.e. the basic requirement of the method of
images is that the effects of the boundaries shall be correctly represented by the images. So now
we consider a mathematical proof of this statement.

Proof: The electrostatic field in a region v can be represented by a scalar potential f. Consider the
Gauss’ theorem,

S v

dS dv◊ = —◊ÚÚ ÚÚÚA n A

where
A is an arbitrary vector in the region v
n is a unit vector drawn from within v, normal to S
S is the mathematical surface completely enclosing the volume v.

Now, let A = y—f, where y and f are scalar functions in the region, then from the Gauss’
theorem, we get

{ }2 ( )
S v

dS dv
n

fy y f y f∂Ê ˆ = — + — ◊ —Á ˜Ë ¯∂ÚÚ ÚÚÚ
This is the well known Green’s first identity.

If y = f, then the above equation becomes

{ }2 2( )
S v

dS dv
n

ff f f f∂Ê ˆ = — + —Á ˜Ë ¯∂ÚÚ ÚÚÚ (4.171)
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This equation gives a relationship between the surface field and the volume field due to f. We
have to show that this relation is unique, if the image is to represent the boundary condition
correctly.

So let us say that there are two solutions of f, i.e. f1 and f2 both satisfying Eq. (4.171).
Then both these potentials must satisfy the operating equation in v, i.e.

—2f1 = - 
0

r
e

and —2f2 = - 
0

r
e

where rC is the charge density within v.

\ If c = f1 - f2, then —2c = 0.

Hence applying Eq. (4.171) to c, we get

2{( ) }
S v

dS dv
n

cc c∂Ê ˆ = —Á ˜Ë ¯∂ÚÚ ÚÚÚ (4.172)

If now, the left-hand side of this equation is zero, then the integrand of the right-hand side must
also be zero. In such a case, —c = 0, and both c and f1 - f2 are constants. Thus the field derivable
from f1 is identical with the field derived from f2. Therefore, the field is unique.

Equation (4.172) implies that the field will be unique if ∂c/∂n is zero everywhere on S. The
condition for c is that it should be constant, and not necessarily zero on S, because

2( )
S S v

dS dS dv
n n

c cc c c c∂ ∂Ê ˆ Ê ˆ= = —Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂ÚÚ ÚÚ ÚÚÚ (4.173)

Thus the criterion for uniqueness is that either c is constant or ∂c/∂n is zero everywhere on S. In
physical terms this means that either the tangential or the normal components of the electric field
be specified everywhere on S. A particularly important case which has attracted a lot of attention
is when S is an equipotential surface. In such a case, the field is unique and in electrostatics the
range of problems deal with the charge distributions near the perfect conductors (i.e. the enclosing
surface S). However it should be noted that the condition that the enclosing surface S shall be a
conducting surface is sufficient to determine the uniqueness of the field within v, but this is not
a necessary condition. All that is necessary is that the value of the tangential or the normal
electric field shall be specified at every point on the surface. (So the image methods can be
applied to the dielectric boundaries as well.)

Thus from Eq. (4.172), the image problem in electrostatics can be formulated as follows:

(a) Consider a surface S which completely encloses v.
(b) Determine the tangential E field (or the normal field) on S due to the induced charges

on the boundaries.
(c) Find a distribution of charges outside S which will give on S the same tangential (or

normal) field.

Then this charge distribution would give the same field inside v, which would be given by
the induced charges on the boundaries.

Note: The image distribution must be placed outside S, i.e. a virtual image in terms of optics. The
image charges must be outside v because what is required is the field of these charges and not the
charges themselves. Finally, although the field of the image distribution is unique, no such
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uniqueness is required of the image distribution itself. It is not the uniqueness but the
convenience that is the criterion of the image distribution.

4.5.1 Line Charge Parallel to the Surface of a Semi-infinite
Dielectric Block

An infinite line charge Q C/m is in the region 1 of permittivity e1, at a distance a from the face
of a semi-infinite slab of dielectric of permittivity e2 (Figure 4.17).

Figure 4.17 A line charge in front of a semi-infinite dielectric block.
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Consider a point P on the interface as shown in the figure, and let the induced charge at P
be s. Therefore, the normal component of E (i.e. normal to the interface) at P due to the line
charge Q is

n 2 2
12 ( )

Qa
E

a x
=

+pe (4.174)

This is the applied field.
To find the field due to the induced charge, we use the continuity condition for Dn on the

interface, i.e.

( ) ( )1 n n 2 n nE E E E′ ′+ = −e e

where En¢ is the electric field due to the induced charges on the interface (Figure 4.18).

Figure 4.18 The induced field on the interface.

En

E ¢n Region 1
(e0er1 = e1)

Region 2
(e0er2 = e2)

Interface

E¢n



152 ELECTROMAGNETISM: THEORY AND APPLICATIONS

\ 2 1
n n

2 1

E E
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(4.175)

Thus the effect of the boundary (interface) on the field in the region 1 can be specified
completely by the component En¢ along this interface and is given by the substitution

2 1
n 2 2
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a x
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(4.176)

This is the same field distribution which would result from either (a) a charge - Q{(e2 - e1)/
(e2 + e1)} at a distance y = a behind the interface line PQ in the region 2, or (b) equally from a
charge +Q{(e2 - e1)/(e2 + e1)} at a distance a from the interface in the region 1. Hence either of
these charges can be used to account for the effect of the boundary. But only one can be used in
the representation of the field in each of the two regions.

Thus considering first the field in the region 1, the choice of (b) would not satisfy the
divergence of the flux condition (i.e. — ◊◊◊◊◊ D = rC) and hence cannot be used to represent the field
in the region 1. But in the representation (a), the image charge lies outside the region 1 and so it
does not affect the divergence of the flux there. This charge, called an image charge, gives,
together with the source charge Q at A, the field solution for the region 1. (Note that this image
charge does not apply to the field in the region 2.)

For the region 2, since the field here opposes the applied field, so the equivalent point
charges giving the correct distribution of the field in this region will have opposite sign to the
previous one and lie outside the region 2. So the required image is of the strength - Q{(e2 - e1)/
(e2 + e1)}, lying at the point y = + a.

4.5.2 Point Charge Near an Infinite Grounded Conducting Plane

Consider a point charge Q at a distance D from an infinite conducting plane, which is earthed, as
shown in Figure 4.19. The image charge of the charge Q in the conducting plane is a point charge
- Q placed symmetrically to Q with respect to the conducting plane. For, if the plane is removed

Figure 4.19 Image charge of the point charge Q near a plane conducting surface.
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(Equipotential surface)

D

+Q

–Q
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If the origin of the coordinate system is taken at Q, then the potential V at a point P(r, q)
will be

0

1

4

Q Q
V

r rpe
⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟′⎝ ⎠⎝ ⎠

(4.177)

where r ¢ = (r2 + 4D2 - 4rD cos q)1/2.
The electric field intensity at P will be
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The lines of force are shown in Figure 4.19 and the equipotentials will be the curves orthogonal
to the lines of force. The induced charge density s ¢ on the conducting surface is found from the
normal component of the electric field intensity at the surface, i.e. En = s ¢/e0. On the conducting
surface, at all points r = r ¢, and

En = Er cos q - Eq sin q = 
s
epe

′
= −

3
00

2

4

QD

r

\ s ¢ = 
p 32

QD

r

\ The induced charge on the conductor surface is

s p
∞ ∞ ⎧ ⎫⎪ ⎪⎛ ⎞′= = − = −⎨ ⎬⎜ ⎟ +⎝ ⎠ ⎪ ⎪⎩ ⎭∫ ∫ 2 2 3 / 2
0 0

2
2

2 ( )

QD sds
sds Q

s D

as expected.

Figure 4.20 En on the conducting surface.
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and - Q is introduced instead, the field above the plane is the same as before (remembering that
the field below the plane in reality does not exist). Hence the field of all the induced charges on
the conducting plane can be reduced to the field of a single charge - Q symmetrical to Q with
respect to the conducting plane (Figure 4.20).

D

D
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Note again that the image charge is always located outside the region where the field is
being calculated. Also, it will be found that the force between the source charge and the
conductor surface can be correctly found by calculating the Coulomb force between the source
charge and its image. The force on Q in this case is Q2/{(4pe0) (2D)2}.

So far we have considered a single point charge near a conducting surface. The same
reasoning would apply to any finite distribution of charges near such a surface. An important
practical application of such a configuration, in its simplest form, is that of a two-wire
transmission line running parallel to the earth. The diameter of the wire (= d) is much smaller than
the distance between the wires (= D) and also their distance from the earth’s surface (= h)
(Figure 4.21).

Figure 4.21 Two-wire transmission line parallel to the earth’s surface and its image.

+ Q

h

h

– Q + Q

– Q

D

Earth’s surface

The problem posed is usually to find the capacitance per unit length of the system in
presence of the earth’s surface. The problem can then be approximated by considering the two
infinite line charges + Q and - Q parallel to a conducting surface. These charges would induce
charges on the surface the effects of which can be represented by taking account of the images
- Q and + Q at a distance h from the surface in a direction opposite to the plane of the source
lines. The problem can now be solved directly as it is an extension of the problem solved in
Section 2.8.4. It can be easily checked that the capacitance per unit length comes out to be

( ){ }
0

2
ln / 1 /2D R D h

⎡ ⎤+⎢ ⎥⎣ ⎦

pe
where 2R = d

Figure 4.21(a) Image charges of a point charge in a 90° conducting corner.

Equipotential surfaces
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Figure 4.22 Line charge Q running parallel to the circular cylinder of radius R.
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source charge Q at S, the normal component of the applied field strength En at a point P, as
shown, on the circular boundary is

n
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Q
E

b
= a

pe (4.179)

where the angle a and the length b are as shown in Figure 4.22. Hence the normal component of
the field due to the equivalent induced surface charge distribution is

2 1
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(4.180)

from Eq. (4.175).
From geometrical considerations, since S¢ is the inverse point of S with respect to this circle,

hence OS ◊◊◊◊◊ OS¢ = OP2 = OQ2 = R2, and the angular relations are as shown in the figure.
Considering the triangles PSS¢ and PS¢O, it can be shown that

a cos a + b cos b = 
a b
a
+sin ( )

sin

b

and
a sin a = R sin (a - b)

Another problem of interest is that of a point charge placed near two conducting half-planes
perpendicular to one another [Figure 4.21(a)]. The effects of the surfaces can be simulated by the
three image charges as shown in Figure 4.21(a).

4.5.3 Line Charge Near a Circular Boundary

We consider a line charge Q per unit length, in a medium of permittivity e1(= e0er1) running
parallel to a circular cylinder of permittivity e2(= e0er2) and radius R (Figure 4.22). Due to the
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On combining these two relationships, we get

cos cos 1

b a R

a b= − (4.181)

Hence the induced normal field En¢ can be rewritten as
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(4.182)

This is the normal component of the field strength along the perimeter of the circular boundary
due to the induced distributed charge. But this is also the normal component of the field due to
a charge - Q{(e2 - e1)/(e2 + e1)} at the inverse point S¢ together with a charge Q{(e2 - e1)/(e2 + e1)}
at the centre of the circle.

For the region 2 inside the circle, the images producing En¢ must be outside the boundary
and must produce a normal component of the field given by

2 1
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1 2 1
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Q
E

b

⎛ ⎞ ⎛ ⎞−⎛ ⎞′ = ⎜ ⎟ ⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠ ⎝ ⎠

e ea
pe e e

(4.183)

This requires an image charge of magnitude - Q{(e2 - e1)/(e2 + e1)} and it would be located at the
point S where the source charge was located.

Similarly it is possible to find the magnitudes and the positions of the images of a source
line charge when it is located inside the circular boundary (i.e. at the point S¢). The field inside
the circle is given by an image of magnitude Q{(e2 - e1)/(e2 + e1)} at the external inverse point S;
and the field outside the circular boundary is due to an image of magnitude - Q{(e2 - e1)/(e2 + e1)}
at the same point as the source charge Q(i.e. the point S¢) together with another image of
magnitude Q{(e2 - e1)/(e2 + e1)} at the centre O. This solution has been used to evaluate the fields
inside electronic valves. This general solution can still be used when the cylindrical boundary is
changed to an isolated conducting cylinder. In this case, in the above equations, we substitute
e2 Æ •. Then the images are of magnitudes - Q at the inverse point and + Q at the centre. The
conducting cylinder, since it is isolated, acquires a potential, but has no charge on it because the
flux from the charge from S passes to •, though some of it through the cylinder.

If, however, the conducting cylinder is earthed, its potential becomes zero. This causes a
change in the image charge at the centre. Now all the flux from the source charge at S passes
through the cylinder and it acquires a charge - Q. So the image charge at O must become zero and
the image charge at S¢ becomes - Q, and so the potential of the cylinder changes to zero.

4.5.4 Point Charge Near a Conducting Sphere

We consider first a grounded conducting sphere in which case it will be at zero potential. The
source charge Q is positioned at the external point S whose distance from the centre of the sphere
is a, the radius of the sphere being R (Figure 4.23). Since the sphere is grounded, it would be at
zero potential, and so we have to find an image system, i.e. the magnitude and the position of the
image charges, which together with the source charge would make the sphere to be at zero
potential.

From the symmetry of the problem and our analysis in Section 4.5.3, it is obvious that it
would be at the inverse point of S (say S¢) on the line OS, satisfying the condition OS ◊◊◊◊◊ OS¢ = R2.
This can also be derived in a slightly different manner. Consider the diametral points P1 and P2 on
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the sphere along the line OS, and assume that there is a charge Q ¢ at S¢ also on the line OS which
together with Q at S make the circular boundary at zero potential. Then,
for P1,

0
Q Q

a R b R

′
+ =

+ +
and for P2,

0
Q Q

a R R b

′
+ =

− − (4.184)

Solving these two equations, we have

Q ¢ = - 
2

and
R R

Q b
a a

⎛ ⎞ =⎜ ⎟⎝ ⎠
, i.e. the inverse points (4.185)

We still have to find out if this charge arrangement would make the whole spherical surface to be
at zero potential. So we take a general point P on the sphere, at which

4pe0V = 
1 2

Q Q

r r

′
+ (4.186)

where

r1 = 2 2 2 cosa R aR q+ +
and

r2 = 2 2 2 cosb R bR q+ + (4.187)

Substituting for Q ¢ and b from Eq. (4.185), we get V = 0, at P. Substituting for Q ¢ and b, we get
the potential V as
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Q Q R a
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Figure 4.23 Point charge and the conducting sphere.
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where

r1 = 2 2 2 cosa R aR q+ +
and

r2 = ( ) ( )22 2 3/ 2 / cosR a R R a q+ + (4.188)

If now we consider an arbitrary point A, anywhere in the plane as shown in the figure, then the
potential at A(r, f) is
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To find the electric field intensity,
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and at r = a
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where s ¢ is the induced charge density on the spherical surface.
\ The total induced charge on the sphere is

2

0

2 sin
QR

Q a d
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p

s p q q′ ′= = −∫ (4.192)

which is the same as the image charge. This is true because of the Gauss’ theorem. [This is an
extension of the “Weiss’ Sphere Theorem” of images in Fluid Dynamics (refer Textbook of Fluid
Dynamics by F. Chorlton).] Next we consider a point charge near a charged conducting sphere.
When the potential of the sphere is different from zero, it is still possible to use the method of
images to solve the problem. If Q is the point charge at the source point, first we replace the
sphere by an image charge Q ¢ = (QR/a) at the inverse point of the source point, i.e. at the point
(R2/a) away from the centre of the sphere on the line joining the centre of the sphere to the source
point, and to that we add another image charge (QS - QR/a) located at the centre of the sphere,
where QS is the charge on the sphere. The surface charge density on the spherical boundary is then
s ¢ + s ¢¢, where s ¢ is the charge distribution calculated from Q and Q ¢, and s ¢¢ is the charge
density due to (QS - Q¢).
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Some general comments. So far we have considered only some typical electrostatic field
problems solved by the method of images. We shall see further applications of this method when
we study the problems in magnetostatics as well as electromagnetism. However it would be
obvious from what we have studied so far that the method of images is an alternative way of
finding the Green’s function for the boundary surfaces in Laplacian and Poissonian field problems.

PROBLEMS

4.1 The electric potential distribution in a metal strip of uniform thickness and constant
width a, and extending to infinity from y = 0 to y Æ • is obtained as

V = V0 exp
y

a
⎛ ⎞−⎜ ⎟⎝ ⎠

p
 sin 

x

a
⎛ ⎞
⎜ ⎟⎝ ⎠

p

Show the coordinate system (with reference to the plate) used and find the boundary
conditions used for the above potential distribution.

4.2 A high voltage coaxial cable consists of a single conductor of radius Ri, and a
cylindrical metal sheath of radius Ro (Ro > Ri) and a homogeneous insulating material
between the two. Since the cable is very long compared with it diameter, the end effects
can be neglected, and hence the potential distribution in the dielectric can be
considered to be independent of the position along the cable. Write down the Laplace’s
equation in the circular–cylinder coordinates, and state the boundary conditions for the
problem. Solving the Laplace’s equation, show that the potential distribution in the
dielectric is

ln ( / )

ln ( / )
s o

o i

V R r
V

R R
=

and hence find the capacitance of the cable per unit length. Note that Vs is the applied
(supply) voltage on the inner conductor of radius Ri.

4.3 A polystyreme cylinder of circular cross-section has a radius R and axial length 2d.
Both ends are maintained at zero potential. An electric potential V is applied on the
cylindrical surface as

V = V0 cos (pz/2d)

Obtain an expression for the potential at any point in the material.

(Hint: Take the origin of the coordinate system at the mid-point between the ends.)

4.4 A line charge of Q1 per unit length runs parallel to a grounded conducting corner (right-
angled) and is equidistant (= a) from both the planes. Show that the resultant force on
the line charge is

( )
2
1

0

per unit length,
4 2

Q

ape
−

and is directed along the shortest line joining the line charge with the corner.

4.5 Using Eqs. (4.182) and (4.190) discuss the salient points of difference, when a line
charge (say Q per unit length) is placed at a distance b from the centre of an infinitely
long conducting cylinder of radius R, and a point charge (say Q) placed at the same
distance from the centre of a conducting sphere of radius R. (The medium being air, its
permittivity is e0.)
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5.1 INTRODUCTION

In the preceding chapters, several methods of solving the electrostatic field problems analytically
have been explained. The solutions of such problems have been either exact or almost exact. But
in most of these problems, the geometry of the conducting or the dielectric bodies has been
relatively simple; the boundaries were planes, spheres, cylinders, corners, etc.

However, in practice, a significant number of electrostatic systems have such complicated
geometry that an analytical solution is not feasible. For a rough estimate, in some cases it is
possible to approximate a real system by some geometrically simpler system which can then be
solved by one of the analytical methods. But for a more precise analysis, it is preferable to use
some approximate method for solving such problems. Now we shall discuss in some details some
of such methods and also explain the logic of some in brief. First we shall discuss the graphical
method and later the semi-graphical method, both of which are mostly applicable to two-
dimensional problems.

5.2 GRAPHICAL METHOD OF SOLVING ELECTROSTATIC
PROBLEMS

Electrostatic fields and many other physical problems (such as magnetic fields, temperature, and
velocity) have streamline properties in the space between the surfaces between which the potential
differences exist. In such fields, lines can be drawn to indicate by their direction and spacing, the
direction and the intensity of the flow in the region. Other lines, orthogonal to these flow-lines,
connect the points in the field having equal potentials. There is no component of flow along an
equipotential (Figure 5.1). Such streamline flow satisfies the ‘continuity equation’. The ‘equation
of continuity’ is a mathematical formulation of the principle that the rate of accumulation of a
quantity in a region is equal to the net rate at which the material crosses the walls of the region.
Thus for an incompressible fluid in a region with no sources and sinks, the total flux through a
closed surface must vanish.

Approximate
Methods of Solving
Electrostatic Field
Problems5
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The properties of a field can be defined completely if the equipotential surfaces and the
lines of flux or flow can be mapped. When these two sets of lines, i.e. the equipotentials and the
flux-lines, are orthogonal, then the field is Laplacian. This statement can be proved
mathematically and since a very large number of electrostatic fields are Laplacian in nature, we
shall give the proof of this statement before we proceed with further details of the method under
discussion. However, there is a further point which needs to be explained before we consider this
proof. When these sets of orthogonal lines intersect, the geometrical figures obtained are
curvilinear rectangles, or in special cases curvilinear squares.

5.2.1 A Note on Curvilinear Squares

A curvilinear square is indicated in Figure 5.2. It may be defined as an area bounded by two pairs

Figure 5.1 Flow-lines and equipotentials.

Flow-line

Figure 5.2 A curvilinear square.
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of curves, belonging to two mutually orthogonal families, which on further sub-division become
rectilinear squares in the limit. In the present case, one set of curves correspond to the direction of
the field intensity in a given situation, and the other orthogonal set of curves to equipotential
surfaces. As the equipotential surfaces are perpendicular to the direction of the field intensity lines
in the region, the corners of the curvilinear squares are normally at right angles. A curvilinear
square is always drawn so that its average length L equals the average width w. (More generally
in a curvilinear rectangle, the ratio L /w will be different from unity.) The precise length and the
width of the square are difficult to define but the experience in drawing curvilinear squares
develops a feel for the appearance of a properly drawn square. A test which may be applied to a
figure to determine if it is a curvilinear square is to sub-divide the figure into smaller curvilinear
squares. In the limit as the curvilinear squares become smaller, each such square should approach
a perfect square. If they do not, then the original figure is not a curvilinear square. This implies
that the process of drawing and checking can be quite long, but with practice it is possible to
draw fairly good graphs of fields by this method in a reasonably short time. For approximate
answers, the graph need not be perfect. For calculation purposes, Nf is taken as the number of
curvilinear squares along each flux line (from the +ve electrode to the –ve electrode) and Ne is the
number of squares along a ‘complete’ equipotential (and not one which goes to infinity).

5.2.2 A Proof that the Potential Associated with a Field-plot
Consisting of Curvilinear Rectangles Satisfies the Laplace’s
Equation

Consider two scalar functions F and Q of two variables x and y such that the curves of constant
F and constant Q form the curvilinear rectangles as shown in Figure 5.3.

Figure 5.3 Field of curvilinear rectangles.

Q (x, y) = constant

F (x, y) = constant

The statement that the curves of constant F and constant Q form the curvilinear rectangles
has the following two implications:

(a) Since the rectangles are formed by the constant curves, it means that F and Q are
orthogonal everywhere, i.e. the vector normal to the curves of constant F is normal to
the vector normal to the curves of constant Q. Or (grad F) is perpendicular to
(grad Q) at every point.
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\ (—F) ◊ (—Q) = 0 (5.1)

In the two-dimensional rectangular Cartesian coordinates, this relation becomes

F F Q Q
x y x yx y x y
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F Q F Q
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∂ ∂ ∂ ∂+
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= 0 (5.2)

(b) The length to width ratio of the rectangles is constant throughout the x–y plane. This
means that the changes in F and Q between the curves are related by a constant ratio.
In terms of the gradient operator, this relation is

(—F) ◊ (—F) = K {(—Q) ◊◊◊◊◊ (—Q)} (5.3)

where K is a +ve scale operator.
\ In the rectangular Cartesian system in two-dimensions, Eq. (5.3) becomes
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From Eq. (5.2),
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Substituting in Eq. (5.4) and rearranging
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Again, rewriting Eq. (5.2) as
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and then substituting in Eq. (5.4), we derive that

F Q2 2
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(5.8)
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Differentiating Eqs. (5.6) and (5.8) with respect to x and y, respectively, we get
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But from Eq. (5.2)
F Q

F Q
y y

x x

∂ ∂
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= – 1 (5.10)

Hence substituting Eq. (5.10) in Eq. (5.9), we get

F F2 2

2 2x y

∂ ∂+
∂ ∂

 = 0 (5.11)

which is the Laplace’s equation in two-dimensions.
Similarly it can also be shown that Q also satisfies the Laplace’s equation.

5.2.3 Plotting Technique

As stated earlier, for a complete definition of a field we need to have the equipotentials and the
lines of flux (or flow). The flux function is vectorial having a direction of flow and the strength
in flow units per area (flux density, say). The potential is a scalar function having only magnitude
at any point. These names ‘flux lines’ and ‘equipotentials’ have been given to two sets of
orthogonally intersecting lines on physical grounds and every field map can be used to solve two
problems—the given problem and its dual—by simply interchanging the names of the two sets of
lines; that is, the equipotentials of one problem become the lines of force in the other, and
conversely. This conjugate property of the two fields is an example of the ‘Principle of Duality’.
(A detailed discussion of this principle is given in Appendix 1). Based on the mathematical
theory discussed so far, the complete solution of the field would be obtained if a set of
equipotential lines and flux lines are drawn to form a continuous system of curvilinear rectangles
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the parallel portions of the boundaries where the field would be expected to be uniform. For the
space between the electrode system in which the curvilinear squares are drawn, they satisfy the
following conditions:

(a) All the equipotentials and the flux lines intersect at right angles.
(b) For any curvilinear square, the mean width w between the flux lines is equal to the mean

length L between the equipotentials.
(c) All the flux lines meet the boundary electrode normally.
(d) The large curvilinear squares can be sub-divided to produce smaller curvilinear squares.

The drawing is thus a complete solution of the field and the curvilinear squares have the
following quantitative properties, assuming a unit depth of the field perpendicular to the plane of
the paper:

(a) The potential difference between the equipotentials across all the curvilinear squares is
the same.

(b) Equal quantities of flux pass through all the volumes formed by the curvilinear squares.
(c) The capacitance, the permeance, the resistance, etc. of each curvilinear square is the

same.
(d) The energy of each curvilinear square volume is the same.
(e) The flux density and the electric field strength vary throughout the field inversely as

the size of the squares.

From the plot, we can calculate the capacitance of an electrode system, i.e. if V is the
potential difference between the electrodes and DV is the potential difference across the
curvilinear square, then V = Nf DV, where Nf is the number of squares along a flux line, from the
+ve electrode to the –ve electrode.

\ The electric field intensity E is given by

V
E

L

Δ

between the boundary electrodes. However it is more convenient in sketching to make the
curvilinear rectangles into the curvilinear squares.

The procedure is to draw one or more equipotential lines to divide the area suitably between
the boundaries, and then draw in the flux lines to cross the equipotential lines at right angles, and
form curvilinear squares as far as possible. The first trial usually does not give curvilinear squares
throughout the region, and the lines are corrected by trial and error till such squares are obtained
over the whole area. Figure 5.4 shows such a trial solution. The lines are usually started between

Figure 5.4 Curvilinear squares for an electrode system.

a

2a

V

–V



166 ELECTROMAGNETISM: THEORY AND APPLICATIONS

and hence the magnitude of the electric displacement vector D is

V
D E

L

ee Δ=

The flux YD of the displacement vector D (or the flux density vector) represented by the
successive flow lines in the figure, is

eYΔ ΔD
w

Dw V
L

Hence, from the generalized form of the Gauss’ theorem, the charge Ql on the conductor per unit
length is

Ql = Ne DYD = Ne eDV
w

L
 = eV e

f

N w

N L

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
where Ne is the number of curvilinear squares along a complete equipotential, and hence is the
number of lines of the displacement vector emerging from the contour of the conductor. Hence the
capacitance, per unit length, between the parallel plates of the capacitor of Figure 5.4 is given by

l e e
l

Q N Nw
C

V N L N
e e

⎛ ⎞ ⎛ ⎞⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠f f
, when w = L (as for the curvilinear squares).

For the capacitor shown in the figure, Ne = 21, Nf = 6, and the gap between the plates = a, the
width of the plates = 2a, and the dielectric is air, i.e. e = e0 = 8.854 ¥ 10-12.

\
12 21

8.854 10 31 pF/m
6lC − ⎛ ⎞= × =⎜ ⎟⎝ ⎠

whereas using the formula which neglects the fringing effect,

12
th

2
8.854 10 17.71 pF/ml

A a
C

d a
e − ⎛ ⎞= = × =⎜ ⎟⎝ ⎠

To find the degree of precision of this method, it should be appreciated that the error reduces for
the smaller curvilinear squares. But even with moderate size squares, the error can be restricted to
10 to 15%. This can be checked for this problem by comparing the rigorous solution obtained by
the method of conformal transformation.

5.2.4 Two-dimensional Multi-dielectric Fields

So far we have discussed those electrostatic fields which have either air or a single dielectric in
the gap region. But when on an interface boundary, the permittivity changes from e1 to e2, there
would be refraction of the flux lines as well as of the equipotentials, and the capacitance of the
curvilinear squares in the changed dielectric would suddenly change in the proportion of the
permittivities. Since we wish to keep the capacitance of each element to be the same, the length
to width ratio must be changed in the changed dielectric and hence the curvilinear squares
become curvilinear rectangles. For the unit depth of the field where L is the mean length between
the equipotentials and w the mean width between the flux lines, the capacitance of any
curvilinear rectangle is proportional to ew/L. If in the dielectric of permittivity e1, the curvilinear
squares have been drawn, i.e. w/L = 1, then in the dielectric of permittivity e2, the curvilinear
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rectangles must be drawn with w/L = e1/e2. At the dielectric boundary, the tangential components
of the field strength Et and the normal components of the flux density Dn are continuous. But the
normal components of the field strength En and the tangential components of the flux density Dt

are discontinuous. Hence, we get (Figure 5.5)

Dn1 = Dn2, Et1 = Et2, Dt1 = Dt2 
1

2

e
e

⎛ ⎞
⎜ ⎟
⎝ ⎠

, En1 = En2 
1

2

e
e

⎛ ⎞
⎜ ⎟
⎝ ⎠

t1 n1 t1 1 t11 1

2 t2 n2 t2 2 t2 2

/tan

tan /

D D D E

D D D E
= = = =

ea e
a e e

(5.12)

For constructing a plot, it is best to obtain the refraction effect by setting off equal normal and
tangential components proportional to e, at the point of intersection of the flux density line with
the dielectric interface as shown in Figure 5.5. The equipotential tangents are constructed at 90∞
to the flux line tangents.

While plotting the multi-dielectric fields the whole area should be divided into coarse

Figure 5.5 Discontinuity at the interface.
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curvilinear rectangles, noting that the flux lines entering the region of higher permittivity always
bend towards the interface surface whereas the equipotentials bend away from the interface.
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General comments. Axi-symmetric fields can also be plotted, but the work involved is so much
that it is rarely justified. The interested readers should refer to Introductory Engineering
Electromagnetics by B.D. Popovic, and the paper “Graphical Field Plotting” by E.G. Wright,
Electrical Review, March 1957. So far we have discussed only the Laplacian fields, but it is also
possible to analyze the Poissonian fields containing the regions of source charges. We shall
consider such problems by analogy when we take up the problems of magnetic fields in current-
carrying regions.

5.3 EXPERIMENTAL METHODS

Since the analytical expressions for the field quantities are possible mostly for simple geometries,
many experimental methods have been developed for problems with complex geometries. These
experimental methods usually avoid the rigour of the advanced mathematical techniques, but
have great value in helping the visualization of the field distributions and as checks on the
analytical solutions. For quantitative mapping of the electrostatic fields, it is usually sufficient to
obtain a plot of the equipotentials or of the flux lines from which the other set can be obtained
graphically by the method of curvilinear squares. Again these methods are mostly used for the
two-dimensional and the axi-symmetric problems, since one single section gives all the required
information. For the general three-dimensional problems, more than one section has to be
considered, and also further careful interpretation of the individual plots to produce the actual
field picture.

As we proceed with our study of electromagnetism, we shall see that there are other field
phenomena apart from the electrostatics (i.e. magnetostatics, electric current, etc.) which show the
same basic relationships between the characteristic field vectors, and hence close analogies can be
established between these different fields. Such analogies form the basis of these experimental
methods because easier substitutions can be made where the original field is difficult to analyze.
Electric current flow analogy is the most commonly used technique. The choice of the medium, in
which the current flow is studied, decides the technique. Some media are more commonly used for
studying the electrostatic problems while other media are preferred for the magnetic field
problems. We shall discuss such techniques in the relevant chapters of our present study. However
it should be borne in mind that even though a particular technique has been preferred for
analyzing a particular type of field, it does not preclude its (the technique’s) use for other types of
field problems, so long as the field under consideration satisfies the same operating equation, i.e.
say the Laplace’s equation or the Poisson’s equation. We shall now discuss the principles of some
of these experimental methods, keeping in mind that those methods which are more commonly
used for solving other types of fields—say, magnetic—will be described in the relevant sections.

5.3.1 Electrolytic Tank Method

A very general use of the analogy of the electric fields (or currents) in the conducting medium to
the electrostatic fields or any potential fields, has been by means of the electrolytic current
distributions (i.e. in a conducting liquid) either at direct voltages or at lower audio frequencies
where the magnetic induction effects can be neglected. The arrangement consists of a large tank
made of glass or impregnated wood lined with copper or lava slabs, filled with distilled water and
a small amount of spring or well water to obtain a proper degree of conductivity. Even ordinary
tap water can be used or even a very weak solution of copper sulphate. The electrodes, which are
usually made of copper, are dipped in the electrolyte, and a probe, usually a short piece of nickel
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formed by the probe and the electrodes I and II, and the other two arms are AD and BD on the
calibrated potentiometer. A selected value of the potential is set on the tap D of the potentiometer
and the probe is moved till its potential equals to that of D, as would be indicated by the null
indicator. The position of the probe is transmitted to a stylus resting on an adjoining table. The
movement of the stylus is controlled either by a x-y motion carriage system fixed to the rim of the
tank, or by a pantograph as shown in the figure. Usually a complete equipotential can be drawn
for a fixed position of D. Automatic plotting of all required equipotentials can be achieved by

or platinum wire of about 0.2 mm diameter, is used for indicating the local potential. The probe
should be insulated over its entire length, except for a very small length (say, about 1 cm) at its
extreme end. The probe can be sealed in glass and there should be a metal sheath on its outside,
so that the sheath acts as a shield.

The electric circuit (see Figure 5.6) is essentially a Wheatstone bridge. Its two arms are

Figure 5.6 Electrolytic tank for the experimental solution of the Laplace’s equation.
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driving the probe at constant speed in one direction and adjusting its position in the orthogonal
direction by a suitable servomechanism which would correct to the zero difference, the probe
potential with respect to the potential line to be drawn. At the end of each travel, the servo-
mechanism has to select the position of the probe for the next equipotential. Once all the
equipotentials are obtained, the flow lines can be drawn by the method of curvilinear rectangles.

The electrolytic tank was first demonstrated by Fortescue in 1913, who used direct voltage.
The disadvantage of polarization led to the modification of using alternating voltages from low
power frequencies up to 500 Hz. Higher frequencies up to 1.5 kHz have been used, but at higher
frequencies, increasing capacitive effects create difficulties in the zero balance. It is very
important to keep the electrode surfaces very clean because even slight oxidation can increase the
local surface resistance.

The advantage of the electrolytic tank method is that it is also capable of reproducing a
wide range of three-dimensional field distributions in a uniform medium. Even the effects of two
different dielectric media in a system has been studied and represented on the tank. For a detailed
discussion of the method, the reader is referred to Weber, Moon and Spencer.

5.3.2 Conducting Paper Analogue

This method has been very widely used for the magnetic field problems, even though it is equally
capable of solving the two-dimensional electrostatic field problems, as this method is also based
on current-flow analogy and hence can solve all Laplacian field problems. We shall discuss this
method in detail, with its mathematical basis, during our study of the solutions of the magnetic
field problems.

5.3.3 Elastic Membrane Method (Rubber Sheet Analogy)

This is another method of solving the Laplacian field problems in two-dimensions by using a
rubber sheet stretched over the supports which represent the boundary conditions. The rubber
sheet then takes the form of a surface in three-dimensional space in which the height represents
the potential f as a function of x and y. The exact partial differential equation governing the
vertical displacement f of a horizontal sheet is

2 22 2 2

2 2
1 1 0

y x x y x yx y
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(5.13)

If the displacements are small, then the slopes of the deformed membrane would be quite small,
i.e. (∂f/∂x) << 1 and (∂f/∂y) << 1, and these can be neglected. Therefore, Eq. (5.13) reduces to

2 2

2 2
0

x y

f f∂ ∂+ =
∂ ∂

and so the displacement f in such cases approximately satisfies the Laplace’s equation. If the
tangent planes at any point are kept within 15∞ of the horizontal plane, then the above conditions
are generally satisfied. So the models have to be rather large, but of small height differences.
Surgical rubber sheet of about 0.1 cm thickness can be conveniently used for such models. The
sheet is spread over the electrode surfaces and pulled over a wooden frame and fastened to it. For
further details, the reader is referred to Weber, Moon and Spencer.
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5.3.4 Hydrodynamic Analogy

The flow of incompressible fluids and gases without internal friction is very similar to the electric
current flow, as a first approximation. (In fact, historically, the laws of electric current flow were
patterned after the relations of fluid flow.)

For any fluid, the product of its velocity v and its mass density r gives its flow density F
through unit area, i.e.

F = rv (5.14)

If the fluid is incompressible and has no sources or sinks, then the total flux through such a
closed surface must be zero, i.e. the divergence of its flow density must vanish. Thus,

div F = — ◊◊◊◊◊ F = 0 (5.15)

In Cartesian coordinates, this becomes

( v ) ( v ) ( v ) 0x y zx y y
r r r∂ ∂ ∂

+ + =
∂ ∂ ∂ (5.16)

This is the equation of continuity.
If the fluid is homogeneous, so that r is everywhere the same, then from Eq. (5.15) we get

div v = — ◊◊◊◊◊ v = 0 (5.17)

For Irrotational flow of the fluid,
curl v = — ¥ v = 0 (5.18)

Hence introducing a scalar potential function, i.e. the velocity potential f (which is +ve by
convention),

v = + grad f = + —f (5.19)

The equations (5.15) and (5.19) together give

—2f = 0 (5.20)

which is the Laplace’s equation, which is the same as the operating equation for the electrostatic
and the magnetostatic fields. The boundary conditions for the fluid-flows guided by the solid
guides are quite analogous to the electric current flow. The lines to which the velocity vector is
tangential are the stream-lines and together with the equipotential surface, they form an
orthogonal system of gradient lines. When the sources and the sinks are included in the field
region, the divergence of v does not vanish and the operating equation for the potential becomes

—2f = +
e

r
(5.21)

where e is the volume density of the flux. This equation is thus the same as in the case of
electrostatics. When the rotational motion of the incompressible fluid is included, then the line
integral of v enclosing the axis of rotation is no longer zero. As we shall see later, the general
solutions of fluid dynamics consist of a superposition of the electrostatic and the magnetostatic
field solutions.

Since this technique has been more extensively used for solving the magnetic field
problems, we shall discuss it further in the relevant section in the book.
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5.4 NUMERICAL METHODS

With the development and availability of high speeds and extremely high storage capability of
modern digital computers, the partial differential equations like Laplace, Poisson and others can
be solved numerically with relative ease; and these numerical methods of solving the P.D.E.’s are
becoming of ever-increasing importance in engineering as well as physics. We shall discuss in
some detail the numerical solutions of the Laplace and some allied equations, mainly for the two-
dimensional problems though these methods are applicable to a wide range of three-dimensional
problems as well. There now exist more than one numerical method for solving these differential
equations. In the present discussion we shall restrict ourselves to two basic methods only and
follow the historical sequence of development. The two basic methods which we shall describe
are:

(a) Finite Difference Methods (F.D.M.)
(b) Finite Element Method (F.E.M.)

5.5 FINITE DIFFERENCE METHODS

Finite difference methods, which can be traced back to Gauss (1823), have been used more
generally since about 1940, and can be used for the numerical solutions, of any required accuracy,
of both Laplacian and Poissonian fields. In fact, these methods are also applicable to the three-
dimensional as well as the time-varying field problems. Even though some of the theoretical
considerations associated with the development of these methods are quite difficult, the range of
problems which can be solved by these techniques is very wide, such as problems with complex
boundary shapes, different boundary conditions, a number of interconnected regions, and take
account of physical nonlinearities like the presence of saturating iron, and so on. However there is
a major drawback of the F.D.M., which of course is a common constraint of all the numerical
methods, and it is that the complete process of the solution has to be carried out for each set of
parameters defining any problem.

The solutions produced by the F.D.M. are in the form of values (of the function describing
the field) at discrete points which are prearranged in some regular manner over the whole region
of the field. These values are obtained by replacing the original partial differential equation by a
large number of finite difference equations taking the form of linear algebraic equations which
connect the potentials at each point with the potentials at the points in the immediate vicinity.
Thus the problem is finally reduced to the solution of a set of simple simultaneous algebraic
equations for the potential values. Since a very large number of such equations normally occur in
a problem, it is quite inconvenient to solve them by direct elimination or matrix inversion. Since
computers are now available, some sort of iterative technique which exploits the simple form of
these equations, is used. When such computations were initially done by hand, the relaxation
method (developed by Southwell) was extensively used. While the hand-relaxation is very
flexible, the effectiveness of the method for quick solution is dependent on the experience and
the skill of the person concerned. But when the problem is solved on the machine, it is tackled by
an entirely fixed cycle of operation, (each cycle being called iteration). These methods are
designed to take advantage of the digital computing techniques, and in optimum forms give
remarkably rapid solutions. Since 1950s, a significant number of different methods have been
developed and the relevant literature is very extensive. In this chapter, we have kept the treatment
of the methods quite simple and at an introductory level. Readers interested in the depth of these
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methods, should study the original papers, some of which are listed in the bibliography and the
books by Forsythe & Wasow, Todd, Varga, Ames, Smith, Wachspress, Walsh, and Mitchel. We
shall now establish the basic F.D. equations and discuss the various iteration techniques as well as
some of their applications to the different types of problems. For generality, the equations are
developed in terms of the Poisson’s equation, since in the Laplace’s equation the source term gets
reduced to zero.

5.5.1 Finite Difference Representation

The first step in reducing the field P.D.E. to a set of F.D. equations is to select a suitable spatial
distribution of points in the region. Since the problem is being solved on the computer, it is
obvious that a regular distribution of points in the region be chosen so that the same form of the
F.D. equation is satisfied at all the points and the problem representation gets simplified. Such
distributions are given by the arrangements of points lying at the ‘nodes’ of any regular network
or ‘mesh’. There are three different regular mesh systems available as shown in Figure 5.7.

1. The square mesh (also known as symmetrical star or molecule)
2. The equilateral triangular mesh
3. The equiangular hexagonal mesh

There are also two irregular meshes which are very useful (see Figure 5.7).

1. The polar mesh
2. The rectangular mesh

Here we shall restrict our discussion to the square meshes and the rectangular meshes, the
latter being used in conjunction with the square meshes when the number of nodes in a problem

Figure 5.7 Different types of meshes.

(a) Square mesh (b) Triangular mesh (c) Hexagonal mesh

(e) Rectangular mesh(d) Polar mesh
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rh, and sh, respectively, where p, q, r, s are less than unity, and h is the distance between the lines
in the regular portion of the mesh. It is usual to call h as the mesh length. It is usually equal to
the side of a square of the square mesh, and also the longer of the two arms of the rectangular
mesh.

Next we consider the reduction of the operating P.D.E. to the relevant difference equation.
There are three different ways in which this can be done. They are:

1. Taylor series expansion
2. Integration method
3. Rayleigh–Ritz method or Variational method.

The first method is the most commonly used one, though the second one gives the best results,
and the third method shows the equivalence between the F.D.M. and the F.E.M. For the details of
these methods, the reader is recommended to study Varga, and Browne.

By the Taylor series method, the derivative terms, i.e. ∂2f/∂x2 and ∂2f/∂y2 of the Poisson’s
equation are reduced to the difference form. At any point x on the line parallel to the
x-axis, passing through the point O, the potential f can be expanded in terms of the value of the
potential f0 at O by using the Taylor series. This is done for the points 1 and 3, respectively, as
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have to be minimized. For the equations and the other details of these meshes, the reader should
consult the books by Allen, Forsythe & Wasow, Smith, Boast, Richtmayer, and Southwell.

5.5.2 Basic Equations for the Square and the Rectangular Meshes

We shall consider the symmetrical star of Figure 5.8(a), which is relevant at all the nodes in a
uniform square mesh. However adjacent to those boundaries where the mesh and the boundaries
do not coincide, and in the regions where the meshes of different sizes meet, the arms of the
centre node O will be of different lengths. This qualification applies to the rectangular meshes as
well. So, for the sake of generality of the problem, we shall consider an asymmetrical star of
Figure 5.8(c). In this asymmetrical star, let the distances of the points 1, 2, 3, 4 from O be ph, qh,

Figure 5.8 Symmetrical and asymmetrical stars.
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Adding r times the Eq. (5.22) with p times the Eq. (5.23), we get
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Ignoring the terms containing the higher powers of h from h3 onwards, we get

2
2 3 01

2
0

2 22

( ) ( )
h

p p r r p r prx

f fff⎛ ⎞∂
= + −⎜ ⎟ + +∂⎝ ⎠ (5.25)

In a similar manner, the expression for ∂2f/∂y2 is obtained as
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Hence substituting in the Poisson’s equation, we get
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where W is the right-hand term of the Poisson’s equation.
This general form of the difference equation is not often required, but from it by substituting

the appropriate values of p, q, r, s, any necessary equation can be derived immediately. For a
uniform square mesh as in Figure 5.8(a), the difference equation becomes, when p = q = r = s = 1,

f1 + f2 + f3 + f4 - 4f0 + h2W = 0 (5.28)

For a rectangular mesh of Figure 5.8(b), p = r = 1 and q = s in Eq. (5.27) gives
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For the Laplace’s equation, W = 0 and so we get

f1 + f2 + f3 + f4 - 4f0 = 0 (5.30)

It should be remembered that the above difference equations are approximations to the field
equations, and the higher order terms of Eq. (5.24) have been neglected. This error is called the
‘truncation error’, and has to be investigated carefully though in general terms it can be said that
h can be so chosen for a problem that the error can be made smaller and smaller.

We shall next derive the equivalent difference equations by the integration method, and
consider the same asymmetrical 5-point star of Figure 5.8(c), which is repeated in Figure 5.9. This
method was first introduced by McNeal in 1953 in order to obtain a symmetrical coefficient
matrix for the finite difference equations when an irregular mesh and curved boundaries are
encountered. The key idea of the method is to integrate the field equation over the mesh regions
so chosen that they have an averaging effect which results in the symmetry of the matrix. As usual
the domain of the solution is covered with the mesh, at the nodes of which the values of the field
function are sought. The mesh need not be rectangular but must be so chosen that any internal
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associated polygonal area, i.e. the rectangular region ABCDA in this case. Then by using the
Green’s theorem, we transform the surface integrals to line integrals and then the first-order
derivative terms are approximated by the central difference formulae, thereby arriving at the finite
difference equation at each node.

We start with the Poisson’s equation over the region of the node under consideration,
2 2

2 2
0W

x y

f f∂ ∂+ + =
∂ ∂

Integrating this equation over the surface enclosed by the rectangular path ABCDA, we get

2 2

2 2
ABCDA ABCDA

0
S S

dx dy W dx dy
x y

f f⎧ ⎫⎛ ⎞∂ ∂⎪ ⎪+ + =⎨ ⎬⎜ ⎟∂ ∂⎝ ⎠⎪ ⎪⎩ ⎭
∫∫ ∫∫ (5.31)

Applying the Green’s theorem to this equation, it gets expressed in terms of the line integrals
taken in the counterclockwise direction:

ABCDA ABCDA

0
S

dy dx W dx dy
x y

f fÏ ¸Ê ˆ∂ ∂Ê ˆ - + =Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂Ô ÔÓ ˛Ú ÚÚ (5.32)

Adding the expressions for each sub-region (as shown in Figure 5.9), and then approximating the
first-order derivative terms by the central difference formulae, the following finite difference
equation is obtained.

1 0 0 3 2 0 0 4

2 2 2 2

qh sh qh sh ph rh ph rh

ph rh qh sh
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h
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⎢ ⎥⎣ ⎦

interfaces must coincide with the lines of the mesh. At the mid-point of each mesh-link (or mesh-
arm) connecting the adjacent nodes, perpendicular lines are drawn which form a polygonal region
surrounding the node. In our present problem, this is the rectangular region ABCDA surrounding
the node O as shown in Figure 5.9. We then integrate the field equation at each node over the

Figure 5.9 Asymmetrical 5-point star with the integration paths shown.
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or
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(5.33)

If in this equation we make p = q = r = s = 1, then the above equation becomes

f1 + f2 + f3 + f4 - 4f0 + h2W = 0

which is the same as that for the square mesh in the Poisson’s equation [see Eq. (5.28)]. By
making W = 0, further, it reduces to the difference equation for the Laplace’s equation as in
Eq. (5.30). For the rectangular mesh, by substituting p = r = 1 and q = s, we get from Eq. (5.33),

22 4
1 3 0

2
2 0q q q qh W

q q q

f ff f f ⎛ ⎞+ + + − + + =⎜ ⎟
⎝ ⎠

which is the same as Eq. (5.29).
For further details, generalizations and applications to other problems, such as for regions

with eddy current distributions and with different magnetic permeabilities, the reader is referred to
Browne.

Thus it is seen that for the internal nodes, both the methods, i.e. the Taylor series expansion
and the integration method, give identical difference equations. The advantage gained by starting
with the integration method is due to the presence of the different types of boundaries and
boundary conditions which result in a ‘cleaner’ and well-behaved coefficient matrix. It is the
derivation of the coefficient matrix that we shall discuss next.

5.5.3 Reduction of the Field Problem into a Set of Simultaneous
Equations

Let us consider a simple Poissonian field region within the square boundary as shown in
Figure 5.10.

Figure 5.10 Poissonian field region.
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Let the nodes on the boundary be denoted by the primed numbers 1¢ to 16¢ and the internal
nodes be numbered 1 to 9. The value of W and the values of the potentials on the boundary f1¢ to
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f16¢  are given and the values of the potentials f1 to f9 at the interior nodes have to be determined.
For this purpose we use Eq. (5.28) at each of the interior nodes. Hence at the node 1, we get

2
2 4 16 2 14 0h Wf f f f f′ ′+ + + − + =

and at the node 2, we have
2

3 5 1 3 24 0h Wf f f f f′+ + + − + = .

We derive similar equations for the nodes 3 to 9. The nine potentials f1 to f9 are thus related
amongst themselves and to the boundary conditions by nine linear algebraic equations, and they
(the potentials) can be evaluated by solving these equations simultaneously. In a similar way, any
field problem can be solved as a set of simultaneous linear difference equations, whatever be the
shapes and the nature of the boundaries. We shall now consider the set of these simultaneous
equations in the matrix form. If C is the matrix of the coefficients of the unknown potentials, u is
the column matrix of the unknown potentials fn (in this case f1 to f9), and v is the column
matrix of the sum of the known boundary potentials and the constant terms are h2W (when and
wherever present), the equations can be expressed in a compact matrix form as

Cu = v (5.34)

The small number of (nonzero) terms in each difference equation results in a correspondingly
small number in each row of C and this is the basic feature of the matrix which is exploited in an
iterative solution. It is also obvious that the elements of C depend on the particular type of the
difference equation used and not whether the field is Laplacian or Poissonian, and that C is
essentially diagonally dominant and symmetrical about the leading diagonal. Thus the nature of
any iterative scheme applied to solve Eq. (5.34) is decided upon by the properties of the
coefficient matrix C. We will describe only some of the basic points of the methods used, and for
the detailed information regarding these methods, the reader is recommended to study the books
by Varga, Wachspress, Lawrenson & Binns, Ames, Smith, and Mitchell.

5.5.4 Computational Methods

The hand computation was first used by Gauss, but not until it was rediscovered and developed
by Southwell and his coworkers in 1930–40 that its flexibility and power appreciated by the
engineers and the physicists. (The interested readers are recommended the books by Southwell,
Allen, and Shaw.) Since the late fifties, this method has been displaced by the machine iteration
which has permitted the treatment of much larger and more varied problems. But the method
(Relaxation) is still useful for smaller problems and those with complex boundary shapes.
Furthermore, since the understanding of this method helps the later discussion of the machine
methods, we will start with a brief explanation of the essential points of the method. The
relaxation method depends on the concept of the ‘residual’. When the potentials f0, f1, f2, f3, f4

are so chosen as to satisfy a difference equation, say Eq. (5.28), its right-hand side is zero. But
when the potentials do not satisfy this equation, then the right-hand side is not equal to zero but
to some other quantity R0 which is given by

R0 = f1 + f2 + f3 + f4 - 4f0 + h2W (5.35)

where R0 is called the residual of the difference equation at the point O, and the relaxation
method aims at systematic reduction of R0 to zero for all the equations. When the residuals of all
the difference equations are zero, the values of the potentials correspond to an exact solution. But,
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in practice, it is sufficient to reduce the residuals to low values, to obtain a good approximation
to the exact solution. In fact, there is no exact relationship between the magnitudes of the
residuals and the accuracy of the potentials. But generally, satisfactory solutions can be obtained
when the following conditions are satisfied:

1. Individual values of the residuals should be reduced to about 0.1% of the mean value of
the potentials.

2. The algebraic sum of all the residuals should be of magnitude similar to that of the
individual residuals.

3. The residuals, with respect to their magnitudes and signs, should be uniformly mixed
over the whole field region.

The technique of minimizing the residuals is called the ‘Point Relaxation’. At the node
under consideration (at start assumed to be the centre of a symmetrical star) the value of the
residual is calculated by using Eq. (5.35) and then this residual is reduced to zero by a change in
f0 of R0/4. This change in f0 produces an equal change in the residuals at each of the adjacent
nodes in the star, and applying the same equation to each of these nodes in turn, they experience
a change of R0/4 which is same as the change in f0 of the original central node. Thus a residual
of 4R at the central node of a star can be reduced to zero by an increase in the potential of the
magnitude R at that node and by the addition of R to the residuals at each of the points of the
star. This process is called ‘spreading’ the residual, and is explained pictorially in Figure 5.11. It

Figure 5.11 Relaxation pattern.

must be remembered that in the process of spreading of the residuals, the boundary points are not
affected. Similar patterns can be worked out for asymmetrical stars. The rate of convergence of the
solution can be increased significantly by the following two important means.

(a) The degree of relaxation applied to a node
(b) Relaxing several points simultaneously

Over- and under-relaxation. When the potential at a point is changed by an amount which
reverses the sign of the residual, the operation is called over-relaxation. When the change in the
residual is insufficient to reduce it to zero, then it is called under-relaxation. Both these
operations can greatly increase the convergence of the solution.

1

– 41 1

1
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Line- and block-relaxation. The process of convergence gets accelerated if instead of relaxing
each star individually, we relax a group of points, either in a line or in a block, simultaneously.
This is done by using a line- or block-relaxation operator, the pattern for which is obtained by a
simple addition of point patterns suitably oriented as required by the arrangement. This makes the
process both economical as well as faster.

With this background information about the hand-relaxation method, we now consider the
methods of machine computation, i.e. iteration. The technique on the machine is still the same,
i.e. modify continually the values of the potentials till all the equations are satisfied to a
sufficient degree of accuracy. Considerations of stability, accuracy, etc. for the two methods are
similar, but there are some important features which distinguish the machine methods from the
hand methods. Firstly, the machine methods are designed for use in a completely automatic cycle
in which each equation is considered in a fixed sequence throughout the calculation. Secondly,
the improved values of the potentials are determined directly from the difference equations, and
hence the concept of the residual is disregarded. The implications are that the rate of convergence
of a basic iterative method is slower than that of the relaxation method in the hands of an expert,
and also since the method can be easily programmed for the machine, the solutions can be
obtained very speedily. So now we consider the basic concepts of the iterative schemes, which are
the ordering of the cycles and the examination of the convergence.

Designation of the nodes. As mentioned earlier, each node is considered in turn in a fixed cycle,
and so each node is represented by a number pair. We consider a basic rectangular array of
(p + 1) ¥ (q + 1) points on which the boundary is superposed (Figure 5.12). Any node can be

Figure 5.12 A rectangular array of points.
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specified by a number pair (h, k), where 1 £ h £ (p + 1) and 1 £ k £ (q + 1), or by a single number
(h - 1) (q + 1) + (k + 1) where 1 is taken as the point at the lower left-hand corner, and the
columns of the points are scanned in each cycle from the left to the right (increasing p) and from
the bottom to the top (increasing q).

Examination of convergence. In the iterative process, since all he relevant information is stored
inside the computer, it is difficult to observe the distribution of the residuals, and hence this
guide to the convergence cannot be easily used. Since in the machine, the computation is much
easier, the permissible upper limit of the residual can be set to a much lower value, say, 0.0001%
compared with the manual relaxation, and also check upon the residual after, say, 10 or 20
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iterations at a time, in order to minimize the extra work to be done by the machine for the control.
Alternatively, we can disregard the residual completely and to test for the convergence, we study
the change in the potential, which is called the ‘displacement’ occurring at each node, and the
iteration procedure is stopped when the changes are sufficiently small, say, 10–6 % of the potential
values. This is a good test, though sometimes it can be argued that the small changes can mean
slow convergence rather than high accuracy. We shall discuss this point later. We now discuss the
basic elements of some of the iterative procedures.

Jacobi method (or Richardson method or the method of simultaneous displacement). This is the
simplest of the iterative methods. Each new value of the potential at the centre of a star is
determined as that which satisfies the basic difference equation in terms of the previous values of
the potentials at the other points. So if fn represents the potential after the nth iterative cycle, then
the Jacobi form of the symmetrical Poisson difference equation is

( )1 2
1 2 3 40

1

4
n n n n n h Wf f f f f+ ⎛ ⎞= + + + +⎜ ⎟⎝ ⎠

(5.36)

Or, in more general terms, using the double-letter notation defined earlier, we have
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4
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h k h k h k h kh k h W (5.37)

Similar equations can be derived for the asymmetrical patterns. The convergence of the Jacobi
method is poor. Furthermore, two sets of the potential values [for the nth and the (n + 1)th
iterations] have to be stored in the memory. Because of these disadvantages, this method is not
used in practice.

Gauss-Seidel method (or Liebmann method or the method of successive displacement).  This is a
simple modification of the previous method in which the most recently computed values of the
potentials are used. If the nodes are scanned column by column, from the left to the right and
starting at the bottom of each, the general form of the symmetrical Poisson difference equation is

( )f f f f f+ + +
+ + − −

⎛ ⎞= + + + +⎜ ⎟⎝ ⎠
1 1 1 2

1, ,( 1), 1, ,( 1)
1

4
n n nn n

h k h kh k h k h k h W (5.38)

This method is economical because it requires the storage of only one complete set of potentials,
and also converges twice as quickly as the Jacobi method, and yet it is uneconomically slow
compared with the more sophisticated methods.

Successive over-relaxation method (S.O.R. method). This method is also called the Extrapolated
Liebmann method and was discovered independently by Frankel and Young. It is a very flexible
method and also rapidly convergent. It can be derived from the Gauss-Seidel method by
introducing a factor a, and the new value of the potential is obtained as the sum of the old value
and a times the difference between the value given by Eq. (5.38), and the old value of f, i.e.

( )af f f f f f f+ + +
+ + − −

⎛ ⎞= + + + + + −⎜ ⎟⎝ ⎠
1 1 1 2

, 1, ,( 1) ,, 1, ,( 1) 4
4

n n nn n n n
h k h k h k h kh k h k h k h W (5.39)

where a is a convergence or a relaxation factor which determines the degree of over-relaxation,
and it can be shown that it must be between 1 and 2. When a = 1, Eq. (5.39) reduces to Eq. (5.38)
for the Gauss-Seidel method, and when a ≥ 2, the process becomes unstable. When a lies between
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the specified limits, the convergence rate is higher than that for a = 1, and for some optimum
value ab which is different for every problem, the rate is greatly increased.

The convergence of the solution. Varga has shown theoretically that for a stable convergent
process, the number of iterations N required to reduce the largest error at any node to a fraction e
of some previous value, is given by the relation

logN F e− (5.40)

where F, the asymptotic rate of convergence is a function of the shape and the condition of the
boundary, the particular type of the difference equation, and the convergence factor. It is defined
by

F = - log m (5.41)

where m can be obtained as the limiting value of the ratio of the absolute values of the maximum
changes in the potentials occurring on successive iterations when the convergence factor is unity
(Gauss-Seidel). Hence, if

f f += − 1maxn n n
m mU (5.42)

then
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where m is also the largest eigenvalue or the spectral radius of the iteration matrix characterizing
the S.O.R. scheme. So we now write down the matrix Eq. (5.34) for the set of the difference
equations of the S.O.R. in the form

(I - L - U)u = v (5.44)

where I is the unit matrix of the order m, and L and U are the lower and the upper triangular
matrices with null diagonals. Hence

I u = u = (L + U)u + v (5.45)
where
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The Jacobi iteration scheme is then

un + 1 = [L + U]un + v (5.46)
and the Gauss-Seidel scheme is

un + 1 = Lun + 1 + Uun + v (5.47)

This reduces to
un + 1 = [I - L]–1 Uun + [I - L]–1 v

Note: The matrices [L + U] and [I - L]–1 U are called the Jacobi and the Gauss-Seidel matrix,
respectively, of the coefficient matrix C.

And the S.O.R. scheme gets defined by

un + 1 = un + a [Lun + 1 + Uun + v - un] (5.48)
or

un + 1 = {(I - a L)–1 [a U - (a - 1) I]}un + a (I - a L)–1 v (5.49)

In this equation, the term in the curly brackets is the iteration matrix. The error matrix at any
stage is the difference between the true and the approximate solutions, i.e.

en = u - un (5.50)

Also the amount by which the f’s or the u change during one iteration, i.e. un + 1 - un is called the
‘displacement vector’ d, so that

un + 1 = un + d (5.51)

Equation (5.49) gives the potential values after (n + 1) iterations. To find the error, let us look at
the equation for the exact solution, i.e.

u = {(I - a L)- 1 [a U - (a - 1)I]}u + a (I - a L)–1 v (5.52)

From these three Eqs. (5.49), (5.50) and (5.52), the initial error e0 is propagated into the successive
iterations by the equation

en + 1 = {(I - a L)- 1 [a U - (a - 1) I]}n + 1 e0 (5.53)

and the successive error vectors are related by the equation

en + 1 = Hen (5.54)

where H the error matrix is found to be the same as the iteration matrix defined above. It should
be noted that H is independent of n. Assuming that H has m linearly independent eigenvectors vs

corresponding to the eigenvalues as, the initial error vector e0 (with its m components) can be
expressed as a linear combination of the eigenvectors in the form

0

1

m

s s
s =

= ∑e c v

and so the error vector after n iterations is

1

m
n n

s s s
s

m
=

= ∑e c v
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from which it follows that en tends to zero, as n increases, when the largest value of |ms|, (s = 1, 2,
3, ..., m), called the spectral radius of H is less than unity.

When u is not the exact solution of Cu = v, the difference v - Cu is called the residual
vector r. In the manual relaxation method, the components of r are calculated for an initial
estimate of u0 and then we reduce the residuals to zero by making the appropriate changes in the
components of u. In the hand relaxation method, the reduction of the residuals need not be done
in any systematic order, but in the computer, this order is systematized and done in a sequential
manner. Thus, the current value of the residual vector rc for the (n + 1)th iterative cycle is

rc = v - Cu = v - [I - L - U]u = v - un + Lun + 1 + Uun (5.55)

When rc is made zero, we get a vector equation for the next iterative cycle of un, i.e. un + 1, i.e.

0 = v - un + 1 + Lun + 1 + Uun

\ un + 1 = Lun + 1 + Uun + v (5.56)

This equation is the same as Eq. (5.47) of the Gauss-Seidel scheme and hence that is a variation
of the systematic relaxation method which reduces the successive elements of the current residual
to zero. The current residual vector is thus equal to the displacement vector in the Gauss-Seidel
iteration, as Eq. (5.56) can also be written as

un + 1 = un + (v - un + Lun + 1 + Uun) = un + rc

Thus the rate of convergence of this scheme can be further improved by the S.O.R. method,
defined by

un + 1 = un + arc

where a the relaxation factor is a real positive constant which over-relaxes for a > 1 and under-
relaxes for a < 1. It has been proved that the S.O.R. method converges for 0 < a < 2 whenever C
is a symmetric positive definite matrix which is frequently the case with the F.D. equations
associated with these P.D.Es.

The optimum value ab of a for the maximum rate of convergence is given by

2

2

1 1
ba

m
=

+ −
(5.57)

where m is the spectral radius of the Jacobi iteration matrix (L + U) associated with the matrix C
subject to the ‘Property A’. This is the value of a that minimizes the spectral radius of the S.O.R.
iteration matrix {(I - a L)- 1 [a U - (a - 1) I]} when considered as a function of a. The minimum
spectral radius is (ab - 1) and for the convergence this must be < 1, and Eq. (5.57) shows that this
condition is fulfilled when m < 1. As the spectral radius of the corresponding Gauss-Seidel
iteration matrix {I - L}- 1 U is m2, it follows that when the Jacobi iteration matrix converges, both
the Gauss-Seidel and the optimized S.O.R. methods must converge.

‘Property A’ and ‘Consistent Ordering’. The relationships between the Jacobi, the Gauss-Seidel,
and the S.O.R. iterative methods for solving Cu = v have been established only for matrices
possessing what is called the ‘Property A’ and for a scanning of the mesh points in what is called
a ‘Consistent Order’.

‘Property A’, invented by Young, states that a matrix C = [I - L - U] can be transformed by
a sequence of permutations into a ‘diagonally block-tridiagonal form’
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(5.58)

where Ii are the diagonal matrices of various orders, but made up of the elements of I; and Li are
the rectangular matrices made up of the elements of L; and Ui are the rectangular matrices made
up of the elements of U. It should be noted that a sequence of permutations does nothing more
than reorder the rows and the columns in the same way. The important thing is that the permuted
matrix has the same eigenvalues as the original matrix.

To illustrate the point, let us assume that we are solving a P.D.E. in two independent

variables x and y over a closed area S, and the derivative 
f∂

∂ ∂

2

x y
 is not present. Subdivide

S into rectangular meshes and label the mesh points black (B) and white (W) in a chess-board
fashion like below

B W B W B W . . .

W B W B W B . . .

B W B W B W . . .

W B W B W B

. . . . . . . . .

. . . . . . . . .

If now the finite difference equation approximating the differential equation at the point B
can be solved for the function value at B exclusively in terms of the function values at the point
W, and vice-versa, then the matrix C of the difference equation has the ‘Property A’.

Or, more formally, sub-divide the positive integers into two classes B and W. Then the
matrix C has the ‘Property A’, if the suffices i and j of the nonzero off-diagonal elements cij are
such that if i is placed in B and j in W or vice versa, then no member of B is a member of W. It
can also be shown that if the matrix C has the ‘Property A’, then it is always possible to reorder
the equations and the unknowns so that the matrix of the reordered set has either the tri-diagonal
partitioned form (shown before) or the partitioned form.

1

2

D F

E D

⎡ ⎤
⎢ ⎥
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(5.59)

where the Ds are the square diagonal sub-matrices (not necessarily of the same order).

Consistent ordering. In the Jacobi method , the rate of convergence is independent of the order
in which the mesh points are scanned. But the rates of convergence of the Gauss-Seidel and the
S.O.R. methods depend on the way the mesh points are scanned because the (n + 1)th iterates, as
soon as they are available, are required to calculate the other (n + 1)th iterates. Let us say that the
matrix of the equations under consideration has the ‘Property A’, and the equations have been
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ordered in a manner so as to give a matrix of the form (5.58) or (5.59). Then a different ordering
of the equations is said to be ‘consistent with’ the form (5.58) or (5.59), when the (n + 1)th
iterative values for the two orderings are identical for n = 0, 1, 2, ..., assuming the initial inputs to
be the same. This means that the components of u corresponding to the diagonal sub-matrix
Dk – 1 must be evaluated before the components of u corresponding to the sub-matrix Dk.
A scanning of the mesh points that is consistent with such a form as (5.58) or (5.59) is defined to
be consistent. So the matrices with these forms have the Property A and are consistently ordered.
For the ‘Property A’ matrices which are consistently ordered, the eigenvalues, l, of the S.O.R.
iteration matrix {(I - a L)- 1 [a U - (a - 1) I]} are related to the eigenvalues, m, of the Jacobi
iteration matrix (L + U) by the equation

(l + a - 1)2 = l2a2m2,   if | m | < 1 (5.60)

We shall now give some examples of the consistent ordering. Some of these for the 5-point
formula on a square mesh are given by:

1. scanning the successive mesh lines in the same direction;
2. scanning the successive diagonals through the mesh points in the same direction;
3. labelling the mesh points black and white as on a chessboard, and taking all the white

equations before the black ones.

Or, in general, we take any two adjacent mesh points P and Q, and put an arrow in the direction
P to Q, if P precedes Q in the ordering. Then the ordering is consistent if, on moving once round
every square mesh, we move with the arrow on any two sides and against it on the other two
sides.

Further details of the consistent ordering will be found in Forsythe & Wasow, Fox, Varga,
and Smith.

Finally, though we have mentioned about the errors, we have not discussed them in any
depth. For detailed analysis of errors, the readers are recommended to Wilkinson, Fox, Walsh, and
Fox and Parker.

5.6 FINITE ELEMENT METHOD

In the finite difference method, the regularity of the discretization mesh is one of the great
advantages of programming. But this also at times can produce excessive information. Hence it is
a good idea to use larger mesh in the region where no critical information is required, and finer
mesh in those parts where detailed information is necessary. The finite difference meshes can thus
be graded as required, but the computation becomes complicated for the regions where the meshes
of different sizes meet.

The possibility of a completely free topology for the meshes is achieved by the finite
element method, which is based on the energy distribution and not on the differential equation
describing the equilibrium condition. This method is a variational one and one of the most
practical ones for solving the boundary value problems. In this method, the partial differential
equation of the field problem is formulated as an ‘energy functional’ which is then minimized to
obtain the solution to the P.D.E.

Hence, in order to solve a boundary value problem, the problem must be formulated in
variational terms as a functional; and it must be minimized with respect to a trial solution or a set
of trial solutions. The necessary condition for obtaining the functional minimum is that the Euler
equation of the functional is the P.D.E. of the field problem.
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5.6.1 Functional and Its Extremum

A functional is an operation which assigns a number to each of a certain class of functions. For
instance, if we define f to be a set of functions of two variables (x, y) subject to the condition
f = f(s) on S, where S is the surface bounding the region R and is continually differentiable, then
any quantity such as ¡ which takes a specific numerical value corresponding to each function in
the set, is said to be a ‘functional’ on the set f. It is a function of a function.

We shall now consider a functional in a single independent space variable, and then
subsequently extend it to two space variables.

Let us consider the maximization or the minimization of an integral of the form

( , , )
b

a

F x u u dx′ℑ = ∫ (5.61)

subject to the conditions

u(a) = A, u(b) = B (5.62)

where a, b, A, and B are constants. We also assume that F has continuous second-order derivatives
with respect to its three arguments, and that the unknown function u(x) possesses two derivatives
everywhere in (a, b).

Next, we shall consider a one-parameter family of admissible functions which includes u(x)
of the form

u(x) + eh(x) (5.63)

where h(x) is an arbitrary twice-differentiable function which vanishes at the end-points (a, b). So,

h(a) = h(b) = 0 (5.64)

Also e is a parameter which is a constant in any one function in the set, but varies from one
function to another. The increment e h(x) represents the difference between the varied function
and the actual function, and is called a variation of u(x).

If u(x) is replaced by u(x) + eh(x), then the integral assumes the form

( ) ( , , )
b

a

F x u u dxe eh eh′ ′ℑ = + +∫ (5.65)

It is obvious that the maximum value of the integral occurs when e = 0, i.e. when the variation of
u is zero. Hence

( )
0 when 0

d

d

e e
e

ℑ = = (5.66)

Now,

( ) { , , } ( ) { , , } ( )

( ) ( )

b

a

d F x u u u F x u u u
dx

d u u

e eh eh eh eh eh eh
e eh e eh e

⎡ ⎤ℑ ∂ + + ∂ + ∂ + + ∂ +′ ′ ′ ′ ′ ′= +⎢ ⎥∂ + ∂ ∂ + ∂′ ′⎣ ⎦∫

         
{ , , } { , , }

( ) ( )

b

a

F x u u F x u u
dx

u u

eh eh eh ehh h
eh eh

⎡ ⎤∂ + + ∂ + +′ ′ ′ ′= + ′⎢ ⎥∂ + ∂ +′ ′⎣ ⎦∫ (5.67)
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Setting e = 0, we get

( )
( ) ( ) (0) 0

b

a

d F F
x x dx I

d u u

⎡ ⎤ℑ ∂ ∂⎛ ⎞ ⎛ ⎞ ′ ′= + = =⎜ ⎟ ⎜ ⎟⎢ ⎥′∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦∫e h h
e (5.68)

The second term of the above definite integral in (5.68) can be transformed by integration by
parts as below:

( ) ( ) ( )
b bb

aa a

F F F
x dx x x dx

u u x u

⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥′ = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ ′ ′∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫h h h (5.69)

The first term of the right-hand side of the above equation is zero, since

h(a) = h(b) = 0

Substituting in Eq. (5.68), we get

(0) ( ) ( ) 0
b b

a a

F F
x dx x dx

x u u

∂ ∂ ∂⎛ ⎞ ⎛ ⎞′ℑ = − + =⎜ ⎟ ⎜ ⎟′∂ ∂ ∂⎝ ⎠ ⎝ ⎠∫ ∫h h (5.70)

This is known as the Euler–Lagrange equation.
Or

( ) 0
b

a

F F
x dx

x u u

⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞− =⎜ ⎟ ⎜ ⎟⎢ ⎥′∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦∫ h (5.71)

From this equation, it can be deduced that the integrand must be zero, such that

0
F F

x u u

∂ ∂ ∂⎛ ⎞ − =⎜ ⎟′∂ ∂ ∂⎝ ⎠
(5.72)

This expression is called the ‘Euler equation of the functional’, defined by the integral Eq. (5.61)
subject to the boundary conditions specified by Eqs. (5.62).

5.6.2 Functional in Two Variables

Next we consider a functional in two variables, by a surface integral of the form

R

Fℑ = ∫∫ (x, y, f, fx, fy)dx dy (5.73)

where

f ff f∂ ∂= =
∂ ∂

,x yx y
(5.74)

We next change the function f(x, y) to its new value

f(x, y) + eh (x, y) (5.75)

The change eh (x, y) in f(x, y) is called the variation of f, and is denoted by

df = eh (x, y) (5.76)
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Corresponding to this change in f, the functional will assume a value

( )
R

eℑ = ∫∫ [F{x, y, f + eh, fx + ehx, fy + ehy}]dx dy (5.77)

Differentiating ¡(e) with respect to e, we get (as before)
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d

e
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f e h f e h f e h
h

f e h (5.78)

Setting e = 0, we get

( )
(0) x y

x yR

d F F F
dx dy

d

e h h h
e f f f

⎡ ⎤⎛ ⎞⎛ ⎞⎛ ⎞ℑ ∂ ∂ ∂
= ℑ = + +′ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ∂ ⎠ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

∫∫ (5.79)

The second and the third terms can be expanded by integration by parts, i.e.

x
x x xR S R

F F F
dx dy dy dx dy

x
h h h

f f f
Ï ¸Ê ˆ Ê ˆ Ê ˆ∂ ∂ ∂ ∂Ô Ô = -Ì ˝Á ˜ Á ˜ Á ˜∂ ∂ ∂ ∂Ë ¯ Ë ¯ Ë ¯Ô ÔÓ ˛ÚÚ Ú ÚÚ (5.80)

y
y y yR S R

F F F
dx dy dx dx dy

y
h h h

f f f
Ï ¸Ê ˆ Ê ˆ Ê ˆ∂ ∂ ∂ ∂Ô Ô = -Ì ˝Á ˜ Á ˜ Á ˜∂ ∂ ∂ ∂Ë ¯ Ë ¯ Ë ¯Ô ÔÓ ˛

ÚÚ Ú ÚÚ (5.81)

Substituting from Eqs. (5.80) and (5.81) in Eq. (5.79), we get
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0
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d
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e
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( , )

( , )

x yR

x yS

F F F
x y dx dy

x y

F F
dy dx x y

h
f f f

h
f f
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Ú
(5.82a)

Removing h(x, y) from the above equation, we have

0
x y x yR S

F F F F F
dx dy dy dx

x yf f f f f
Ï ¸ Ï ¸Ê ˆ Ê ˆÊ ˆ Ê ˆÊ ˆ∂ ∂ ∂ ∂ ∂ ∂ ∂Ô Ô Ô Ô+ - - + =Ì ˝ Ì ˝Á ˜ Á ˜Á ˜Á ˜ Á ˜∂ ∂ ∂ ∂ Ë ∂ ¯ ∂ ∂Ë ¯ Ë ¯Ë ¯ Ë ¯Ô Ô Ô ÔÓ ˛ Ó ˛

ÚÚ Ú (5.82b)

The first term of Eq. (5.28b) is the Euler-Lagrange equation, and the second term comes out equal

to zero. We have thus split the original area integral of 
0

( )d

d =

ℑ

e

e
e  over the domain of integration

R into the boundary S, into the two integrals one of which is for the region R excluding the
boundary, and the other a boundary integral S.
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Equation (5.82b) represents the condition for the extremum (i.e. the maximum or the
minimum) of the functional ¡. In order to show that the functional is a minimum, we have to
establish the relationship

2

2

( )
0

d

d

e
e
ℑ > (5.83)

Thus the necessary conditions for the functional minima are:

(a) that the first variation or the derivative of the functional is zero (necessary condition);
(b) that the second variation is greater than zero.

In most of the cases, the condition (b) is satisfied when the condition (a) is satisfied. Thus the
‘necessary condition’ for an extremum is also the sufficient condition for a minimum. So it will be
sufficient for us to consider the first variation of the functional.

If now in Eq. (5.82b), the boundary integral is set to zero, the condition for a functional
minimum becomes

0
x yR

F F F
dx dy

x y

⎧ ⎫⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎪ ⎪+ − =⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
∫∫ f f f (5.84)

Hence the integrand of Eq. (5.84) must be made equal to zero, which gives the result

0
x y

F F F

x yf f f
⎧ ⎫⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎪ ⎪+ − =⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

(5.85)

This is the Euler equation.
The effects of setting the boundary integral to zero will be examined later. At this stage it

can be concluded that the functional is a minimum if the Euler equation is satisfied. In general,
this condition is satisfied if the Euler equation of the functional is the same as the partial
differential equation of the field problem.

5.6.3 Functional for Electrostatic Fields

It is possible, starting from the Poynting vector (which we shall study later) for the energy
distribution in the field, that the functional can be written in terms of the electrostatic potential V
and the source charge density rC (if there is any in the specified region). Thus,

2
C

vol

(vol)
2

V V d
⎧ ⎫⎛ ⎞ℑ = − ∇⎨ ⎬⎜ ⎟⎝ ⎠⎩ ⎭∫∫∫ er (5.86)

where e is the permittivity of the medium.
The proof of this equation will follow the chapter on the Poynting vector and the energy

transfer. If this functional is substituted in the Euler Eq. (5.85), it reduces to the Poisson’s
equation for the electrostatics (in which f is replaced by V ). Hence the minimization of this
functional will give us the solution of the requisite field problem.

5.6.4 Functional and the Boundary Conditions

We next show that the boundary conditions are also satisfied in the process of minimization of
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the functional. We consider the contour integral term of the Euler-Lagrange equation and consider
its differential which is then set to zero, i.e.

cos sin 0
x yS

F F
dsf f df

f f
Ï ¸Ê ˆÊ ˆ∂ ∂Ô Ô+ =Ì ˝Á ˜Á ˜∂ ∂Ë ¯ Ë ¯Ô ÔÓ ˛

Ú (5.87)

where dx and dy have been replaced by ds and the angle which ds makes with the x- and the
y-axes. By suitably choosing the value of F, this integral can be expressed as

cos sin
x yS S

F F
ds ds

n

ff f df df
f f

Ï ¸Ê ˆÊ ˆ∂ ∂ ∂Ô Ô Ê ˆ+ =Ì ˝Á ˜ Á ˜Á ˜ Ë ¯∂ ∂ ∂Ë ¯ Ë ¯Ô ÔÓ ˛
Ú Ú (5.88)

Hence, if (a) df = 0, or (b) (∂f /∂n) = 0, the definite integral vanishes, i.e. (a) df = 0 condition
makes the boundary an equipotential line; and (b) (∂f /∂n) = 0 condition implies that the normal
derivative of the potential is zero on this boundary.

Thus in the process of the functional minimization, we have obtained the Euler equation of
the functional, and the boundary conditions are satisfied automatically whilst the specified
potentials are imposed on the boundaries in the process of solving.

5.6.5 Functional Minimization

To minimize the functional over the region, it is necessary to have discrete representation of the
variable (i.e. the potential) over the entire region. Hence the whole region can be divided into a
number of elements in any desired manner ensuring that all the material interfaces (if there are any
in the specified problem) coincide with the element sides. In practice, the simplest elements are
triangular in shape. This process ensures the continuity of the normal boundary conditions across
the interfaces. The number, the shape, the size of these elements need not be restricted in any
manner. An approximate distribution of the potential is assumed within the element, which (the
potential) is a function of the coordinates of the nodes of the element and the nodal values of the
potentials at their vertices. Thus we have an approximate distribution of the potential V (or f).
These potentials are varied until the functional given by Eq. (5.86) reaches its minimum. The
resulting potential distribution gives the best possible solution in the least square sense, since the
functional contains terms involving the second order of the potential V. A variety of approximate
descriptions for V within the element are possible. In triangular elements, the linear variations of
V inside would give (and have given) sufficiently accurate results. For this, the potential V within
the triangle lmn (Figure 5.13) is given by

V(x, y) = ax + by + c (5.89)

l (xl, yl)

n(xn, yn)

Figure 5.13 A typical element used in F.E.M..

m(xm, ym)
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The constants a, b, c can be obtained in terms of the nodal values of V and their coordinates to
give

, ,

( , )
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i i i
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i l m n

p q x r y
V x y V

=

+ +⎛ ⎞= ⎜ ⎟Δ⎝ ⎠∑ (5.90)

where D = the area of the triangle whose vertices are l, m, n

 pi = xmyn - xnym

 qi = ym - yn

 ri = xn - xm

 Vi = the potential at the node i.

The electric flux density within the triangle is given by
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Thus the flux density and also the permittivity inside a triangle is constant, for a first-order
element. Equation (5.89) can then be written as
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( , ) i i
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V x y c V
=

= ∑ (5.92)

where cl, cm, cn are the area coordinates of the nodes l, m, n given by

D
+ +

= 1 1

2
i i i

l
p q x r y

c (5.93)

These area coordinates* are also called the shape functions. Expressing the polynomial in terms of
these functions makes it more convenient for further operation. Some of the important properties
of these functions are:

1. These functions allow the interpolation of the potential inside the element in terms of
the nodal values.

2. At any given vertex, the shape function corresponding to it assumes a value of unity,
and zero at other vertices. Thus the magnitudes of these functions alternate between zero
and one over the element.

3. The sum of the shape functions for any element is always zero.

Similar equations have to be written for all the triangles, thus defining V and D in terms of
the nodal values of V at the vertices of the triangles. The functional involves integration of the
area and so can be expressed as integrating over each element and then summing all of them to
obtain the total integral. So we write:

( )2 2
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1,2,3,...,
2 xk yk k k

k N

D D V dS
e r

=

⎡ ⎤⎛ ⎞ℑ = − + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∫∫ (5.94)

* Such a three-axis coordinate system (non-orthogonal) for a two-dimensional problem is called ‘areal coordinate
system’, which is a special case of the general homogeneous coordinate system. (For details, refer to Askwith, E.H.,
Analytical Geometry of the Conic Sections.)
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where

N = the number of the elements
dSk = area element of the kth element.

Here each triangle contributes one term to the integral. The flux density D within each
element is constant and defined in terms of the nodal values of V at the vertices. Hence the
minimization of the energy functional is carried out by setting the first derivative of the
functional with respect to every nodal value to zero, so that

=

∂ℑ ∂ℑ= =
∂ ∂∑

1,2,...,

0
k kk M

V V (5.95)

where
 k  = node number varying from 1 to M
 M = the number of the nodes.

The terms of Eq. (5.94) can be expressed in terms of the polynomials for D and V, by
considering the relevant derivatives of the expression for the functional also expressed in terms of
the nodal polynomials. At the end, for each triangular element, we write the three corresponding
equations in matrix form which in abbreviated manner can be written down as

[s] [v] + [t] [v] = [r] (5.96)

Similar equations are formed for every element in the region, and all these matrices are assembled
to form a global matrix as

[S] [V ] + [T ] [V ] = [R ] (5.97)

In Eq. (5.97), the contributions from each element connected to the common node are added to
the respective terms in the global matrix [S]. The matrix [T] is known, and is formed from the area
of the elements and the material properties. On the right-hand side, the source matrix is assembled
by adding the charge distribution at each node. The resultant matrix [S] has the following
properties:

(a) The matrix is symmetric and is of the order m ¥ m, where m is the total number of the
nodes.

(b) It is sparse and band-structured, i.e. with nonzero elements near the diagonal. This is
because all the nodes are not connected with each other.

(c) The matrix is singular, since all the elements of any row add up to zero, thereby
resulting the determinant of the matrix to add up to zero.

This means that the equations (5.96) do not give a unique solution. The reason for this is
that no boundary conditions have been imposed explicitly so far. All the boundaries are
implicitly assumed to be of Neumann type. Thus for such a set of equations, a number of
solutions are possible, each differing from the other by a constant. Hence for a unique solution, it
is necessary to prescribe the potential at least at one point. Imposition of such a boundary is
called the Dirichlet condition, which we now discuss.

All the elements of the rows and the columns corresponding to the node with the prescribed
potential are made equal to zero, except the diagonal element which is put down as 1.0. The
prescribed potential replaces the source term for the node, while the other elements of the column
matrix also get modified. The matrix [S], after the imposition of the Dirichlet boundary condition,
does not remain singular and a unique solution is obtained. Again it must be remembered that the
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Neumann type boundary condition does not have to be imposed explicitly as it is already built in
the formulation of the functional. The resultant set of the simultaneous equations represented by
the matrix Eq. (5.97) are usually solved by the Gaussian Elimination method.

5.7 GENERAL COMMENTS
We have discussed a number of methods for solving the electrostatic field problems. But it should
be remembered that this is not a complete list. We have mentioned only the more important ones
and those which have been used more commonly. It should also be noted that the operational
equations for the electrostatics satisfy other types of fields, i.e. the Laplace’s and the Poisson’s
equations are also applicable to the magnetic fields, the electric current fields, the steady-state
heat flow, etc. So the methods discussed here would be applicable equally to the problems
pertaining to these other types of fields. For example, the conducting paper modelling method,
which has been briefly mentioned here, has been very widely used for solving the magnetostatic
problems. Such methods are going to be discussed in depth in pertinent places in this book. The
method of images has also been very widely used in the magnetic field problems in connection
with the representation of the boundaries of the problems of electrical machines, particularly in
cylindrical geometry. Such aspects will be dealt with in relevant places.

Another point brought to the attention of the readers is about the numerical methods. These
methods are also equally applicable to the other types of fields which satisfy the same and similar
operating field equations, and hence their capabilities to solve such problems will be highlighted
in due course. So far we have explained a few finite difference methods (i.e. Jacobi, Gauss-Seidel,
S.O.R., etc.), but this is not a comprehensive list. There are other F.D. methods, which are even
more efficient and faster than those described here, for instance, ‘the alternating direction implicit
method’, which have not been included in this section. Readers interested in such methods are
recommended books on this subject by Forsythe & Wasow, Varga, Ames, and some of their
original papers on the subject. Much work remains to be done in the use of such methods to
maximize the utilization of their capabilities.

Next coming to the use of the finite element method, there is a tendency amongst some
users to regard this method as a more successful rival of the finite difference methods. This is a
very restricted viewpoint; and in fact it should be appreciated that the two methods are comple-
mentary. In fact, there has been some significant work done in comparing the efficacy of the two
methods, and attempts have been made to identify the areas of preferential use of the either of the
two methods. For example, there are areas of electrostatic field problems (and also heat-transfer
problems), where the F.D. methods are still found to be preferable, while the magnetic and the
electromagnetic field problems are being extensively solved by using the finite element method.
This has been the situation with mostly the two-dimensional problems. But with the advent of
more and more powerful and faster computers, the three-dimensional problems are also being
attempted; while the finite element methods are being used to solve three-dimensional
electrostatic and magnetostatic problems, their use in three-dimensional multi-region eddy-current
problems remains questionable (at least in the minds of mathematicians). However a detailed
discussion of all pertinent points would be the subject matter of specialized textbooks, and cannot
be covered in an elementary level discussion such as here.

There are other methods, both approximate as well as analytical, which we have not
discussed here. Some of these methods are: Integral equation method, Moment method, Roth’s
method, and so on. Proper discussion of such methods would be the subject matter of advanced
level specialized texts on the relevant topics.
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PROBLEMS

5.1 Two point charges, ±1 mC, are located 3 m apart in air. Determine graphically, the
location of the equipotential lines in a plane passing through the point charges.

Hint: Initially draw the component equipotential circles for each isolated charge at
intervals of 1000 V from 2000 to 10,000 V. The intersection points of the two sets of
concentric circles will give the locations of the resulting equipotentials.

5.2 In Section 5.2.2, it has been proved that the scalar variable FFFFF satisfies the Laplace’s
equation; starting from Eq. (5.1), show that the orthogonal scalar variable QQQQQ also
satisfies the Laplace’s equation.

5.3 In cylindrical polar coordinates, starting from the Laplace’s equation, show that its
finite-difference approximation is:
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5.4 Show that the finite difference approximation for the Laplace’s equation in spherical
polar coordinates is:
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6.1 INTRODUCTION

So far we have considered the static electric field, i.e. the field due to the static electric charges.
Now we shall consider the situations where the continuous distribution of charges are
macroscopically in a steady state of motion. Such a state happens when large aggregates of
elemental electric charges are moving at constant speed. When the charges are no longer static,
the theory of the field of the static charges, i.e. the Coulomb’s law of force, has to be modified.
The force between the pairs of moving charges cannot be described completely by the Coulomb’s
law, and new terms in the equation have to be incorporated as we shall see later. Since, however,
our interest is in ‘the continuous distribution of charges in steady state of motion’, the forces of
the new type on the individual elemental charges may be considered negligible. The steady
motion of the charges is canalized in suitable conductors. By conductors we mean any substance
which contains in it a relatively large number of charges (i.e. electrons) free to move about.
Metals which are the most important of the conductors contain in general a large number of
valence or ‘conduction electrons’ which are very loosely connected with the rest of the atoms. In
normal conditions, these electrons move at random from one atom to another. But even if a very
weak electric field is imposed on the conducting medium, an organized motion of the electrons
gets superimposed on the random motion. Such an organized motion of the charged elementary
particles is referred to as the ‘electric current’. The imposed electric field accelerates the electrons
in the direction of the field but sooner or later they collide with other atoms as a result of which
the average velocity of the electrons in the directed motion becomes quite small, and due to the
collisions the electrons transfer a part of this kinetic energy to the atoms. This transferred energy
appears as vibrations of the atoms which represent the thermal energy. The electric current in any
conductor is thus associated with the generation of heat which is known as ‘Joule’s heat’.

So far we have described qualitatively the mechanism of the electric conduction in solid
conductors, which is quite different from that in liquids. In a liquid conductor, certain percentage
of molecules dissociate into two oppositely charged parts, which are called ions. When an electric
field is imposed on such a liquid, the positive ions move in the direction of the field and the
negative ions move in the opposite direction. The electric current in the liquid conductors is thus
made up of two streams of charged particles moving in opposite directions, and generally with
different average velocities. As in solid conductors, there would be a generation of heat here as

Steady Electric
Current and
Electric Field6
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well. In addition, the electric current in the liquid conductors is associated with chemical changes,
a process which we know as electrolysis.

The number of free electric charges per unit volume of solid and liquid conductors is
extremely large, because there are approximately some 1022 to 1024 atoms per cubic centimetre of
a rigid body. In 10-6 cubic centimetres of a metallic conductor, there are approximately 1016 to
1018 electrons. So macroscopically we can visualize the electric current as the flow of some kind
of ‘electric fluid’.

6.2 ELECTRIC CURRENT AND CURRENT DENSITY

So far we have tried to visualize and describe the electric current in a qualitative manner.
Quantitatively, the electric current, which is the flow of a continuous distribution of electric
charges, can be defined by two physical quantities, i.e.

(a) the current density vector J which defines the flow of the charges at a point, and
(b) the current or the current intensity I which describes the rate of flow of the electric

charges through a macroscopic surface.

Let us now consider a point inside a conductor where there are, say, N free charges per unit
volume, each carrying a charge Q, moving with an average velocity v. Then at the point under
consideration, the current density vector J is given by

J = NQv (6.1)

According to this definition, the current density vector of the negative charges - Q with the
average velocities - v is the same as the current density vector of the positive charges + Q with
the average velocities + v, i.e.

J- Q = N(- Q)(- v) = NQv = J+ Q (6.2)

Hence a stream of negative charges in one direction is equivalent to the stream of the positive
charges + Q moving in the opposite direction. In general, the electric current may be made up of
a continuous distribution of different charges Q1, Q2, Q3, ..., Qn of different numbers N1, N2,
N3, ..., Nn per unit volume and with different velocities v1, v2, v3, ..., vn, respectively, at the point
under consideration. Thus the current density at that point is the vector sum of the partial current
densities, i.e.

Jtotal = N1Q1v1 + N2Q2v2 + N3Q3v3 + ... + NnQnvn (6.3)

Let us next consider a small planar surface dS in a stream of the charged particles which constitute
the electric current (Figure 6.1). Let us assume that the current density vector at that point is

J = NQv

During a small time interval dt, the surface dS will be crossed by the charge dQ which occupied
the volume dS (vd t)cos a as shown in Figure 6.1. Hence the charge that crosses the surface dS in
this time interval dt is

dQ = NQvdSdt cos a (6.4)

The electric current or the current intensity that passes through the surface is thus defined as the



198 ELECTROMAGNETISM: THEORY AND APPLICATIONS

charge crossing the surface per unit time. The symbol for the current is I for the steady time-
independent current, and i(t) or i for the time-varying currents. So

dI = 
Q

t

d
d

= NQvdS cos a (6.5)

Expressing the surface area as a vector,

dI = 
Q

t

d
d

 = NQv ◊◊◊◊◊ dS = J ◊◊◊◊◊ dS (6.6)

So the total current intensity I through an arbitrary surface S is

dQ
I

dt
d= = ⋅∫∫ J S (6.7)

So the current through a surface may be either positive or negative. Its sign depends on the sign
of the positive normal to the surface. By definition, the current I is a scalar quantity, and when we
refer to the direction of the current in the wire conductors, it is assumed to be in the direction of
the current density vector. By convention, the direction of a current in a metal wire is opposite to
the direction of the flow of the free electrons which make up the current.

The unit of current (or the current intensity) is coulomb per second or ampere. Its notation
is A which stands for C/s. The lines of the current density vector J or the current flow lines are
defined as the lines having the property that the J vector is tangential to such a line at all the
points. So a tubular surface formed by a bunch of current flow lines, would be such that the flux
of J, i.e. I, is the same through any cross-section of the tube.

6.3 ELECTRIC CURRENT AND ELECTRIC FORCE

We have seen in previous chapters that for a conductor containing free electrons in electrostatic
conditions, the electric field E is zero and hence the potential must be constant throughout the
material of the conductor. But when the current flows, there would exist an electric force E within
the conducting material and we find that the average local direction of the electron flow is the
same as the direction of - E. In many materials, the current traversing the unit area normal to the
lines of force is decided by the local value of E, and for a large class of conductors, the current
is proportional to E over a wide range. This is the ‘Ohm’s law’, and the conductors which obey
this law are called ohmic or linear. Most metals and aqueous solutions of salts fall in this

Figure 6.1 A planar surface dS with current across it.
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category. Books on the electric circuit theory deal with this law and other circuit laws, i.e.
Kirchhoff’s laws in great detail.

The Ohm’s law is usually expressed by the equation

V = RI

where it is implied that the current flowing in a conductor bears a constant ratio to the potential
difference across its ends. The constant R is called the resistance of the conductor and is measured
in ‘ohms’ when V and I are measured in volts and amperes, respectively. It has been found that R
is directly proportional to the length and inversely proportional to the cross-sectional area of the
conductor. The resistance of a unit cube of the material is its characteristic at any given
temperature and is known as its ‘resistivity’ (= r). So we can express the Ohm’s law as follows:

Potential difference between the ends of the conductor element,

V = El

where l is the length of the conductor.
Resistance between the ends of the conductor,

l
R

S

r=

where S is the cross-sectional area of the conductor.
\ The Ohm’s law equation V = RI becomes

or
l I

El I E J
S S

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
r r r [from Eq. (6.7)] (6.8)

So we find that the current density vector J has the same direction as the electric field intensity
E.

6.4 THE CONSERVATION OF CHARGE (THE EQUATION OF
CONTINUITY)

Since the charges are indestructible, if there is an inflow of charges in some part of the surface of
a conductor, then there would be an equivalent outflow elsewhere or there would be an
accumulation of charge upon the conductor. Under the steady-state conditions, ruling out the
possibility of charge accumulation, the total inflow of the current to any conductor must equal the
total outflow, a condition which must be true for any part of the conductor. This is the ‘Principle
of conservation of charge’.

Let us consider a closed surface S, enclosing at any instant of time, a total charge Q. The
charge Q is the part of a cloud of charges of density rC which is a function of position and time.
This charge cloud is moving in an arbitrary manner, and hence the total current iS(t) through S
with respect to its outward normal is

( )S

S

i t d= ◊ÚÚ J S (6.9)

where J is the current density vector at dS (Figure 6.2). This current iS (t) represents the positive
charge which crosses S per unit time in the positive (outward) direction. But according to the
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principle of conservation of charges, the outflow of charges must equal the decrease of charges
enclosed in S, i.e.

crossing inside
C( )S

v

dQ dQ d
i t dv

dt dt dt
= = − = − ∫∫∫ r (6.10)

Combining Eqs. (6.9) and (6.10), we get

C

S v

d
d dv

dt
r◊ = -ÚÚ ÚÚÚJ S (6.11)

By using the Gauss’ divergence theorem, the surface integral can be converted into a volume
integral, i.e.

Cdiv
v v

d
dv dv

dt

⎛ ⎞= − ⎜ ⎟⎝ ⎠∫∫∫ ∫∫∫J
r

or

C 0
v

d
dv

dt

r⎧ ⎫⎛ ⎞∇ ⋅ + =⎨ ⎬⎜ ⎟⎝ ⎠⎩ ⎭∫∫∫ J (6.12)

where v is an arbitrary volume, and so in the differential form

C 0
d

dt
∇ ⋅ + =J

r
(6.13)

This is the differential form of the equation of continuity. If the electric current does not change
with time, and the charge density is also independent of time, then (drC/dt) = 0, and hence

— ◊◊◊◊◊ J = 0 (6.14)

Under this condition, the current density vector has no source, and charges cannot be created at
any point in a steady current flow. Equation (6.13) is the mathematical form of the principle of
conservation of charges, and states that the charges are neither created nor destroyed in
macroscopic quantities.

6.5 ANALOGY BETWEEN ELECTRIC CURRENT AND
ELECTRIC FLUX

Let us consider a small area dS inside a current-carrying conductor (Figure 6.3) in which the
current flow dI is given by

dI = J(cos q)dS (6.15)

Figure 6.2 A charge cloud enclosed in a closed surface S, enclosing volume v.

v
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where q is the angle between the normal to dS and the local direction of the current density
vector J. But the right-hand side of this equation is the flux of J across the surface element dS.
And by the principle of conservation of charges discussed in Section 6.4, this quantity is zero.

We should also remember that the electric field vectors E and D have the same property, i.e.
— ◊◊◊◊◊ E is zero and — ◊◊◊◊◊ D is zero in charge-free regions (and that the regions have uniform
permittivity). We have used this analogy in a number of experimental methods of solving field
problems, like the conducting paper method and the electrolytic tank method (Chapter 5, Sections
5.3.2 and 5.3.1) to solve the electrostatic field problems which satisfy the Laplace’s equation. So
now we can establish the scaling relationships between the current flow analogue and the original
electrostatic problem. The analogy between the current and the electric flux is

and
S S

d I dY = ⋅ = ⋅∫∫ ∫∫D S J S (6.16)

and for a closed surface

0 and 0
S S

d d◊ = ◊ =ÚÚ ÚÚD S J S

Thus J and D obey the same physical laws.
So we can set up an analogue of a system of perfect conductors in a dielectric medium of

permittivity e, by means of a system of similarly shaped perfect conductors in a conducting
medium of resistivity r (Figure 6.4). Let the linear dimensions be in the ratio of l : 1.

In the original problem, V =
C

d⋅∫E l , and in the analogue, V ¢ = 
C

d′ ′⋅∫E l .

\ E E

V V

l′
=

′
(6.17)

So,
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                     ( )V
J

V

e r
l

⎛ ⎞ ′= ⎜ ⎟′⎝ ⎠
(6.18)

where r = the resistivity of the medium of the analogue = 1/s, s being the conductivity which is
the reciprocal of the resistivity.

Figure 6.3 Current flow in conductor.
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\ Flux of D (over any area) = l2 Flux of 
V

J
V

er
l

⎛ ⎞ ′⎜ ⎟′⎝ ⎠
, over the corresponding area of the

     model.

\ Total flux of D = charge on the electrode Q (say)
and

                     total flux of J¢ = current from the electrode I ¢
where

V
Q I

V
ler ⎛ ⎞ ′= ⎜ ⎟′⎝ ⎠

(6.19)

\ Capacitance between the electrodes of the original system,

Q I
C

V V
ler

′⎛ ⎞= = ⎜ ⎟′⎝ ⎠
or

  C = lerG¢ (6.20)

where G¢ is the conductance between the electrodes of the analogue.

\ C

G′
 = ler = constant of the analogue (6.21)

6.6 ELECTROMOTIVE FORCE

In the previous section, we have observed a correspondence between the behaviour of the electric
current I and the electric flux Y. However, it must be understood that this correspondence is
conceptually based on mathematical formalism rather than physical. In fact, physically the electric
current and the electric flux are quite dissimilar. The current is a flow of the electric charges, and
the flux is not a flow of anything—it is in fact a mathematical abstraction. Further to maintain a
steady electric current, a continuous source of energy is needed, whereas there is no such
requirement for the maintenance of a steady flux. As we have explained before and also based on
our everyday experience, we find that when a conducting wire carries an electric current, the wire
gets heated because some of the electrical energy supplied to it is being converted to thermal

Figure 6.4 Current-flow analogue (either conducting paper or electrolytic tank).
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energy. This behaviour is implicit in the Ohm’s law. It can be easily deduced that when a current
I flows through a resistance R, the rate of energy loss is I2R watts. The agency which supplies the
energy for maintaining the potential difference across the resistor for the current through it, also
supplies this energy. The source can be either a chemical battery or an electric generator. This
property of the generator or the battery is called its ‘electromotive force’, which is commonly
abbreviated to ‘emf’. The direction of the emf is assumed to be the same as the positive direction
of the current flow, and its magnitude is measured by the energy supplied per unit charge
delivered. But the available energy per coulomb in the emerging charges at the positive terminal
of the battery or the generator is equal to the potential difference through which the charges will
fall while travelling round the circuit. Hence the emf defined in terms of energy ‘per unit charge’
is measured in volts. This energy will be slightly in excess of the P.D. across the terminals of the
conductor, as some energy is used up in the source itself. But if the current-carrying circuit is
removed, and the P.D. is measured by some instrument which takes negligible current then what
we measure would approximate the emf.

What we have discussed qualitatively so far, can thus be expressed as follows. In the source,
at any point the charges are acted upon by (a) the electric field of the distributed charges (= E)
and (b) the non-electric impressed force Fi which can be represented as QEi, where Ei is not a real
electric force due to the stationary charges. By definition, it gives the correct force on the charges,
only when multiplied by the charge.

\ The total force Ftotal on the charges passing through the point under consideration is

Ftotal = QE + Fi = Q(E + Ei) (6.22)

6.7 POTENTIAL IN THE ELECTRIC CIRCUIT

In an electrostatic field of a group of stationary charges, the work done in carrying a charged
particle round a closed path is zero, i.e.

0
C

d◊ =Ú E l (6.23)

But this is not true in a current-carrying circuit. For example, let us consider a generator
supplying a current to a resistor. In such a circuit, E is always in the same direction, even in the

generator, as otherwise the charges would not keep on moving. So
C

d◊Ú E l  cannot be zero,

because the sum of the positive contributions itself must be positive. So Eq. (6.23) gets replaced
by

E =
P P

i i

N N

E dl d= − ⋅∫ ∫E l (6.24)

that is, the electromotive force E of a generator is defined as the line integral of the impressed
field Ei from the negative electrode (N) to the positive electrode (P). The impressed field Ei inside
the source is exactly equal in magnitude and opposite to the electric field intensity E due to the
distributed charges (Figure 6.5).

The current flow macroscopically coincides with the moving charges in the conducting
media and J is in the direction of the total force Ftotal.
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\ J = s (E + E i)
and outside the generator

J = sE (6.25)

Note: 
C

d◊Ú E l  in a static field = 0, and

C

d◊Ú E l  in the region of steady current flow = E (source emf).

6.8 OHM’S LAW AND JOULE’S LAW

Macroscopically, the current flow lines of a steady current flow coincide with the lines of the total
force on the moving charges. This is true for all the liquid and most of the solid conductors. In
terms of the current density vector J, and the total force on the charge, this can be expressed as

J = s (E + Ei)
where the impressed field is present and

J = sE, in absence of the impressed field.

This is Ohm’s law and s (= 1/r) is the conductivity of the conducting medium and where r is the
resistivity of the medium as defined before in Section 6.3. The resistivity and the conductivity are
the functions of the temperature and can be expressed approximately as

r(t) = r0{(1 + a(t - t0)} (6.26)

where r0 is the resistivity at the reference temperature t0 and a is referred to as the temperature
coefficient.

The unit of the resistivity can be written from Eq. (6.8), i.e.

or
l RS

R
S l

r r= =

Figure 6.5 An open-circuited source of emf.
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So the unit of r is ohm-metre2/metre = ohm-metre = W-m (= V-m /A), and the unit of s is (A/V-m)
= mho/m = Siemens/metre = S/m.

Table 6.1 Resistivity and conductivity of some materials

Material r s
(W-m) at 20∞ C  (S/m)

Silver 0.163 ¥ 10–7 6.15 ¥ 107

Copper 0.174 ¥ 10–7 5.75 ¥ 107

Aluminium 0.283 ¥ 10–7 3.54 ¥ 107

Iron 1.00 ¥ 10–7 1.00 ¥ 107

Lead 2.10 ¥ 10–7 0.48 ¥ 107

Sea water approx. 0.25 approx. 4
Earth 102–104 10–4–10–2

Next we consider a conductor having N free charges, each of Q coulombs, per unit volume.
And let the electric field inside the conductor be E and the average velocity of the free charges
be v.

\ The work done by the electric forces in the time-interval dt in moving all the charges
inside a small volume element dv is given by

dWe = QE ◊◊◊◊◊ (vdt)Ndv

= NQv ◊◊◊◊◊ Edvd t

= J ◊◊◊◊◊ Edvd t [from Eq. (6.6)] (6.27)

As we have explained before, this part of the energy is taken up by the atoms of the conductors
due to collisions with free electrons and appears as heat, and so cannot be returned to the electric
field. Hence the rate at which the energy of the electric field is transformed into thermal energy
(or the power) is

edW

dtdP

dv dv

⎛ ⎞
⎜ ⎟⎝ ⎠

= = ⋅J E (6.28)

and so the power absorbed by a volume v of the conductor which is carrying a current is

v

P dv= ⋅∫∫∫ J E (6.29)

This is the integral form of the Joule’s law. This heating is also known as Joule heating due to the
electric current.

6.9 BOUNDARY CONDITIONS

Let us consider a boundary surface between the two conductors of different conductivities s1 and
s2 (Figure 6.6). Applying the continuity equation in the integral form [i.e. Eq. (6.14)] to a coin-
shaped Gaussian surface on the interface (for the steady-state condition), we get

J1n = J2n or s1E1n = s2E2n (6.30)
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that is, the normal components of the electric current vector are equal on both the sides of the
conductor interface.

When there is no current source on the interface, we can consider a rectangular closed
contour and apply the law

E ◊◊◊◊◊ dl = 0
which gives

E1t = E2t or 1t 2t

1 2

J J
=

s s
(6.31)

that is, the tangential component of the electric field intensity is continuous across the interface.
Combining Eqs. (6.30) and (6.31), we get

1t 1n 1 1

2t 2n 2 2

/ tan

/ tan

J J

J J
= =a s

a s
(6.32)

The surface densities of the free charges (= rS) can be evaluated, if the permittivities of the media
are known, i.e.

rS = D2n - D1n = e2E2n - e1E1n (6.33)

where e2 and e1 are the permittivities of the two media, respectively.

6.10 CIRCUIT LAWS
A generator of emf is, in general, a region inside a conductor where the external non-electrical
forces act on the free electrical charges. The generators encountered in practical applications have
two equipotential terminals called the electrodes. Without going into the mechanism of propelling
the electric charges inside such a device, we consider only its emf and its internal resistance.

Also in many practical applications, the current flow is restricted to small pieces of resistive
substances. Such pieces are called two-terminal resistors. A number of such elements connected in
series or in parallel or in a combination of both, form circuits through which the currents are made
to pass from one or more generators. These circuits form the basis of the electric circuit theory.
There are different textbooks dealing with the analysis and the algebra of the circuit theory, and

Figure 6.6 Conductor interface.
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in a textbook on electromagnetism we do not intend to enter into these details. We shall,
however, very briefly mention the two basic laws of the circuit theory before we close this
chapter.

We consider first the two-terminal generator, when it is not connected to any external
circuit, i.e. when it is open-circuited. The impressed field Ei would cause the charges of the
opposite natures to be accumulated around the terminals as shown in the Figure 6.7.

Figure 6.7 Open-circuited two-terminal generator.
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Under the equilibrium condition, the electric field intensity Eo due to these charges would
be exactly equal and opposite to Ei. Note that if — ◊◊◊◊◊ E i π 0, then — ◊◊◊◊◊ Eo π 0 as well. The charges
will be accumulated not only on the surface but also inside the generator. The emf equation under
open-circuited condition would be

E = VP - VN

When the generator is connected to an external circuit which draws a current I, the current
density being J, the field of the accumulated charges will no longer compensate for E i, because
now at all points (Eo + E i) = J/s, s being the conductivity inside the generator. The P.D. between
the electrodes will be smaller than E. The difference between E and this present value is
D(VP - VN) which is necessary to maintain the current I. This P.D. is proportional to I and can be
written as

D(VP - VN) = IRg

where Rg is referred to as the ‘internal resistance of the generator’. Thus the P.D. between the
electrodes of the generator, when a current I flows through it, is

VP - VN = E - IRg (6.34)

On the other hand when a current is forced through the generator in the direction opposite to Ei,
the P.D. between the electrodes is larger than the emf of the generator, and we have

VP - VN = E + IRg (6.35)

Symbolically, Rg is denoted as shown in Figure 6.8.

Figure 6.8 Generator with internal resistance Rg.

Rg

Now we shall state the two basic laws of the circuit theory.
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Kirchhoff’s first law. This is really the equation of continuity, specially applied to the nodes of
an electrical network. When the continuity equation in integral form, i.e.

0
S

d◊ =ÚÚ J S

is applied to a surface S enclosing the node of an electrical network, then the sum of all the
currents leaving the node through the conductors meeting at the node must be zero. Thus,

S I = 0 (6.36)

For example, in a circuit as shown in Figure 6.9, at the node 1 of the network,

- I1 - I2 + I3 + I4 = 0

If there are N nodes in a network, then (N - 1) independent equations for the currents in the
branches can be written. The equation for the Nth node is not independent.

Kirchhoff’s second law. Considering a closed circuit as shown in the Figure 6.10, consisting of
a single generator and a resistor, we have

VP - VN = IR

Figure 6.9 An electrical network.
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Figure 6.10 A steady current circuit.
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and also
VP - VN = E - IRg

\ E - IRg = IR (6.37)

This is the Ohm’s law for a simple circuit. Generalizing this for any closed contour in any
network, this becomes

SE - S (IR) = 0 (6.38)

All the emfs and all the currents are assumed to be in the adopted positive direction of the
contour. This is the Kirchhoff’s second law.

6.11 SERIES AND PARALLEL CONNECTION OF RESISTORS

When n resistors are connected end-to-end, they are said to be connected in series. When this
circuit is connected to an emf source, the same current flows through all the resistors. Hence the
P.D. between the ends of the connection is

V = R1I + R2I + R3I + . . . + RnI

Hence the equivalent resistance RS is

RS = 
V

I
 = R1 + R2 + R3 + . . . + Rn (6.39)

When each of the n resistors is connected to the same two terminals, they are said to be connected
in parallel, and by the Kirchhoff’s second law

R1I1 = R2I2 = R3I3 = . . . = RnIn = V

and by Kirchhoff’s first law
I1 + I2 + I3 + . . . + In = I

Hence the equivalent resistance is given by

P 1 2 3

1 1 1 1 1. . .
nR R R R R

= + + + + (6.40)

PROBLEMS

6.1 Find the effective resistance of the following circuit.

Ans.: ReH = 5R/6
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R

R

R
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6.2 A uniform conducting toroid of
rectangular cross-section is cut
as shown in the adjoining
figure. Assuming that the strip
conductors to the toroid are
perfect conductors, calculate the
resistance offered to the flow of a
steady current.

Ans.: R = 3rp/{2L ◊◊◊◊◊ ln (b/a)}

6.3 Two perfectly conducting metal plates
are in contact with a block of con-
ducting material, as shown in the
adjoining figure, in which the
conductivity of material varies
uniformly from s1 (on the face ABCD)
at one plate to s2 at the other (the
face EFGH) calculate the resistance
between the plates (s2 > s1).

Ans.: R = ln (s2/s1)/(s2 – s1)

6.4 What will be the resistance between the plates in the structure of Problem 6.3, when the
contacts are on the faces ADHE and BCGF?

Ans.: R = 2/(s1 + s2)

6.5 A system of 30 conductors, each of equal resistance, is built in the same way as the
edges of a dodecahedron. Prove that the resistance of the network between a pair of
opposite corners is 7/6 of the resistance of a single conductor.

a
b

6p /4

L

r

A

D C

B

H

E
F

Each
side is
of unit
length

G
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7.1 INTRODUCTION

We have seen that the electric force between the two static charges is given by the Coulomb’s
inverse square law. If however the two charges are in motion, the experimental conditions for the
validity of the Coulomb’s law do not hold. A correction term is needed for the Coulomb’s law
equation. The additional force term exerted by a steady current on either a single moving charge
or another steady current system is referred to as a ‘magnetic force’.

Before we establish the mathematical formalism for the derivation of the magnetic force in
a logical manner, i.e. from the static charges which we have studied so far to the systems of
moving charges, we shall take a short diversion and have a look at the historical background of
the magnetic forces and the magnetism. Historically, however, the science of magnetism began
with the study of the permanent magnets. Man first discovered the natural magnets such as
lodestone, then observed their north-pointing property, and this was followed by the invention of
the compass. Then the possibility of magnetizing the iron bars was observed as was the
observation of two kinds of magnetism, i.e. the ends of the magnet bars either attract or repel.
The idea, that the behaviour of the compass needle was due to the pole-star, was discredited by
William Gilbert, the physician to the Queen Elizabeth-1 of Great Britain. Gilbert showed that
such phenomena could be explained by assuming the earth to be a magnet, equivalent to a
magnetized sphere.

The first attempts to quantify the science of magnetism were made by Coulomb who also
derived the inverse square law for the electrically charged particles. He established that the
extremities of the magnets or the ‘poles’ of the magnets obey the same inverse square law of
forces. This was the start of the parallel development of the sciences of the electrostatics and the
magnetostatics. But unfortunately whilst the electric point charge is one of nature’s most
fundamental realities, the magnetic pole is a fiction used to explain the phenomena which can be
explained better by alternative means.

It was found by the physicists that it was not possible to isolate single poles, similar to the
point electric charges, but that the magnetic poles existed in pairs, i.e. ‘a magnetic dipole’ which
consists of a pair of equal and opposite magnetic ‘charges’ fixed together as the smallest
physical unit and it could consist of (as an equivalent) an electric current in a small loop circuit.
In the unmagnetized iron, the dipoles lie at random, and hence as a consequence have no

Magnetic Field of
Steady Currents in
Free Space7
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resultant external effect. In the magnetized iron, these dipoles are aligned in the direction of
magnetization, so that they neutralize in the centre of the magnet, but leave the appearance
of the positive and the negative charges at the ends (i.e. the north and the south polarity at
the ends).

7.2 THE LAW OF MAGNETIC FORCE BETWEEN TWO SMALL
MOVING CHARGES

Though a direct experimental verification of the calculated force between the two moving point
charges is rather difficult, it is possible to determine that force indirectly. For example, it is
possible to measure the force between the two current-carrying conductors and then reduce it
mathematically to find the elemental force between the two elemental electric charges.
Alternatively, the motion of a single charge in the vicinity of a current-carrying conductor can
be analyzed, and then express the total force on the particle as a sum of the magnetic forces
exerted on it by the individual electrons moving in the conductor.

So now we consider the two point charges Q1 and Q2 moving in a vacuum with the
velocities v1 and v2, respectively, with respect to an observer (Figure 7.1). Let us also suppose
that v1 and v2 are << c, the velocity of light.

Figure 7.1 Two moving point charges.

v1

Q1
u12 (unit vector)

v2

Q2

The magnetic force Fm12 exerted by the charge Q1 on the charge Q2 is

Fm12 = Km 
1 2

2

Q Q

r

⎛ ⎞
⎜ ⎟⎝ ⎠

(v2 ¥ (v1 ¥ u12) (7.1)

where Km depends on the property of the space.
(In SI units, Km = m0/4p, where m0 is the ‘absolute permeability of the free space’.)
It should be noted that in Eq. (7.1) the vector given by the cross product (v1 ¥ u12) should

be evaluated first. This would then be multiplied vectorially by the velocity vector v2.
The unit of velocity in SI units is metres/second, and one coulomb per second is one

ampere. Hence the unit of m0 is newtons/(ampere)2 which can be written as henry/metre, its
notation being H/m. This last equivalence will be proved later.

Comparing Eq. (7.1) for the force between the moving charges with the Coulomb’s law for
the force between the static charges [Eq. (1.4)], i.e.
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1 2
12 2

0

1

4

Q Q
F

rpe
⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠

(1.4)

we find that the product (m0e0)
–1 has the dimension (velocity)2.

Now we know, e0 = 8.854 ¥ 10–12 = 
9

1

36 10×p
and the value of m0 is exactly given by

m0 = 4p ¥ 10-7 H/m (7.2)

(air also has practically the same permeability).
Hence,

(m0e0)
-1  9 ¥ 1016 = (3 ¥ 108)2

or

0 0

1

m e
 = 3 ¥ 108 m/s

                                    c0 (the velocity of light in vacuum) (7.3)

It should be noted that the magnitude of the magnetic force Fm12 given by Eq. (7.1) is a function
of both the magnitude and the direction of the velocities of the two charges. The largest possible
magnitude of this force would be

ΩFm12Ω = 0 1 2
24

Q Q

r

m
p

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠

(v1v2) (7.4)

The ratio of the maximal possible magnetic force and the electric force is

m12 1 2
0 0 1 2 2

e12 0

v v
v v

c
= =

F

F
e m (7.5)

Since the velocities of the electric charges in practice are much smaller than the velocity of light
in vacuum, the magnetic force between the charges is negligible compared with the coulomb
force between them. Next, we consider the direction of the magnetic force exerted by the charge
Q2 on the charge Q1 which is obtained by interchanging the subscripts 1 and 2 in Eq. (7.1),

( )0 1 2
m21 1 2 2124

Q Q

r

m
p

⎛ ⎞ ⎛ ⎞ ⎡ ⎤= × ×⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎝ ⎠⎝ ⎠
F v v u (7.6)

Although u21 = - u12, in general, Fm21 π Fm12, because

[v2 ¥ (v1 ¥ u12)] π - [v1 ¥ (v2 ¥ u21)] (7.7)

For example, if v1 is parallel to u12, then the left-hand side of Eq. (7.7) is = 0, because
(v1 ¥ u12) = 0, but the right-hand side is not necessarily zero.

This may appear as an apparent contradiction of the Newton’s third law. At this stage, it is
not possible to go in depth into the understanding of this problem. But it can be explained by
saying that a system of two isolated moving bodies cannot be considered as a ‘two-body’
problem, but has to be treated as a ‘three-body’ problem. Since the charges are moving all the
time, their electric field varies in time at all the points, and this variation is dependent on certain
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inertial properties. In a three-body system, Newton’s law cannot be applied in isolation to only
two of the bodies of the system.

7.3 THE CONCEPT OF THE MAGNETIC FIELD (THE
MAGNETIC FLUX DENSITY)

In the expression for Fm12 , given by Eq. (7.1), if instead of Q2, there is a charge Q moving with
the velocity v, then the force Fm can be written as

Fm = [ ]0 1 2
2 1 122
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p

v v u
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where

B = 0 1 1 12
24
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v u
(7.9)

This is the definition of the magnetic flux density vector produced by the moving charge Q.
From Eq. (7.8), the unit of the magnetic flux density is newton-second per coulomb-metre. A
different name tesla (notation—T) is given to this unit. We shall see later that this is also equal
to webers per square metre (Wb/m2).

Now instead of only two point charges, let us assume that there are n charges Q1, Q2,
Q3, ..., Qn, moving with velocities v1, v2, v3, ..., vn, respectively (with respect to the same
coordinate system), then by the principle of superposition of the magnetic forces, the total
magnetic force on Q due to these n charges will be

0 1 1 1
m 2 2

. . .
4

n n nQQ
Q

r r

m
p

××⎛ ⎞ ⎛ ⎞= × + +⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠
v uv u

F v (7.10)

where u1, u2, u3, . . ., un, are the unit vectors directed (at the instant considered) from the charges
Q1, Q2, Q3, . . ., Qn, towards the charge Q. So the magnetic flux density vector B due to the n
moving charges is
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kk

Q
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B (7.11)

To generalize, suppose in the region there are some static charges as well, and Q is subject to an
electric field force Fe which will be Fe = QE, where E is the electric field intensity due to the
static charges.

Hence the total force on the charge Q is

F = Fe + Fm = Q(E + v ¥ B) (7.12)

This above total force is known as the ‘Lorentz force’.
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So far we have considered the magnetic field of a single point charge or a number of
discrete point charges, and the magnetic flux density B created by such moving charges, changes
with time at all points. Such a field is not a static field. However during the initial part of our
study, we shall consider only the static magnetic fields, that is, the magnetic fields which are
independent of time or do not vary with time. A macroscopically static magnetic field is
produced either by a permanent magnet (which we shall study in due course), or when there is a
‘stationary system of electric charges in motion’ by which we mean a steady electric current
whose magnitude is independent of time. In practice, the static magnetic fields are produced by
the steady electric currents in metallic conductors. But it must be remembered that the magnetic
field is present whenever there is a relative motion between the electric charges and the observer.

7.4 THE MAGNETIC FIELD OF AN ELECTRIC CURRENT—
BIOT–SAVART’S LAW

From the expressions for the magnetic force due to the discrete moving electric charges, the next
logical step would be to derive the expressions for the magnetic field due to steady electric
current in conductors in which the steady current is produced by a continuous steady stream of
free electrons. However though this would seem to be a logical sequence, the historical
development of magnetism has been somewhat different. As it was mentioned earlier, the concept
of the magnetic charge (or the isolated magnetic pole), parallel to the concept of the electric
charges, led the development of this science along a somewhat different path. So we diverge for
a while to see how the actual development took place.

It was in 1820, Hans Christian Oersted, a Danish professor, demonstrated, for the first time,
to his students that an electric current produced a magnetic field in its vicinity. This was the first
of the great unifying discoveries in the process of linking the ‘separate’ branches of the
electromagnetic science. Also Oersted’s discovery implied that when a current-carrying wire is
placed in a magnetic field, the wire would be subjected to a mechanical force. As a consequence
it follows that two current-carrying circuits must exert forces on each other. The nature of the
magnetic field of a current in a circuit was explored in very great depth and detail by the French
academician André Marie Ampere (1775–1836) whom Maxwell has called the ‘Newton of
electricity’. By a series of very clever and original experiments, Ampere, with remarkable insight,
determined the forces of interaction between two circuits, and concluded that ‘even the
magnetism of a bar magnet could be ascribed to currents within the material of the bar.’ This
hypothesis agrees with the modern physical theory, because the atomic orbits with their circling
electrons may be regarded as tiny loops of currents. There is also another source of atomic
magnetism, i.e. the electron spin and the nuclear spin which also could be justifiably conceived
as producing the tiny loops of current within the material. Henceforth we shall refer to a current
flowing in a small circuit as a ‘current loop’. This could be a loop of atomic dimensions or a
small loop of wire or a small coil of many turns. The current can be introduced into it from a
remote source by means of two wires running very close together. The magnetic field of these
two wires, so close together and carrying currents in opposite directions, would be negligible.
The current loop is thus a practical piece of laboratory apparatus.

So now we are in a position to consider the equivalence between a ‘magnetic dipole’ and
a ‘current loop’. The magnetic dipole would be the ultimate magnetic particle of microscopic
dimensions, having the positive and the negative poles of identical strength; and we have seen
above that the current loop is the ultimate source of the magnetic flux. These two approaches are
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magnetically equivalent; that is, if they both existed in nature, it would not be possible to
distinguish them by any magnetic experiment. This was seen experimentally first by Ampere and
then by Weber by their experiments on small current loops and bar magnets. Quantitatively they
found that the moment of the equivalent dipole (= the product of the pole-strength with the
distance between the poles) is proportional to the product of the current with the area of the
circuit. So, if a current i is flowing in a small loop of area S, then it is magnetically equivalent
to a dipole of moment m, given by

m = m0iS (7.13)

The dipole is directed in such a sense that a right-hand screw turned in the direction of
the current in the loop would move from the negative end to the positive end of the dipole
(Figure 7.2). So now it is possible to think of a small bar magnet to be equivalent to an
elongated coil with current flowing round its periphery (Figure 7.3).

Figure 7.2 Equivalence between a current loop and a magnetic dipole.

Figure 7.3 A bar magnet and its current loop equivalent.

Though our basis for the magnetism is ‘the current loop’, our attitude to the current loops and
the dipoles should be utilitarian, and we would not hesitate to use either concept to solve
practical problems, choosing the option which gives the quicker result.

With this background, we now go back to the study of the magnetic field of steady electric
currents, starting from Eq. (7.10) which we rewrite as
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The current-carrying conductor is shown in Figure 7.4. If the test charge DQ [the Q of Eq. (7.10)
has been replaced by DQ] is at a fixed point outside the conductor, then it will be acted upon

neither by the electric force nor by the magnetic force. The moving charges inside the conductor
are compensated, and hence there are no appreciable electric forces outside or inside
the conductor. When the test charge DQ is stationary, the magnetic force on DQ is also zero, as
v = 0. When the test charge DQ is set in motion with a velocity v, the electric force remains zero,
but now the magnetic force on it becomes
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since all the free electrons in the conductor carry the same charge Q and their average drift
velocities are vk. So the magnetic flux density at any point is given by
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Let us say that the number of the free electrons per unit volume of the conductor is N. Then, the
number of charges in a small volume, Dv is = NDv. They all move with the same velocity v, as
Dv is assumed to be very small. Hence the sum of the individual charges in Eq. (7.14) would be
replaced by the sum over the volume elements, i.e.
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But according to Eq. (6.1), NQv = J, the current density vector at the points inside the volume
element dv. If dv is small enough, then the summation sign can be replaced by a volume integral.
Hence the magnetic flux density due to the steady current in the conductor is given by
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(7.16)

where u is the unit vector directed from the volume element dv towards the fixed point at which
the flux density is being determined. In practice, the current is often flowing through thin wires.

Figure 7.4 A small charge in motion in the field of charges moving inside a conductor.
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Equation (7.18) in this form is known as Biot–Savart’s law. It should again be noted that though
we have derived this equation in a logical manner starting from the point charges in motion, its
discovery was made by two French scientists Biot and Savart based on their experimentation and
some very clever mathematical insight. Note that the direction of DB in Figure 7.5, is normal to
the plane containing dl and r, i.e. in the circumferential direction normal to the plane of the
paper. The magnitude of the flux density is
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m q
p (7.19)

We shall now illustrate the application of the Biot–Savart’s law for evaluating the magnetic flux
density vector B in some simple geometrical configurations.

7.4.1 Magnetic Field of a Short Straight Length of Wire

This is a conceptual problem, because in reality it is not possible to have an isolated piece of
straight current-carrying conductor of finite length. But this result can be used to solve many real
practical problems.

We consider a finite length of wire (assumed to be infinitely thin), carrying a current I. We
wish to find the magnetic field at a point P (Figure 7.6). So we take an element length d l, whose
distance from P is r, as shown, which length makes an angle q with the line of the conductor.
Hence,

P 0 2
over the length of
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B = ∫ (7.20)

Let us assume the cross-section of the wire to be DS. Then, dv = DSdl, where dl represents the
length element of the wire. Now JDS (= J ◊◊◊◊◊ DS) is the current intensity or the current I which is
not a vector quantity. So it is conventional to orient dl in the direction of J. Hence the magnetic
flux density vector of a thin wire carrying a current I is
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and for every element of the wire, this equation is
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(See Figure 7.5.)

Figure 7.5 Magnetic field due to a current element.
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In the preceding expression, there are three apparently independent variables—q, l, and r—which
in fact are interrelated. So we convert them to a single independent variable f which as the
Figure 7.6 shows, is the complement to the angle q. So the length of the conductor can also be
expressed in terms of f, i.e. the top and the bottom ends of the conductor make the angles f1 and
f2 with the perpendicular from P on to the line of the conductor. The length of the perpendicular
is r0 and all the lengths along the conductor are measured from the foot of the perpendicular. So
we have the relationships

l = r0 tan f, \  dl = r0 sec2f df
Also

r = r0 sec f and sin q = cos f

\  For the length of the conductor, the magnetic field B is
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For the direction of the current shown in the figure, the direction of BP would be normal to the
plane containing dl and r, i.e. the plane of the paper in this case, and it is directed ‘into’ the
paper. To find the magnetic field B due to an infinitely long wire carrying a current I, we have
to substitute f1 = -p/2, f2 = +p/2 in Eq. (7.21). So, in this case

BP = 0

02

I

r

m
p

 tesla (7.22)

Figure 7.6 Finite length of a current-carrying conductor.
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shown, X is the mid-point of the side AB, and obviously, – APX = – BPX = b. The magnitude
of the magnetic flux density due to the current I in each side of the square will be the same
though its direction will be different, for example, let us consider the side AB. The magnetic flux
density due to the side AB will have the magnitude

[ ]0 0
S sin sin ( ) sin

4 2

I I
B

c c

⎛ ⎞ ⎛ ⎞= − − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
m mb b b
p p

[from Eq. (7.21)]
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( )2 2 2 2 22
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4 2 4/2

a a a

a c a ba c
= =

+ ++

The direction of BS due to the current in AB will be normal to the plane containing the DABP.
Because of the contributions from all the four sides, the horizontal components of BS due to the
two sets of parallel sides will cancel out, leaving only the vertical components.
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7.4.2 Magnetic Field on the Axis of a Square Coil

ABCD is the square coil (Figure 7.7) of side a, carrying a current I, and OP is the axis of the coil,
where the height of the point P from the plane of the square is b, i.e. OP = b. In the construction

Figure 7.7 A square coil.
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7.4.3 Magnetic Field on the Axis of a Circular Coil

Figure 7.8 shows a circular coil of radius a, carrying a current I. The point P under consideration
is on the axis of the coil at a height b from the plane of the coil. The magnetic field dB at P due
to a circumferential element d l as shown in Figure 7.8, is

d B = 0 0
2 2

sin ( /2)

4 4

I l I l

c c

m d p m d
p p

=

The direction of dB is such that it makes an angle (q + p /2) to the axis OP. It should be noted
that q of Eq. (7.19), is equal to p/2 in this problem as marked in Figure 7.8. Now, there is an

Figure 7.8 A circular coil.

equal and opposite element Idl, diametrically opposite to the element under consideration, as
shown in the figure. So by symmetry, all the components of B normal to the axis OP will cancel
out; and the components along the axis add up, i.e.
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When the point P is at the centre of the circle, i.e. in the plane of the circle, q = p/2.
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7.4.4 Magnetic Field on the Axis of a Short Circular Solenoid

Let us consider a circular solenoid of finite length (axial), as shown in Figure 7.9, which has n
turns per metre, each turn carrying a current I. We wish to find the magnetic field at a point P on

Figure 7.9 A circular solenoid of finite axial length.

the axis of the solenoid, where P subtends semiangles a and b at the near end and the far end of
the solenoid, respectively. We take an elemental strip of the solenoid of axial width dx where the
axial distance of the strip from the point P is x. We now use the result of the last problem
[Eq. (7.24)] to solve this problem.

The current flowing in the elemental strip of the solenoid = nIdx. Expressing x in terms of
the semiangle f subtended by the strip to the point P, we have, x = a cot f, where a is the radius
of the solenoid.

\ dx = -acosec2f df
\ From Eq. (7.24),
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(7.26)

If now the solenoid is infinitely long, then b = 0 and a = p, and hence

B = m0nI (7.27)

7.4.5 Magnetic Flux Density of Planar Currents, at an Arbitrary
Point in Their Plane

Let us consider an arbitrary contour lying in a plane as shown in Figure 7.10. The magnetic flux
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a f
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Figure 7.10 A planar current-carrying contour.

density at the point P lying in the same plane as the circuit is required. We take an element d l
of the contour as shown in the figure. Then using Eq. (7.18) of the Biot–Savart’s law,
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m d
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l u

B (7.18)

We have for the element shown in Figure 7.10:

Ω(d l ¥ u)Ω = d l sin a (and is normal to the plane of the paper)
and

cos sin
cos

2

r r r
l

dq dq dqd
pb aa

= = =
⎛ ⎞−⎜ ⎟⎝ ⎠

\ 0

4

I
B

r

m dq
p

D ⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
(7.28)

So the magnetic field at P due to the complete closed circuit would be

0

4
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I d
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m q
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Ê ˆ= Á ˜Ë ¯ Ú (7.29)

The direction of B would be normal to the plane of the paper and into it.

7.5 THE LINES OF MAGNETIC FLUX DENSITY VECTOR B, AND
THE MAGNETIC FLUX F

We define the lines of the magnetic flux density vector B as those lines for which the vector B
is tangential at all the points. When we draw a set of such lines for a magnetic field and mark
them by arrows indicating the direction of the vector B, then the direction of B is known at all
such points. These lines are very useful for visualizing the magnetic field in a region.

From the example of the Section 7.4.1, and Eq. (7.22), it is obvious that the lines of B for
an infinitely long straight current filament, are concentric circles with their centres at the axis of
the filament (Figure 7.11).
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Next, we consider the flux of the vector B, i.e. the flux of the magnetic flux density vector
B through a surface S. It is called the magnetic flux which has the notation F (Figure 7.12).

S

dF = ◊ÚÚ B S (7.30)

Figure 7.11 Lines of B for a straight current filament.
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Figure 7.12 Surface defining the magnetic flux.
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dS S

The unit of the flux is webers, the notation being Wb. So the unit of B which is tesla (= T), is
now T = Wb/m2. The tubular surfaces formed by the lines of the vector B are defined as the
‘tubes of magnetic flux’. So the vector B is tangential to such a tube at all points. Hence
furthemore the magnetic flux through any cross-section of a tube is constant.

7.6 THE LAW OF CONSERVATION OF MAGNETIC FLUX

The magnetic flux has a simple and yet an extremely important property: the magnetic flux
through any closed surface is zero. This is also known as the law of conservation of magnetic
flux. It is proved as follows:

The elemental charges in motion produce a magnetic field.

\ The total B in a field = Sum of the elemental B vectors caused by all the elemental
charges in a system.

Also, according to Eq. (7.30):
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The magnetic flux F through any surface = Sum of the elemental Fs through that surface,
due to all the elemental moving charges
which produce the magnetic field.

Let us consider a closed surface S situated in the magnetic field of the system. Initially let
us assume the system to be due to a single moving charge. The lines of B would be concentric
circles with their centres on the line of motion of the charge. So any line of B would enter the
closed surface exactly as many times as it (the line of B) leaves the surface. The lines represent
tubes of equal flux.

\ Inward flux of B = Outward flux of B

through the closed surface S:
\ The magnetic flux, through any closed surface, produced by any number of moving

charges is zero.
\ The law of conservation of magnetic flux (in integral form) is

0
S

d◊ =ÚÚ B S (7.31)

Note that by Gauss’ divergence theorem, we have for any vector A

div
S v

d dv◊ =ÚÚ ÚÚÚA S A

where v is the volume enclosed by the closed surface S.
\ Equation (7.31) becomes

div 0
v

dv =∫∫∫ B

\ div B = — ◊◊◊◊◊ B = 0 (7.32)

This is the differential form of the law of conservation of magnetic flux, and one of the
Maxwell’s equations of electromagnetic fields.

A mathematical proof of Eq. (7.32)

We have, from Eq. (7.16), the expression for B due to a steady current in the conductor as

0
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(7.16)

Consider the divergence of B at a point P

0
P 2

div
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⎡ ⎤×⎛ ⎞ ⎢ ⎥= ∇ ⋅⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦
∫∫∫ J u

B
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p

The unit vector u is directed from the volume element dv to the field point P. (Note that the
volume element and the integral refer to the volume occupied by the currents.)

\
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is obtained by interchanging the operations ‘divP’ and the volume integral, which are indepen-
dent operations (and hence are interchangeable in their orders of performance).

Now, from Eq. (0.66)

� � �A � B����B � ���� A��	�A � ���� B�

� Equation (7.33) becomes
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The second term above is (curl grad) and is identically zero. In the first term (curlP J) relates to
the point P and J is a function of the coordinates of the volume � v and so (curlP) must be zero.

� � � B = 0

��� ������	
� ��

We start from the results derived from the application of the Biot–Savart’s law to find that the
magnetic field B at a point P distant r from an infinitely long straight conductor carrying a
current I, is (Figure 7.13) given by
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The direction of B being circumferential, i.e. normal to the plane of the paper, and coming out of
it, we have

B � �2�r� = �0I (7.34)

i.e. the vector B multiplied by the length of the contour (over which B is constant, and also
follows the direction of B), is proportional to the current in the wire.

At this stage, we define a new vector H such that

0

in free space
� �

⎛ ⎞
= =⎜ ⎟

⎝ ⎠

B B
H (7.35)

so that Eq. (7.34) becomes
H � �2�r� = I (7.36)
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Now, multiplying the component of H along the contour by the length of the contour,
we have
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(7.37)

The contributions along the radial paths of length (r2 � r1) will be zero as all H is circum-
ferential.

From this step it is obvious that a contour of any shape can be built up of infinite number
of circumferential elements and radial steps, and the expression (7.37) can be generalized for a
contour of any arbitrary shape as

C

d I� �� H l� (7.38)

where I is the current enclosed by the contour C.
Next, we consider another contour made up as shown in Figure 7.15, and take the line

integral of H around this contour as before.
In this case

1 2
1 2
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r r

r r
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As before, any arbitrary shaped contour can be built up of radial and circumferential elements. So

0
C

d� �� H l� (7.39)

when the contour C does not enclose any current.

Note: This H is an auxiliary vector which is useful in relating the B field to its source current I,
similar to the one in electrostatics where we used D (= �E) as an auxiliary vector useful in
relating the E vector to its source charge Q in Gauss’ theorem.

Generalization of the contour of H. Up to this stage the contour of H has been a circle lying in
a single plane normal to the current-carrying conductor. We now consider a contour of H
consisting of two arcs of circles both lying in the same plane, but of different radii with radial
connections as shown in the Figure 7.14.
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Figure 7.15 A contour not enclosing the current filament.

The contour C can be generalized still further and it does not have to lie in a single plane
as shown in Figure 7.16.

\ or 0
C

d I◊ =Ú H l (7.40)

I

r2

r1

q

r1q

r2q

Contour, C

Figure 7.16 A non-coplanar contour for (H ◊◊◊◊◊     d l).

C

I

depending on whether the contour C encloses the current I or not, is true for any arbitrary
contour of any shape and orientation.

Since we can also conclude that

0
C

d◊ =Ú H l

for a non-linking contour, we can introduce a non-linking current-carrying return wire (also
infinitely long), without altering

C

d I◊ =Ú H l

for a contour linking an infinitely long current-carrying wire, as shown in Figure 7.17.
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So far we have generalized the shape of the contour C, but considered only the infinitely
long current-carrying filaments. But, since we find that the presence of non-linking wires in the
vicinity of the contour has no effect on the line integral of H, we can generalize further and
consider a circuit of any shape which can be built out of infinitely long current-carrying wires, as
shown in Figure 7.18. The figure shows the building of a rectangular circuit, and so by

introducing as many other non-linking wires as we please, we can construct a closed circuit of
any arbitrary shape.

In this derivation, till the present stage, we have considered only the current filaments. By
using the principle of superposition, we now extend the law to conductors of finite cross-section
and hence to any conducting medium having a current distribution in it.

\
C

d I◊ = SÚ H l (7.41)

Thus we have expressed the Biot–Savart’s law in the form of Ampere’s law (also known as the
Magnetic circuit law).

If in the closed contour, C is enclosed by the current-carrying region whose cross-sectional
area normal to the direction of the current is A and if the total current (S I) is distributed in this
area, then the current density vector J is given as

I

A

S=J (7.42)

\ Substituting in Eq. (7.41), we get

C

d

J
A

◊

=
Ú H l

(7.43)

Figure 7.17   Effect of a return wire on the H ◊◊◊◊◊     d l contour.
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Figure 7.18 A rectangular circuit made from infinitely long current-carrying wires.
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In the limit, as the contour C becomes smaller and smaller and A Æ 0, then

curl H = — ¥ H = J (7.44)

This is the restricted form of one of the Maxwell’s equations.

7.8 MAGNETIC SCALAR POTENTIAL

If, in Eq. (7.44), the contour does not enclose any current, then

curl H = — ¥ H = 0
or

0
C

d◊ =Ú H l (7.45)

Then the vector H can be expressed as

H = - grad W = - —W (7.46)

where W is called the ‘Scalar magnetic potential’.
The above equation holds, because

(grad ) 0
C

dW ◊ =Ú l (7.47)

is an identity.
If instead of traversing the complete closed contour, we traverse a part of the contour, say,

from P to Q (the points on the contour C), then
Q

Q p

P

dW W− = − ⋅∫H l (7.48)

The analogy of the above equation with the scalar electric potential should be noted. But the
magnetic scalar potential is restricted to the regions containing no currents. So, if we have a
region and a contour as shown in Figure 7.19, then depending on the path chosen, we have

Q

P
∫H ◊◊◊◊◊ dl via the point R = I

Q

P
∫H ◊◊◊◊◊ dl via the short route = 0, and

Q

P
∫H ◊◊◊◊◊ dl going round the path twice = 2I (7.49)

So it is seen that

C

d◊Ú H l

is not a single-valued function, whereas W is a single-valued function. Thus the concept of the
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magnetic scalar potential can be used only if the contours are such that they do not enclose any
current-carrying regions. This is achieved by the use of hypothetical ‘magnetic barriers’ which
prevent the crossing by the contours and hence permit us to use W to solve such problems. This
is explained in Figure 7.20.

The unit of H and W. Equation (7.36) shows that the unit of H is ampere-turns per metre
(= A/m), and the unit of W is ampere (= A) or ampere-turn.

Also, from the law of conservation of magnetic flux,

div B = — ◊◊◊◊◊ B = 0
and

B = mH = m(- grad W)

\ div [m(- grad W)] = - m div grad W
= - m — ◊◊◊◊◊ (—W) = - m —2 W = 0

I

I
P

Q

Figure 7.19 Multivalued H.

R

Figure 7.20 (a) Multivaluedness of (H ◊◊◊◊◊     dl) and W; (b) magnetic barrier to avoid the
multivalued nature of (H ◊◊◊◊◊     dl) and W.
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\ —2 W = 0 (7.50)

\ The magnetic scalar potential satisfies the Laplace’s equation.

7.8.1 Scalar Magnetic Potential at a Point, due to a Current Loop
of any Shape

For a large circuit as shown in Figure 7.21(a), the leads will have no magnetic effects and so we
need to consider the circuit itself to find the value of B at a point P near it. In this circuit, we
introduce a network of wires as shown in Figure 7.21(b). Let each of these meshes carry the same

current I as in the original circuit and in the same sense; then each piece of wire would carry two
equal and opposite currents, and hence there would be no resulting magnetic field due to it,
except the outer wire of the original circuit which would carry the current I and thus produce a
field at the point P.

If each mesh is fine enough, and has a small area dS whose linear dimensions are small

Figure 7.21 (a) The actual circuit and (b) the equivalent magnetic shell.

I
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(b)

q
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enough compared with the distance from the point P, then the net acts as a collection of current
loop dipoles, each of moment (= IdS = m), and is called an ‘equivalent magnetic shell’. This is
because the net would produce the same magnetic field as a thin sheet of material magnetized
with N poles on one side and S poles on the other, whose magnetic moment per unit area would
be I.

\ The magnetic potential dW due to a typical mesh is given by

0
m 2 2

cos cos

44 4

I Sm I S

r r

dq d qd
pp p

W = = = (7.51)

[See Eq. (1.54) for analogy with the electric dipole.]

where dS0 is the solid angle subtended by the mesh dS at the point P.
\ Due to the whole circuit

0
m 4

IS

p
W = (7.52)

where S0 is the total solid angle subtended at P by the whole circuit or the shell.

7.9 DISTINCTION BETWEEN B AND H

In electrostatics, the primary vector is the electric force vector E defined in terms of the
mechanical force on the unit charge. Subsequently when the Gauss’ theorem is established, the
auxiliary vector, i.e. the electric flux density vector D is introduced to express the idea of the
flux emanating from each unit of electric charge. Similarly in the study of the magnetic fields,
the primary vector is the magnetic flux density vector B defined in terms of the force due to the
moving charge or the equivalent current loop. In the next step, when the magnetic circuit law is
established, we introduce the secondary vector H which is associated with the source current
through an imaginary contour. Thus H is connected with the currents which are the cause for the
field; and B is associated with the force which is the effect of the magnetic field. So the
distinction between these two vectors in the magnetostatics is that H can be considered as the
cause and B as the effect.

In this regard, the names of the magnetic field vectors might appear somewhat confusing. The
names for the electric field vectors seem quite logical; that is, E is the electric force due to the unit
charge and D is the flux density vector associated with the flux emanating from the charges. But
when it comes to the magnetic field vectors, we call H the magnetic intensity vector when B is the
vector associated with the force. The reason for this apparent contradiction is that the development
of the magnetostatics took place with the concept of the magnetic pole as the fundamental entity,
in parallel with electrostatics. From this standpoint, H appears as the counterpart of E, and hence
the two equations for these four vectors E, D, B, and H are written as

D = e0E and B = m0H (7.53)

in free space. The constants are somewhat analogous; m0 is called the ‘absolute permeability of
the free space’, like e0 being the ‘absolute permittivity of the free space’. Also just as we
generalized e0 to e = e0 er for different dielectric media, we generalize for the permeability by
m = m0 mr where mr is the relative permeability of the medium under consideration. We shall
discuss these points in some detail when we consider the magnetic fields in media other than
vacuum.
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The direction of B is circumferential and that of the current is normal to the plane of the paper

which contains the radii. Since, J = 
2

I

ap
,

2

0 2

a

r
m J r

B
×⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

r ≥ a (7.54)

For the field inside the conductor, we consider the contour C2, and since C2 encloses only a part
of the current in the conductor,

7.10 CALCULATION OF MAGNETIC FIELDS BY MEANS OF
POTENTIAL AND THE MAGNETIC CIRCUIT LAW
(AMPERE’S LAW)

In Sections 7.4 and onwards, we used the Biot–Savart’s law to evaluate the magnetic fields due
to a number of conductor configurations. Now we shall use the Ampere’s law to find the
magnetic fields due to some more configurations.

7.10.1 The Magnetic Field of Current in a Straight Circular
Cylindrical Conductor

A straight circular cylindrical conductor of radius a carries a current I (Figure 7.22). We choose
two concentric contours C1 and C2 as shown in Figure 7.22, to find B both outside and inside
the conductor, respectively.

For the contour C1:

1C

d I◊ =Ú H l

or
H2pr = I

\ Bq = m0H = 0

2

I

r

m
p

r ≥ a

Figure 7.22 A straight circular conductor.
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If now B� is plotted as a function of the radius (Figure 7.23), then it will be seen from Eqs. (7.55)
and (7.54) that inside the conductor B� increases linearly from 0 at the centre (r = 0) to a
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maximum on the surface at r = a, and it starts decreasing from this maximum value inversely (or
hyperbolically) as r increases, decreasing asymptotically to zero as r �� �.
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The magnetic field of the current in a coaxial cable can be evaluated by exactly the same
method, in all the three or four regions of the cross-section as shown in Figure 7.24.

The total current in the inner and the outer conductors are of the same magnitude, but
opposite in directions.

By using the Ampere’s law formula, i.e.

C

d�� H l�  = the enclosed current,

we get the values of B in different regions as

B = �0 
�

22

I
r

a

⎛ ⎞
⎜ ⎟⎝ ⎠

for r � a

B = �0 
2

I

r�
⎛ ⎞
⎜ ⎟⎝ ⎠

   for a � r � b (7.56)

I
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Figure 7.24 A coaxial cable.
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B = 0 for r ≥ c

and in all the regions, the direction of B is circumferential. So expressing B in vectorial form,

B = m0 
i

2

×⎛ ⎞
⎜ ⎟⎝ ⎠

J r
for r £ a

B = m0 

2
i

2

a

r

×⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

J r
for a £ r £ b (7.57)
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where

ΩJiΩ= 
2

I

ap
⎛ ⎞
⎜ ⎟⎝ ⎠

—the current density in the inner conductor

ΩJoΩ= 2 2( )

I

c bp
⎡ ⎤
⎢ ⎥

−⎣ ⎦
—the current density in the outer conductor.
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rather complicated, basically it is a very simple problem. It can be solved directly by applying
the Ampere’s law and using the principle of superposition. We can use the result obtained in
Eq. (7.55) of the problem in Section 7.10.1. The configuration of the hole shown in Figure 7.25
can be resolved into two equivalent circular conductors carrying the same current density but in
opposite directions, as explained diagrammatically.

In each conductor, the magnetic flux density B in the cross-hatched region can be obtained
by the Ampere’s law, as in Eq. (7.55).

1 0 2 0and
2 2

m m
′× ×⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

J r J r
B B

\ The resultant B in the region of the hole

1 2 0 0
( )

2 2
m mJ r r J d

B B
′× − ×⎡ ⎤ ⎛ ⎞− = = ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

(7.58)

i.e. the magnetic field inside the cavity is uniform.

7.10.4 The Magnetic Field of Current in a Parallel Go-and-Return
Circuit

Let us take two parallel thin wires, separated by a distance 2a and carrying currents ± I. The
geometry is as shown in Figure 7.26(a).

B at P due to go-current at A = 0 2 AP

Im
p

⎛ ⎞
⎜ ⎟⎝ ⎠

, and its direction is at right angles to AP,
towards the y-axis.

As before, the only nonzero component of B is Bq, and also the Gauss’ theorem would
confirm that Br = 0 and Bz = 0. Bq as a function of r has been plotted in the lower portion of
Figure 7.24.

7.10.3 The Magnetic Field Inside a Cylindrical Circular Hole in a
Cylindrical Circular Conductor

The conductor is carrying a current of uniform density J, the hole being drilled eccentrically
with its axis parallel to the axis of the conductor (Figure 7.25). Though the problem sounds

Figure 7.25 Circular conductor (with a hole) resolved into equivalent conductors.
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B at P due to return-current at B = 0 2 BP

Im
p

⎛ ⎞
⎜ ⎟⎝ ⎠

, and its direction is at right angles to BP,
towards the x-axis.

\ The resultant Bx at P

0 0
1/ 2 1/ 22 2 2 2

cos cos

2 ( ) 2 ( )

I I

x a y x a y

m a m b

p p
= − +

⎡ ⎤ ⎡ ⎤+ + − +⎣ ⎦ ⎣ ⎦

0 0
2 2 2 2

( ) ( )

2 ( ) 2 ( )

I x a I x a

x a y x a y

m m
p p

+ −
= − +

⎡ ⎤ ⎡ ⎤+ + − +⎣ ⎦ ⎣ ⎦
(7.59)

and the resultant By at P

0 0
1/ 2 1/ 22 2 2 2

sin sin

2 ( ) 2 ( )

I I

x a y x a y

m a m b

p p
= − −

⎡ ⎤ ⎡ ⎤+ + − +⎣ ⎦ ⎣ ⎦

0 0
2 2 2 22 ( ) 2 ( )

Iy Iy

x a y x a y

m m
p p

= − −
⎡ ⎤ ⎡ ⎤+ + − +⎣ ⎦ ⎣ ⎦

(7.60)

and Bz = 0.
The scalar magnetic potential at P is obtained by multiplying the current by the fraction of

the view from P which is visible through the circuit, i.e.

P 2

Iq
p

W = (7.61)

where q is the angle between AP and BP.
So to draw the equipotential through the point P, we have to maintain q = constant, so as

to obtain the equipotential. But q remains constant when P moves round a circle through A and
B (i.e. the angles in the same segment of a circle are equal). Hence the equipotentials will be a

Figure 7.26(a) Magnetic field due to a parallel go-and-return circuit.
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the field of the two parallel line charges, except that the lines of force and the equipotentials
have got interchanged.

7.10.5 The Magnetic Field of a Toroidal Solenoid

Let us consider a toroid of rectangular cross-section (in fact, it can be of any cross-section), and
a uniformly distributed winding on it of N turns; and let the current in the conductor (of the
toroid) be I. For the contour C, shown in Figure 7.27,

C

d NI◊ =Ú H l

or
H2pr = NI

\
2

NI
H

rp
= (7.62)

where r is the radius of the contour.

system of circles passing through A and B, and they will have their centres on the y-axis, i.e. a
‘coaxial system of circles’ with their centres on the y-axis and all passing through the points A
and B.

The lines of force everywhere would be orthogonal to the equipotentials, and hence will be
another system of circles whose centres will lie on the line AB. It should be noted that these two
systems of circles for this problem as shown in Figure 7.26(b) are the same as those obtained for

Figure 7.26(b) Flux plot about two equal and opposite parallel currents.
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Figure 7.27 Toroidal solenoid.

r

C

For any other contour not lying within the volume of the ring, such a contour is not linked
with the winding, and hence

0 or 0
C

d◊ = =¢ ¢Ú H l H

7.10.6 The Magnetic Field of an Infinitely Long Solenoid

This may be considered as the limiting case of a toroidal coil as discussed in Section 7.10.5.
We obtained for a toroid,

2

NI
nI

rp
= =H

where n = 
2

N

rp
 = number of turns/metre

\ As r (= the radius of the contour) Æ •, then

H = nI (7.63)

where n = turns/metre for an infinite solenoid.
Note: In Section 7.4.4, we obtained the magnetic field for a solenoid of finite axial length (by
using the Biot–Savart’s law), i.e.

H = 
2

nI⎛ ⎞
⎜ ⎟⎝ ⎠

(cos b – cos a)

where a and b are as shown in Figure 7.9.
Hence for the infinitely long solenoid, b = 0 and a = p.

\ H = nI

which is the same as Eq. (7.63).
It should be further noted that this is the magnetic field not only on the axis of the

solenoid but right over the cross-section of the solenoid and is true for all cross-sections.
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7.10.7 The Magnetic Flux Density on the Axis of a Circular Coil

We have already analyzed this problem by the Biot–Savart’s law in Section 7.4.3. However, we
shall now solve it by using the magnetic scalar potential. The circular coil is of radius a,
carrying a current I, and we wish to find B at a point P on the axis of the coil, distant x from the
centre (Figure 7.28).

Figure 7.28 Magnetic field on the axis of a circular coil.

I
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x

q P

Bx

m0I
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2

2x3

x

The scalar potential at the point P due to the current I in the circular coil is

0

4

IS

p
W = (7.64)

where S0 is the solid angle subtended at the point P by the coil, and in this case, S0 = 2p(1 - cos q ).

\ 2 2 1/2

(1 cos )
1

2 2 ( )

I I x

x a

q
W

⎛ ⎞−
= = −⎜ ⎟⎝ + ⎠ (7.65)

\
2

0
0 2 2 3/22( )

x
Ia

B
x x a

mm W∂= − =
∂ +

, By = 0, Bz = 0 (7.66)

At the centre of the coil, x = a,

\ 0

2x
I

B
a

m
=

and as x Æ •,
2

0 0
3 3

or
2 2

x
Ia IA

B
x x

m m
p

=

where A is the area of the coil. The plot of Bx as a function of x is also shown in Figure 7.28.

7.10.8 Helmholtz Coils

If two circular coils of the same radius, and carrying identical currents in the same sense are
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arranged coaxially, then their flux densities along the axis add up. A highly uniform magnetic
field at the axial point mid-way between the coils, would be produced if the reduction in one
field as we move away from this point is compensated by the increase in the other. This
condition is achieved when the variation of Bx with x at the mid-point is linear, i.e. where
d2Bx /dx2 = 0. When this is applied to Eq. (7.66), we get x = a/2. So the two coils have to be
placed at a distance from each other, which is equal to the radius of the either coil. Such an
arrangement is known as ‘Helmholtz coils’ (Figure 7.29).

Figure 7.29 Helmholtz coils.

a

a

7.10.9 The Magnetic Field of a Planar Current Sheet

Let us assume that the surface current density over a very thin current sheet is JS. By symmetry,
the lines of B vector would be parallel to the sheet and normal to JS.

We apply the Ampere’s law to the contour (abcda) shown in Figure 7.30(a), which is
normal to the plane of the current sheet and also normal to the direction of the current.

S

abcda

2
C

d HL J L◊ = =Ú H l

\ 0 S

2

J
B =

m
(7.67)

for the infinite planar current sheet.
This value of magnetic field is independent of the distance from the current sheet. When

there are two parallel current sheets of equal densities but of opposite directions, then by using
the principle of superposition, the magnetic field between the sheets is

B = m0JS

and that outside is

B = 0 (7.68)

[See Figure 7.30(b)].
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Figure 7.30(a) Planar current sheet.

(a)

JS

c
b

a
d

L

Figure 7.30(b) Two parallel planar current sheets.

(b)

JS

B = 0

B = m0JS

B = 0

JS

PROBLEMS

7.1 A circuit has the form of a regular hexagon in which the distance between the opposite
vertices is 2a. Prove that when the current in the circuit is I, the magnetizing force at its

centre is 
3 I

ap
⎛ ⎞
⎜ ⎟⎝ ⎠ . (Specify the direction of this force).

7.2 Show that the magnetic induction at the centre of a loop of wire carrying a current I and
shaped like a regular plane polygon of 2n sides, the distance between the parallel sides
being 2n, is [m0nI/(pa)] sin (p /2n).

7.3 Two similar concentrated circular coils are arranged on the same axis with their fields
reinforcing each other. It is required that the magnetic field mid-way between them shall
be as uniform as possible. Prove that the distance between the coils shall be equal to
their radius.
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7.4 In Problem 7.3, if the circular coils are replaced by square coils of side a, find the
condition for similar uniformity of the field at the mid-point on the common axis of the
coils.

7.5 A coil of negligible dimensions of N turns has the shape of a regular polygon of n sides
inscribed in a circle of radius R metres. Show that the magnitude of the flux density at
the centre of the coil, when it carries a current I, is [m0NnI/(2pR)] tan (p /n).

7.6 A magnetic field is so directed in a cylindrical coordinate system that the magnetic
field intensity in a particular region is

(a) H = iq 
2

I

rp
       (r is variable)

Show that in this region the electric current density J is zero.

(b) H = iq 
22

Ir

Rp
     (r is variable, R = constant)

Show that in the region where H is so expressed, there is a uniform current density. Find
its magnitude.
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8.1 BEHAVIOUR OF MAGNETIC SUBSTANCES IN
THE MAGNETIC FIELD

8.1.1 Introduction

Atoms of all material bodies consist of a central heavy positive nucleus and a number of negative
electrons revolving round it. This is a very crude, but from our point of view, an adequate model
of the structure of matter. From the macroscopic point of view, these electrons, which are moving
in their orbits with very high velocities, can be considered as tiny, atomic scale current loops. In
addition, these electrons are also rotating about their axes which is known as the electron spin.
So, if the electrons are considered as small charged balls, their spin, being a motion of the electric
charge, can again be taken as equivalent to tiny closed current.

So if we are to analyze the effects of the substances on the macroscopic magnetic field into
which they are introduced, then it is essential to analyze first the behaviour of a single current
loop in a static magnetic field. Since these loops are quite small, it is quite justifiable to assume
that they are in a uniform magnetic field. The most important effect is the torque by which a
uniform magnetic field acts on a current loop. The torque tends to turn the loop so that the
magnetic field of the loop increases the external magnetic field, with the result that the resultant
magnetic field is greater than the primary magnetic field.

8.1.2 Torque on a Current Loop in a Uniform Magnetic Field

Since the atomic currents can be considered as equivalent to the elemental circular current loops,
we will look at such a current loop of radius a, and carrying a current I, placed in a uniform
magnetic field of flux density B. Each moving charge inside the path is acted on by a force which
is given by

F = Qv ¥ B

Magnetic Field
of Steady Currents
in Presence of
Magnetic Materials8
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Let the number of charges per unit volume be N and their average velocity be v, then the
magnetic force on the charges in an element of volume dv is

d F = NQv ¥ Bdv (8.1)

If this conducting region is a conductor of cross-sectional area dS and length d l, then

NQvdv = NQvd ldS = (NQvdS)d l = (JdS)d l = Id l (8.2)

where J is the magnitude of the current density, and d l is assumed to be in the direction of the
current flow.

\ Magnetic force on a small current element Id l is

= d F = Id l ¥ B (8.3)

\ The total force on the contour is

0
C C

I Id d= ¥ = ¥ =Ú ÚF l B l B (8.4)

for any closed contour in a uniform magnetic field.
So Eq. (8.4) implies that such a force can cause no translation of the contour. But the

elemental forces on the elements of the contour generally tend to rotate it. This can be seen as
follows. Let us resolve the vector B into two components, i.e. one component Bn normal to the
surface of the loop (Figure 8.1) and another orthogonal component BP parallel to the plane of the
contour (Figure 8.2). From Figure 8.1, it can be seen that Bn does not have any translational effect,

d F

Bn

a I

Figure 8.1 The total force on a closed current loop in a uniform magnetic field is zero.

but it tends to deform the contour (i.e. to increase its radius and hence a bursting effect). From
Figure 8.2, it can be seen that the effect of the component BP is to produce a rotating effect which
tends to rotate the coil about the diametral axis OO¢ which is perpendicular to the direction of BP.
We shall now calculate this torque on the coil. So we consider two elements d l and d l¢ as shown
in Figure 8.2, and calculate the elemental torque d T due to the elemental forces d F and d F¢ on d l
and d l¢ respectively. Thus,
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dT = dFa sin a + dF¢a sin a
= 2dFa sin a = 2(Id l sin a BP)a sin a = 2IaBP sin2a d l

= 2Ia2 BP sin2a da

where dl = ada, and dF = dF¢ = Id lBP sin a
\ The total torque T is given by

2 2 2 2
P P P

0

2 sin 2
2

T Ia B d Ia B a IB= = =∫
p

pa a p (8.5)

This can be expressed in terms of the total B, as is obvious from Figure 8.3, i.e. BP = B sin q,
where q is the angle between B and the positive normal to the plane of the loop.

dF

I

a

dl

BP O
a

a

dF ¢ d l¢

O¢

Figure 8.2 Torque of the magnetic forces on the closed current loop.

Direction of
rotation

Figure 8.3 Torque of the magnetic force tending to align the vectors un and B.

Bn

q

un (unit vector)

BP

B

a

a

•
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\ Representing the torque as a vector,

T = a2 p Iun ¥ B = IS ¥ B (8.6)

where S = unp a2, the vector area covered by the coil.
The direction of the torque vector is determined according to the right-hand screw rule with

respect to the contour rotation.

IS = magnetic moment of the loop = m (8.7)

\ T = m ¥ B (8.8)

T tends to align the vectors m and B, since it (=T) is zero, when m and B are in the same
direction, i.e. T tends to rotate the contour so as to make the flux of the external B through the
contour maximal. The magnetic field of the contour then adds to the external magnetic field,
thereby increasing the total flux density.

8.1.3 Behaviour of Magnetic Materials in a Magnetic Field

In a magnetic material by itself, the magnetic moments of the atoms are distributed in space
statistically. Though a microscopic magnetic field exists in the vicinity of each atom, the net
macroscopic field is zero. When the external magnetic field is applied, then each elemental loop
which represents an atom, is acted upon by a torque, given by Eq. (8.8), i.e. T = m ¥ B. This
torque tends to align the moments (i.e. the loops) with the external magnetic field vector B. These
loops, even when they are partially oriented, create a secondary macroscopic field. The result is
that each loop (or the atomic current) is now situated in the external field and in this secondary
macroscopic field of all other elemental currents. Thus the equilibrium state is a function of both
the geometry of the external field, and the geometry and the physical properties of the magnetic
material under consideration.

To determine the secondary macroscopic field, the distribution of the magnetic moments of
the elemental current loops has to be found out. The secondary field is thus the field due to a
given aggregate of the elemental circular currents in a vacuum. So the problem has thus been
reduced to the evaluation of the flux density vector created by a single circular current loop and
also B due to an aggregate of such loops.

8.2 FIELD OF AN ELEMENTARY CURRENT LOOP AND OF
THE AGGREGATE OF THE LOOPS

We use the concept of the magnetic vector potential A to evaluate the magnetic field. We shall
explain the concept of the potential later, and so these two sections can be left for later study
though the results obtained here, can be used immediately. At this stage, we merely state that the
vector potential A is related to the magnetic flux density B, by the relationship

B = curl A = — ¥ A (8.9)

and that the vector potential due to the filamentary currents is

0

4
C

Id

r

m
p

Ê ˆ Ê ˆ= Á ˜Á ˜ Ë ¯Ë ¯ Ú l
A (8.10)
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The point P is assumed to lie in the y-z plane (x = 0).
Now, dl = adf, and

  
1 1 1

1 sin sin
sin sin

a

R r a r r
f q

f q
⎛ ⎞+⎜ ⎟− ⎝ ⎠

2
0

0

1 sin sin sin
4

Ia a
A d

r r

p

f
m f q f f

p
⎛ ⎞ ⎛ ⎞= +⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ∫

                            
2

0
2

sin

4

Ia

r

m p q
p

=

Using the definition of the magnetic moment m from Eq. (8.7),

0
24 r

m
p

×
=

m u
A (8.11)

and the magnetic flux density B is

8.2.1 Field due to a Single Current Loop (Magnetic Dipole)

We consider a circular loop of radius a carrying a current I (see Figure 8.4), and we have to find
the magnetic vector potential at a point P whose distance from the centre of the loop is r where
r >> a. From Eq. (8.10), the lines of A are circles with the centres on the loop axis; and so A has
only the f-component (in the spherical polar coordinate system).

\ The component dAf due to the element dl is

dAf = 0 sin

4

I dl

R

m f
p

⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

as shown in Figure 8.4.

Figure 8.4 Vector potential due to a circular current element.
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Note: The figure is not to
scale. The loop size is
enlarged for clarity.
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0
2

curl
4 r

m
p

×⎛ ⎞ ⎛ ⎞= = ∇ × ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
m u

B A (8.12)

where

m = the magnetic moment of the loop

u = the unit vector in the direction of r.

8.2.2 Field of Aggregates of Loops (Magnetic Moment Density
Vector or Magnetization Vector)

In a piece of magnetized material, the magnetic moments of all the elemental loops are known
(say). Then the resulting vector potential at any point is

0
24

v r

×⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ∑
m u

A
m
p

(8.13)

where v is the volume of the magnetized piece. In the macroscopic theory, it is not necessary to
know the magnetic moments of the individual loops. If the vector sum of the elemental magnetic
moments inside any ‘physically small’ volume dv is determined, then the density of the magnetic
moments is given by

sum of all the s inside v

v

d
d

m
M = (8.14)

This is the definition of the ‘magnetization vector’. If the vector M is known at all the points,
then the vector potential created by the small loops inside a volume v can be determined as an
integral instead of the summation of Eq. (8.14). So a small volume dv has a moment

v

dv=∑ m M
d

and the equation for the vector potential [i.e. (8.14)] becomes

0
24

v

dv
r

×⎛ ⎞= ⎜ ⎟⎝ ⎠ ∫∫∫ m u
A

m
p

(8.15)

So if M is evaluated as a function of the coordinates, then A and hence B can be determined
easily. But the magnetization vector is a function of both the external magnetic field as well as
the state of the induced magnetism at all the points, since this produces an additional magnetic
field. Thus we are faced with a circular argument, i.e. the total magnetic field at a point inside a
magnetized matter is a function of the magnetization throughout the volume under consideration,
and the magnetization at a point is a function of the total magnetic field. So the analysis of
the transient process becomes extremely complicated. But under the final equilibrium state
which is to be determined, the dependence of M on the total B must be known. For most
substances, the magnetization at a given point is a linear function of the total B at that point,
expressed in the form

m

0 m

1

1

c
m c

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟+⎝ ⎠⎝ ⎠

M B (8.16)

cm is a dimensionless constant, known as the magnetic susceptibility of the material considered.

’
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For all linear magnetic materials cm << 1. But for the ferromagnetic materials, cm >> 1 and is a
function of both B and the magnetic history of the specimen.

8.3 EQUIVALENCE OF THE MACROSCOPIC CURRENTS TO
THE MAGNETIZED SUBSTANCES

We have thus seen that the magnetic field of a magnetized substance is due to the elemental
current loops which represent the magnetic properties of the individual atoms. These currents
can be considered as producing certain macroscopic currents. We shall now express the density of
the macroscopic currents resulting from the microscopic currents in terms of the magnetization
vector M.

We consider a part of the surface of a magnetized material. It can be easily seen that for
uniform magnetization, the macroscopic resultant of the elemental currents inside the material
would be zero. But for a thin layer near the surface, the uncompensated currents exist which
would result in a thin current sheet of thickness same as the diameter of the current loops, and
hence can be regarded as a ‘surface current’. The density JmS of the surface current can be
determined as follows. Let there be N elemental loops per unit volume, and the radius of each
atomic loop is a, carrying a current I. Then the surface current density is

JmS = INa2 p = Nm = M (8.17)

i.e. it is equal to the magnetization vector ΩMΩ.
If, however, these loops are inclined to the outer surface by an angle a (instead of being

normal), then
JmS = INa2 p sin a = M sin a

So we can represent either of the above situations by

JmS = M ¥ un (8.18)

where un is the unit vector normal to the magnetized surface, directed away from it.
When the magnetization of a magnetized body is uniform, the resultant currents appear on

the surface only. If the magnetization is not uniform, the resultant macroscopic currents can
appear throughout the body. By a similar line of argument, considering similar contours, we can
show that in a rectangular contour

Jm ◊◊◊◊◊ un = un ◊◊◊◊◊ curl M (8.19)

where Jm is the density of the macroscopic resultant of the microscopic currents.

Or Jm = curl M (8.20)

So the total magnetic field can now be analyzed in terms of the field of the original macroscopic
currents and the secondary equivalent currents, both existing in vacuum. We have then reduced
the problem to the analysis of a system of currents situated in vacuum—a situation which has
been discussed in Chapter 7.

8.4 THE GENERALIZED FORM OF AMPERE’S
CIRCUITAL LAW

Thus according to the equivalence established in Section 8.3, the secondary sources of the
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magnetic field inside the magnetized material can be reduced to a system of macroscopic
currents. The real currents and these equivalent currents are then considered to exist in a vacuum.
Suppose, now at a point, both the real currents (=J) and the macroscopic resultant of the
microscopic currents exist. Hence the total current creating the magnetic field is the sum of these
components, i.e.

Jtotal = J + Jm = J + curl M (8.21)

from Eq. (8.20).
Then the Ampere’s circuital law has to be modified for Jtotal rather than for J only, i.e.

0 ( )
C S

d dm◊ = + — ¥ ◊Ú ÚÚB l J M S (8.22)

Applying the Stoke’s theorem to the second term on the right-hand side and rearranging

0C S

d d
m

Ê ˆ
- ◊ = ◊Á ˜Ë ¯Ú ÚÚB

M l J S (8.23)

The significance of the left-hand side term is as follows. The line integral of the difference of the
two vectors is thus always equal to the ‘real’ current crossing a surface enclosed by the contour.
This quantity is then defined as the vector H called the magnetic field intensity vector. (This is
the generalized definition of H when any magnetized material is present.) That is,

0m
= −B

H M (8.24)

and so Eq. (8.23) becomes

C S

d d◊ = ◊Ú ÚÚH l J S (8.25a)

This is the generalized form of the Ampere’s law. Sometimes it is more convenient to write it in
a more explicit form as

C

d◊Ú H l  = sum of all the currents through C (8.25b)

The differential form of this law is

curl B = m0(J + curl M)
or

0m
⎛ ⎞

∇ × − =⎜ ⎟
⎝ ⎠

B
M J (8.26)

Using the definition of H from Eq. (8.24), this becomes

— ¥ H = J (8.27)

This generalized form of the Ampere’s law as defined by Eq. (8.27) is valid for the magnetic fields
of the steady currents only. In fact, this is a restricted form of another of the “Maxwell’s
electromagnetic field equations”. Later we shall see how this equation has to be generalized
further by including an extra term to account for the effects of the time-varying magnetic fields.
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For linear magnetic materials, the magnetization vector M is proportional to the magnetic
flux density vector B and hence by Eq. (8.24), it is also proportional to the magnetic field
intensity vector H. This linear relationship is expressed as

M = cmH (8.28)

As already noted before in Section 8.2.2, cm is the magnetic susceptibility of the material.
Combining Eq. (8.28) with Eq. (8.24), we get

B = m0 (H + M) = m0(1 + cm)H (8.29)

The quantity (1 + cm) is denoted by mr and is known as the relative permeability of the medium.
The product m0mr is denoted by m and is called the permeability of the medium. Thus,

(1 + cm) = mr,    m0(1 + cm) = m0mr = m (8.30)

and Eq. (8.29) becomes

B = mH (8.31)

Thus the magnetization vector M inside a linear magnetic material can be expressed in terms of B
or H and m as

0

0 0 0

1
m m m

m mm m
⎛ ⎞ ⎛ ⎞−= − = = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

B
M H B H (8.32)

In Table 8.1 below are given the values of mr and cm for some linear substances as well as for some
nonlinear highly magnetizable substances. Note that both mr and cm are dimensionless.

Table 8.1 mr and cm for some common substances

Substance mr cm Substance mr cm

Bismuth 0.99983 -1.7 ¥ 10-4 Air 1.00000036 3.6 ¥ 10-7

Silver 0.99998 -2.6 ¥ 10-5 Aluminium 1.000021 2.1 ¥ 10-5

Copper 0.99999 -0.94 ¥ 10-5 Cobalt 250 nonlinear
Water 0.99999 -0.88 ¥ 10-5 Nickel 600 nonlinear
Vacuum 1.00000 0.00 Soft iron 5000 nonlinear

It should be noted that mr can be less than unity which was not the case with the relative
permittivity. Substances with mr < 1 are known as ‘diamagnetic’, and those with mr > 1 but almost
equal to unity are called ‘paramagnetic’. Substances with mr >> 1 which are always nonlinear are
called ‘ferromagnetic’. We shall now briefly discuss the effects of the externally applied magnetic
field on these substances.

8.5 EFFECT OF AN EXTERNALLY APPLIED MAGNETIC
FIELD ON MATERIAL SUBSTANCES

Before we consider this effect on the different classes of materials just described, we shall write
down the expression for the ‘magnetic dipole moment’ (= m) in terms of the parameters of the
circulating electrons in the atom. The dipole moment is defined by the product of the current and
the area of the orbit as
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where e is the charge of the electron orbiting with a velocity of magnitude v in an orbit of radius
R. At a distance from the electron this movement appears as an average current of (ev/2pR)
amperes. This quantity is called the magnetic dipole moment because it is a product of a current
and an area, and is thus analogous to the electric dipole moment which is a product of the charge
and the distance.

Expressing the magnetic dipole moment as a vector,

( )
2

e⎛ ⎞= − ×⎜ ⎟⎝ ⎠
m v R (8.34)

and so we have the magnetization vector (or the magnetization per unit volume) given before by
Eq. (8.14) as

M = Nm

where N is the number of such effective dipoles per unit volume.
Next we consider the effect of an externally applied magnetic field on the material

substances.

Diamagnetic substances. Those substances which possess atomic structures so that no motion of
the plane of the orbits occurs under the influence of an externally applied field are called
diamagnetic substances. For such substances, an ordered array of the orbital planes produces no
external magnetic effect caused by the substance atoms when no external field is applied. But
when there is an external magnetic field, then those orbits so located that the normal to their areas
have a component aligned with the applied field, would produce a reaction though there will be
no reorientation of their planes. Let us consider an electron in an orbit whose plane is normal to
the direction of the externally applied field B0. When the external field B0 is not present, the orbit
is determined by the balance of the coulomb attractive force between the electron and the
positively charged nucleus, and the centrifugal force acting outwards [Figure 8.5(a)]. Equating the
magnitudes of these forces,
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0 02

0 04
e

e
m R

R
= w

pe
(8.35)

where

e = electron charge, in coulombs

e0 = permittivity of free space, in henries/m

me = mass of the electron, in kg

w0 = original angular velocity of the electron, in rads/s.

From this equation, it is seen that w0
2 R0

3 is a constant if the mass of the electron is constant.
When an external field B0 is applied, as shown in Figure 8.5(b), under the effects of the

additional field B0, and the velocity v, the electron will experience a larger outwardly directed
force (due to this magnetic field). This (centrifugal force) has to be balanced by a larger inwardly
directed force, which is given by
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(8.36)
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where R and w are the new values of the radius and the angular velocity, respectively. Calculating
w2R3 from the above equation and using Eq. (8.35), we get

2 3 2 3 3
0 0 0

e

e
R R B R

m
w w w

⎛ ⎞
− = ⎜ ⎟

⎝ ⎠
(8.37)

i.e. w2R3 is less than w0
2 R0

3 as a result of the externally applied magnetic field, and so the
magnetic moment m also would be smaller than m0 (i.e. the value of m when there is no
externally applied magnetic field). The effect of B0 has been to produce a change in m in the
direction opposite to that of B0. This is due to the change in v and assuming that the change in
m is from the changes in w and not through R0, it can be shown that the change in m is given by

2 2 2
0 0

4

e R

m

m⎛ ⎞
Δ = − ⎜ ⎟⎜ ⎟⎝ ⎠

m H (8.38)

and multiplying this equation by N and then comparing it with Eq. (8.28), we get
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m 4
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⎛ ⎞

= − ⎜ ⎟⎜ ⎟⎝ ⎠
(8.39)

This shows that the diamagnetic materials have negative susceptibilities. This is an approximate
analysis, and for a more rigorous explanation, we have to go into the quantum mechanical
considerations. However for the approximate values assigned to N and R0, we find that cm for the
diamagnetic substances lies between -10-6 and -10-4. For approximate calculation purposes for
the diamagnetic materials, mr may be taken as unity.

Paramagnetic substances. These substances exhibit small positive susceptibilities caused by the
spin characteristics of the electrons. The magnetic moment m is a function of the temperature of
the substance, i.e.

m
C

T
c = + (8.40)

where C is a characteristic constant of the substance, called the Curie constant. This equation is

Figure 8.5 Orbiting electron in the absence and the presence of an external field B0.

(a) (b)

m 0

w0

e

R0
Fe

Fc

v0

m

w

B0

e

FB

v
R0

Fe

Fc

Fc + FB

Note: Figure not to scale.
Forces are shown
enlarged for clarity



256 ELECTROMAGNETISM: THEORY AND APPLICATIONS

valid over a reasonable range of temperatures, but does not apply at very low temperatures.
Substances, such as oxygen, various oxides and chlorides possess the property of paramagnetic
action, and cm has a value in the range of +10-3.

Ferromagnetic substances. In the previous two types of substances, i.e. the diamagnetic and the
paramagnetic, there is negligible interaction between the individual atomic moments. But there is
another class of substances, like iron, cobalt, nickel, and their alloys, in which there occurs a very
strong interaction among the groups of the atomic moments. Regions in which this interaction
occurs are called ‘domains’ and constitute groups of an order of 1015 atoms. The linear
dimensions of a domain are of the order of 10-6 m or about 20 microns (=m), and the domains are
separated by the walls about 50 Å (Angstroms) thick in which the direction of the spins is
changing. When there is no external applied magnetic field, each domain may have its spins
aligned along one of the several possible axes, depending on the particular substance. At this
stage, we differentiate between two types of ferromagnets: (a) soft, which retain no magnetism
when there is no external magnetic field and (b) hard, which may form permanent magnets.

Qualitatively, the behaviour of these two types of ferromagnets can be explained as follows.
(See Figure 8.6.) Because the domains can possess random orientations, the net residual magnetic
flux density B in the material may be small, as in the so called soft substances like pure iron.
Other substances, like certain alloys, possess easy and hard directions of magnetization. When an
external magnetic field is applied in the direction of easy magnetization, the domains align
gradually as the field strength is increased. The wall movement of these domains permit the
growth of the size of these domains till the whole specimen becomes essentially a single domain.
Under this condition, the material is said to be magnetically ‘saturated’. When the magnetic field

Figure 8.6 Domain movements in ferromagnetic substances during the application of an
external magnetic field.

(a) Unmagnetized (b) Partially magnetized by domain wall
movement

(c) Knee of the magnetization curve (d) Completely saturated

H
Crystal axes
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intensity is reduced, the domain walls may begin to move again, producing domains of smaller
size and random orientations. Depending on the substance, a greater or lesser degree of
magnetization may remain. If a considerable amount of magnetization remains, when the external
magnetic field is reduced to zero, the substance is called a ‘permanent magnet’. The details of
such substances will be discussed later.

A study of the magnetizing and the demagnetizing action shows that this process is not a
smooth one, and that the sudden motion of the domain walls produces an effect of slight
discontinuity which is known as the ‘Barkhausen effect’.

In ferromagnetic substances, there is a hysteresis effect occurring as the material experiences
magnetization and demagnetization. Because of this and the nonlinear relationship between B and
H for the material, a simple tabulation of c or mr for ferromagnetic substances is not possible. The
details of all such aspects will be explained later.

8.6 MAGNETIC FIELD INTENSITY VECTOR AND
ITS INTERPRETATION

The lines of the magnetic field intensity vector H are defined as the geometric lines having the
property that the vector H is tangential to them at all the points. But while representing, the
magnetic field lines of H are at a disadvantage compared to the lines of the vector B, especially
inside the magnetic materials. This is because B is divergenceless everywhere, but this is not so
with H. In fact inside the materials

Div H = – div M

\ The vector H has sources and sinks, i.e. there are points at which some H lines originate
and also the points at which these lines end. Also, according to Eq. (8.24), the magnetic field
intensity vector H is a difference of two physically different quantities, i.e. (B/m0) is proportional
to the magnetic flux density vector at the point under consideration, due to both the macroscopic
and the microscopic currents, and M is the density of the magnetic moments of the elemental
atomic currents at that point. Thus H is a hybrid vector function made up of two components,
having a completely different physical meaning. It is defined as a convenient quantity for
analyzing the magnetic field in the presence of the magnetic materials.

As an example to illustrate this point, we study the following simple problem. We have the
magnetic force component of the Lorentz force from Eq. (7.24) as

F = Qv ¥ B

But since in vacuum, B = m0H, we could also have written this component of the force as

F = m0Qv ¥ H

If we consider a moving charge inside a permanent magnet, so that the interaction between the
charge and the atoms of the magnet can be neglected, then from our standpoint, the charge would
be deflected by the law of the force, F = Qv ¥ B. But the other approach suggests that the
deflection would be according to the law m0Qv ¥ H in the opposite direction, since inside the
magnet B and H are in opposite directions (as will also be seen later). Experimentally it is found
that the force law is

F = Qv ¥ B
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We consider the interface, S, between the two different magnetic media (1) and (2) of
relative permeabilities mr1 and mr2, respectively. On this interface, we take a coin-shaped Gaussian
surface of cross-sectional area dS1 and find the outward flux of B from S1. This flux must be zero
because of the solenoidal property of B, i.e. div B = 0. (This is an alternative way of applying the
‘principle of conservation of magnetic flux’.) So,

(B1 cos q1 - B2 cos q2)dS1 = 0

as the flux out of the peripheral edge of the closed surface becomes zero in the limit.

\ B1 cos q1 = B2 cos q2 or Bn1 = Bn2 (8.41)

i.e. the normal component of B is continuous across such a surface of discontinuity.
We next consider a closed contour C1, i.e. ABCDA on the interface S. If there is no surface

current on the interface, then

ABCDA

0d◊ =Ú H l

or
(H1 sin q1 - H2 sin q2)Dl + contribution due to Dl¢ = 0

The second term in the above equation Æ 0 in the limit.

\ H1 sin q1 = H2 sin q2 or Ht1 = Ht2 (8.42)

8.7 BOUNDARY CONDITIONS (SURFACES OF
DISCONTINUITY)

The boundary conditions are similar to those discussed for the electrostatics and the steady
currents. The conditions are now the relations for the vectors B and H at the two adjacent points
on the two sides of an interface between the two different magnetic surfaces (Figure 8.7).

Figure 8.7 Interface between two different magnetic media.
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This can be written as

t1 t2

r1 r2

B B

m m
= (8.43)

The above equation implies that if there is no surface current on the surface of discontinuity,
then the tangential component of the vector H is continuous. Combining the above three
equations, we get

1 r1

2 r2

tan

tan

q m
q m

= (8.44)

This is the law of refraction of the magnetic field lines.
Let us consider an important practical case, when the medium (1) is air, so that mr1  1 and

m1 = m0, and the medium (2) is some ferromagnetic substance, such that mr2 >> mr1. In that case,

1 r1

2 r2

tan
0

tan

q m
q m

= (8.45)

in which case q1 = 0, i.e. the magnetic flux density vector B in air is practically normal to the
surfaces of ferromagnetic materials.

Next, we consider again the interface of discontinuity, but now with a surface current IS per
unit width (Figure 8.8).
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Figure 8.8 Surface of discontinuity with surface current on it.

Current layer IS per unit width

In this case as well, the normal component of B would be continuous, for the same reason as
before. But when we consider the closed contour ABCDA,

(Ht1 - Ht2) Dl = IS Dl or Ht1 - Ht2 = IS (8.46)

i.e. the tangential component of H is discontinuous now. Furthermore if the magnitude of IS is
large enough, the direction of Ht might get reversed as one passes across the interface plane S.

8.8 THE MAGNETIC CHARACTERISTICS OF IRON
(FERROMAGNETIC MATERIALS)

As we have seen earlier, the magnetic materials are divided into three main groups. The first two
groups, i.e. the diamagnetic and the paramagnetic substances, have their relative permeabilities
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very near unity (due to very small negative or positive values of their susceptibilities) and hence
can be considered to be having practically no influence on the magnetic field. They are seldom
used, except for special purposes, and so we shall not discuss them here. The third group of
materials are known as ferromagnetic materials. They are iron, cobalt, nickel, and their chemical
compounds and alloys. These have very large relative permeability, and are nonlinear and their
magnetic properties are functions of their magnetic history. They are very widely used in
electrical and electronic engineering, and so a basic knowledge of their important properties is
essential. A complete analysis of their properties is highly complex, and for those readers who are
interested, they will find the relevant information in specialist’s books, such as Ferromagnetism
by Bozorth. Here we shall describe the basic properties of these materials in brief.

So far we have been trying to build up a picture of magnetization of iron in terms of cause
and effect. The cause is specified in terms of the magnetizing force H, and the effect in terms of
M or B since these parameters are related by the equation

B = m0(H + M) = m0(1 + cm)H

and for iron, this relationship is nonlinear. We will have a look at the B-H relationship for iron in
two stages. First, we shall study the relationship by an example, and then the general relationship.

8.8.1 A Short Solid Iron Cylinder in a Straight Cylindrical Coil of
Infinite Length

The axis of the iron cylinder is taken parallel to the axis of the coil. The cross-section of the iron
cylinder is taken about one-tenth that of the coil. In this arrangement, the flux density B, far away
from the iron, will be of uniform value, the same as for an air-cored solenoid, i.e. B0 = m0H = m0nI
where n is the number of turns per unit axial length of the solenoid, and I is the current per turn.
But when the flux approaches the iron, most of it tends to pass through the iron. The B pattern is
shown in Figure 8.9(a). This can be considered to have been produced by superimposing the field
of a magnetized bar [Figure 8.9(b)] on the uniform field due to the solenoid itself. Figure 8.10
shows the corresponding H lines. It will be seen that the B and the H lines in the air-cored
solenoid are very similar, because B and H in the air are proportional. But in the iron part, the
density of the H lines is extremely low [Figure 8.10(a)]. This is because if we study the H lines in
the magnetized bar [Figure 8.10(b)], it will be seen that the H lines in the bar are in the opposite
direction. So considered in terms of B, the iron bar resembles a solenoid, and considered in terms
of H, the picture is that of a ‘bar magnet’ (i.e. made up of magnetic dipoles). So from this point
of view, the individual ‘domain’ might be considered as a dipole. In the magnetized bar, the
dipoles are arranged head to tail, so that only the ends are not neutralized, and from these pole
layers start the lines of H.

8.8.2 B-H Curve of Iron

The B-H curve of a given specimen of iron can be measured experimentally. In the early days,
such a plot used to be an elaborate experiment, in which H had to be calculated to an exact
degree. For this purpose, a ring-shaped specimen would be wound uniformly with a toroidal
winding, then the value of H inside the iron would be

2

NI
H

rp
=
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Figure 8.9 (a) B field of an iron cylinder inside a solenoid and (b) B field of the magnetized bar.

(a)

Figure 8.10 (a) H lines of the iron cylinder inside a solenoid and (b) H lines of the magnetized bar.
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Initially, at the origin, H = 0, B = 0, M = 0. As the applied field is increased, there is a
reversible movement of the domain walls to increase the size of the domains in the direction of
the applied magnetic field at the expense of those domains whose directions are very different.
This is the part O-a of the curve shown in the Figure 8.11. The second stage of the curve is the
part a-b when the previously mentioned process of domain alignment continues. But at the same
time, the axes of magnetization of other domains get reversed so as to get those aligned with the
direction of the applied field (Figure 8.6). This part of the curve consists of a succession of small
steps, and this discontinuous growth is known as the ‘Barkhausen effect’ as mentioned earlier. On
further increase of H (which is done by increasing the current in the coil), a stage is reached at the
value Hmax when the axes of all the domains are aligned with the direction of H. The iron is then
fully saturated, and this is the complete curve O-1. This part of the curve is known as the initial

Figure 8.11 B-H loop for an iron specimen.

where I is the current per turn of the winding, and N is the total number of the turns on the ring,
and r is the mean radius of the ring. B can be measured by using an integrating fluxmeter or a
Hall-effect gaussmeter. However, nowadays the B-H plot can be obtained directly on a cathode-
ray-oscilloscope screen by feeding into the X- and Y-input terminals of the scope, the signals
proportional to H- and B-signals of this specimen or a specimen of any other shape.

It has to be repeated that any change in B is not only associated with the corresponding
change in H but also with its history, i.e. the value of H that existed in the past. So we follow the
B-H curve as shown in Figure 8.11.
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reversible. If now we start reducing H, the B values do not follow the curve 1-0, but trace a new
track 1-2. When H has become equal to zero, B has a value BR different from zero. The value of
BR is called the ‘residual or remnant flux density’. The physical meaning of BR is that due to
certain effects similar to friction, the elemental current loops still remain oriented even when there
is no external magnetic field, and thus produce a certain magnetic field inside the core. The
remnant flux density explains the existence of the permanent magnets.

If now the current is reversed, H becomes negative, and the point traces the curve 2-3. That
is to say that for a certain value HC of H, known as the ‘coercive field intensity’, there will be no
flux density in the core. Physically this means that the macroscopic current in the coil produces a
magnetic flux density at this point which is equal in magnitude but of opposite direction to the
magnetic flux density of the elemental loops which are still oriented to create a B in the positive
direction. The magnetic materials with large HC are called ‘magnetically hard’, and those with
small HC are called ‘magnetically soft’.

If the current is increased still more in the negative direction, the point traces the curve
3-4 when H has acquired the value -Hmax. If next, we decrease the current and reverse the current
on reaching the zero value and then increase up to Hmax, the point traces the curve 4-5-6-1. In
fact, when H reaches the value +Hmax, the B value does not exactly coincide with Bmax at the end
of the first cycle. It takes near about 10-12 cycles for the B to coincide with Bmax at 1 on the
initial magnetization curve. This closed curve 1-2-3-4-5-6-1 is called the ‘hysteresis loop’ of the
material. In most of the practical applications of the ferromagnetic materials (i.e. electrical
machine and transformer laminations, made up of Si-Fe alloy), we deal with sinusoidal time-
harmonic macroscopic currents, and hence the hysteresis loop is possibly their most important
characteristic.

It is possible that by choosing the different values of Hmax, different sizes of the hysteresis
loops can be drawn for the same material, Hmax lying at different points of the initial
magnetization curve of the material, as shown in Figure 8.13. The largest loop obtained for a
material, when Hmax has reached the saturation value of B is the normal magnetization loop, and
this loop defines the BR and HC of the material.

The ratio (B/H) obtained from the initial magnetization curve (also known as the normal

magnetization curve. Any further increase in H will not cause a further increase in B. If we were
to plot m as a function of B, then the change in the value of m as a function of B will be somewhat
as shown in Figure 8.12. Once the saturation value is reached, the B-H curve is no longer

Figure 8.12 m as a function of B for iron.
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magnetization curve) defines the ‘normal permeability’ of the material. Next, the ‘differential
permeability’ can be defined as (dB/dH) along the normal magnetization curve at any point on it.
Its value at the origin is called the ‘initial permeability’. There are some practical applications in
which a small alternating current has to be superimposed on a large steady magnetizing current. In
these cases, the point in the B-H plane describes a small and very flat hysteresis loop from which
the ‘incremental permeability’ is obtained as DB/2Hb, where 2Hb is the total width of the small
loop.

8.8.3 A Qualitative Explanation of the Hysteresis Loops

An in-depth, quantitative analysis of the hysteresis loops and their associated energy in the
material will be discussed later. At this stage, we shall try to present a qualitative picture of this
phenomenon. Using the domain theory as the basis, we can say that the process of magnetization
of the ferromagnetic materials implies that the domains get rotated so as to align themselves with
the external magnetizing field. This process is associated with some friction. As a result, the
magnetization always lags behind the applied field which causes it (i.e. the process of
magnetization). Secondly, since the orientation process is accompanied by friction, there is a
certain amount of energy loss, whereby the magnetic energy gets converted into heat. These losses
are known as ‘hysteresis losses’, and will be discussed later. This domain model also explains the
behaviour of another class of magnetic materials known as ‘ferrimagnetics’ in which the domains

Figure 8.13 B-H corresponding to different values of Hmax for a material.
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are of unequal magnitudes. They are similar to the ferromagnetics, but are non-metallic and
possess high resistivities. ‘Ferrites’, which are mixed oxides of iron, belong to this class; and are
used for high frequency transformers and antennae inside the radio receivers .

8.8.4 Temperature Dependence of Ferromagnetic Materials

It has been found that all the ferromagnetic materials lose their ferromagnetic property above a
certain temperature, and above this temperature they behave like ordinary paramagnetic materials.
This temperature is called the ‘Curie temperature’. Hence if a permanent magnet is heated above
the Curie temperature, then it loses its magnetism, and on cooling becomes completely
demagnetized.

8.9 TYPES OF IRON FOR SPECIFIC MAGNETIC
APPLICATIONS

Permanent magnets

We have seen earlier with reference to Figures 8.11 and 8.13, that when a specimen is magnetized
to the value Bmax, and then the magnetizing force is subsequently removed, the flux density of the
specimen subsides to BR, which is known as ‘remnant flux density’, and is a function of Bmax. The
greatest value of BR is obtained by pushing up Bmax as near the saturation region as possible. The
limiting value of BR is called the ‘remnance’ of the material. For good permanent magnets, this
value must be as large as possible. The second requirement of the good permanent magnets is also
high coercivity HC. This value corresponds to the highest value of BR, and again depends on
pushing the Bmax value to the saturation level as before. If a material has high coercivity, then it
is obstinate in retaining its magnetization against reverse fields.

Hard carbon steels make good permanent magnets, but it has been found that certain special
alloys are much better. Alnico was one of the earlier alloys developed. Its earlier composition was
53% Fe, 10% Al, 18% Ni, 13% Co, and 6% Cu. Its BR = 0.7 Wb/m2, and HC = 40,000 AT/m. A
number of varieties of Alnico have been developed with modified compositions, both isotropic
as well as anisotropic, cast and sintered, so that BR now ranges from 0.7 Wb/m2 to 1.1Wb/m2 and
HC from 40,000 AT/m to 190,000 AT/m. The drawbacks of Alnico magnets happen to be that they
lack ductility and are extremely brittle. These magnets are used in measurement instruments such
as voltmeters, ammeters, wattmeters, flowmeters, gyrometer astronomical instruments, electronic
spectrometers, electron diffraction systems, and so on. The Curie temperatures of most Alnico
varieties range from 800∞C to 880∞C.

Ferrites are the next category to be in wide use. At present, Barium and Strontium ferrites,
Samarium-Cobalt systems (Sm-Co5 being most widely used one), and Nd-Fe-B (Neodymium-Iron-
Boron)—both isotropic and anisotropic are being used. Ferrites are used in electromechanical
devices, such as electric motors (both rotary and linear), car alternators, exciters for large turbo-
generators, aircraft generators, actuators for computer printers, magnetic bearings, suspensions in
vehicle levitations, klystrons and magnetrons, focussing lenses in particle accelerators, and so on.
Ne-Fe-B magnets are used in electric vehicles, eddy-current brakes, magnetic resonance imaging
systems, and so on. Miniature magnets of this material are being used in brushless dc motors,
stepper motors, dc linear motors, magnetic separators, relays and switches, audio-transducers,
actuators, and so on.
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Large electrical machines and transformers

In the armatures of these machines, and in the cores of large power transformers, the magnetic flux
and hence the flux density B vary cyclically with time. So it is desirable to have a high
permeability of the iron used so that the current required to set up the flux is as low as possible,
and also a very narrow hysteresis loop so as to minimize the losses. A high saturation flux density
is also desirable, in order to keep the quantity of iron to a minimum. For meeting these
requirements of the alternating flux, the most suitable alloy has been found to be Si-Fe in which
the Si content has been 3–4%. For the rotating machines, since the direction of the magnetic flux
keeps on changing spatially, the variety of Si-Fe used in the core laminations is CRNGO (Cold
rolled non-grain oriented), whereas in the transformer cores the magnetic flux reverses its direction
with time only and hence CRGO (Cold rolled grain oriented) steel is used.

Magnetic shielding

For shielding instruments from the effects of stray magnetic fields, in which the flux density is
usually low, it is preferable to have a material with a high initial permeability; i.e. a high mr at
low values of B. One of the most suitable metals for such purposes is ‘Mumetal’, an alloy whose
composition is 76% Ni, 17% Fe, 5% Cu, and 2% Cr. The initial permeability is 20,000 and the
maximum mr is 80,000 as compared with 500 of silicon steels.

8.10 THE MAGNETIC CIRCUIT

As the problems involving the ferromagnetic cores have nonlinear relationships between B and H,
such problems in most cases can be solved only approximately, but with a sufficient degree of
accuracy. The approximate analysis resembles that of the steady electric current circuits. The basis
for this analogy is the relationship in that the flux of B out of any closed surface is zero,
and hence analogous to the circulation of the electric current in a closed circuit, as shown in
Figure 8.14.

Figure 8.14 Analogy between magnetic circuit and current circuit.
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In such problems, a closed magnetic path (of iron) is magnetized by a current-carrying coil.
Since the iron path is a closed one, the leakage of the magnetic flux in air is negligible, and
hence the total quantity of flux f is same over all the cross-sections of the iron, just as in an
electric circuit the current is same at all the cross-sections of the wire. The flux is the analogue of
the current in the electric circuit, and the flux producing magnetizing coil is the analogue of the
battery. The ampere-turns of the coil is the equivalent of the battery emf, and hence is called the
magnetomotive force (mmf). Since at every point of this circuit, there is a magnetizing force H, we
can write by using the Ampere’s law,

mmf
C

d I◊ = S =Ú H l (8.47)

comparable to

C

d⋅∫E l  = E = emf in the circuit.

Although the B-H relationship is nonlinear, it is convenient to assume a linear relationship
between the flux and the mmf, i.e.

m
mmf

= reluctance of the path
flux

R

a quantity which is analogous to the resistance in an electric circuit.

\ m
d

R
∫ ⋅= H l

f (8.48)

The unit of the reluctance is ampere-turns/weber. The reciprocal of the reluctance is called the
‘permeance’.

It can be assumed that H is constant in each arm of the magnetic circuit, and so H ◊◊◊◊◊ dl can
be replaced by 

i
S Hi li for the various portions of the magnetic circuit.

\
i
S Hi li = NI (8.49)

for the coil having N turns, and each turn carrying the current I, and li is the length of each
portion of the magnetic path. Also, it can be assumed that

f = B ¥ A (8.50)

in each limb of the circuit, where B is the flux density in the limb, and A is the cross-sectional
area of the limb. When f is known, B in each portion of the limb can be calculated, and hence the
corresponding H can be obtained from the magnetization curve of the material, thus calculating
the total ampere-turns required for the problem. When there is an air-gap in the circuit, as shown
in Figure 8.15, most of the mmf would be required to maintain the flux in the air-gap, i.e.

1 2 3
0 r 0

( ) 2 i i
B B

l l l H l
m m m

S
⎛ ⎞ ⎛ ⎞

+ + =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

It will be seen that even though

(2l3) << (l1 + l2)

the presence of mr in the denominator of the first term on the left-hand side makes its contribution
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much smaller compared with the second term. A note of caution is that here we have neglected
the fringing of the flux across the air-gaps as a simplifying step in the problem.

PROBLEMS

8.1 A circular iron ring of uniform permeability m has rectangular cross-section such that its
inner radius is Ri and outer radius Ro, where Ro - Ri is comparable to Ri. It is wound
with a uniform magnetizing winding of NI amp-turns. Show that its flux density at the
mean radius (Ro + Ri)/2 is

0 r

( )o i

NI

R R

m m
p +

and the mean value of the flux density over the whole cross-section is

0 r ln
2 ( )

o

o i i

NI R

R R R

m m
p

⎛ ⎞
⋅ ⎜ ⎟− ⎝ ⎠

Leakage flux may be neglected.

8.2 Show that the permeance of a rectangular parallelepiped
region within which the flux field is parallel as shown
in the adjoining figure is

P = 0
ab

t
m

Figure 8.15 Magnetic circuit with air-gaps.
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and for a sector of a rectangular toriod as shown is

P = 

2

1
0

ln
R

b
R

⎛ ⎞
⎜ ⎟
⎝ ⎠m
b

8.3 A very long conductor of circular cross-section of
radius R1 and relative permeability mr1 carries a
steady current I. A circular tube of relative
permeability m r2 and with inner and outer radii R2

and R3, respectively, is placed coaxially as shown in
the adjoining figure. Determine the vectors H, B, M
for all the regions.

Hint: Use Ampere’s circuital law of Section 7.7, and
the generalized form of the law from Section 8.4
[Eq. (8.32)] for the M vectors.

b

b

R2

R1

O

O¢

m0

Im0

mr2

mr1

R1

R3 R2

Axis of the
current
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9.1 ANALYTICAL METHODS

9.1.1 Introduction

In the magnetostatic field problems, the distributions of the macroscopic currents, which are the
source of the magnetic field, are usually specified in advance. If there happen to be no
ferromagnetic material in the region, then the problem simply reduces to the application of the
Biot–Savart’s law, already stated in Eq. (7.19). Evaluation of the integral in the Biot–Savart’s
law can be sometimes complicated, but not impossible. Several examples of the application of
this method, have been given in the Chapter 7. If the ferromagnetic bodies, with magnetic
nonlinearity, are present in the region, then the exact solution of the problem becomes extremely
difficult, though approximate solutions can be obtained with the aid of the computer-based
methods. However, a very good insight can be obtained in a number of cases by assuming the
magnetic material to be linear, with some average high value of the relative permeability (=mr).
For the analytical methods, (at least initially), we shall make this assumption.

The evaluation of the magnetic field of such a problem thus reduces to finding the B and H
vectors which satisfy the specified boundary conditions of the problem. The nature of the
magnetic boundary conditions have already been discussed in Chapter 8. Also, since the
magnetostatic fields satisfy the same operating equations, i.e. the Laplace’s and the Poisson’s
equations as for the electrostatic fields, the methods for solving the magnetic problems are
basically the same as those described before.

9.1.2 Method of Separation of Variables

Since the basic mathematics of this method has been described in great detail in Chapter 4
(Sections 4.2 to 4.2.8) we shall not repeat the essentials of the method, but apply it directly to
solve some magnetic field problems, which will highlight the application of the method to the
magnetic boundaries of the problem.

9.1.2.1 Hollow cylinder in a magnetic field

This is an interesting practical problem which is a case of static shielding of the magnetic field

Methods of Solving
Magnetostatic Field
Problems9
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i.e. assume the cylinder to be infinitely long. Its inner and outer radii are a and b, respectively,
and its permeability is assumed to be m = m0 mr.

It is a problem in the cylindrical polar coordinate system, in which there is no z-variation,
i.e. the derivative ∂/∂z does not exist. Because of the fixed direction of H0, there is no
f-symmetry, and the independent variables are r and f. The operating equation has to be solved
in the three regions:

Region I : air-space 0 < r < a, m = m0

Region II : iron annulus of the cylinder a < r < b, m = m0mr

Region III : air-space     r > b, m = m0

In all the three regions, H = - grad W, where W is the scalar magnetic potential. Since — ◊◊◊◊◊ B = 0
and B = mH, and since it is a two-dimensional problem, the operational equation (i.e. the
Laplace’s equation) is written as

2

2 2

1 1
0r

r r r r

⎛ ⎞∂ ∂Ω ∂ Ω⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠f
(9.1)

By the method of separation of variables, described in Chapter 4, we write W as

W ∫ RF (9.2)

where R ∫ R(r) and F ∫ F(f).
Substituting in Eq. (9.1), we obtain the two ordinary differential equations

2
2

2

d
n

df
F F= − (9.3)

inside a hollow cylinder placed in a homogeneous magnetic field H0 whose direction is normal to
the axis of the cylinder as shown in Figure 9.1. We consider the problem to be two-dimensional,

Figure 9.1 Hollow magnetic cylinder in a homogeneous magnetic field.
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and
2

2 2
2

0
d R dR

r r n R
drdr

+ − = (9.4)

where n is the unknown separation constant, arbitrarily chosen.
The solution of Eq. (9.3) is

F = An cos nf + Bn sin nf (9.5)

Equation (9.4), called the Euler equation, also has the solution

R = Cnr
n + Dnr

-n (9.6)
Hence the general solution for W is

W = (An cos nf + Bn sin nf) (Cnr
n + Dnr

-n) (9.7)

We consider the region I first. For this region 0 < r < a, the solution at r = 0 must be finite, and
so Dn = 0; and also the f = 0 axis (corresponding to the x-axis in Figure 9.1) has symmetry about
it, and so Bn = 0.

\ W1 = An1r
n cos nf (9.8)

For the region II (a < r < b), the solution will have the more general form

W2 = (Cn2r
n + Dn2r

-n) cos nf (9.9)

For the region III (r > b), the field must satisfy the condition that as r Æ •, W3 cannot tend to
zero, but must be such that H• = H0, i.e. H• = irHr + ifHf, where

f f
⎛ ⎞∂Ω ∂Ω⎛ ⎞= − = −⎜ ⎟⎜ ⎟ ∂ ∂⎝ ⎠ ⎝ ⎠

1
, rH H

r r
(9.10)

\ In the region III, the potential must be of the form

W3 = H0r cos f + An3r
-n cos nf (9.11)

Thus there are four unknowns to be evaluated, i.e. An1, Cn2, Dn2, and An3; and there are also four
conditions on the two interfaces r = a, and r = b. On r = a,

                                  
1 2

r a r a
f f

= =

∂Ω ∂Ω⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

and

1 2
0 0 r

r a r a

m m m
f f= =

∂Ω ∂Ω⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ (9.12)

From Eqs. (9.12) and Eqs. (9.8) and (9.9), we get

a2A11 - a2C12 - D12 = 0 (9.13)
and

a2A11 - mra
2C12 + mrD12 = 0 (9.14)

It will be seen that since there are only four constraint equations, we have only n = 1 to consider.
The next two boundary conditions on the outer surface of the cylinder (r = b) are
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2 3

r b r b
f f

= =

∂Ω ∂Ω⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

and

2 3
0 r 0

r b r b

m m m
f f= =

∂Ω ∂Ω⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

(9.15)

These two equations and Eqs. (9.9) and (9.11), give us

        A13 - b2C12 - D12 = - b2H0 (9.16)

A13 + mrb
2C12 - mrD12 = b2H0 (9.17)

From four simultaneous Eqs. (9.13), (9.14), (9.16), and (9.17), we evaluate the unknowns as

A11 =
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(9.18)

So the potential distributions in all the three regions, i.e. W1, W2, and W3 have been completely
determined. Since our interest is in the screening effect due to the iron cylinder placed in the
magnetic field, we consider the potential distribution W1 in the cavity of the cylinder, i.e.

( ) ( )
r

1 02
2 2

r r

4
cos

1 1

H r
a

b

m f
m m

⎡ ⎤
⎢ ⎥
⎢ ⎥Ω = ⎢ ⎥⎛ ⎞⎢ ⎥+ − − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

(9.19)

Hence the magnetic field H or (B = m0H) inside the cavity is
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H1f = - (—W1)f = - 11
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                   ΩH1Ω = 
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Hence the degree of shielding is given by the expression

( ) ( )

mh
m m

= =
⎛ ⎞+ − − ⎜ ⎟⎝ ⎠
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r r

4

1 1
H a

b
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(9.22)

and it depends on two factors:

1. By changing mr, i.e. choosing the material
2. By changing the wall thickness of the cylinder, i.e. the ratio (a/b) for a fixed value

of mr.

The H field and the effects of these parameters are shown graphically in Figures 9.2 and 9.3,
respectively.

We shall give further examples of the capability of this method later when the concept of
the ‘magnetic vector potential’ is introduced in Chapter 13.

Figure 9.2 H field in a screening cylinder.
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9.1.3 Conformal Transformation

As the background of this method has already been discussed in Chapter 4, Section 4.4, we shall
not repeat the underlying theory of it here. The complex variable methods are equally applicable
to the magnetostatic problems as the operating equations are the same as for the electrostatic
fields, i.e. the Laplace’s and the Poisson’s equations. We shall merely illustrate the capability of
such methods by solving some practical problems dealing with the magnetostatic fields.

9.1.3.1 Forces between the armature and the magnet of a contactor

We consider the armature and the magnet of a contactor as shown in Figure 9.4(a). A magnetic
potential difference, established between the two parts, produces two components of force on
each, the force being the consequence of the magnetic field produced in the region under
consideration. The two components of the force are: (a) an attractive force between the two parts,
and (b) a force tending to align the two parts, so that they become symmetrical to each other, i.e.
the distances p and q change to (p + q)/2 on each side. For our purposes, we need to consider
only one side of the configuration about the axis A A¢, so that the complete configuration of
Figure 9.4(a) can be synthesized from the two boundaries of Figure 9.4(b) with the appropriate
lengths p and q respectively.

The first step is to evaluate the magnetic field distribution, for the configuration of
Figure 9.4(b) in the z-plane which is transformed to the real axis in the t-plane of Figure 9.4(c).
The corresponding points in the two planes are then:

a Æ z = j•, t = - • Æ a¢

b Æ z = jg, t = - 1 Æ b¢

c Æ z = - •, t = 0 Æ c¢(0)

d Æ z = p, t = a Æ d¢

e Æ z = p - j•, t = • Æ e¢

As the vertex angles at the points jg, •, and p are 3p/2, 0, 3p/2, respectively, the Schwarz–
Christoffel equation for the transformation of the z-plane to the t-plane is

Figure 9.3 Degree of shielding h as a function of the two parameters—mr and a/b.
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( 1) ( )t tdz
K

dt t

a⎡ ⎤+ −
= ⎢ ⎥
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(9.23)

To solve Eq. (9.23), we multiply its right-hand side by a a− −( )/( ),t t and integrate. The
result is

1
2

( 1)
(1 ) tanh log

1

R R j
z K R j C

R R j

a aa a
a

−⎡ ⎤+ −= + − + +⎢ ⎥
− +⎢ ⎥⎣ ⎦

(9.24)

where R = ( 1)/( )t t a+ − .

Using the calculus of residues, applied to the point t = 0, we get the unknown K as

jg
K

p a
= − (9.25)

[This result is also obtained by direct substitution in Eq. (9.24)]. Using this value of K, and
substituting for the two points z = jg, t = -1, and z = p, t = a in Eq. (9.24), the remaining
unknowns come out as

C = 0 and a = 
2

2 2
1 1 1

p p

g g

⎛ ⎞+ ± + −⎜ ⎟
⎝ ⎠

(9.26)

Figure 9.4 The problem of the magnet and the armature of the contactor,
with the transformations.

(a) Section of the contactor (b) z-plane representation

(c) t-plane representation
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Finally, if the magnetic potential difference between the two elements in the z-plane is y, the
solution for the field in the t-plane is given by

lnw t
y
p

⎛ ⎞= ⎜ ⎟⎝ ⎠
(9.27)

and the solution for the field is obtained by eliminating t between Eqs. (9.27) and (9.24) (see
Section 4.4.4.3).

From this information, the components of the force can be obtained. Since the boundaries
are taken as infinitely permeable, this component of the force acts on the vertical faces, and is
given by

2
0

1

2

j

z

jg

F B dz
∞

⎛ ⎞= ⎜ ⎟⎝ ⎠ ∫m (9.28)

The derivation of this expression will be given in the subsequent Chapter 11 on “Mechanical
Forces and Energy Distribution in Magnetic Fields”.

Equation (9.28) can be rewritten as
2
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F dz
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∞
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⎛ ⎞ ⎛ ⎞⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠∫

By changing the independent variable to t, this expression becomes
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−

⎛ ⎞ ⎛ ⎞⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠∫ (9.29)

Differentiating Eq. (9.27), we get
1dw

dt t

y
p

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

and using Eqs. (9.23) and (9.25) along with this equation, the expression for the force becomes
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(9.30)

This is the portion of the alignment force corresponding to the right-side of Figure 9.4(a). By
considering the left portion of the same figure, the resultant aligning force is obtained as

2
1 10 1 1

sin sin
2 1 1

F
g

− −⎡ ⎤⎛ ⎞⎛ ⎞− −= −⎢ ⎥⎜ ⎟⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎣ ⎦

m y a b
p a b

(9.31)

where b corresponds to the distance q, as a corresponds to p.
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9.1.3.2 Current between two infinite parallel permeable surfaces

A general form of this problem can also be solved by the method of images. At present, we
consider the configuration when the current is mid-way between the permeable surfaces. The
current is located at the origin of the x-y plane (complex z-plane), and the permeable surfaces are
y = ± b, extending to • at both the ends. So the x-axis and the y-axis are both axes of symmetry,
and we need to consider only (say) one side of the x-axis or one side of the y-axis or even only
one quadrant. However for the solution to be of a simpler form, we choose the positive-half of the
y-axis, as shown in Figure 9.5(a), and the corresponding points for the transformation from the
z-plane to the t-plane are:

z Æ –b + j• Æ t = - •
z Æ –b Æ t = - 1

z Æ +b Æ t = +1

z Æ b + j• Æ t = +•

Hence the Schwarz–Christoffel transformation equation, corresponding to Eq. (4.160), for this
problem is given by

2 1

dz S

dt t
=

− (9.32)

On integrating, we get

z = S cosh-1 t + C (9.33)

Substituting for z = - b, t = -1 and z = +b, t = +1, the unknowns are obtained as C = b and
S = 2jb/p.

In the z-plane, the current I sets up a potential difference of (I/2) between the two halves of
the boundary, meeting at the point z = 0, and therefore each of the t-planes must have the same
potential difference, (I/2), between the sections of the real axis corresponding to the two halves of

Figure 9.5 Current between two infinite parallel permeable planes: (a) z-plane representation and
(b) t-plane representation.
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the boundary in the z-plane. This requires the potential division at the points t = 0 and t = ± •,
and hence the field is given by

p
⎛ ⎞= ⎜ ⎟⎝ ⎠

ln
2

I
w t (9.34)

Eliminating t between Eqs. (9.34) and (9.33), we get

p
p

⎡ ⎤−⎛ ⎞= ⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦
( )

ln cosh
2 2

I z b
w

jb
(9.35)

9.1.4 Method of Images

The magnetic fields can be considered to be due to, either a distribution of steady electric currents
or a distribution of magnetic dipoles. In either case, the source is a vector, as distinct from the
scalar source (i.e. the electric charges) for the electrostatic fields. So the basis for the theory of
images applied to the magnetostatic field problems would be the vector form of the Green’s
theorem (as given by Stratton) i.e. Eq. (0.59) as derived in Section 0.6.4, which is rewritten here
for convenience as

v
∫∫∫ {(— ¥ Q) ◊◊◊◊◊ (— ¥ P) - P ◊◊◊◊◊ (— ¥ — ¥ Q)} dv = 

S
ÚÚ (Q ¥ — ¥ P) ◊◊◊◊◊ dS

In this equation, let us have
Q = P = A, then the above equation becomes:

v
∫∫∫ {(— ¥ A)2 - A ◊◊◊◊◊ (— ¥ — ¥ A)} dv = 

S
ÚÚ (A ¥ — ¥ A) ◊◊◊◊◊ dS (9.36)

Let A be the ‘vector potential’ of the magnetic flux density vector B. (We shall discuss in detail
the physical and the mathematical basis for the concept of the ‘magnetic vector potential’ later in
Chapter 13.), i.e.

— ¥ A = B and so (— ¥ — ¥ A) = — ¥ B = m0J

where J is the electric current density. So Eq. (9.36) becomes:

v
∫∫∫ {(ΩBΩ)2 - A ◊◊◊◊◊ ( m0J)} dv = 

S
ÚÚ (A ¥ B) ◊◊◊◊◊ dS (9.37)

We compare this equation with Eq. (4.171) of Section 4.5. As in that case, the above equation
states the relationship between the surface field and the volume field due to the vector potential
A. As with the scalar potential for the electrostatics, so also in this case, the uniqueness of A has
to be proved, for the image to represent the boundary conditions correctly.

So we start by assuming that A has two solutions A1 and A2 both satisfying Eq. (9.37). Then
both these vectors satisfy the operating equation, i.e.

— ¥ — ¥ A1 = m0J and — ¥ — ¥ A2 = m0J

Let C = A1 - A2, and applying Eq. (9.36) to C, we get

v
∫∫∫ (— ¥ C)2 dv = 

S
ÚÚ (C ¥ — ¥ C) ◊◊◊◊◊ dS  (9.38)

since — ¥ — ¥ C = 0.
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If the surface integral of the above equation is to be zero, then the integrand of the volume
integral has to be zero.

\ — ¥ C = 0, which implies that — ¥ A1 = — ¥ A2 and B1 = B2. The magnetic field is then
uniquely defined. Then the surface integral of Eq. (9.38) can be written as

S
ÚÚ (C ¥ — ¥ C) ◊◊◊◊◊ ndS = 

S
ÚÚ (— ¥ C) ¥ n ◊◊◊◊◊ CdS

                              = 
S
ÚÚ (— ¥ C) ◊◊◊◊◊ (— ¥ C) dS (9.39)

\ If the tangential components of (— ¥ C) are zero on S, then the uniqueness is guaranteed.
Also, if the tangential components of C are constant on S, then we have

S
ÚÚ (— ¥ C) ¥ n ◊◊◊◊◊ CdS = C ◊◊◊◊◊ 

S
ÚÚ (— ¥ C) ¥ n dS (9.40)

But

S
ÚÚ (— ¥ C) ¥ ndS = - 

v
∫∫∫ (— ¥ — ¥ C) dv = 0 (9.41)

\ The constant tangential components of C also assure uniqueness. Thus we have the
conclusion that the criterion for the uniqueness is that either the tangential components of C shall
be constant or the tangential components of (— ¥ C) shall be zero everywhere on S. In terms of the
magnetic flux density B, this means that either normal B (=Bn) or the tangential B (=Bt) must be
specified everywhere on S. So now we can formulate the image problem of the magnetostatic
fields as follows.

We consider a closed surface S enclosing a volume v. We then determine the normal
magnetic field (or the tangential magnetic field) on S, caused by the induced currents on the
boundaries. Then we find a distribution of currents outside S, so as to produce on S the same
normal or tangential B. Then this current distribution gives within v the same magnetic field as is
given by the induced currents on the boundaries. This is the required image distribution. As in the
electrostatic case, the images must lie outside v, and so must be virtual.

Alternatively, the magnetostatic field can be considered to have its sources to be made up of
the magnetic dipoles. All the currents then can be replaced by the equivalent magnetic shells. The
magnetic field can then be derived from a scalar potential as has been done for the electrostatic
field in Section 4.5. Thus the formulation of the problem is identical whether we start from the
currents or the dipoles.

9.1.4.1 Line current parallel to the face of a semi-infinite magnetic
slab and its generalization

This was one of the earliest problems in magnetic field images solved by Dr. G.F.C. Searle in
1898, in which he considered the configurations as shown in Figures 9.6(a) and (b). However, we
shall solve a generalized problem and then show that the sets of Searle’s results are the special
cases of this general problem.

The problem we consider is as shown in Figure 9.7, where we have the plane interface
between the media 1 and 2 of permeabilities m1 (= m0 mr1) and m2 (= m0 mr2) respectively. The
magnetic field is produced by a real conductor at O, carrying a current I, located in the region 1.
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To find the effect of the medium 2 on the resultant field in 1, we place an ‘image conductor’,
carrying a virtual current aI at the point of the optical image of I at O, i.e. at O¢ as shown in
Figure 9.7, replacing the region 2 by the region 1.

Figure 9.6 Images of a wire carrying a current I: (a) outside a plane block of iron of
permeability m0mr and (b) embedded in the same block of iron.
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Figure 9.7 Electromagnetic image of a current-carrying conductor in a general problem.
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So now we have the magnetic flux density at the point P on the interface between the two
regions, which looking from the region 1 of permeability m1 is
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\ The resultant normal component of B at P on the interface is

Bn1 = BI cos q + Ba I cos q = 
m
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(1 + a)cos q (9.42)

and the resultant tangential component of H at P is
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2I I
I
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m m p

(9.43)
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If now, we consider P from the side of the region 2, we replace the real current I at O by an
imaginary current (1 + b )I at the same point O, with the whole region of permeability m2, then
at P

2
(1 )

(1 )

2I
I

B
r+

+
=b

m b
p

\ The resultant normal component of B at P now is

2
n 2

(1 )
cos

2

I
B

r

+⎡ ⎤= ⎢ ⎥⎣ ⎦
m b q

p
(9.44)

and the resultant tangential component of H at P is

(1 )
t2

2

(1 )
sin sin

2
IB I

H
r

+ +⎡ ⎤= = ⎢ ⎥⎣ ⎦
b bq q

m p
(9.45)

Now applying the conditions on the interface, we have

Bn1 = Bn2 and Ht1 = Ht2 (9.46)
We thus get

m1(1 + a) = m2(1 + b ) and 1 - a = 1 + b

\ 2 1 1 2

2 1 2 1

and
m m m ma b
m m m m

− −= =
+ +

(9.47)

Applying Eq. (9.47) to Searle’s problem, i.e. first, let us assume m1 to be in iron (=m) and m2 to be
in air = 1.

So this is the case of the current-carrying conductor embedded in iron, which is Searle’s
problem in Figure 9.6(b). It states that in iron, the field at P is due to:

I at O, the source point, and (1 - m)/(1 + m) I at O¢—the image point, i.e.

(m - 1)/(m + 1)I at O¢ is in the opposite direction to I at O (since m > 1).

In the air the field at P is due to:

2m/(m + 1)I at O in the same direction as the real source current I.

Next we let m1 to be in air (=1) and m2 to be in iron (=m), then we have the current-carrying
conductor located in air, parallel to the magnetic medium interface, which is Searle’s problem in
Figure 9.6(a).

Then, in air, we have the field at P as due to:
I at O, which is the source point in air, and (m - 1)/(m + 1)I at O¢, the image point. In this

case, the image current is in the same direction as the source current at O.
And, in iron, the field at P is due to: 2m/(m + 1)I at O with its image current in the same

direction as the source current I.

9.1.4.2 Line current inside the circular cylinder, and parallel to
the axis of the cylinder

The source current is I at the point A inside the cylinder, flowing into the plane of the paper,
parallel to the axis of the cylinder. We consider the magnetic field at a point P on the interface
circle of the two media of permeabilities—m1 (= m0 mr1) and m2 (= m0 mr2)—as shown in Figure 9.8.
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Hence, we have that:

1. the magnetic field in the cylinder of permeability m1 is due to the source current I at A
and an image current aI at its inverse point B (for the derivation of the inverse point of
a circle, see Appendix 2).

2. the magnetic field outside the cylinder, where the permeability is m2 is due to an image
current bI at the (source) point A, and another image current (1 + g )I at O, the centre of
the circle under consideration.

Mathematically, the magnetic field at P (= B) is:

In Region 1:

p2 AP

I
 (due to I at A, and normal to AP) + 

a
p2 BP

I
 (due to aI at B, and normal to BP)

In Region 2:

b
p2 AP

I
 (due to bI at A, and normal to AP) + 

g
p
+(1 )

2 OP

I
 (due to (1 + g )I at O, and normal

to OP)

So to evaluate the coefficients a, b, and g, we apply the two boundary conditions at the
point P on the interface between the two media.

Hence, for the continuity of Bn, the B components normal to the circle, i.e. along the radius
OP at P, are:
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Figure 9.8 Current-carrying conductor inside the cylinder.
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Since AP sin f = BP sin y,

\ m1(1 + a) = m2b (9.48)

Next we consider the H field components tangential to the circle, i.e. at P the components
normal to OP are:
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p p
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Since there are three unknowns, we need one more constraint, and so we take the line integral
over the whole circle, and we get

I = bI + (1 + g)I  (9.50)

\ b = -g (9.51)

Combining Eqs. (9.51) and (9.49), we get

b = 1 - a (9.52)

and with Eq. (9.48), the coefficients are obtained as

2 1 1

2 1 2 1

2
,

m m ma b
m m m m

−= =
+ +

, 1 2 1

2 1 2 1

2
and (1 )

m m mg g
m m m m

−
= + =

+ + (9.53)

Note: For the relationships between the angles, refer to Appendix 2.

9.1.4.3 Two limiting cases of the cylinder problem

First case. The cylinder is of iron, i.e. mr1 = mr, and the conductor carrying the current I is
embedded in it; the outside is air, i.e. mr2 = 1. Hence the results for this case can be summarized
as follows:

The magnetic field in the iron (i.e. in the cylinder) is due to the current I at A and an image
current (1 - m)/(1 + m)I at its inverse point B, i.e. -[(m - 1)/(m + 1)]I at the inverse point B of
opposite sign to I at A.

The magnetic field in the air (i.e. outside the iron cylinder) is due to an image current
[2m/(m + 1)]I at A, in the same direction as the source current I at A, and another image current
(1 - m)/(1 + m)I at O or (m - 1)/(m + 1)I at O of opposite sign to I at A.

Second case. We reverse the two media characteristics, i.e. the outside is iron with mr2 = mr, and
the cylinder is air, i.e. it is a cylindrical hole in the iron medium (mr1 = 1 for the air medium), and
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the current-carrying conductor is now located in the hole, carrying the current I and is parallel to
the axis of the hole.

Now the magnetic field in the air is due to the source current I at A, and an image current
(m - 1)/(m + 1)I at the inverse point B, in the same direction as I.

The magnetic field in the iron is due to an image current [2/(m + 1)]I at A in the same
direction as the source current I, and a second image current (m - 1)/(m + 1)I at the centre O in
the same direction as I. Similarly, we can solve the problem of the source current located outside
the cylinder.

(Note: Compare the Milne–Thompson circle theorem in Fluid dynamics, Ref.: A Text Book of
Fluid Dynamics, by F. Chorlton.)

9.1.4.4 Images of current loops and current elements

So far we have considered only the infinitely long current-carrying conductors whose images on a
plane interface are shown in the Figure 9.9(a) and (b). From these images, the images of the
current loops can be obtained directly. Figure 9.10 shows three circular loops located near an
interface between two media of different permeabilities. The first loop with its plane coincident
with the plane of the paper and normal to the interface surface, the second one with its plane
normal to the plane of the paper as well as to the interface surface, whilst the third one having its

Figure 9.9 Images of infinite line currents on a plane interface.
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Figure 9.10 Images of current loops.
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plane normal to the plane of the paper but parallel to the interface surface, are shown with their
corresponding images in the interface surface.

From these loop images, it would seem that one could state a rule for the images of the
‘current elements’ as shown in Figure 9.11. Such a rule was stated first by Schelkunoff in 1943,

particularly for the conducting sheets. But a consideration of the Biot–Savart’s law shows that this
is not correct, particularly for the elements normal to the interface, because such an element in
isolation will not be affected by the other medium. Also, since we have not studied the time-
varying currents so far, and their effects on the media of finite conductivity [in fact, up to this
stage, we have restricted our discussion to the media of different magnetic permeabilities with
zero electrical conductivity or infinite electrical resistivity (r Æ • or s Æ 0), and infinite
electrical conductivity (s Æ •)], we shall leave this point for a discussion later. However we shall
mention this much at this stage (which shall be proved later in this book) that whilst the steady
current elements are a physical impossibility, it is possible to have physically, what is called the
electric doublets (or oscillating dipoles) which are alternating current elements with time-varying
charges at the ends of the elements. The images of these elements in iron (of finite permeability
and zero electrical conductivity) would be the same as for the steady current elements. However,
when a medium of finite electrical conductivity is brought in, the situation changes significantly.
This is because these time-varying currents induce currents in the medium of finite electrical
conductivity. In particular, if a sheet of infinite conductivity is brought in the vicinity of such
doublets, what happens is that a current sheet is induced in the surface of the sheet, causing all
the magnetic flux density to be parallel to such a surface, and zero normal B. This amounts to
saying that the surface has ‘effective zero permeability’. An in-depth analysis of such a
phenomenon will be found later in this book. We shall now show the images of the doublets
(oscillating dipoles) and the current loops in an infinitely conducting sheet and an infinitely
permeable material [Figures 9.12(a) and (b)].

Finally, the images, when the source currents are embedded in iron, are shown in
Figure 9.13(a) with the iron having the relative permeability mr; and when mr tends to infinity the
corresponding images are shown in Figure 9.13(b).

9.1.4.5 The method of images applied to the end-windings of
electrical machines (The case of partially embedded coils)

The calculation of the mechanical forces on the machine end-windings in large rotating machines
is an important requirement from design considerations. The method of images has been used for

1 m1

2 m2

I I

Figure 9.11 Supposed images of current elements.

[(m2 – m1)/(m2 + m1)]I
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Figure 9.12 Images of doublets and current loops in the two limiting boundaries: (a) infinitely
conducting and (b) infinitely permeable.
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Figure 9.13 Images when the sources are embedded in iron of (a) finite m and (b) infinite m.
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making the calculations easier by enabling the designer to take account of the effects of the
boundaries on the geometry of the end-windings. The most important boundary is the core-end-
surface to which the coil-ends are perpendicular. The core-end-surface is either magnetic
(sometimes being infinitely permeable) or at times infinitely conducting (being a copper sheet).
The coil-ends are taken as partially embedded in the core-end-surface, though in reality they pass
through the slots in the core; and furthermore there is an air-gap between the stator-core and the
rotor-core. The result is that the coil-ends can be considered as partially embedded coils with an
air-gap discontinuity between the core-end-surfaces of the stator and the rotor of the machine. So
we solve the problem in two stages: (1) the partially embedded coils with a continuous core-end-
surface and (2) the air-gap discontinuity added to the oil-ends.

Stage 1. The image of a partially embedded coil-end on the basis of the current element image
(as was used in 1950s and early 1960s) gives incorrect result, because it produces current
discontinuities on the interface boundary, as is obvious from Figure 9.14.

Figure 9.14 Incorrect image of the partially embedded coil, in the air-region.
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In fact, the representation of the problem itself is incorrect, because the coil, though
partially embedded, does have the conductors in the iron region, carrying the same current. The
correct image was suggested by both Hammond and Carpenter in slightly different manners, both
producing the correct effects. The images in air are shown in Figure 9.15, and the corresponding
images giving the field in iron are shown in Figure 9.16.

Figure 9.15 Alternative images in air, for the partially embedded coil-ends as derived by
Hammond and Carpenter respectively.
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The image in the perfectly conducting surface would be such that all the magnetic field in
air would be tangential to the surface and the normal B would be zero, and the image of the
configuration would obviously be as shown in Figure 9.17.
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Figure 9.16 Images of partially embedded coil-end, giving the field in iron, as obtained by
Hammond and Carpenter respectively.
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Figure 9.17 Image of a coil-end embedded partially in a perfectly conducting region,
for the air-region.
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Stage 2. (The image for an air-gap discontinuity) In the rotating machines, in the end-region,
the coil-ends in reality do not project out from a continuous block of iron, but from two blocks,
separated by a small air-gap, which has a drastic effect on the magnetic field near the iron,
particularly when its permeability is quite large. At this discontinuity, in its immediate vicinity
the tangential flux disappears and the m.m.f. appears as a potential difference between the two
sides of the gap.

We shall look at the problem, initially considering a single conductor projecting out of the
air-gap between the two infinitely permeable iron blocks, and then use the principle of
superposition to represent the coil-end itself, noting however that the shape of the overhang of the
coil does not affect the magnetic flux across the air-gap. The P.D. across the air-gap, mentioned
above, results in producing the fringing flux, as shown in Figure 9.18(a). The circuit equivalent of
the air-gap and the image of the complete system are shown in Figure 9.18(b) and (c).

Next, we use the principle of superposition to represent a complete coil-end, in which case
the two coil-sides are effectively superposed with a displacement between them, equal to the span
of the coil, remembering that the shape of the overhang portion does not affect the air-gap
fringing flux. This is shown in Figure 9.19. However this image does not represent correctly the
air-gap in a real machine. This is because it is implicit in the above representation that the air-gap
extends to infinity on the outsides of the two coil-sides, which of course is not correct for a real
machine. The air-gap around the periphery of the rotor is of finite length and hence, only if the
machine has two poles and the coils are full-pitched (i.e. spanning one complete pole-width), then
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Figure 9.18 A line conductor penetrating an infinitely permeable iron block with a short width
air-gap. (The block is semi-infinite, and the air-gap and the conductor extend to infinity. The
diagram shows a section of the whole region.) (a) Current-carrying conductor in the air-gap.

It also gives a pictorial view of the imaginary fringing flux across the air-gap. (b) Air-gap
discontinuity from the iron has been replaced by its fictitious current-carrying conductor.

(c) Iron has been removed and its effect produced by the image circuit.

Figure 9.19 Image system for a coil-end in an infinitely long air-gap.

=

Air Iron

I

Interface with air-gap
discontinuity

I I

(a)
(b)

Air

Iron (mr Æ •)

Air

Air

Current-carrying
conductor

Image circuit to represent the
effect of the iron block

Air

I /2

I

I /2

(c)

I

I /2

Fictitious
conductor
representing
the air-gap

Air

∫

Æ
Iron (mr Æ •)

•
≠

Air

Air-gap

I

Current-
carrying
conductor

Iron (mr Æ •)

Ø
• •Ø

Air

I /2

Fictitious air-gap
conductor

I /2

I /2

Current-
carrying
conductor I

∫

•



CHAPTER 9 METHODS OF SOLVING MAGNETOSTATIC FIELD PROBLEMS 291

equal fringing flux across the gap, both inside and outside the span of the coil-end, the permeance
of both the parts being equal.

However not all machines have only two poles and the coils are not mostly full-pitched.
Thus in these multipole machines (i.e. 4, 6, 8, ... or much greater), the reluctance of the two paths
(i.e. inside a coil-span and outside it) would be unequal, and hence the fictitious current in the
air-gap image conductor would be divided unequally as shown in Figure 9.21, with the current
break-up into two parts given by the equations:

I1 + I2 = 2I, I being the conductor current (9.54)

Figure 9.21 Image representation of air-gap of finite length and a coil-end
of any general pitch.
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only the fictitious conductor representing the air-gap would break up into two parts, as shown in
Figure 9.20, of equal magnitude. This is because as the air-gap is of finite length, there would be

Figure 9.20 Image of a full-pitched coil-end in an infinitely permeable iron-block
with finite-length air-gap.
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and

1 2
2 2

2I I
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where p is the number of poles in the machine (also assuming the coil to be full-pitched). Hence,
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If the coil is short-pitched by an angle b, instead of being full-pitched, then Eq. (9.55) is replaced
by
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If on the other hand, the coil is overpitched by an angle b¢, the fictitious air-gap current
components come out to be:
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 (9.59)

Next, we consider the case, when the core-end-surface is infinitely conducting (or effective
zero permeability). In this case, the presence of the air-gap is of no significance, and the image of
the system would be the same as that due to the continuous conducting surface, and hence the
same as shown in the Figure 9.17.

So far we have discussed the two limiting cases, i.e. an infinitely permeable magnetic
surface, and an infinitely electrically conducting surface. When the medium is of finite magnetic
permeability, we cannot write the two equations corresponding to Eqs. (9.54) and (9.55) directly.
We have to go through the stages shown in Figure 9.18, modifying them for the finite
permeability effect, particularly for the image of the fictitious air-gap conductor.

9.2 GRAPHICAL METHOD

As in the case of the electrostatic fields, this method is applicable to the two-dimensional and the
axi-symmetric problems, with magnetic linearity. Since the Laplacian magnetostatic fields are
similar to the corresponding electrostatic fields, we shall not repeat the details of the method
which would be identical with what has been described in Sections 5.2–5.2.4.

So we shall restrict our present discussion to some salient points of difference in plotting a
two-dimensional magnetic field in three different regions, i.e. (1) an air-space with m = m0; (2) a
region with m >> m0 (an idealized ferromagnetic medium with high but constant permeability); and
(3) a current-carrying region in which m  m0 (such as copper, or aluminum, or a similar medium).
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Similarly, from the successive orthogonal lines, let the magnetic flux DFl (per unit length
along the two-dimensional system) be represented by each line of B. Then the approximate value
of DFl is given by

DFl = BdlF = m0 d Ω

⎛ ⎞ΔΩ
⎜ ⎟
⎝ ⎠

m

l
dlF

\
d
d m

F F

Ω

Δ=
ΔΩ

1

0 m

l

l
(9.60)

A similar expression would hold for the region (2) of constant permeability in which m0 would be
replaced by m. On the interface between the two regions, the B vector would refract according to
the law given by Eq. (8.45), so that the B lines are virtually normal from the air side but not
normal on the ferromagnetic side. So ‘from the air side only’, the surface of the region (2), which
is the high permeability region, is nearly an equipotential surface. So such a surface is a very
convenient starting point for drawing the curvilinear squares.

Next, in the current-carrying region, i.e. the region (3), the W cannot be defined uniquely as
explained earlier. But in this medium, the lines of B are not refracted at the conductor surface,
because there do not exist surface currents. Also since the permeabilities of the conductor and the
air media are the same, we have both Bn and Bt continuous. Hence the mutually orthogonal lines
can also be drawn inside the region of the current-carrying conductors. Successive closed lines of
B will necessarily converge around some point K. This point is usually referred to as the ‘core’ or
the ‘kernel’. The lines continuing on the lines of magnetic equipotentials, inside the current-
carrying conductor are referred to as the ‘lines of no work.’ So if the position of the kernel is

First we consider the region (1) the air. Figure 9.22 shows the cross-section of such a region.
Let DWm be the P.D. between the two adjacent magnetic equipotential surfaces. Hence the

magnetic field intensity vector H is approximately given by ΩHΩ = DWm/dlW.

Figure 9.22 A two-dimensional magnetostatic field.
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known, then the plot inside the conductor is also known. But unfortunately, the position of the
kernel can be located in advance only in certain special cases. When, however, the position of the
kernel has been pre-located, then in the current-carrying region, for successive curvilinear squares,

l l S

l l S

d d
d dF F

Ω Ω′ ′⎛ ⎞= ⎜ ⎟′ ⎝ ⎠
(9.61)

where (dl¢W, dl¢¢F) and (d lW, d lF) are the lengths in the successive curvilinear squares as shown in
Figures 9.22 and 9.23, and, S¢ and S are the areas of the successive ‘curvilinear triangles’ with

Figure 9.23 Kernel and field-lines within the current-carrying region.
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dlF

dl¢W
dlW
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their vertices at the kernel, and the bases as dl¢¢F and dlF respectively. This expression, along with
the trial and error, enables the plotter to locate the kernel. The starting point is always the
interface between the conductor and the air-space.

9.3 EXPERIMENTAL METHODS

In practice it becomes necessary to determine the magnetic field in a certain partial region of
space only (i.e. the air-gaps or parts of the air-gap of rotating electrical machines). The geometry
of the problem might be such that even the approximate methods may not be able to tackle it.
Though of course, with the advent of the computer methods and very high speed computers, more
and more problems, which were originally thought to be unsolvable, are now being solved. Still
the computer solutions often need to be checked by the actual experimental measurements. So, in
spite of every thing, the experimental techniques retain their importance.

A very frequently used system, for evaluating the magnetic flux density vector B at any
discrete set of points, is by what is known as the ‘search coil’. It is essentially a very small multi-
turn coil wound on a circular, or a square, or a rectangular former (of usually non-magnetic
material), such that the coil is quite small compared with the radius of curvature of the field lines.
It measures the effects of the magnetic flux, linked by the coil, from which the B can be
evaluated. However the principle of operation of the device can be understood only on the basis
of the phenomenon of the electromagnetic induction, and it will be explained later. We shall now
describe another device based on the ‘Hall effect’.
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9.3.1 Hall Effect Probes

Another method to measure the magnetic flux density at a point is based on what is known as the
Hall effect. So we first describe the Hall effect.

The Hall effect was discovered in 1879 at John Hopkins University by E.H. Hall. Since the
voltages obtained from the available materials, at that time, were extremely low, no uses outside
of the laboratory were possible till suitable materials were developed. The development of high
mobility semiconductors has yielded several materials suitable for practical applications of the
Hall effect.

The Hall effect is the generation of a voltage across the opposite edges of an electrical
conductor carrying a current and placed in a magnetic field. The Lorentz force is the basis of this
effect which depends on the deflection of the charged particles moving in a magnetic field. This
force is in a direction mutually perpendicular to the path of the particle movement and the
direction of the magnetic field.

The basic Hall effect equation is

H H ( )V wR= J × B
where

VH = the Hall output voltage

RH = the Hall coefficient of the material

 J = the current density through the Hall element

 B = the applied magnetic flux density

 w = the width of the Hall element.

The vector product (J ¥ B) is so written as to indicate the direction sensitivity of the Hall effect.
This can also be expressed as

VH = wRH JB sin q (9.62)

where q is the angle between the direction of B and the plane of the Hall element as shown in
Figure 9.24.

Figure 9.24 The Hall effect.
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where IC is the control current and t is the thickness of the element. Hence the Hall voltage
equation becomes

H
H c

R
V

t
Ê ˆ= ¥Á ˜Ë ¯

I B (9.63)

These equations hold for the ideal conditions where the Hall element has an infinite (l/w) ratio. A
more useful equation for the practical Hall devices is

H HOC CV K= ¥I B (9.64)

where KHOC is the open-circuit sensitivity constant taking account of the effects of the geometry
and other factors. Strictly speaking KHOC is not entirely independent of IC and B due to the
temperature, magneto-resistance, and other effects. But for the present discussion it will be treated
as a true constant.

Equation (9.64) shows that the output VH results from the product of two inputs, and if IC is
held constant, then VH is proportional to B. Hence an obvious application of the Hall effect is to
measure the magnetic field strength by holding IC constant. Many other applications are possible,
but at present we note that the device can be used for measuring both the steady and the time-
varying magnetic field strength.

The Hall effect is basically a majority carrier mechanism depending on the bulk material
properties of the semiconductor material. Unlike transistors, diodes, etc. it is completely
independent of the surface effects, junction leakage currents, and junction threshold voltages.
Hence the device is highly stable and has a high degree of reproducibility and reliability
compared with other semiconductor devices.

From Eqs. (9.62) to (9.64), it is obvious that in order to obtain a high output voltage, the
element must have a high Hall coefficient. Also, since the output is proportional to IC or J in the
element, its resistance should be as low as practical to prevent excessive heating. In addition,
since the noise output is thermal, the low resistance is an important requirement for the device to
be used at very low signal levels. Some of the semiconductors used for the Hall elements are
indium antimonide (In Sb), indium arsenide (In As) and germanium (Ge). Low resistance, low
temperature coefficient, and high output make (In As) the most suitable material for most Hall
devices. Hall device elements may also be made of deposited thin films of (In As) and (In Sb).
These are mostly used for switching purposes because they do not have the low resistivity
property of the bulk materials. The size of the probe is usually quite small, the probe sensing area
being usually about 0.02 in2 and less. The control current is usually 20–200 mA. It is generally
advisable to keep the current less than 150 mA to minimize the measurement errors due to self-
heating. A typical element can have an open-circuit Hall voltage of 100 mV in the presence of a
10 kG field when a current of 100 mA is applied. The Hall emf is reduced by about 50% when
the Hall voltage leads are terminated in a load, such as an indicating meter. The Hall generator
can be used to measure permanent magnet fields, alternating fields, and pulsed fields. For
alternating and pulsed fields, the current lead arrangement must be made as small as possible to
reduce the inductive loop effects. A Hall generator can theoretically operate up to megacycle
region. In practice, the Hall element is usually mounted on a substrate of inert material such as
alumina (aluminum oxide). The element is generally a few thousandth of an inch thick and needs
some sort of mechanical support. The element, the substrate, and the protective encapsulation
results in a probe of thickness of the order of 0.020–0.040 inch. The probe is extremely fragile
and not repairable.
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9.3.2 Conducting Paper Analogue

As was mentioned in Section 5.3.2, this method has been very widely used for solving the
magnetic field problems. Subsequently, in Section 6.5, the analogy between the electric current
and the electric flux was established. Since the magnetostatic fields (not including the current-
carrying regions) as well as the electrostatic fields are both Laplacian in nature, the analogy holds
for the magnetic fields as well, and hence the current-flow patterns can be used to solve the
magnetic field problems.

This conducting sheet method is a very convenient, cheap, and reasonably quick (far
quicker than the electrolytic tank method though in no way comparable to the computer methods)
method which avoids the tedious trial-and-error process of the graphical field plotting and yet
retains the essential simplicity of the method and accelerates it. It does not require much elaborate
equipment. Essentially the method consists of establishing in a ‘uniformly-conductive’ sheet, a
field of electrical potential and current flow, which is an analogue representation of the actual
field to be investigated. By plotting the equipotentials of the conduction field, or by measuring
the potentials at the selected points, information is obtained and is then converted by the
appropriate scaling factors to the required parameters of the actual field. Whilst this method can
be used to solve different types of field problems, here we shall emphasize the solutions of the
electromagnetic fields. Also the method is applicable directly only to the Laplacian fields, though
with suitable modifications and some restrictions, it can be used to solve some Poissonian field
problems.

Some typical probes are shown in Figure 9.25. There are many other applications of the Hall
devices, though we have restricted our discussion to magnetic field measurements only.

Figure 9.25 Some typical Hall probe configurations: (a) typical flat (transverse) probe
and (b) axial probe.
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9.3.2.1 Analogues for magnetic field studies

The possibility of using a conducting sheet to represent two-dimensional magnetically permeable
medium arises from the essential similarity of the equations relating the ‘flux-flow’ in a
magnetically permeable medium, and the current-flow in an electrically conducting medium. That
is, the magnetic field equation is

M.M.F. (amp-turns) = Flux ¥ Reluctance (9.65)

The electric current flow in the sheet can be expressed in any of the two following ways:

                    Potential (volts) = Current (amps) ¥  Resistance (9.66)

Current (amps) = Potential (volts) ¥ Conductance (9.67)

If the problem of Eq. (9.65) is represented by Eq. (9.66), then this representation is a ‘direct
analogue’; whereas if the problem of the equation is represented by using Eq. (9.67), then an
‘orthogonal analogue’ is obtained.

9.3.2.2 Mathematical interpretation of the analogues

DIRECT ANALOGY

The equation defining the distribution of the scalar magnetic potential Wm in a current-free region
is the Laplace’s equation

∂ Ω ∂ Ω ∂ Ω
+ + =

∂ ∂ ∂

2 2 2
m m m

2 2 2
0

x y z

where Wm is the magnetic scalar potential.
The associated equations are

H = - grad Wm = - —Wm

and
B = mH

The equation giving the distribution of the electric potential in a conducting medium has the
same form, i.e.

∂ ∂ ∂
+ + =

∂ ∂ ∂

2 2 2
e e e

2 2 2
0

V V V

x y z
The associated equations are

E = - grad Ve = - —Ve

J = s E

There is therefore a direct correspondence between Wm and Ve (magnetic and electric potentials),
and, B and J (magnetic flux density and electric surface current density), and a ‘direct electrical
analogue’ can be set up.

If the magnetic and the electric potentials are related by a scale factor ‘a’, so that

Ve = aWm, then
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J = s E = - as —Wm = as H = 
as
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m
s

⎛ ⎞
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J (9.68)

A rigorous detailed scaling analysis for a similar electrostatic system has been described in
Section 6.5.

ORTHOGONAL ANALOGY

By comparing Eqs. (9.65) and (9.67), the following orthogonal analogy is obtained:

  Magnetic quantity Electrical quantity

1. M.M.F. (amp-turns) Current (amps)
2. Flux Potential (volts)
3. Reluctance Conductance

From the above comparison, we see, from 2, that the electrical equipotentials correspond to the
magnetic flux lines, and that 3 indicates that the low reluctance (i.e. high permeability) materials
in the magnetic system will be represented by the high resistivity (i.e. low conductivity) materials
in the electrical analogue. In particular, the magnetic equipotentials will be represented by the
insulating surfaces. Conversely, the surfaces not admitting the magnetic flux (as a consequence of
the ideal eddy current screening—a topic to be discussed and explained later in Chapter 15) will
be represented by the electrical equipotentials. Since the flux lines of the magnetic system
correspond to the equipotentials of the electrical system (i.e. an orthogonal relationship), the flux
lines can be plotted directly. So if a ‘conjugate electrode’ electrical analogue is set up, with the
equipotential boundaries of the direct analogue replaced by the insulating boundaries, and the
insulating boundaries of the direct analogue replaced by the equipotential boundaries, then the
equipotentials of the second analogue will follow the current flow lines of the direct analogue and
hence the flux flow lines of the original magnetic system. Similarly, the current flow lines of the
second analogue will follow the equipotentials of the direct analogue. Let us now consider the
two-dimensional magnetic field and its electrical analogue shown below in Figure 9.26.

Figure 9.26 Magnetic field problem and its electric analogue (_/__/__/_ indicates equipotentials).
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The magnetic field intensity in the original problem is given by

B = mH
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The electric field intensity at the corresponding point of the orthogonal electrical analogue is
given by

E = 
s
J

 = rJ

where

J = the surface current density (on the analogue) per unit width

s = the surface conductivity
r = the surface resistivity = 1/s.

Now, if J = bH, where b = the scaling factor, then

E = brH = 
br
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

B and B = 
b

m
r

⎛ ⎞
⎜ ⎟
⎝ ⎠

E (9.69)

The orthogonal analogue is generally more convenient of the two, particularly when dealing with
the electromagnetic problems. The directness and the simplicity of the flux density and the flux
path determinations are much in its favour; also since the analogue is ‘current-fed’, there is less
dependence on the contact resistance.

9.3.2.3 Practical details of the conducting paper, associated
materials, and the method

One kind of conducting paper, commercially known as ‘teledeltos paper’ has electro-sensitive
matt gray coating on one side, and the other side is black and glossy. The either side can be used
for plotting. The surface resistance of the paper is of the order of 2 kW per square. Another type
of black conducting paper has the surface resistivity of 4 kW per square. While a roll of paper is
quite homogeneous, it tends to be anisotropic in nature. The ratio of the resistivity of the paper at
right angles (y-direction) to the roll to that along the roll (x-direction) varies from 1.05 to 1.20. In
such a medium, the potential V does not satisfy the Laplace’s equation but an equation of the
type given by

2 2

2 2
0y x

V V

x y

∂ ∂+ =
∂ ∂

r r (9.70)

where rx and ry are the surface resistivities of the paper in the x- and y-directions, respectively. We
shall show how by a suitable scaling transformation, such a paper can be made to solve the
Laplacian field problems.

9.3.2.4 Flow of current from a point source into a sheet of material
having different conductivities along the two orthogonal axes

Initially we assume an isotropic (ideal) sheet of resistive material. If a current flows from a point
source into an extensive sheet of the ideal paper, then the lines of force and (the lines of flow) are
coincident with the radii emanating from that point and the equipotentials are the concentric
circles around this point. This is an orthogonal system satisfying the Laplacian field properties
and can be represented by the conjugate functions. Such a field can be characterized by the two
functions V and U of the coordinates (x, y) or (r, f). The potential function V expresses the scalar
potential at any point. The surfaces or the lines V = constant, will be equipotentials. The flux
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function or the flow function U = constant, are the lines of force or flow, and intersect the
equipotentials orthogonally. Since such a field is Laplacian,

2 2

2 2
0

V V

x y

∂ ∂+ =
∂ ∂

(9.70a)

this can be expressed as conjugate functions

V - jU = f (x + jy)
where

( ) and ( )
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j f x jy j j f x jy
x x y y

f ¢ being the derivative of f with respect to its argument.
\ From the above,

and
V U V U
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∂ ∂ ∂ ∂= = −
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(9.71)

Since the flow function can be expressed in terms of the surface current I, U = rI (r = surface
resistivity of the paper),

\ and
V I V I

y x x y

∂ ∂ ∂ ∂= = −
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r r (9.72)

\ I also satisfies the Laplace’s equation.
\ The transformation required for this problem is

W = V - jU = V - jrI = A ln (x + jy) (9.73)

Or expressing in the cylindrical coordinates, (x + jy) = re jf

V - jrI = A ln r + jAf (9.74)

\ V = A ln r, and the equipotentials are given by r = constant, i.e. concentric circles.
Also, I = Af /r, and the stream lines are the lines radiating from the origin. If the total

current entering the sheet (at the origin) is I, then A = rI/(2p).

\ The potential at any point = - 
2

Ir
p

⎛ ⎞
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ln r

and the potential gradient is
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V I

r r

r
p

∂− =
∂

Now, if we consider the conducting sheet which has different conductivities (or resistivities) in
two orthogonal directions, i.e. rx along the x-axis and ry along the y-axis, then U π rI and
Eq. (9.72) gets modified to

andx y
V I V I

x y y x

∂ ∂ ∂ ∂= − =
∂ ∂ ∂ ∂

r r (9.75)

So the potential gradients along the x- and the y-axes will be proportional to the resistivities in
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the respective directions, and the stream lines are no longer coincident with the lines of force,
except along the axes. Hence from Eqs. (9.75), we get

r r r r r r
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂= − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2 2 2 2

2 2
andy y x x x y

V I V I

y x x yx y

Adding these two equations,

r r
⎛ ⎞ ⎛ ⎞∂ ∂+ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

2 2

2 2
0y x

V V

x y
(9.76)

If rx = ry, then Eq. (9.76) degenerates to the Laplace’s equation.
A general solution of Eq. (9.76) is

1 2

r r
r r

È ˘ È ˘
Í ˙ Í ˙= + + -
Í ˙ Í ˙Î ˚ Î ˚

y y

x x

V F x j y F x j y

Following the analysis of the isotropic medium, the functions V and U (the quasi-conjugate
functions now) can be expressed as

r
r

È ˘
Í ˙- = +
Í ˙Î ˚

y

x

V jU f x j y (9.77)

Differentiating Eq. (9.77) with respect to x and y, respectively,

r
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V U
j f x j y
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y y

x x

V U
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y y

Equating the real and the imaginary terms,

r
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⎛ ⎞∂ ∂= − ⎜ ⎟∂ ∂⎝ ⎠
x

y

V U

x y
and (9.78)
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∂ ∂⎛ ⎞= − ⎜ ⎟∂ ∂⎝ ⎠

These equations are identical with Eqs. (9.75).

\ x yU I r r= (9.79)

Hence Eq. (9.77) becomes

r
r r

r

È ˘
Í ˙- = +
Í ˙Î ˚

y
x y

x

V jI f x j y (9.80)
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Thus, the corresponding logarithmic transformation for the flow in this anisotropic medium is

r
r r

r

⎡ ⎤
− = +⎢ ⎥

⎢ ⎥⎣ ⎦
ln y

x y
x

V jI A x j y (9.81)

which corresponds to Eq. (9.73) for the isotropic medium.
Writing

y

x

x j y+
r
r  = a(cos a + j sin a) = aeja

where a and a will be related to the polar coordinates r and f as shown below in Figure 9.27
(assuming ry > rx), i.e.

2 2 and tany y

x x

y
a x y

x

r r
a

r r
= + =

Then
r r a− = +( ) lnx yV j I A a jA

and

ln ,
x y

A
V A a I

a
r r

= = −

The equipotentials are then given by ln a = constant, or a = constant, i.e.

2 2 2y

x

x y a
r
r

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠
(9.82)

Thus, if a is a constant, Eq. (9.82) is an ellipse of semi-major axis a and semi-minor axis

/x ya r r . All the ellipses have the same ratio of the axes (i.e. confocal ellipses). The stream lines
are given by a = constant, and these lines radiate from the origin.

The stream lines and the equipotentials are shown in Figure 9.28. The lines of force are of
course normal to the equipotentials, but the lines of flow are no longer normal to the
equipotentials. This is because when ry > rx, the material conducts better parallel to the axis of x
than it does parallel to the axis of y. At the point P, shown in Figure 9.28, the electric force is

Figure 9.27 Relationship between (r, f) and (a, a).
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along n (normal to the ellipse). But because of the better conductivity in the x-direction, the
resulting current flows in the direction m.

If the total current flowing in at the source O is I, then

A = - 
r r

p

⎛ ⎞
⎜ ⎟
⎜ ⎟⎝ ⎠2

x y
I

and the potential V at any point is
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                   = - 
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                                   = - 
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x y
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\ The potential gradient along the radius vector is

r r
p

⎛ ⎞∂ ⎜ ⎟= −
⎜ ⎟∂ ⎝ ⎠2

x yV
I

r r
 (9.83)

This is the same as in an isotropic sheet, from which, it follows from the above equation that the
‘potential gradient along the radius vector is independent of its orientation’. This conclusion is
somewhat unexpected, but has been confirmed experimentally. To explain this point, we consider
four electrodes A, P, Q, B placed in a line on an extensive plate having different conductivities in
two different orthogonal directions, as shown in Figure 9.29.

A given current I is fed in at the point A, and taken out at B. The potential difference
between the points P and Q is independent of the orientation of the line on the plate. This is
because, if the direction AB is highly resistive, then the current spreads out very much in the
direction at right angles to AB, and the current density along PQ is quite small. Thus VPQ is due
to a low current density through a material of high resistivity. If, now, APQB is turned through a

Figure 9.28 Equipotential ellipses.
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right angle, the same total current gives a higher current density between P and Q, which with
lower resistivity gives the same P.D. as before.

Thus, we have seen how the effect of the anisotropic nature of the conducting paper can be
corrected for the representation of the Laplacian field problems. But more than this point, it opens
a new avenue for analyzing the fields in the anisotropic media. This is an important practical
aspect, because in the present-day large generator-transformers, the cores are made up of CRGO
(cold rolled grain oriented) steel laminations which are highly anisotropic in nature. The
laminations are so cut from the roll that both in the vertical limbs as well as in the top and the
bottom horizontal sections of the transformer cores, the magnetic flux flows along the preferred
low reluctance direction of the material. In these regions, the magnetic flux does not obey the
Laplacian equation, and instead satisfies Eq. (9.70). Using the scaling factor based on the present
analysis, the problem can now be reduced to that of a Laplacian field which can then be directly
analyzed.

9.3.2.5 Method of obtaining the field plot

Thus Eq. (9.69), which we rewrite below,

r r∂ ∂+ =
∂ ∂

2 2

2 2
0y x

V V

x y

can now be reduced to the Laplace’s equation by the substitution

x1 = x and y1 = y y

x

r
r

(9.84)

Thus to account for the anisotropy, whether of the paper or of the material characteristic, it is
necessary to compress the scale at right angles to the roll direction by the square root of the
resistivity ratio. The resistivity ratio for a given roll of paper (or material) can easily be
determined by the potential measurements on an L-shaped sample cut with the two limbs of the L
along and across the roll direction. The paper should be ideally laid on an insulating base.

A suitable scale (or the scales for the anisotropy) having been chosen, the problem is drawn
on the conducting paper. Note that india rubber should not be used to rub out incorrect lines. The
paper is then cut along the marked outline. The equipotential boundaries and the current sources
are painted with a silver conducting paint. The paint must be thoroughly mixed, and a few coats
of the paint must be given on the equipotential boundaries. After a couple of hours of drying, the
P.D. along the equipotential has to be checked. In order to ensure the equipotentiality of these
regions, it might be preferable to fix a stripped thin wire along such lines, and then paint on the
wire. Once the preparation is complete, the field-plotting potentiometer can be connected across

Figure 9.29 Current through a line in an anisotropic medium.
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the painted electrodes of the model, and the equipotentials plotted at the intervals of equal P.D. If
it is a direct analogue, the equipotentials are the equipotentials of the original problem, and the
flux lines have to be plotted by the method of curvilinear squares. On the other hand, if it is an
orthogonal analogue, then we have got the flux lines directly.

This method can be directly extrapolated to represent and solve multi-electrode analogues
as well.

9.3.2.6 Representation of Poissonian fields

The method we have discussed so far, deals with only Laplacian fields. There are three main ways
of extending this technique to solve the Poissonian field problems. We shall briefly describe their
underlying principles.

CAPACITIVELY-COUPLED POISSONIAN FIELD PLOTTING

Because this method is based on the concept of the ‘displacement current,’ the explanation given
below will be understood properly only after the study of the Maxwell’s equations in Chapter 12.
So the reader can proceed to the next section and study this explanation later. This method
utilizes a resistive plotting surface, and a coupling capacitor. The coupling capacitor is formed by
the resistive plotting surface and a parallel coupling electrode. A displacement current acting
through this coupling capacitor sends a distributed current into the resistive surface. The voltage
distribution created by this means (i.e. due to an alternating current of sufficiently low frequency,
capacitively-coupled to the paper surface) will satisfy a Poissonian equation involving the
resistance per square of the paper (= K) and the constant displacement current density JC for
the defined source region. For each capacitively-coupled region, the Poissonian equation
—2V(x, y) = KJC applies, and outside of any such region, the potential distribution satisfies the
Laplacian equation —2V (x, y) = 0. The potential distribution V (x, y) describes the flux distribution
as defined by its magnetic vector potential Az (x, y). Also the resistance of the paper has to be
analogous to the m of the magnetic system. The constant displacement current density JC can be
created in the analogue, if the capacitive reactance of the respective region is much greater than
the surface resistance of the paper. JC can be controlled by the spacing between the electrode and
the paper (Figure 9.30). Typical excitation frequencies used are 1–2 kHz. Care has to be taken to
glue the teledeltos paper to the glass, for any inhomogeneity of the paper results in large errors in
the surface voltage distribution.

MULTIPLE PIN DC ANALOGUE

In this case each source region is a matrix of pins, each delivering a constant current in the
conductive sheet. There is a direct correspondence between the magnitude of the effective current
density in a source region with that of the real field. In spite of the simplicity of using the direct
current, there are some disadvantages in this method. There is a need for an elaborate set-up for
accurate results, and hundreds of pins have to be inserted in the conducting paper. The procedure
of actually connecting the pins and adjusting each current-feed point is tedious.

POISSONIAN FIELD ANALOGUE BY USING A MECHANICAL INTEGRATOR

Most of the disadvantages of the previous two methods can be eliminated by using this method.
The basis of this method depends on the fact that the solution of the Poisson’s equation consists
of two parts—the complementary function (C.F.) and the particular integral (P.I.), where the
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(C.F.) is the solution of the corresponding Laplace’s equation. The two-dimensional Poisson’s
equation is

2 2
2

2 2
K

x y

∂ Ω ∂ Ω∇ Ω = + =
∂ ∂

where K is a known constant of f (x, y).
For the C.F., the right-hand side (of the Poisson’s equation) = 0 , and let the C.F. solution be

f, then:

f f∂ ∂+ =
∂ ∂

2 2

2 2
0

x y
(Laplace’s equation)

\ W = C.F. + P.I.

—2W = —2f + —2(P.I.) = —2 (P.I.) = K

\ 2 2
2 2 2

1 1
P.I. ( )

2x y

K
K K x y

D D

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= = = +⎜ ⎟ ⎜ ⎟⎜ ⎟∇ +⎝ ⎠ ⎝ ⎠⎝ ⎠
assuming K to be constant; and where Dx, Dy are the partial derivatives with respect to x and y
respectively.

\ The general solution of the Poisson’s equation is

2 2( )
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K
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⎛ ⎞Ω = + +⎜ ⎟⎝ ⎠
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y

x

—2Az (x, y) = 0

Figure 9.30 A multiple-source Poissonian and Laplacian field problem and its
capacitive analogue.
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\ The required substitution to convert the Poisson’s equation to the Laplace’s equation is

Y = W - 
2

K⎛ ⎞
⎜ ⎟⎝ ⎠

(x2 + y2)

Then the Poisson’s equation reduces to —2 Y = 0, which is the Laplace’s equation.
Let the region under consideration be a rectangular region as shown in Figure 9.31.
We shall now show how the boundary conditions have to be modified.

(a) Dirichlet-type boundary. Let, on x = 0, W = 0.

This changes to

Y = W -
2

K⎛ ⎞
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(x2 + y2) = -
2

K⎛ ⎞
⎜ ⎟⎝ ⎠

y2

(b) Normal flux. Let on x = 0, only normal flux exist; i.e.

Bx = 
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y∂
∂

 exists and so By = 
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\ (0 2 )
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\ On x = 0, 
y

y∂
∂

 = - Ky

(c) Tangential flux. Let on x = 0, only tangential flux exist; i.e.

By =
y

∂Ω
∂

exists and so Bx = x

∂Ω
∂

= 0

\ On x = 0, 
x

y∂
∂

 = - Kx

The Laplacian field can be set up on the conducting sheet (the teledeltos paper) as
described before. To obtain the Poissonian field, all we need to do is to modify the boundaries to
meet the new conditions as derived just now. For this purpose, a mechanical integrator is used,

Figure 9.31 A Poissonian field reduced to Laplacian field.
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which is a stainless steel strip of ideally infinite length (for practical purposes, of sufficient length,
and the length is >> the width). By applying a voltage of V volts across the ends of the length of
the strip, the potential drops from V volts at one end to 0 at the other. By taking the current leads
from along the length of the strip at suitable intervals, and feeding them into the boundary of the
conducting sheet at the points so scaled as to meet any of the conditions derived, we can produce
the requisite boundary condition on the specified boundary. The current at each point can be
controlled for the required function, by feeding into the model through suitable resistors. The
currents have to be controlled carefully to maintain the required accuracy of the model.

9.4 APPROXIMATE METHODS

The approximate numerical methods described for the electrostatic field problems—the finite
difference methods and the finite element method—are equally applicable to the problems of the
magnetostatic fields. For the Laplacian and the Poissonian fields, the methods are identical, and
we shall not repeat the details here again. The main difference between the electrostatic and the
magnetostatic field problems is that whilst for the electrostatic fields, the source is a scalar
quantity, the source for the magnetic fields is a vector quantity. Though, of course, it is possible
to use the concept of the scalar magnetic potential for the magnetic fields, it does introduce
certain constraints and also limits the range of the problems that can be solved. Since so far we
have not studied the concept of the ‘vector potential’ in detail and in a rigorous manner, we shall
postpone the discussion of the methods applied to the ‘vector potential’ for a later stage.
Furthermore, when we have also studied the time-varying fields (i.e. the electromagnetic fields), it
will be seen that the magnetostatic field problems can be considered as special and restricted
cases of the general field problems. For example, using the finite element method, the general
‘functional’ for the electromagnetic fields can always be simplified (by dropping certain terms) to
obtain the solutions of the magnetostatic problems. We end our present introductory comments at
this stage, by reminding ourselves that while using both the F.E. method as well as the F.D.
method, we should be careful during the conversion of the magnetic boundary conditions to their
mathematical equivalents, i.e. to make the correct correspondence between the physical conditions
and their mathematical interpretations.

PROBLEMS

9.1 A solid cylinder of radius a and relative
permeability mr as shown in the adjoining
figure is placed in a homogeneous magnetic
field Ho whose direction is perpendicular to
the axis of the cylinder. Assume the cylinder
to be infinitely long axially and hence
neglect the edge effects. Obtain the
expressions for the magnetic scalar potential
W both inside and outside the cylinder, and
show that the magnetic intensity inside the
cylinder is

H(r < a, f) = 
r

2

1
oH

+ m

a
Ho
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Hint: In two-dimensional cylindrical polar coordinate system, with the origin at the
centre of the cylinder, Laplace’s equation in r and f variables needs to be solved. The
original undisturbed field Ho can be shown to be expressed by the scalar potential W in
the form

Wo = Hor cos f
Solve the problem for both Win and Wo for the two regions.

9.2 A rectangular strip of metal as shown in the adjoining
figure is held at zero potential at the bottom edge and
has a potential distribution W = V at the top edge. The
other two sides are insulated, so that there is no normal
component of current on these boundaries. State the
boundary conditions in mathematical terms. Evaluate
the potential distribution in the strip.

Hint: In which coordinate direction, the potential
distribution would consist of orthogonal functions?
Why?

9.3 The adjoining figure shows the cross-section of a
composite conductor used in overhead transmission
lines. It consists of a steel inner wire of radius a, and an
annular outer conductor of radius b, both being in
electrical contact. Calculate the magnetic field within
the conductors.

Hint: For simplicity, assume the current density to be
uniform in both the conductors, but different (their
conductivities being s1 and s2 respectively. Write down
the expression for the total current I in terms of the two
current densities J1 and J2.

This problem can be solved either by solving one-dimensional Laplace’s equation in r,
or by Ampere’s law which is simpler. However solve by both the methods and ensure
the correctness of the solution. State the interface boundary (or continuity) conditions.

9.4 Show that the magnetic potential due to a linear current I situated midway in the
airspace bounded by two plane parallel walls of infinitely permeable iron is

( )
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1 tan /
2 tan

tanh /

y l
I

x l

p
p

W − ⎡ ⎤
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10.1 THE TOTAL FORCE BETWEEN TWO SMALL MOVING
CHARGES

In Chapter 7, Sections 7.1 to 7.3, we have seen that the total force between two small ‘moving’
charges cannot be given by the Coulomb’s law alone. Certain corrective terms had to be added
to account for the additional force. It was also noted that for the reasonable velocities of the
charges, the corrective terms are very small compared with the Coulomb’s force and that their
experimental determination was not possible. So these additional terms were determined in an
indirect manner. What we did was to measure the total force on a large number of charges in a
known state of ‘steady’ motion, and then reduced mathematically to the contributions of pairs of
individual moving charges. This additional term was

1 2 2 1 12
m12 0 2

( )
4

Q Q

r

× ×⎛ ⎞ ⎡ ⎤= ⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦
v v u

F m p (10.1)

and this was referred to as the ‘magnetic force.’ The terms v1 and v2 represent the velocities of
the charges Q1 and Q2 respectively, and r represents the distance between the charges, and u12 the
unit vector along r in the direction from Q1 to Q2, and Fm12, the additional force by which the
moving charge Q1 acts on the moving charge Q2. But this is not the total additional force
between the two charges in arbitrary state of motion, not even when the two isolated charges are
moving with uniform velocities. So in addition to the steady-state additional force term, another
corrective term is required. For this purpose, to obtain the total force between the two charges (in
slow motion), the forces between the non-steady current systems have to be investigated. This is
done by the experiments with the non-steady motion of a large number of charges, i.e. by
considering the mutual effects of the non-steady current systems in which both the geometry and
the current density vary with time. The simplest experiments are those with the varying currents
and charges in stationary conductors.

Later we shall see when the currents and the charges are varying with time, the fields,
produced by them, do not change in synchronism with them, and their changes are always
retarded (i.e. lagging behind) with respect to the changes in the currents and the charges.

Time-Varying Fields
and Electromagnetic
Induction10
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However, if the sources (i.e. the currents and the charges) vary slowly with the time, and the
distances concerned are not very large, then the retardation effects in their interactions can be
neglected. At this stage, we are concerned with the time-variations in which the retardation
effects can be justifiably ignored, i.e. the changes in the currents and the charges produce
changes in their fields practically simultaneously. Such systems are also referred to as the ‘quasi-
stationary systems’. We shall have to consider the retardation effects at higher velocities, later,
i.e. microwaves and antennae.

10.1.1 The Force between the Two (Slow) Small Charges in an
Arbitrary State of Motion

The correcting term for the forces acting between all the systems of the (quasi-stationary)
macroscopic electric currents and the charges is of the form

2

1 2 1
e12 0

0
4

Q Q
t r

m p
v

v
F

=

∂⎛ ⎞ ⎛ ⎞′ = − ⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠
(10.2)

where F¢e12 is the force exerted by a charge Q1 on a charge Q2. The charge Q2 is considered to be
stationary at the instant of consideration, which is why the subscript v2 = 0 is used for the time-
derivative term. The force term F¢e21 exerted by Q2 on Q1 is obtained by interchanging the
subscripts 1 and 2.

Hence from the macroscopic experiments, with the (slowly) varying currents and the clusters
of charges, the total force exerted by a charge Q1 on a charge Q2 is
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The force F21 exerted by the charge Q2 on the charge Q1 is obtained from this equation by
interchanging the subscripts 1 and 2. It will be seen that in general F12 πππππ F21. The reason for this
is that we cannot consider the moving two point charges as a two-body problem, and the system
has to be considered as a three-body problem.

10.1.2 The Physical Meaning of the Electromagnetic Field

The expression for the total force F12, given by Eq. (10.3), can be split into two parts—one part
depending explicitly on the velocity v2 of the charge Q2 and the other independent of v2. Thus,
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The first term in the first bracket is the coulomb field intensity produced by the charge Q1, the
only difference between this term and the electrostatic force expression is that this quantity
varies with time as r changes with time. The second term in the first bracket is an additional
electric field intensity created by a ‘moving charge’. So we can now define the ‘total electric
field intensity’ of a point charge (with respect to an observer) as
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v being the instantaneous velocity of the charge, and the unit vector u is directed conventionally
away from the charge.

The third term of Eq. (10.4) is the already known expression for the force on a charge Q2

moving in the magnetic field of the charge Q1. The magnetic flux density vector B created by a
point charge Q, moving with the instantaneous velocity v, is given by

m
p

×⎛ ⎞= ⎜ ⎟
⎝ ⎠

0
2

( )
4

Q

r

v u
B (10.6)

where u, v, and r have the same meanings as in Eq. (10.5). Thus the total force exerted on Q2 by
a charge Q can be written in the same form as the Lorentz force, i.e.

Fon Q2
 = Q2 E + Q2 v2 ¥ B (10.7)

where E stands for the generalized electric field intensity defined by Eq. (10.5), and
subsequently we shall always use E in this sense. For the static charges, it is identical with the
electric field intensity defined before. In the generalized situation, E is not necessarily a vector
function of the space coordinates only, and is not necessarily conservative.

These considerations enable us to draw an important additional conclusion. The force on
Q2 given by Eq. (10.3) or (10.7) is a ‘physical entity’. It has been split into two distinct parts,
which are derived from the two vector functions of the coordinates and of the time, and named
as the electric and the magnetic field (as a matter of convenience only). But what we must
understand is that the electric and the magnetic fields are two parts of one unique physical
phenomenon. There is a simultaneous existence of both the components in all cases, though one
of them may almost completely be suppressed in some regions of space. For example, in an
electrostatic field, we say that there is no magnetic field which is basically not quite correct.
This is because at the sub-atomic level, the electrons are in a perpetual Brownian-like motion.
Thus, even in this case, the magnetic field does exist, though macroscopically it is negligible.

Similarly, in a permanent magnet, a microscopic electric field does exist in the vicinity of
each atom, though again at the macroscopic level, it (the electric field) is negligible. Thus the
unique physical field, which has been split as a matter of convenience, into two parts, and
referred to as the generalized electric and magnetic fields, is known as the ‘electromagnetic
field’. The two electrostatic and magnetostatic fields, which we have been talking about so far,
are in fact, the two extreme or the limiting cases of this electromagnetic field.

10.2 ELECTROMAGNETIC INDUCTION

We now consider a (quasi-stationary) changing or varying current system. We have stated earlier
that in such a system, the changes in the source and the consequent changes in the resulting
fields can be considered nearly simultaneous. We shall see later that the systems can be
considered quasi-stationary up to frequencies in the MHz range.

Such systems include the changes produced by the slowly moving, current-carrying
conductors, or the stationary conductors with the slowly varying currents, or a combination of
both. Initially, we shall consider the stationary conductors or closed loops.

In such a system, the current density J is a function of time. Let Q be the charge of the free
charge carriers, v their average velocity, and N the number of free charge carriers per unit
volume. Then, by Eq. (10.5) and the principle of superposition, the electric field intensity created
by these moving charges is
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E = -
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p

⎡ ⎤∂⎛ ⎞ ⎛ ⎞
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t r

v
+ a coulomb force term (10.8)

Macroscopically this sum can be represented as an integral, i.e.

E = - 
m
p

⎡ ⎤∂⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠⎝ ⎠ ⎣ ⎦∫∫∫0

4
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NQ
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t r
v

 + a coulomb force term (10.9)

But NQv = J, the current density, and the volume v is large enough to enclose all the moving
charges, and hence is constant in time. Hence E can be expressed as

E = -
m
p

⎡ ⎤∂ ⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
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4
v

d
t r

J
+ a coulomb force term (10.10)

We shall show later (in Chapter 13), that the (box) bracketed term above is the magnetic vector
potential A (at the instant of time considered). Hence,

E = -
∂
∂t
A

+ a coulomb force term (possible) (10.11)

where A is related to the magnetic flux density by the equation

B = curl A = — ¥ A

10.2.1 Faraday’s Law of Electromagnetic Induction

Induction of currents by a changing magnetic field (in a stationary closed loop).

From Eqs. (10.10) and (10.11), it is obvious that when a closed circuit or loop of wire is placed
in the changing electric field mentioned in Section 10.2 (i.e. the E vector in the quasi-static
field), this field would act on the free charges inside the loop. The presence of the loop or the
closed circuit has the effect of taking a line integral of the field vectors along the contour of the
circuit. ‘The possible coulomb force term’ of Eqs. (10.10) and/or (10.11) will not contribute
anything to it—its line integral about the closed loop will be zero [Section 1.6, Eq. (1.28)], but
the other term, due to the moving charges, acts as an impressed field. As we shall see later, that
the line integral of the magnetic vector potential A is nothing but the magnetic flux through the
contour. The time variation of this appears as an emf at the ends of the loop, i.e.

E =
C C C

d d d
t t

Ê ˆ∂ ∂Ê ˆ◊ = - ◊ = - ◊Á ˜Á ˜∂ ∂Ë ¯ Á ˜Ë ¯
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E l l A lv v v

                        = – 
F ⎡ ⎤∂ ∂ ⎢ ⎥= − ⋅

∂ ∂ ⎢ ⎥⎣ ⎦
∫∫
S

d
t t

B S (10.12)

We shall see now, how historically this conclusion was arrived at on the basis of some great
experimental work done by some of the early pioneers in the field of electrical engineering, and
how the science of ‘electromagnetism’ in the proper sense of the word, was developed. It was in
the year 1831, that Michael Faraday made this fundamental and important discovery that ‘an
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electrical current is induced in a closed circuit, when a magnet in its vicinity is moved.’ It was
by this discovery that Faraday completed the union of the sciences of current electricity and
magnetism, a unification which got started by the experiments carried out by Oersted in 1820,
when he, for the first time, observed the magnetic effects associated with an electric current.
Subsequently, it was found that the induced current could be produced by more ways than the
one mentioned above. Then instead of moving a magnet in the vicinity of a stationary coil, the
same effect was also produced when a coil was moved in the neighbourhood of a fixed magnet.
Also the same effect was observed in the circuit of a wire loop placed in a magnetic field, and
the loop was distorted so as to change its area. Again the induction took place without any
movement of the loop or the magnet, if the intensity of the magnetic field was changed by
altering the current in a neighbouring coil.

The essence of all such experimental observations is summarized by the following two
laws, which were enunciated in about 1845.

1. Neumann’s law. “When the magnetic flux linked with a coil (or circuit) is changed in any
manner, then an emf is set up in the circuit such that it (the emf) is proportional to the rate of
change of the flux-linkage with the circuit”.

2. Lenz’s law. “The direction of the induced emf is such that any current which it produces,
tends to oppose the change of flux”.

The Lenz’s law is only a particular case of a very general physical principle named
Le Chatelier’s Principle which states that “a physical system always reacts to oppose any change
that is imposed from outside.” In the present case, the physical change is the change in the
magnetic flux linkage and the reaction is the induced emf or the back emf, which opposes the
change causing it.

At this stage, we shall make a few comments to explain properly the idea of the flux-
linkage. When the circuit is a simple, single-turn one, then the ‘flux-linkage’ is the amount
of the flux F which is passing through the single-turn coil. However if it is a multi-turn coil
(say, N turns), it is not always necessary that the flux linked is likely to be the same through
every turn. The quantity whose rate of change measures the induced emf is in fact the sum of the
fluxes through all the turns. This is stated as the ‘total flux linkage’ with the coil. The notation
F is used to denote the flux-linkage with a coil as well as through a loop. However in some
problems, it is more convenient to use F as the flux linked with each turn, and hence the total
flux-linkage then becomes (NF).

Now, we explain the significance of the Lenz’s law with reference to Figure 10.1. In this
figure, if the resultant flux through the circuit has the direction A1 and is increasing, then the

Figure 10.1 Changing flux-linkage and Lenz’s law.

A1

A2

F



316 ELECTROMAGNETISM: THEORY AND APPLICATIONS

induced current in the circuit will tend to set up a flux in the direction opposite to A1. Hence the
direction of the current must be as shown by the arrow A2.

So, now, we state formally what is known as the Faraday’s law of induction:
Faraday’s law is initially regarded as giving the emf induced in a wire loop C

(Figure 10.2).

Figure 10.2 Induced emf in the wire loop.

C

S

Figure 10.3 Battery loop.

The energy supplied per unit charge, E = ∫
B

1

A

E dl

i.e. the line integral of E along the wire = VA – VB.
Hence the generalization of Eq. (10.13), for any loop whether of wire or otherwise is

1
d

E dl
dt
F= -Úv (10.14)

If we consider an elemental contour dC, enclosing an area dA, then

F = B ◊◊◊◊◊ dA

E
A

B

E = - Fd
dt

(10.13)

where F is the surface integral of B evaluated over any surface S with its edge on C.
The generalization

E = - Ld
dt

where L is the flux-linkage in a multi-turn coil which can also be shown to be related to a
surface integral, though the surface is subtler. Thus, in words, the Faraday’s law is:

The emf in the circuit is proportional to the rate of change of the flux linked by it,
and the sense of the current flowing in the circuit is such that it (i.e. the current)
opposes the change of the flux F.

Now, the emf of a battery is the energy supplied per unit charge delivered; and an electric force
E is set up within a wire connecting the terminals, and hence (Figure 10.3):
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The variations of Ey and Ez for the rectangular loop are indicated in the above figure. So
taking the line integral over the closed loop, we have

z
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Also,

F = Bxdydz

Cancelling dydz from both the sides of Eq. (10.14), we get

∂∂ ∂
− = −

∂ ∂ ∂
yz xEE B

y z t
(10.17)

By considering two more loops in the z–x and the x–y planes, two similar equations for the
y- and z-directions will be obtained.

Figure 10.4 Rectangular loop in the y-z plane for evaluating the line-integral E1dl.

\ Equation (10.14) becomes
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As dA Æ 0, this equation becomes

curl E = — ¥ E = - 
∂
∂t
B

(10.16)

i.e. at any point in a ‘changing magnetic field’, there is an associated electric field which is
given by the above equation (which is one of the Maxwell’s field equations).

Thus we have restricted ourselves to consider the stationary circuit subjected to a time-
varying magnetic field only, at this stage.

Differential derivation

Unlike a closed surface (or a volume), a loop has a direction which is denoted by its normal, and
hence essentially a vector. In Cartesian coordinate system, we can consider a general elemental
loop by its projection on three coordinate planes. So first, we evaluate Eq. (10.14) for a
rectangular loop (dy ¥ dz) lying in a plane perpendicular to the axis Ox (Figure 10.4).

Ez x

O
Ey

y

Ez + (dEz/dy)dy

Ey + (dEy /dz)dz z
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Note:

Fd
dt

= rate of change of F, with respect to time, in a particular circuit.

∂
∂

xB
t

= time-rate of change of Bx, which also can vary with position.

We remind ourselves that the vector whose component in any direction n is the limit of
the ratio

n
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is called the curl of E (= curl E).

Symbolically,
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◊Ú E lv

where dSn is the area of Cn; and we have shown above (as well as earlier) that in Cartesian
coordinates:
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(Note that the denominators are in cyclic order.)
The three equations of (10.17) are replaced by a single vector equation,

curl E = — ¥ E = - 
∂
∂t
B

which is same as Eq. (10.16). And, it should be noted that this is more general since it can be
expressed in any coordinate system.

10.2.2 The EMF Induced in Conductors Moving in a Static
Magnetic Field (The Flux Cutting Rule)

Faraday’s law states the relationship between a time-varying magnetic field and its associated
electric field. (It should be noted that a time-varying E or B cannot exist in isolation as a static
E field—in a macroscopic sense). Also, the Faraday’s law does not indicate what happens when
a circuit moves through an uniform magnetic field. So, now let us consider a piece of metal wire
(i.e. electrically conducting) moving with a velocity v in a static, arbitrary magnetic field B. All
the elemental charges inside the wire would be subject to an electromagnetic force, given by

F = Q (v ¥ B)

Freely movable electrons in the wire would be pushed towards one end of the wire, making the
other end positively charged (Figure 10.5).

In the static and the quasi-static case, the forces on the free charges cannot exist in a
conductor. The distribution of the charges will be such that the E field created by these charges
will be exactly equal and opposite to that of (v ¥ B). So, we can say that an external field E acts
along the conductor, producing a total emf, i.e.
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E = ∫
2

1

(v ¥ B) ◊◊◊◊◊ dl (a moving piece of wire) (10.18)

Since the conducting path is not closed, there will be no current flowing in the conductor. But,
when there is a closed conducting filament moving in a static magnetic field, the emf round the
contour is given by

Figure 10.5 A piece of wire moving in a magnetic field.
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Figure 10.6 Geometry for the law of induction applied to a moving conductor.
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Let us say that dl¢ is the distance traversed by the contour in the time dt (Figure 10.6), so that
v = dl¢/dt. Now dt is constant, and since the integration is with respect to space, we can write
Eq. (10.19) as

E = 
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d
d d d

dt dt
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(All the notations are as shown in Figure 10.6.)
If F is the magnetic flux at the initial instant, then the increase in the magnetic flux

through the contour C in the time interval dt is

( ) =
C S

d d d d¢F = - ◊ ¥ - ◊Ú ÚÚB l l B Sv
\ On substituting for the integral, we get

E = - 
Fd

dt
(in a moving closed contour) (10.20)

The emf in this equation is often referred to as the ‘motional emf’.
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In any practical problem, when we deal with a closed circuit, we use the above equation,
remembering that the magnetic flux is static and not changing with time, and the change of
flux-linkage is due to the motion of the contour. When we deal with a moving piece of wire and
not a closed contour, we use Eq. (10.18). For example, a body (a conductor of length l, say)
which is moving in a steady magnetic field with a velocity v, experiences an electric field E =
(v ¥ B); or a body in a magnetic field which is moving with a velocity v relative to the body,
experiences a field given by E = - (v ¥ B).

As an example, if a straight conductor of length l m is moving at a velocity of v m/s in a
magnetic field B, then

E = ∫
Cond

E ◊◊◊◊◊ dl = l ◊◊◊◊◊ (v ¥ B)

If l is perpendicular to B, then: E = Blv.

10.3 THE GENERAL LAW OF ELECTROMAGNETIC
INDUCTION

We now consider a ‘completely general situation’ in which a closed filamentary contour moved
and deformed in an arbitrary manner in a time-varying magnetic field. This time-varying
magnetic field would be associated with a time-varying electric field at all points and hence
along the contour as well. Furthermore parts of the contour are moving in the magnetic field, and
an electromagnetic force on the charges is also present. This part is then equivalent to an electric
field intensity given by (v ¥ B). The total emf in the contour under this general condition is thus
the sum total of Eqs. (10.12) and (10.19), i.e.

E = – ( )
C C

d d
t

∂Ê ˆ ◊ + ¥ ◊Á ˜∂Ë ¯Ú ÚA
l v B lv v

  = – ( )
S C

d d
t

∂Ê ˆ ◊ + ¥ ◊Á ˜∂Ë ¯ÚÚ ÚB
S v B lv (10.21)

which is the detailed form of Eq. (10.20).
The two terms on the right-hand-side of this equation can be expressed in a slightly similar

form in terms of the flux F linked by the contour C. The first term is the (negative) rate of
change of flux through the contour, due to the time-varying magnetic flux (when the contour is
instantaneously held in position); and the second term is the (negative) rate of change of flux
due to the motion and the deformation of the contour in the magnetic field assumed to be static
at that instant. So we can rewrite the equation as

E = 
varying field motion in the field

t t
F F∂ ∂⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ (10.22)

The first term is usually called the ‘transformer emf’, and the second term is known as the
‘motional emf’. The above equation is same as the Eq. (10.20). This equation represents the
‘Faraday’s law of electromagnetic induction in general form’.

These equations should be applied to practical problems very carefully, because otherwise
in a number of instances we can come to quite erroneous conclusions, as we shall see later.
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10.4 AN ALTERNATIVE PROOF FOR THE GENERAL LAW
OF ELECTROMAGNETIC INDUCTION (THE MOVING
MEDIUM AND THE TIME-VARYING FIELD)

An alternative proof for the generalization of the Faraday’s law is offered here in which we
consider the most general situation whereby the magnetic field is time-varying and the circuit is
moving with an arbitrary velocity v which need not be uniform, and the circuit itself is allowed
to be deformable.

Furthermore this proof has the advantage that it does not require either the concept of the
magnetic vector potential or the Lorentz force equation for the derivation. We merely need to
use the Gauss’ divergence theorem and the Stoke’s theorem for our purpose. The proof was
originally given by Corson and Lorrain.

We start from the integral form of the law of induction which was experimentally verified
by Faraday for the stationary circuits, i.e.

E = 
C S

d d
t

∂◊ = - ◊
∂Ú ÚÚE l B Sv

which is our Eq. (10.12).
In the generalization, the source current creating the flux may be varying sinusoidally with

time, so that B also varies the same way. So B can be expressed as

B = B (x, y, z, t)

i.e. B depends on both the space and the time coordinates. We consider a closed contour C
which corresponds to the left-hand side of the above Eq. (10.12), and let each element dl of C
move to a new position of C¢ (Figure 10.7) with a velocity v where v need not be uniform. Then
the rate of change of the flux F is
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(10.23)

where Dt is the travel-time, and B¢(t + Dt) denotes the flux density across the surface S¢ at a time
(t + Dt). The volume swept out by the motion of C to C¢ is bounded by the surfaces S, S¢, and by
the curved surface joining them (Figure 10.7).

Figure 10.7 The path of integration moves from C to C ¢ in the time Dt. The displacement is
general (involving translation, rotation, and distortion).
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Applying the Gauss’ theorem, we get

D D D D
′

′ ′= + ⋅ + + ⋅ × − + ⋅∫∫∫ ∫∫ ∫ ∫∫div ( ) ( ) ( ) ( )
S C S

dv t t d t t d t t t dB B S B l v B S (10.24)

where (dl ¥ vDt) is the shaded surface element shown in Figure 10.7, and the negative sign on
the last integral indicates that the flux on the lower surface is opposite in sign to that in the
upper one. Also it is to be noted that the instant under consideration is (t + Dt).

By Taylor’s theorem, the last integrand in Eq. (10.24) is

B(t + Dt) = B(t) + 
∂
∂t
B Dt + (10.25)

Applying the Stoke’s theorem to the second integral on the right-hand side of Eq. (10.24), we get

D D D D+ ⋅ × = × + ⋅∫ ∫( ) ( ) [ ( )]
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t t d t t t t dB l v v B l

                              D D= × + ⋅∫∫ curl[ ( )]
S

t t t dv B S (10.26)

Substituting from Eqs. (10.25) and (10.26) in Eq. (10.24), and using the fact that — ◊◊◊◊◊ B = 0,
we get

   0 ( ) curl[ ( ) ( ) [ ( ) ]
S S S S

t t d t t t d t d t d t
t

D D D D
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∂∫∫ ∫∫ ∫∫ ∫∫B S v B S B S B S (10.27)

The superscript on S becomes unnecessary, as we calculate (DF/Dt) in the limit. Hence from
Eq. (10.23), we get

F
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B S v B S (10.28)

and the Faraday’s law of induction generalizes to

E = curl ( )
C S S

d d d
t

¢

∂◊ = - ◊ - ¥ ◊
∂Ú ÚÚ ÚÚE I B S v B Sv (10.29)

which is same as Eq. (10.21).

10.5 EXAMPLES OF APPLICATION OF ELECTROMAGNETIC
INDUCTION

10.5.1 Transformer

A transformer essentially consists of two windings on a closed iron circuit (called the core, which
is made up of 3% Si–Fe laminations). It is schematically represented, in its simplest form as
shown in the Figure 10.8 (not pictorially).

For the present analysis, we assume both the windings to have zero resistance. When an
emf E1 is applied to the primary winding of N1 turns, a current passes through it and sets up a
flux F in the iron core. The emf induced by this flux must be exactly equal and opposite to E1,



CHAPTER 10 TIME-VARYING FIELDS AND ELECTROMAGNETIC INDUCTION 323

because if this did not happen, then there would be a residual voltage in the winding which
would set up an infinite current in the zero-resistance primary circuit. Mathematically E1 and F
are related by the equation

E1 = N1
Fd

dt
(10.30)

and the current drawn by this primary winding is of that exact magnitude which is required to set
up this flux F in the core. The same flux also links the secondary winding on the other limb of
the core. If this winding has N2 turns, then the emf E2 set up in this winding is

E2 = N2
F ⎛ ⎞⎛ ⎞ = ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

2

1

Nd
dt N

E1 (10.31)

Thus the variations of E1 are reproduced in E2, and are scaled by the turns ratio (N2/N1).
Equation (10.31) cannot hold under all conditions; for example, let E1 be a constant direct

voltage (i.e. of steady value) suddenly switched on and allowed to persist for a long duration of
time. In such a case, a constant E1 would imply a constant (dF/dt), and since E1 persists for a
long time, then F would have to increase indefinitely without limit, which in reality cannot be
realized because of magnetic saturation of iron. As the saturation flux is approached, the
magnetizing current would increase rapidly, and this would cause, in the winding, a voltage drop
across its resistance too great to be neglected, thus violating our initial assumption. Hence the
transformers will not transform direct voltages, and can only be used for transforming alternating
voltages. A primary voltage which varies sinusoidally with time, would be very faithfully
reproduced across the terminals of the secondary; but other shaped waves, such as triangular,
rectangular, saw-tooth, etc. can also be transmitted by transformers of suitable design.

Suppose, now we connect a load (electrical) across the secondary terminals which draws a
current I2 (Figure 10.9). This current causes an mmf (N2I2) to the magnetic circuit of the core,

Figure 10.8 A schematic representation of a single-phase two-limb two-winding transformer.

Generator
F

N1 N2∼

Figure 10.9 A transformer drawing a load current.
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F

E2

tending to change the magnetic flux wave. But the changes in the flux wave are controlled by
any changes in the emf, governed by Eq. (10.30). So the effect of I2 has to be counterbalanced
by an extra current I1¢ in the primary winding (drawn from the supply source), such that

N1I1¢ + N2I2 = 0 (10.32)
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The total current in the primary winding is I1 which is the sum of I1¢ and the magnetizing current
(= Im) required to set up the flux in the core, when the secondary winding draws no current
(i.e.  is in open-circuit). In power transformers I1¢ >> Im, and hence:

I1 = I1¢ approximately

                                     = - ⎛ ⎞
⎜ ⎟
⎝ ⎠

2

1

N
N

I2 (10.33)

That is, the ratio of the primary to the secondary current is (nearly) equal to the turns ratio and
the two currents tend to magnetize the core in opposite senses.

The transformer is a device in which the law of electromagnetic induction has to be
applied in the form of ‘flux-linking’.

10.5.2 Direct Current Generator (Heteropolar Machine)

Most types of electric generators are so designed that they produce their induced emf by a
relative movement between a set of coils, which are mounted in iron, and a set of magnetic field
producing poles. In the dc generator, the armature coils are carried in the slots on the rotor
(armature), as shown in the Figure 10.10(a).

Figure 10.10 Section of a dc generator.

Figure 10.10(a) shows a coil with the sides in the slots marked A and B, the width of the
coil being nearly the same as the distance between the centre-lines of the successive poles which
are of opposite polarity (hence the name heteropolar machine). Since we are looking at a single
coil AB at the instant shown in the Figure 10.10(a), the flux linked by the coil is the resultant of
the flux entering from the N pole and the flux going out under the S pole. In a time-interval t,
the rotor turns through one tooth pitch and the coil now occupies the position A¢B¢, and the flux
linked by AB has changed because of the increase in the flux between BB¢ and a further decrease
in the flux between A¢A. If l is the length of the coil-sides, then the increase in the flux linked
is (2BlAA¢) or (2BlBB¢), and

AA¢ = BB¢ = vt

where v is the velocity of the rotor, and this gives the emf induced in the coil AB as

E1 = 2Blv (10.34)

(b)

(a)
S N

A
A ¢ B

B¢

S N
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where B is the mean flux density normal to the rotor surface. So we can say that each coil-side
has contributed

E = Blv (10.35)

to the induced emf. It should be noted that we have used the method of flux-linkage, even
though the emf has been produced by flux cutting. We could have used the method of flux
cutting, if we assumed a smooth rotor surface and the coil-sides placed touching the rotor
surface, as a simplified idealization of the problem [Figure 10.10(b)]. The flux density under each
pole is then uniform, and we find that each coil-side, by the method of flux-cutting, has the
induced emf as Blv. We have shown this for a single coil per pole pair. If, now, the machine has
2p poles, each with a flux F, and the speed of rotation is n revolutions per second, then the
mean emf per conductor is

F=1 2pnE (10.36)

If the armature has Z conductors so connected that there are a parallel paths, then the mean emf
for the whole machine is

F⎛ ⎞= ⎜ ⎟⎝ ⎠
1

2Z pn Z
a a

E E = (10.37)

It should be noted that as the coils move across the successive magnetic poles, which are of
opposite polarity, the induced emf would also be of alternating polarity, and hence a mechanical
switch is used to reverse its polarity every half-cycle, so that in the external circuit a
unidirectional current flows. Such a switch is called a commutator, and we shall not go into the
details of such components, which can be found in any textbook on electrical machines.

10.5.3 Search Coil

This is a very important device for measuring the magnetic flux and the flux density (both due
to the direct current as well as the alternating current). It uses a small coil of many turns, N, each
of mean area A, placed so that the required B crosses it normally. The coil is made up of very
thin wire (usually 30 to 40 SWG enameled copper wire), and is positioned in the magnetic field
to be measured, assuming that the coil dimensions are much smaller than the curvature of the
field lines. The ends of the coil are usually tightly twisted together, and connected to the
measuring device, which can be a ballistic galvanometer or an integrating fluxmeter (for direct
current fields). When the field B lines cross the coil normally, the flux-linkage is then NAB
(or NAB cos q, if the direction of B makes an angle q with the normal to the plane of the search
coil). A flux change of NAB (or NAB cos q) or 2NAB (or 2NAB cos q) is produced by removing
the coil to a place where B = 0, or by reversing the direction of B, whichever is quicker and
more convenient. As mentioned above, this flux change is measured by an integrating fluxmeter,
or the change of charge Q

d
F

F

FF= = − =∫ ∫1
ff

i i

t

t

I dt d
R R

by a ballistic galvanometer, provided the change has been made quickly enough. This is the
technique for measuring the direct current fields. For measuring the alternating flux, the search
coil when placed in the field, produces an induced emf which is proportional to the frequency
and the flux linked by the coil, i.e.

E = NABw sin w t = Fmax w sin w t (10.38)
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For a detailed analysis of the behaviour of search coils, readers are recommended papers by
S.C. Bhargava, and A.D. Moore. By arranging and winding 2 or 3 search coils together in
orthogonal planes on suitably designed formers, it is possible to build a composite coil which
would measure all the components of 2- or 3-dimensional fields, simultaneously, at any given
point. Figure 10.11 shows a typical search coil.

Figure 10.11 A search coil.

10.6 INDUCTANCE

Self-inductance of a coil is defined as the flux-linkage of the coil per ampere of the current
flowing in it, i.e.

F=L
I

(10.39)

where F is the flux linked by the coil when it is carrying a current I.

Mutual inductance. When a current flows in a circuit, a magnetic flux is set up. If a part of this
flux is linked with a second circuit, then there is said to be a mutual inductance between the two
circuits. The mutual inductance between the circuits (1) and (2) as shown in Figure 10.12 is
defined as

F= 2
21

1
M

I
(10.40)

i.e. the flux-linkage in the circuit (2) due to a unit current in the circuit (1).

Figure 10.12 Mutual inductance between two circuits.

(1) (2)

If the roles of the two circuits are reversed, then

F= 1
12

2
M

I
(10.41)

Let us consider a simple, two-limb, single-phase transformer (Figure 10.13). In the transformer,
the primary current I1 magnetizes the core whose permeance, let us say, is L.

\ The flux set up in the core is
F = LN1I1

where the primary winding has N1 turns.
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If the secondary winding has N2 turns, then the mutual inductance between the primary and
the secondary is

M21 = LN1N2 (10.42)

Symmetry of the situation shows that if the secondary was excited, the mutual inductance for the
primary would be

   M12 = LN2N1 (10.43)
i.e.

M12 = M21

The proviso in this equality is that the permeances of both the paths are the same (i.e. constant
permeance). This is a restraint on iron-cored circuits, but holds more generally for all air-cored
circuits, i.e. M12 = M21, though this is not so easily obvious in all cases. An example is the
positioning of a short coil inside a long coil (solenoid), as shown in Figure 10.14. As is seen in

Figure 10.13 Single-phase transformer.

Primary SecondaryN1 N2

Figure 10.14 A short coil inside a long coil, for the equivalence of M12 and M21.

(1) Excited coil

(2)

(1)

(2)

Excited coil

this figure, calculating the flux-linkage in the circuit (2) due to a current in (1) is a simple
matter, but the vice versa is quite complex.

Unit of inductance. The inductance is 1 henry if the passage of 1 ampere of current in circuit
(1) sets up a flux-linkage of 1 weber-turn in the circuit (2).

Note: Permeance = Reciprocal of Reluctance (= R).
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In a magnetic circuit, the magnetic resistance or the reluctance is

MMF
Reluctance =

Flux

Its unit is amp-turn/weber.

10.6.1 Inductance in Terms of Induced Emfs

When the current is changing in one circuit, it sets up a changing flux and hence an induced emf
in the other circuit. The same argument applies to a single circuit.

First, we consider a single air-cored circuit, for which we have

F = LI

\ The induced emf = E = 
F =d dI

L
dt dt

(10.44)

And for an iron-cored circuit,

the induced emf = E = 
F = +d dI dL

L I
dt dt dt

                    
⎛ ⎞= +⎜ ⎟⎝ ⎠

dL dI
L I

dI dt (10.45a)

since the inductance L of an iron-cored circuit depends on the current as well.
Next, we consider circuits with mutual inductance, i.e.

F2 = M21I1 = M12I1

\ E2 = M12
⎛ ⎞
⎜ ⎟
⎝ ⎠

1dI
dt

and, similarly for the other circuit,

E1 = M12
⎛ ⎞
⎜ ⎟
⎝ ⎠

2dI
dt

(10.45b)

The mutual inductance is 1 henry, when E = 1 volt, and the current in the other coil is
changing at 1 amp/s.

When the circuit is iron-cored, M12 changes with the current as well, and hence

E2 = 
⎛ ⎞= + ⎜ ⎟
⎝ ⎠

1 12
12 1 12 1( )

dI dMd
M I M I

dt dt dt

If I2 = 0 , or M12 varies due to the changes in I1, then only

E2 = 
⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

12 1
12 1

1

dM dI
M I

dI dt
and, for a similar behaviour,

E1 = 
⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

12 2
12 2

2

dM dI
M I

dI dt
(10.46)
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Mutual inductors in which the coils are of toroidal type, as discussed in Section 7.10.5, are of
great use as measuring circuits because they can be made with great accuracy. The great
advantage of such an inductor is that it is practically unaffected by the presence of any
neighbouring circuits. A coil of this type, used for measuring alternating currents non-invasively,
is known as ‘Rogowski coil’.

10.6.2 Calculation of Inductances

The definitions of self- and mutual-inductances are subject to certain uncertainties, especially the
self-inductances. This is because of the difficulties in defining exactly the flux linkage. To
illustrate this uncertainty caused, we consider the following two circuits. Figure 10.15(a) shows

Figure 10.15(a) Mutual inductance between parallel conductors of finite cross-section.

2 2

11+ I

A B
– I

the cross-section of the two circuits, each consisting of a pair of thick parallel wires. Some of the
flux produced by the currents in the circuit (1), traverse the cross-section of the wires of the
circuit (2). The question arises as to whether this flux is linking with the circuit or not. In this
example, which is that of calculating the mutual inductance, the difficulty is evaded by
assuming the wires to be infinitely thin. The total flux linked by the circuit (2) can be calculated
by superimposing the effects of the two conductors of the circuit (1) on the circuit (2). Hence
using the dimensions as shown in the figure the flux linked by (2) due to the current I in A
alone is

m m
p p

+
⎛ ⎞⎛ ⎞= +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∫
2 2

2
0 0

2
ln 1 webers/metre

2 4

b c

c

I Idr b
r c

noting that, due to an infinite conductor, B = 
m
p
0

2
I
r

.

The conductor B also contributes an equal quantity, and the flux due to both the
conductors of the circuit are in the same direction.

\
m
p

F ⎛ ⎞⎛ ⎞= = +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

2
02

12 2
1

(total)
ln 1 henries/metre

2
b

M
I c

(10.47)

This neglects the finite cross-section of the conductors, but the result is accurate enough
for most of the purposes.

c

b
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flux is actually within the wires. The question now is, should this flux be taken as linking the
circuit? If, as in the previous problem, we neglect the conductor dimensions, then:

The flux F due to the current I in A =
m

p ∫0

0
2

b
I dr

r

        =
m

p
⎛ ⎞
⎜ ⎟
⎝ ⎠

0

0

ln
2

b
I

r

and ln 0 Æ •.
Hence the wire diameter cannot be neglected. Also we should note that finer the wire, the

higher the inductance. So if the wire has a radius a, then

F due to the current I in A =
m

p

−

∫0

2

b a

a

I dr
r

                              = 
m

p
−⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠
0 ln

2
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a

\ L due to the currents in A and B = 
m
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−⎛ ⎞ ⎛ ⎞
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         = 
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0 ln
b
a

 (10.48)

This formula is reasonably accurate for the low frequency hollow conductors and high frequency
solid conductors (due to the skin effect to be studied later in the Chapter 15). However this
present calculation neglects the flux inside the solid conductor. Later we shall see how this
contribution to the inductance (in Chapter 13) can be taken into account.

Now we derive the expression for the mutual inductance of the arrangement shown in the
Figure 10.14. Let the current in the longer solenoid be I, and let it have N1 turns per unit length,
and the smaller solenoid have N2 turns per unit length, its axial length being l. The flux density
produced by the ‘longer’ solenoid = m0N1I.

\ The flux linked by the smaller solenoid = m0N1N2I lA, where A is the cross-sectional
area of the smaller solenoid.

\ M = m0N1N2lA (10.49)

Next, we consider another problem, i.e. a small circular coil on the axis of a large circular

We consider the second example, as shown in Figure 10.15(b) in which we look at the self-
inductance of the circuit. Here because of the finite cross-section of the conductors, some of the

Figure 10.15(b) Self-inductance of parallel conductor circuit.

A B

a

b
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Assuming the cross-section of the small coil to be small enough, the flux linked by it is

= N2p a2
2 B

and hence

( )
m p q

=
+

2 2
0 1 2 1 2

3/22 2
1

cos

2

N N a a
M

a x
(10.50)

where q is the angle between the axes of the two coils.
Next, we consider the self-inductance of a toroid (Figure 10.17) which is made up of an

coil (Figure 10.16). If the number of turns of the large coil is N1 and its radius is a1 and carries
a current I, then its magnetic flux density along its axis at a distance x from the plane of the
coil is

( )
m

=
+

2
0 1 1

3/22 2
12

N Ia
B

a x

Figure 10.16 A small circular coil on the axis of a large circular coil.

a1

N1 turns

N2 turns

a2 q

x

Figure 10.17 Inductance of a toroidal coil.

Ro
Ri t

I I

N-turn coil tightly wound around a dough-nut shaped core of rectangular cross-section with the
inner and the outer radii of Ri and Ro, respectively, and the core having the permeability m. We
solve this problem (for the initial steps) by applying the Ampere’s law to find the flux density.
The only contour we need to consider is the one with its radius lying between Ri and Ro, since
all other contours, i.e. r < Ri and r > Ro would link no current, and hence be equal to zero.

\ For a contour such that Ri < r < Ro,

Úv H ◊◊◊◊◊ dl = Hf 2pr = NI



332 ELECTROMAGNETISM: THEORY AND APPLICATIONS

The flux through a single loop,
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(10.51)

(the term N2 appears in this expression because there are N turns in all of the coil; and t is the
axial thickness of the toroid).

It is this type of toroid which is generally used for Rogowski coils, though to evaluate its
induced emf, we need to consider its mutual inductance when a straight conductor passes
through the centre of the toroid core in the direction normal to its plane.

10.6.3 Relation between the Self- and the Mutual-inductances of
Two Coils (The Coefficient of Coupling)

We now investigate the relationship between the self-inductances of two coils (say L11 and L22),
and their mutual-inductance M12 (Figure 10.18). Let the number of turns of the two coils be
N1 and N2, respectively.

Figure 10.18 Mutual inductance between two coils.

When the two coils are very closely coupled, i.e. there is no leakage flux, F1 being the
flux linked per turn due to the current I1 in the circuit (1), then

F F= =1 1 2 1
11 12

1 1
and

N N
L M

I I

\ =11 1

12 2

L N
M N

Similarly for a current (say I2) in the circuit (2), we get the relationship

=22 2

21 1

L N
M N

and since M12 = M21

\ = = ±2
12 11 22 12 11 22orM L L M L L (10.52)

F1 F1

I1

(1) (2)

N1 turns N2 turns



CHAPTER 10 TIME-VARYING FIELDS AND ELECTROMAGNETIC INDUCTION 333

If the positive directions of the current-flow in the two coils are so chosen as to produce the
fluxes in the same direction, then the value of M12 will be positive, otherwise negative.

If the two coils are loosely coupled, i.e. there is leakage flux, then

F F= = <1 1 2 1 1
11 12 1

1 1
and , 1

N N k
L M k

I I

\ =11 1

12 1 2

L N
M k N

Similarly for the second coil,

= <22 2
2

12 2 1
, 1

L N
k

M k N

\ = = ±2
12 1 2 11 22 12 11 22orM k k L L M k L L

k2 = k1k2,  0 < k < 1 (10.52a)

where k is called the coupling factor of the coils.
If the two coils are connected in series with the fluxes supporting each other, then

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
1 11 12 2 22 12and

dI dI dI dI
L M L M

dt dt dt dt
E E

\ E1 + E2 = (L11 + L22 + 2M12)
⎛ ⎞
⎜ ⎟⎝ ⎠

dI
dt

(10.53)

\ The combined self-inductance of the circuit,

L = L11 + L22 + 2M12

If the coils are connected so that the fluxes oppose each other, then

L = L11 + L22 - 2M12 (10.54)

10.7 SOME DIFFICULTIES IN INTERPRETING THE LAWS
OF ELECTROMAGNETIC INDUCTION

So far we have used the laws of induction to solve a number of problems. But there are a number
of cases where there are difficulties in interpreting these laws correctly. These difficulties arise
more particularly in those problems which combine both the components of the induced emf, i.e.
the transformer emf and the motional emf. We shall discuss some of such problems at this stage,
though some more problems will be left for a later stage when we consider the laws of
electromagnetism as seen by an observer in relative motion (i.e. moving media problems based
on ‘electromagnetism and special relativity’). However the first problem, which we shall now
consider arises out of the difficulties in defining the concept of the flux-linkage in an
unambiguous manner.

10.7.1 Problems due to the Definition of Flux-linkage

The definition of flux-linkage as ‘the sum of the fluxes through all the turns of a circuit’ is
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number of tubes of flux linking a particular turn is somewhat ambiguous. This uncertainty can be
partly eliminated, because if a tube of flux is a closed ring then there is no ambiguity, but if the
tube of flux is helical in nature, then the difficulty crops up again. Basically the operation
of calculating is as follows. We form an open surface S with its edge on the contour C
(Figure 10.20). The surface S is divided into small elements dS, and at each element, we evaluate

neither perfect nor workable in all cases. Let us consider an air-cored solenoid with widely
spaced turns (Figure 10.19). In this device, a ‘turn’ is not a closed loop, and hence counting the

Figure 10.20 Open surface S.

Figure 10.19 An air-cored solenoid with widely-spaced turns.

B ◊◊◊◊◊ dS (i.e. the quantity of the normal component of B through the surface element dS). The total
flux of B is then given by

F = S B ◊◊◊◊◊ dS (= S BndS) = ∫∫
S

B ◊◊◊◊◊ dS (10.55)

Mathematically, this definition is quite unambiguous, but the difficulty arises due to the choice
of the surface S, e.g. for a two-turn helix as shown in Figure 10.21. The circuit in this case is

B

Bn

C dS

Figure 10.21 A two-turn helix.

closed by joining its two ends by parallel radial lines to a central axial line. On such a surface
as shown in this figure, some tubes of flux can contribute twice to the integral, whilst some may
contribute only once. Care must also be taken of the proper sign.
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surfaces can be used for finding the induced emf due to a time-varying magnetic field? Here we
have to find the surface on which we would find the flux-linkage. The correct answer is the
surface (b), since it is two-sided or orientable. The surface (a) is one-sided, Möbius surface, and
cannot be used for flux-linkage. This, in fact, is the general problem for all multi-turn loops.

The distinction between the exact and the approximate definitions of the flux-linkage is
further shown by the following example. An insulating cylinder C located in a uniform axial
magnetic field B (as shown in Figure 10.23) rotates uniformly so as to wind wire from a

Figure 10.22 Two alternative surfaces spanning a two-turn loop.

(a) (b)

Figure 10.23 Time-varying number of turns on a coil in a uniform steady magnetic field.
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drum D. The end of the wire is anchored to a contact ring R fixed to the lower end of the
cylinder. The question here is: would there be an induced emf between R and the end of the
incoming wire, as there is an apparent increase in the flux-linkage due to the increasing number
of turns?

We shall next show another multi-turn contour which gives rise to two possible surfaces as
shown in Figure 10.22. The question here is: in the figure shown, which of the two alternative
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In fact, no emf is induced, and the voltmeter V does not show any reading. The exact
definition of the flux-linkage explains this result. In this case, the emf induced is the resultant of
the emfs in the two contributory circuits as shown above:

(a) a lengthening spiral (helix) joined to its central axis by a radius AP which is fixed in
direction and a radius BQ which rotates; and

(b) a shaft A¢B¢, joined to the external connections by a radius A¢P¢ which is fixed in
direction, and a radius B¢Q¢ which rotates as a spoke of the contact ring.

Each time a turn is added, the linkage in the circuit (a) is increased by the flux through the
extra convolution, but equal flux is swept through by the moving radius of the circuit (b), and
the connections of the two are such that the induced emfs are in opposition, leaving zero
resultant. The superficial argument takes account of (a) only, and hence leads to a wrong result.

So for a constant flux in the cylinder, i.e. F = (BA) per turn, even though the number of
turns are changing, no flux is generated, i.e.

F⎛ ⎞= ⎜ ⎟⎝ ⎠
( )

d
N t

dt
E

If F is constant, independent of time, then even with increasing N(t) (i.e. a function of time),
E = 0.

If, however, F itself is proportional to the number of turns, i.e. a direct current is being fed
into the increasing number of turns, then: F = m0N(t)IA /l, where l is the axial length of the
wound cylinder, and A is its cross-sectional area, i.e. an emf would be generated (Figure 10.24).

0 ( )
( ) ( )

N t Ad d
N t N t I

dt l dt
F ⎛ ⎞⎛ ⎞= = ⎡ ⎤⎜ ⎟⎜ ⎟ ⎣ ⎦⎝ ⎠ ⎝ ⎠

m
E (10.56)

Figure 10.24 Time-varying number of turns on a coil in a uniform increasing magnetic field.
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F = (m0N(t)A)/l
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If I is a direct current, then the differentiable term is ( )
d

I N t
dt

, and hence even for direct current,

there will be an induced emf. Note also that there is no motional emf contribution in this
problem.
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made, an induced emf is observed in the circuit. The question that has been raised in this
experiment is: “do the lines of force rotate with the magnet inducing an emf in the circuit as
they (the lines of force) cut the external circuit” or “do they stand still, inducing the emf as they
are cut by the material of the magnet”? The question is, in fact, a meaningless one (as explained
by Prof. G.W.O. Howe) because since the pattern is an axi-symmetric one, there is absolutely no
change in the magnetic condition of the surrounding space when the magnet rotates. It is
meaningless to inquire whether the lines by which we represent this condition (and these lines in
fact are a figment of our imagination) have rotated or not. So the right answer can be obtained
by either assumption. Some experts (among whom there was Prof. G.W. Carter) prefer the second
option because this is then a case of direct application of the ‘Neumann’s law’.

10.7.3 The Puzzle of the Commutatorless DC Generator

The following device, which was suggested as a dc generator without moving contacts (which
has been a dream of many cranks in electrical engineering), is another example of the confused
application of the law of induction. The basic principle of operation of the device is as follows,
explained in Figure 10.26. A wire of length l (along the x-direction) oscillates in the z-direction
with a velocity v given by

v = izvm cos w t (10.57)

in a magnetic field B which is also a function of time with the same frequency, i.e.

B = iyBm cos w t (10.58)

10.7.2 Problem Arising out of the Concept of ‘Moving Field’

The concept of the moving magnetic field is in great use by the designers of electrical machines,
e.g. the magnetic field set up by the rotating pole system in the synchronous generators or by a
set of distributed three-phase current system in induction machines. In these devices, the ‘moving
field’ is interpreted as a ‘moving flux density pattern’—a flux configuration that glides along,
but does not change. This is a legitimate concept, and as such the idea of the moving field can
be used without any ambiguity. But there are times when such ideas can be misinterpreted. For
example, let us consider a cylindrical bar magnet (which is essentially an axi-symmetric object)
made to rotate about its axis, and a circuit is made by making contacts with its axis (i.e. the shaft
of the magnet) and with its equator, as shown in Figure 10.25. When these sliding contacts are

Figure 10.25 A rotating cylindrical bar magnet.
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The inventor suggested this to be a dc generator without moving contacts, because the induced
emf is (by the flux cutting rule):

E = Blv = Bmvml cos2wt = 
⎛ ⎞
⎜ ⎟⎝ ⎠

1
2

 Bmvml(1 + cos 2wt) (10.59)

i.e. the generator produces a steady voltage, plus a double-frequency component which can be
filtered out.

This argument is wrong, because the above component is really based on the part (v ¥ B),
i.e. the motional emf component only and completely ignores the transformer component.

So we use the general induction theorem:

( )
C S C

d d d
t

∂Ê ˆ◊ = - ◊ + ¥ ◊Á ˜∂Ë ¯Ú ÚÚ ÚB
E l S v B lv v (10.60)

where the second term has been converted into a line integral by the Stoke’s theorem, for the
convenience of calculation. We consider the contribution to the emf due to the motion of the
rod, i.e.

m m

0

( ) ( v cos cos )

l

z y yd t B t dlw w¥ ◊ = ¥ ◊Ú Úv B l i i iv
                        2

m m m m
1

– v cos v (1 cos 2 )
2

B l t B l tw w= = − + (10.61)

(assuming that the flexible leads contribute nothing).
Now we calculate the contribution due to the variation of B, assuming the wire or the rod

to be ‘frozen’ at the position shown, so that:

m( sin ) ( )
z

z z

a

d B t ldz
t

−

∂⎛ ⎞ ⋅ = − ⋅⎜ ⎟∂⎝ ⎠∫∫ ∫B
S i iw w

         = -wBml(z + a) sin wt (10.62)

Now from Eq. (10.57), Ωv¢Ω = 
dz
dt

 = vm cos w t

\
mv

sinz t
⎛ ⎞= + ⎜ ⎟
⎝ ⎠

ww

Figure 10.26 Principle of operation of the commutatorless dc generator.
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Hence, substituting for z in Eq. (10.62), we get

m m m
1

sin v (1 cos 2 )
2

d B la t B l t
t

∂⎛ ⎞ ⋅ = − − −⎜ ⎟∂⎝ ⎠∫∫ B
S w w w (10.63)

\ Substituting from Eqs. (10.61) and (10.63) in Eq. (10.60), the induced emf is

E = 
C
Úv E ◊◊◊◊◊ dl = Bmw la sin wt - Bmlvm cos 2w t (10.64)

Thus, the output of the device contains a fundamental frequency term along with a second
harmonic term, and no direct current.

10.7.4 A Rectangular Copper Plate Moving with Constant Velocity v
through a Uniform Magnetic Field

As shown in Figure 10.27, the copper plate moves with a constant velocity v through a uniform
magnetic field B. An electrostatic voltmeter is connected to the plate through the sliding
contacts.

The force per unit charge, F = E + v ¥ B.
In this case, v = izv, and B = iyB.

\ F = (iz ¥ iy)vB = - ixvB (10.65)

Figure 10.27 A rectangular plate type unipolar generator.
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This causes the electrons to flow in the x-direction, with the positively charged region near the
top, and the negatively charged region near the bottom. The equilibrium is reached when the
electrostatic forces equal the motional force. The voltmeter reading is, then = Blv. In this case,
there is no transformer emf.

10.7.5 An Expanding Rectangular Loop in a Time-varying Uniform
Magnetic Field

A rectangular loop as shown in Figure 10.28, has a sliding conductor moving with a constant
velocity v. The flux density B is perpendicular to the loop, and is uniform spatially in the whole
region. The magnitude of the flux density, however, varies everywhere harmonically with time as
B = Bm cos wt. In this problem,

B = izBm cos wt and v = ixv
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\ ∂⎛ ⎞= − ⋅ + × ⋅⎜ ⎟∂⎝ ⎠∫∫ ∫12 ( )
S C

E d d
t
B

S v B l

Transformer emf

m sin andz zB t d dxdy
t

∂ = − =
∂
B

i S iw w

\ ∂⎛ ⎞
⎜ ⎟∂⎝ ⎠t

B
 ◊◊◊◊◊ dS = - wBm sin w t dxdy

\
v

m m

0 0

sin v sin
y l x t

S y x

d B t dy dx l tB t
t

= =

= =

∂⎛ ⎞− ⋅ = = +⎜ ⎟∂⎝ ⎠∫∫ ∫ ∫B
S w w w w (10.66)

Motional emf

(v ¥ B) = - iyvBm cos w t, the only contribution is from the sliding conductor, i.e. dl = iydy,
and

\ (v ¥ B) ◊◊◊◊◊ dl = - vBm cos wt dy

C
Úv (v ¥ B) ◊◊◊◊◊ dl = - vBm cos w t

=
∫

0

l

y

dy = - vBml cos wt (10.67)

\ E12 = vBml (w t sin w t - cos w t) (10.68)

In this problem, if the velocity v is not a constant quantity, but varies exponentially with time
which is given by:
v = ix fegt, where the time is measured as zero at the instant the moving conductor leaves the
y-axis of Figure 10.28. In this case:

v = ix fegt = 
dx
dt

or

0 0

( 1)

t
t

g t gt g t

t

f f
x fe d t e e

g g
=

Ê ˆ Ê ˆ= = = -Á ˜ Á ˜Ë ¯ Ë ¯Ú
and

B = izBm cos wt

Figure 10.28 An expanding loop in a time-varying magnetic field.
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Transformer emf

∂
∂t
B

= - izwBm sin w t and dS = iz dx dy

\     
( 1) /

m

0 0

sin

gty l x e f g

S y x

d B t dy dx
t

= = −

= =

∂⎛ ⎞− ⋅ = +⎜ ⎟∂⎝ ⎠∫∫ ∫ ∫B
S w w

              = wl 
⎛ ⎞
⎜ ⎟⎝ ⎠

f
g

(egt – 1) Bm sin wt (10.69)

Motional emf

(v ¥ B) = - iy fe gtBm cos w t and dl = iy dy

\ (v ¥ B) ◊◊◊◊◊ dl = fe gtBm cos wt dy

C
Úv (v ¥ B) ◊◊◊◊◊ dl = - fe gtBm cos w t 

=

=
∫

0

y l

y

dy = - f lBmegt cos wt (10.70)

\ E12 = f lBm ( 1) sin cosgt gte t e t
g

⎡ ⎤− −⎢ ⎥⎣ ⎦
w w w (10.71)

10.7.6 A Rectangular Loop Rotating in a Uniform Magnetic Field
(Basis for an AC Generator)

We now consider a rotating rectangular loop in a steady magnetic field as shown in
Figure 10.29. The loop rotates with an uniform angular velocity w radians/second. This

(a)

Figure 10.29 A simple AC generator: (a) perspective view and (b) cross-section
perpendicular to the axis.

(b)
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arrangement is essentially a simple alternating current generator, the induced emf appearing at
the terminals connected to the slip-rings. If the radius of the loop is R (or width is 2R) and its
axial length l, we can evaluate the total induced emf in the loop as follows.

This is a case of motion only, and hence the total induced emf will be given by

E = Úv (v ¥ B) ◊◊◊◊◊ dl = 2vBl sin q
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Since
q = w t, E = 2wRlB sin w t (10.72)

The factor 2 is due to the two conductors of length l moving through the B field
and the emfs in both supporting each other. Also, 2Rl = A, the area enclosed by the loop,
and so:

E = wBA sin wt (10.73)

Since (∂B/∂t) = 0, there is no transformer emf, and the above equation gives the total induced
emf.

Let us next consider the same loop rotating in an uniform magnetic field which is
now varying harmonically with time at the same angular velocity as that of the rotation of the
coil, i.e.

B = Bm sin w t

and hence, when t = 0, B = 0 and q = 0.
The induced emf will now have both the components, i.e. the motional as well as the

transformer. We first calculate the motional emf, i.e.

  Emotional = Úv (v ¥ B) ◊◊◊◊◊ dl = 2wRlBm sin2wt

= wRlBm - wRlBm cos 2w t (10.74)

The derivation is similar as for Eq. (10.72). And, next, due to the time-varying B,

2
transformer m2 cosd RlB t

t
w wB

S
∂⎛ ⎞= − ⋅ = −⎜ ⎟∂⎝ ⎠∫∫E

                                           = -wRlBm - wRlBm cos 2w t (10.75)

\ The resultant induced emf is

E = Emotional + Etransformer = -2wRlBm cos 2wt (10.76)

Thus the resultant induced emf has a frequency which is twice that of the rotation of the coil or
of the magnetic field. Though each component of the induced emf shows the presence of a time-
independent component in it, the resultant emf has only the time-varying component, because
the time-independent parts being of opposite polarity get cancelled out.

10.7.7 Faraday Disc or a Homopolar Generator (A Problem with
Relative Motion between the Line of the Circuit and the
Material Itself)

This is the second problem in which the Neumann’s law seems to give the wrong result, the
first one being in Section 10.7.2 in which case also, the apparent flux-linkage in the circuit
appeared to be zero at all time . In the present problem, we have a circular conducting disc of
conductivity s rotating at a constant angular velocity of w radians per second in an uniform
steady magnetic field B (at right angles to the plane of the disc). The magnetic field can be
generated by an N-turn coil wound on a surrounding magnetic circuit or by the poles of a
permanent magnet.
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A rigorous analysis of the problem would be discussed later when we consider the
explanation of the electromagnetic phenomena as seen by an observer in relative motion, in
Chapter 20 of this book. At that time, we shall discuss those aspects of electromagnetic
induction, which we cannot analyze completely until we have written down the Maxwell’s
equations and the Lorentz force equation on the basis of the special relativity. At this stage, we
offer the explanation given by Prof. G.W. Carter in his book , to show how the correct behaviour
of the Faraday’s disc can be understood and explained without going into the formal
mathematics of special relativity. The explanation is as follows:

The equation E = - (dF/dt) always gives the induced emf correctly, provided the
flux-linkage is evaluated for a circuit so chosen that at no point are the particles of
the material moving across it.

Thus the emf generated by the Faraday’s disc can be evaluated by the circuit shown in
Figure 10.30(b). From the rim contact point Q, the circuit cannot proceed directly straight to the
shaft P, but must follow a marked radius PR by which it makes its way to the shaft. Because this
radius is fixed to the material of the disc, the flux-linkage of the sectoral area PRQ is continually
increasing. Hence the induced emf is given by

w w⎛ ⎞= − = ⎜ ⎟⎝ ⎠∫ 2

0

1
2

a

B rdr BaE

The direction of E is shown by the arrow.
The same method can be used for calculating the induced emf due to the rotating

cylindrical bar magnet. The complete behaviour of the Faraday’s disc and the Homopolar
machine will be discussed in Chapter 20. However before closing this chapter, we shall tabulate
(Table 10.1) the behaviour and the operating principles of different types of generators and
motors, based on our study in the present chapter and Chapter 20.

When the voltmeter is connected across the device as shown in Figure 10.30(a), it will be
seen that the flux-linkage across the circuit is permanently zero, and hence this would lead to the
apparent conclusion that the induced emf in the circuit is zero.

Figure 10.30 A Faraday disc.
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Table 10.1 Common generators and motors

Type   Rotor       Stator
Field Current

Generator Motor
production distribution

Homopolar Metal Disc Permanent Permanent Slip rings Faradays disc Barlow’s wheel
magnet or pole magnet or Lorentz disc
pieces and field separately Homopolar
winding excited generator

Heteropolar Drum Pole pieces and Self excited Commutator DC generators DC motors
armature field winding (a) Series Small AC
with multiple wound motors
windings (b) Shunt or

compound
wound
separately
excited

Heteropolar Drum Pole piece and Separately Slip rings Small AC AC
armature field windings excited generators synchronous

motors

Heteropolar Pole piece Stator windings Separately Slip rings Large AC AC
field one set per excited generators synchronous
windings phase motors

Induction Squirrel Stator windings AC induction
cage or one set per phase motors
conductors

PROBLEMS

10.1 Sketch the current waveform when a direct voltage is applied to a pure inductance.
What limits the current and what determines the initial rate of rise of current, in a
practical coil?

10.2 A single-turn circular coil, having a diameter much greater than the thickness of the
wire, has a resistance of 0.012 W. When the coil carries a 50 Hz current of 5 amps, the
voltage across the coil is 65 mV. Estimate the open-circuit induced emf in an exactly
similar coil taped to the first.

Ans.: 25 mV

10.3 A solenoid is wound on a long former of square cross-section and containing no
magnetic material. It is bent round into a toroid of internal and external radii a and b
respectively. A straight thin cable of infinite length passes along the axis of the toroid
at right angles to its plane. Show that the mutual inductance between the cable and the
toroid is

2 2

0 ln henry
2

b a b
M n

a
− ⎛ ⎞= ⎜ ⎟⎝ ⎠

m

where n is the mean number of turns per metre on the solenoid.
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10.4 Calculate the inductance of a 500-turn coil wound on a toroidal core having an outer
diameter of 15 cm, inner diameter of 10 cm, a squae cross-section and a relative
permeability of 100. What error will be introduced by assuming that the magnetic flux
density was equal to the flux density at the mean diameter multiplied by the area.

Ans.: L = 0.4 mH
% error 1.2%

10.5 A steel bar with circular cross-section has two
windings on it as shown in the adjoining figure.

At first the switch S1 in the exciting winding
is permanently closed, and the switch S2 in the
second winding is opened and closed periodically.

In the second experiment, the switch S2

is permanently closed, and the switch S1 in
the exciting winding is opened and closed
periodically.

How would the galvanometer behave in both
these experiments? Give reasons for your
conclusions.

10.6 A steel bar of circular cross-section is wound with
an exciting winding as shown in the adjoining
figure.

At first the steel bar is rotated at a certain
speed, keeping everything else stationary.

In the second experiment, only the circuit
PQG is made to revolve round the bar such that
PQ is always parallel to the axis of the bar and the
plane of the circuit is always in a fixed r–z plane.
Everything else is now stationary.

How would the galvanometer in the circuit
PQG behave in these two experiments? Give
reasons for your conclusions.

S2

S1

G

P

Q
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11.1 ENERGY RELATIONS IN QUASI-STATIONARY
ELECTROMAGNETIC FIELDS

11.1.1 Introduction

It should be understood that to establish any static system it is necessary to have a transient, non-
stationary process until the final, static state is attained. This is true even in the case of the
electrostatic fields where the transient process implies a ‘non-electrostatic’ process of bringing the
charges to their desired positions or on to the conducting bodies. In the case of the static
magnetic fields, this transient process starts as soon as the currents are switched on, or
(theoretically) when the current systems are being brought from the infinity, and this (transient)
process ends when all the currents of the system can be considered as steady.

During the transient process, the charging currents would induce certain electromotive forces
in the relevant contours, though at the end of the process no induced emf’s would remain. In order
to calculate the energy of the system, i.e. the energy required to establish the desired current
distributions, the existence of these induced emf’s must be taken into account. It is for this reason
that before analyzing the energy relations in a static magnetic field we had to learn and
understand the phenomenon of electromagnetic induction. Now we shall consider, more generally
the quasi-stationary systems and then the relations for the static magnetic systems would be
deduced as a special case of the more general system.

11.1.2 The Energy Required to Establish a Magnetic Field

Let us assume an arbitrary quasi-stationary current system produced by a time-varying electric
field Ei. The current density J of the time-varying currents produced by this field is

i tot i( ) grad V
t

s s ∂⎛ ⎞= + = − −⎜ ⎟∂⎝ ⎠
A

J E E E (11.1)

where Etot is due to the quasi-stationary charges on the conductor surfaces (the term -grad V) and
to the varying currents (i.e. the accelerated charges) inside the conductors (the term -∂A/∂t). To

Forces and Energy
in the Static and
Quasi-Static
Magnetic Fields11
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obtain the energy relations, we first determine the power required to maintain the time-varying
currents and hence the corresponding magnetic fields. So we multiply Eq. (11.1) by Jdv/s, where
dv is the volume element in which the current density is J and the conductivity s. Integrating the
product over the whole volume v, we get

s
⎛ ⎞ ∂⎛ ⎞⋅ = + ⋅ + ⋅ ∇⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂⎝ ⎠⎝ ⎠∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫

2

i ( )
v v v v

J
dv dv dv V dv

t

A
E J J J (11.2)

The left-hand side of this equation represents the power of the external forces acting on the free
charges in the system, and the right-hand side terms describe how this power is being used up.

The first term on the right represents the power which is being transformed into heat in the
whole system. This is known as the ‘Joule’s heat’. The third term is that part of the power of the
external forces which is used against the forces of the electric field created by the quasi-stationary
distribution of the charges. The second term represents that part of the power of the external forces
which is used against the forces of the quasi-stationary electric field (∂A/∂t) created by all the
varying currents of the system at the instant considered. It is this term which is associated with
the energy required to establish some current distributions and hence the magnetic field. This we
denote by Pm,

m

v

P dv
t

∂⎛ ⎞= ⋅ ⎜ ⎟∂⎝ ⎠∫∫∫ A
J (11.3)

This equation is valid generally, and the only restriction imposed on this relationship is that the
field must be quasi-stationary. The region v may contain nonlinear, ferromagnetic materials, or
even a part of Pm may be used for doing mechanical work in moving some bodies of the system
by means of the magnetic forces. For linear stationary media, this equation can be simplified, as
we can write, J = J0 f(t) where J0 is a function of position only. So the magnetic vector potential
A also must be of similar form, i.e. A = A0 f(t). By substituting in Eq. (11.3), it reduces to

∂⎛ ⎞ ⎛ ⎞= ⋅⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠∫∫∫m
1

2
v

P dv
t

J A (11.4)

To obtain the energy, we multiply these equations by dt (a small time element) and integrate them
with respect to time over the interval t = 0 to t = t, and we get

∂⎛ ⎞= ⋅ = ⋅⎜ ⎟∂⎝ ⎠∫ ∫∫∫ ∫ ∫∫∫m

0 0

t t

v v

W dt dv d dv
t

A
J J A (11.5)

and

⎛ ⎞ ⎛ ⎞= ⋅ = ⋅⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∫ ∫∫∫ ∫∫∫m

0

1 1

2 2

t

v v

W dt dv dvJ A J A (11.6)

Equation (11.5) is valid generally, and Eq. (11.6) is restricted to the linear stationary media.

11.2 POTENTIAL ENERGY OF A CIRCUIT IN A MAGNETIC FIELD

We now consider a specific circuit placed in a magnetic field. So we take a circular coil carrying
a current I, placed in a magnetic field B. This will be subject to a torque T, given by

T = IS ¥ B (11.7)
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where S is the vector area covered by the coil (Figure 11.1).

\ T = ISB sin q

Figure 11.1 A circular coil in a magnetic field.
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The torque exerted on the coil tends to turn it so that its normal aligns itself with the direction of
B (so as to maximize its flux-linkage). If now we consider an extraneous torque twisting the coil
away from this direction of alignment, then the work done by this extraneous torque against the
generated torque T may be considered to be stored as the ‘potential energy’. If the current loop is
now allowed to turn back, then the stored energy is recoverable.

Let us now set an arbitrary datum line, i.e. let the potential energy be = 0, when q = 0.
\ Potential energy U when q = q (a finite value), is

q

q q q= = −∫
0

sin (1 cos )ISB d ISB (11.8)

where B cos q = the component of B in the direction of the coil-axis ON.

\ SB cos q = F = the flux linked by the coil; and

SB = F0 = the flux linked by the coil when its axis is aligned with the direction of B.

\ U = IF0 - IF = U0 - IF (11.9)

It should be noted that U0 is a constant for the coil. Since, in general, we are concerned with the
energy differences (in only two positions), in these subtractions U0 will cancel out. So, without
any loss of generality, we can drop out the constant U0 from the expression for the potential
energy, i.e.

U = -IF (11.10)

In fact, this amounts to saying that the potential energy is zero when q = p /2, that is when no
flux is linked with the coil. In the next step, we now generalize it for any extensive circuit which
can be considered to be made up of a mesh-work of small circular loops, all carrying the same
current I. Hence, we get

U = U1 + U2 + U3 + U4 + ...

= -I (F1 + F2 + F3 + F4 + ...)

 = –I ¥ Flux through the extensive circuit (11.11)
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11.2.1 Location of the Stored Energy of a Circuit

Let a circuit be so moved or deformed that the flux linked by it is reduced by an amount denoted
by dF.

Then, the increase in its potential energy, dU = IdF.
Let the current be maintained at the constant value I, during this process of change, by some

external source of power, and let the time interval required for this flux change be dt.
Then, by the Neumann’s law, the emf induced in the circuit during this time interval is

t

d
d
F=E

and, since, dF denotes the decrease in the flux, the direction of E would be such as to support the
flow of the current.

\ The energy drawn from the battery is reduced by an amount

= EIdt = IdF = dU

the battery is now storing the energy. On the other hand, if the circuit is so deformed as to
increase the flux-linkage, the energy from the battery is drawn out. Thus it is seen that the
equation for the induced emf and the potential energy of the circuit are linked with each other, by
the way of the ‘principle of conservation of energy’.

11.3 FORCES ON A CURRENT-CARRYING CIRCUIT IN A
MAGNETIC FIELD

So from the knowledge of the potential energy of a circuit, it is possible to calculate the force on
a current-carrying circuit placed in a magnetic field.

Let us assume a deformable circuit carrying a current I placed in a magnetic field B
(Figure 11.2), which makes an angle q with the direction of the element d l. If the element is
moved in the direction of the circuit [Figure 11.2(b)] or in the direction of B [Figure 11.2(c)], then
in either case, there has been no change in the flux-linkage of the circuit, and hence no change in
its potential energy, and so

the work done = 0

(a)

B

I

I

BB

dl

dF

(b)

(c) (d)

Figure 11.2 A deformable circuit in a magnetic field B.
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\ The electromagnetic force on the element d l must act normally to both B as well as the
element dl of the circuit. If, now, under the influence of this force dF, the element dl is allowed
to move a distance dx, in the direction of dF, then the extra flux linked by the circuit
[Figure 11.2(d)] due to this deformation is

                                  dF = B sin q dx d l

\ Decrease in potential energy = IB sin q dx d l

= work done by dF

= dF ◊◊◊◊◊ dx

\                            dF = IB sin q d l (11.12)

and dF is perpendicular to both d l and B such that it tends to increase the flux linked by the
circuit, (i.e. a rotation from the direction of I to the direction of B is right-handed about the
direction of F).

If the wire has a finite cross-section A, so that the current density is J, then I = JA. Also,
Ad l = dv—a volume element in the conductor. Hence, Eq. (11.12) can also be written as

dF = JB sin q dv (11.13)

11.4 FORCE ON A MOVING CHARGE IN A MAGNETIC FIELD

While studying the electromagnetic force on the current-carrying wires, J.C. Maxwell had
commented that the mechanical force impelling a current-carrying conductor across the lines of
magnetic force, acts on the conductor and not on the current in the conductor. This conclusion
was based on the experimental observation that when an electric current flows across a magnetic
field, there is a force pushing the conductor sideways, but “has no tendency for the line of flow of
the current to move within the conductor”. This latter part of the statement has been shown to be
strictly incorrect as we have already seen in Section 9.3.1. This effect (i.e. the Hall effect) is a
consequence of the Lorentz force component acting upon the free charges in the current-carrying
media. This effect can be well observed in the beam of electrons in a cathode-ray tube. It should
be understood that the force is primarily on the electrons. But when the electrons are moving in
a conductor under the influence of the force, their (i.e. the electrons) motion gets halted by the
collisions with the lattice structure of the conducting material, as a result of which the force gets
transferred from the charges to the conductor which carries them.

We now consider a tubular stream of charges Q moving with an average velocity v. Let
there be N charges per unit volume of the stream and its cross-section be A. In a time-interval d t,
the charges in a cylinder of length vd t would cross a section of the tube at P, and the total charge
in the cylinder is NQvAd t (Figure 11.3).

vd t

Area AVelocity v

P

Figure 11.3 A stream of moving charges.
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\ The current in the stream = NQvA, and

the current density J = NQv (11.14)

\ The force dF on a volume element dv of the stream is

dF = (NQvB sin q)dv

But the number of the charges in this volume element is Ndv.
\ The force on each charge is

Fm = QvB sin q (11.15)

The direction of this force, for positive Q, is at right angles to the plane containing the vectors
v and B and its sense is such that a rotation from the direction of v to the direction of B is right-
handed about the direction of Fm, i.e.

Fm = v ¥ B (11.16)

When the charges are electrons, the direction of the force is opposite to that mentioned above.
This formula has been well checked experimentally.

11.5 CALCULATION OF FORCES ON CIRCUITS (BASED ON
THE POTENTIAL ENERGY)

Using the knowledge of the potential energy of the system, the forces on many forms of circuits
can be calculated. This can be done either from the energy of the whole circuit, or by adding up
the contributions from each element of the circuit. If a circuit is bodily moved in a direction by
a distance dx, and the force in that direction is Fx, then

the decrease in the potential energy = Fx dx (= - dU )

\ x
U

F I
x x

F∂ ∂⎛ ⎞= − = ⎜ ⎟∂ ∂⎝ ⎠
(11.17)

Similarly, if a circuit rotates about an axis by an angle dq, then the torque about the axis is

U
T Iq q q

F∂ ∂⎛ ⎞= − = ⎜ ⎟∂ ∂⎝ ⎠
(11.18)

We shall now consider some examples of forces on some typical circuits.

11.5.1 Forces between Stationary Current Systems (The Ampere–
Laplace Law or the Ampere’s Law of Forces)

We consider the two current-carrying conductors with steady currents, the charges moving inside
which act on each other by the forces given by Eq. (7.1). Thus the resultant force on the two
conductors is equal to the sum of the forces between all the pairs of the elemental charges. To
determine the macroscopic forces between the two conductors, instead of adding up all these
elemental forces together, we consider the average velocity and the density of the charges, and
then the total force is taken as an infinite sum of the elemental forces acting between the pairs of
physically small volumes with the moving charges inside them.
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So let us consider two elemental volumes dv1 and dv2 inside a stationary or quasi-stationary
current field (Figure 11.4). These elements can belong to the same current-carrying conductor or
may be of two different conductors, between which the force is to be determined. Now, let the
charge of the free charge carriers be Q, their average velocities in dv1 and dv2 be v1 and v2,
respectively, and there are N1 and N2 charges per unit volume of the two systems respectively. If
r is the distance between dv1 and dv2, then the magnetic force on all the moving charges in dv2,
due to all the moving charges in dv1 is given by

dFm12 = 
m d d
p

× ×⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠

0 2 2 1 1 12
1 22

( )

4

N Q N Q
v v

r

v v u

                            = 0 2 1 12
1 22

( )

4
v v

r

m d d
p

× ×⎛ ⎞ ⎡ ⎤
⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠

J J u
(11.19)

J1

dv1
v1

r
u12

dv2

v2

J2

Figure 11.4 Two current-carrying regions.

Let dv1 and dv2 be the volume elements of the macroscopic current-carrying volumes v1 and v2

respectively. Hence the total force by which the currents in v1 act upon the currents in v2 is
given by

Fm12 = 

2 1

0 2 1 12
1 22

( )

4
v v

dv dv
r

m
p

× ×⎛ ⎞ ⎡ ⎤
⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠ ∫∫∫ ∫∫∫ J J u

                             = 
m
p

×⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ∫∫∫

2

0 2 1
224

v

dv
r

J B
(11.20)

by Eq. (7.16), according to which the integral over v1 is the magnetic flux density vector B1

produced by the currents in the volume v1, at the points in v2. This is the most general formula for
the magnetic force acting between the two current-carrying regions.

Now we consider the practically important case of the two quasi-filamentary current-carrying
contours with the currents I1 and I2. Then we can write as

J1dv1 = J1(DS1 ◊◊◊◊◊ d l1) = I1d l1 and J2dv2 = J2(DS2 ◊◊◊◊◊ d l2) = I2d l2

Hence for the two closed contours C1 and C2 (Figure 11.5), Eq. (11.20) becomes
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Fm12 = 

1 2
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⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠ ∫ ∫ l l u

(11.21)

I1

C2

d l2

u12

r

d l1 I2

C1

Figure 11.5 Two closed current filaments.

This expression for the force between the two filamentary current-carrying contours is referred to
as the Ampere–Laplace law or sometimes as the Ampere’s force law.

Reminding ourselves that the ‘Biot–Savart’s law’ gives the magnetic flux density created by
a current in a contour as [see Eq. (7.17)]

B12 = 

1

0 1 1 12
2
24

C

I d

r

m
p

¥Ê ˆ
Á ˜Ë ¯ Ú l u

at the point where the element dl2 of the contour C2 is located. Hence we can rewrite the force
equation (11.21) in the general form (dropping all the subscripts)

Fm = 
C

I d ¥Ú l B (11.22)

Hence if a current element (I dl) is situated in a magnetic field of flux density B, the elemental
force on the current element is given by

dFm = I dl ¥ B (11.23)

As an application of this method, we consider the force between two infinitely long, parallel
conductors, carrying the same current I, but in opposite directions [parallel go-and-return circuit
(Figure 11.6). The distance between the conductors is d. The magnetic flux density created by the
current I in the conductor (1), at points of the conductor (2) is

B = 0

2

I

d

m
p

I I

F

B

21

d

Figure 11.6 Parallel go-and-return circuit.
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Its direction would be normal to the plane of the paper and into it.
\ The force F per unit length, and acting outwards is

F = IB = 
2

0

2

I

d

m
p

(11.24)

This equation will also hold if the wires have finite cross-section provided the current is
distributed uniformly across the conductor cross-section.

If the parallel conductors carried the currents in the same direction, then the only difference
would be that the force between the two conductors would be attractive instead of repelling.

11.5.1.1 Time-varying currents in two parallel conductors

So far we have discussed only the effects of the time-independent direct currents, but when the
two parallel conductors carrying alternating currents (at low power frequencies, i.e. at 50 Hz or
60 Hz, say) i.e. I sin wt in each, then the force as given by Eq. (11.24) would get modified to

F (per unit length) = 

2
20 sin

2

I
t

d

m w
p

⎛ ⎞
⎜ ⎟⎝ ⎠

                            = 
2

0 1 cos 2

2 2

I t

d

m w
p

⎛ ⎞ −⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

(11.24a)

i.e. apart from a time-independent component of the force which is unidirectional in nature and
has the magnitude [m0I2/(4pd)], there is also a vibratory (or oscillatory) component which
alternates at double the frequency of the alternating currents producing it. This force is quite well-
known in the machine design problems, in particular, for the stator windings of the turbo-
alternators, where the stator slots have two parallel conductors in each, which carry alternating
currents of the same phase or of different phases [Figure 11.6(a)]. These vibratory forces are known
as the ‘bar bouncing forces’, and have to be taken into account for designing the slot wedges and
the spring linings between the conductors and the slot walls.

Current-carrying
conductors

Insulation

Wedge

Figure 11.6(a) Stator slot of a turbogenerator.
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These vibratory forces are somewhat more complicated than as indicated above because in
these machines, the conductors in some of the slots carry currents of different phases. In such
slots, the vibratory component of the force would be of the form [sin w t sin (w t ± 2p /3)] instead
of sin2w t. So now, the vibratory part of the force would now contain both the variations, i.e.
cos 2wt as well as sin 2wt, and the peak value of the force required for the design purposes has
to be suitably modified. It should also be noted that under unbalanced load conditions or some of
the fault conditions, the conductor current can contain a direct current component (or a zero
sequence component), which would produce a vibratory force of the frequency w  in addition to
the double frequency force.

11.5.2 Torque on a Circular Coil Placed in a Uniform Magnetic Field

This is a problem which arises with many measuring instruments. Let us consider a circular coil of
radius a, the total ampere-turns I, and the axis of the coil (ON) making an angle q with the
direction of the magnetic field B (Figure 11.7).

q
B

N

Figure 11.7 A circular coil in a magnetic field.

\ The flux through the coil = pa2B cos q
\ From Eq. (11.18) , the torque is given by

Tq = I
q
∂

∂
(pa2B cos q) = - Ipa2B sin q (11.25)

The negative sign indicates that the torque tends to reduce the angle q. If, for pa2 (the area of the
coil), we write S, the formula becomes

Tq = - ISB sin q = - I ◊◊◊◊◊ ΩS ¥ BΩ
This is the same expression as for the torque of small elemental coils, i.e. Eq. (8.6).
\ Any coil in a uniform magnetic field B may be treated as a ‘small’ coil and dealt with

as though it were a current loop.

11.5.3 Forces between the Turns of a Coil

In this problem, the turns of the coil are considered not as a helix, but as a set of coaxial rings of
radius a and the current I in the same direction [Figure 11.8(a)].

On a particular ring, the flux density due to the other rings = B, inclined to the axis of the
coil at an angle a.

\ The axial component of the magnetic field = B cos a
and the radial component                               = B sin a

We consider the effects of the axial component of B first. This component reacts with the
current I in the turn to produce a uniform outward pressure = BI cos a per unit length.

O
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This sets up a tension in the wire. This tension can be calculated by considering the
equilibrium of half the turn under the influence of these pressures, and the tensions F at the ends
of the semi-circle as shown in Figure 11.8(b).

Figure 11.8 Forces between the turns of a multiturn coil.

F

dq

q

Baxial

F

B

a

(a) (b)

The thrust on an arc dq is = (BI cos a)(a dq).
The component of the thrust in the direction of F, is

= (BI cos a)(a dq sin q)
We consider all such elements in the semi-circle, and hence:

2F = 
0

p

∫ BIa cos a sin q dq

\ F = BIa cos a (11.26)

The 2F is due to F at both the ends of the semi-circle.
Next, the pressure produced by the radial component of the field = BI sin a per unit length

(Figure 11.9).

B radial

dl

I

I

Bradial

Figure 11.9 Effect of the radial component of B on the circular coil-turn.
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\ Force on each element = BI sin a dl, in the axial direction.

\ The total axial force on the turn = BI sin a 
q p

q

q
=

=
∫
2

0

a d

                           = (BIa sin a)(2p) = 2p BIa sin a (11.27)

As all the turns carry the current in the same direction, the direction of the axial force would be
attractive between them, i.e. a compressive force between the turns. Furthermore, the flux lines
near the ends of the coil are divergent, and so it will be seen that near the ends, the turns are
subject to a larger component of the radial flux which would produce a larger axial force in the
direction of the main body of the coil, i.e. the place where the field is the strongest.

Thus, when a power-system reactor (which is basically a large air-cored solenoid, mounted
on a suitably structured insulating former and anchored to it) is damaged by the electromagnetic
forces produced by the passage of excessively large currents (in the range of 10–20 kA), the turns
of the reactor winding get crushed together, whilst each turn shows also the existence of a force
which has tended to tear it apart. This is obvious from the photographs (see Plates 1–3).

The behaviour of the large transformer coils under the effect of such electromagnetic forces
is somewhat different from that of the reactor coils discussed above. In a three-phase transformer,
each core-limb carries both the h.v. and the l.v. coils which are mounted concentrically on the
limb. If such a transformer is damaged during some short-circuit conditions, it seems that near the
coil-ends there is some elongation of the outer end-turns of the outer coil which is the l.v. coil.
This behaviour can be easily explained by considering the direction of the magnetic flux in the
vicinity of these turns and also the direction of the currents in these turns. Since the h.v. and the
l.v. coils carry currents in the opposite directions, and since near the coil-ends there would be a
larger component of the radial flux, the end-turns would be subject to the repelling forces in the
axial direction, tending (the l.v. turns) to move them away from the central coil-turns. This
accounts for the elongation of the end-turns of the transformer coils.

11.5.4 The Motion of a Charged Particle in Magnetic and
Electric Fields

11.5.4.1 The motion of the electric charges in a vacuum under the
influence of the electric field

We consider a point charge Q of mass m, moving in a vacuum under the influence of an electric
field E. The differential equation for the motion of the particle is

2

2

d
m Q

dt
=r

E (11.28)

In the Cartesian coordinates, in the scalar form, this equation becomes

= = =
2 2 2

2 2 2
, ,x y z

d x d y d z
m QE m QE m QE

dt dt dt
(11.29)

Analysis of the motion of the charge implies solving the above equations for some specified
initial conditions. Very often, when the final velocity of a charged particle accelerated by the
electric field is required, we need the information regarding the potential difference between the
initial and the final points of the particle path.
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Work done by the electric field in moving the charge for a length dl is

= dWe = QE ◊◊◊◊◊ d l

This work is done to increase the velocity of the particle, i.e. increase its kinetic energy (K.E.).
Let the velocity at the initial point ‘O’ of the path be = v0. Then the velocity v1 at any point

‘1’ of the path is
1

2 2
1 0 0 1

0

1 1
v v ( )

2 2
m m Q d Q V V

⎛ ⎞ ⎛ ⎞− = ⋅ = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ∫E l (11.30)

This, in fact, is the ‘law of conservation of energy’ in this case.

\ v1 = 2 0 1
0

2 ( )
v

Q V V

m

−
+ (11.31)

When the initial velocity is zero, i.e. v0 = 0, then

v1 = 0 12 ( )Q V V

m

−
(11.32)

A practical application of this problem is the system of accelerating electrons in the electron gun
of the cathode ray tubes.

11.5.4.2 The motion of a charged particle in a static magnetic field

Again we consider a charged particle of mass m and charge Q, moving in a vacuum in a magnetic
field of flux density B. The magnetic force on the charge is given by the Lorentz force equation,
in this case the electric field E being = 0.

Fm = Q(v ¥ B)

where v is the velocity of the particle. So the equation of motion of the particle is

d
m

dt

v
 = Q(v ¥ B) (11.33)

Since (v ¥ B) is perpendicular to the instantaneous velocity v, the kinetic energy of the particle
and the magnitude of the velocity v are constant. In general, v would be evaluated by solving the
three scalar differential equations of (11.33) subject to the specified initial conditions of the
problem.

We first consider the case, where B is static and uniform. If the initial velocity is assumed to
be parallel to B, then Fm = 0 and the motion of the particle will not be affected by the magnetic
field B and the particle will move with its initial velocity along the lines of B.

Next, we consider the case, when the initial velocity is perpendicular to B. Then, ΩFmΩ =
QvB. At each point of the path of the particle, the force on the charge (= Fm) is at right angles to
the motion and hence the velocity remains constant. Thus the particle experiences a constant
acceleration, at every point of its motion, and the acceleration is also at right angles to the
direction of the motion. Its path is therefore a circle with its radius R which is given by

2vm

R
 = QvB, and \ R = 

vm

QB
(see Figure 11.10) (11.34)
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The angular frequency of the particle, then, is

C
v QB

R m
= =w

and the true frequency is

C
C 2 2

QB
f

m

w
p p

= =

This is known as the ‘Cyclotron frequency’ which depends only on the Q/m of the particle and
the magnetic flux density. It is independent of the radius and the velocity (so long as v << c).

We now consider the next general case when the angle between the particle’s velocity
vector v and the magnetic flux density vector B is an angle a . We resolve the velocity v into two
components, i.e. a component parallel to B is

vB = v cos a

and the component perpendicular to B is

v^̂̂̂̂B = v sin a

The trajectory of the particle is then a ‘helix’, whose radius is

v v sinBm m
R

QB QB
⊥= =a

a

and has the pitch

2 2 v cos
v

v
a

B
B

R m
k

QB⊥
= =

p p a
(11.35)

(Refer to Figure 11.11.)

Fm = Q(v ◊ B)

v

Fcentrifugal

Figure 11.10 A charged particle moving at right angles to a uniform magnetic field.

Pitch of the helixv

v sin a

v cos a

a
B

Figure 11.11 Helical path of a charged particle in a uniform B field.
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The axis of the helix coincides with the direction of B. An example of this behaviour in
(though non-uniform) B is that of the charged particles entering the earth’s magnetic field from
the outer space. These particles drift towards the north and the south poles, and the interaction
between these particles and the air molecules in the upper layer of the atmosphere is believed to
be the cause of the aurora.

11.5.4.3 The motion of a charged particle under the simultaneous
action of the magnetic and the electric fields

When a charged particle is moving in a region where both the magnetic and the electric fields
exist, the total force on the particle is the complete Lorentz force, and its equation of motion is

d
m

dt

v
 = QE + Q(v ¥ B) (11.36)

(a) Parallel and uniform E and B. We first consider the situation where both E and B are
parallel (Figure 11.12). A charge Q is projected with a velocity v as shown in the figure,
and experiences the force shown. The force due to the E field is (QE) acting in the
y-direction, i.e. Fy = QE, which will cause the particle to be deflected in the y-direction
(i.e. along E), by an amount y, i.e.

2

22 v

QEl
y

m
= (11.37a)

Fy = QE

E

B

v (into the plane of the paper)

Fx = QvB

Figure 11.12 Charges in parallel E and B.

where l is the distance traversed in the z-direction.
The magnetic field B (also in the y-direction), produces the force Fx in the x-direction which

is Fx = QvB, and this force causes a deflection in the x-direction which is given by
2

2 v

QBl
x

m
= (11.37b)

This is because the magnetic force only alters the direction of motion along a circular trajectory
and not the speed, the radius of curvature of the path being given by Eq. (11.34). Eliminating v
from the two above equations, we get

2
2 2

2mE
y x

QB l

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
(11.38)
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i.e. in a plane of given l (= the distance traversed in the z-direction), the particles of any velocity
but with a definite (Q/m) will be distributed along a parabola.

(b) E and B at right angles. We consider a parallel plate diode with the static B parallel
to the plates (Figure 11.13), and study the trajectory of an electron of charge (-e) and
mass m, starting from the negative plate with the initial zero velocity, and from the
point which we take as the origin of our coordinate system as shown in the figure.

z = dz

Fe

v

–e

y
O

x

–

+

z = 0

B

E

Figure 11.13 A parallel-plate diode with transverse magnetic field.

The equations of motion for the particle are

v
vy

z

d
m e B

dt
= (11.39)

and

v
vz

y
d

m eE e B
dt

= − (11.40)

Since vz = dz/dt, integrating Eq. (11.39) with respect to time, we get

mvy = ezB + C, where C = 0, since vy = 0 at z = 0

\ vy = ezB/m, and substituting in Eq. (11.40), we get
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Its solution is

2
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Using the initial condition that for t = 0, z = 0 and dz/dt = 0, we get
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These are the parametric equations of a cycloid—a combination of the linear motion and the
circular motion.

The largest distance of the electron from the cathode is
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(11.43)

and, hence the current through the diode exists only if

zmax > d

i.e. if for a given E, the flux density B is such that

2
, aVEm

B E
ed d

> = (11.44)

(Va being the applied potential difference between the plates of the diode), then there will be no
current through the diode. If B is smaller than the above quantity, all the electrons emitted would
reach the anode. This is known as the ‘magnetron effect’.

11.6 ENERGY STORAGE IN THE FIELD OF A COIL

We consider a coil of resistance R and self-inductance L (which is assumed to be constant, i.e. an
air-cored coil). An emf E is applied to the terminals which gives a current I in the coil. The
relationship for the coil is given by the equation

E = RI + 
dI

L
dt

We can rewrite this equation as

EI = RI2 + 
⎡ ⎤⎛ ⎞= + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

2 21

2

dI d
LI RI LI

dt dt
(11.45)

In the above equation, the left-hand-side term EI expresses the rate of energy input to the circuit,
and RI2 gives the rate of dissipation of the energy in the circuit resistance. This equation shows
that a part of the energy input to the circuit gets dissipated in its resistance, and the rest increases
the quantity (1/2)LI2 which is called the ‘stored energy’ of the coil. A practical demonstration of
this stored energy is seen when a circuit is suddenly broken by opening the switch, an arc flashes
across the switch contacts. The stored energy increases when I increases, and decreases when I
decreases. In an alternating current circuit this energy is stored and taken out twice in each
alternation.
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This energy is being regarded as stored in the magnetic field, and that it is possible to
regard a quantity of the stored energy to be associated with each unit volume of the field.

11.7 ENERGY STORAGE IN THE FIELD OF SEVERAL COILS

We consider a group of N coils with currents i1, i2, i3, ..., iN, and let their flux-linkages be F1, F2,
F3, F4, ..., FN, respectively. We wish to calculate the stored energy of the system, and so we
suppose that the currents are built up gradually, such that at each instant each current has the
same fraction k (< 1) of its final value. So when the currents are ki1, ki2, ki3, ..., kiN, respectively,
the corresponding fluxes will be kF1, kF2, kF3, kF4, ..., kFN. In a time interval dt, the currents and
the fluxes are increased by an additional fraction dk.

Then the induced emf in the circuit 1, say, is F1dk/dt, which is opposite in direction to the
current ki1.

To maintain this current, the energy source in the circuit 1, must supply to it (the circuit1),
at the rate which is given by

1 1( )
k

ki
t

d
d

F

\ The energy supplied during this time-interval dt is = i1F1k dk.
\ The total energy supplied to all the N coils during this time-interval dt is

kdk (i1F1 + i2F2 + i3F3 + ... + iNFN)

\ The total energy supplied during the whole process of the current build-up is

1

0

( )k k i Wd S F
⎧ ⎫⎪ ⎪ =⎨ ⎬
⎪ ⎪⎩ ⎭
∫

\ S F⎛ ⎞= ⎜ ⎟⎝ ⎠
1

2
W i (11.46)

This expression has been derived for the current-carrying wires which are infinitely thin, so that F
is exactly defined. With wires of finite thickness, the current in each wire can be divided into thin
filaments of current, and thus calculate the stored energy using each filament as a separate circuit.

Now, we express the energy W in terms of the self- and the mutual-inductances of the
circuits.

We note that F1 due to i1 only = L11i1,
and that F1 due to i2 only = M12i2.
\ The flux due to all the currents in all the N circuits

F1 = L11i1 + M12i2 + M13i3 + ... + M1NiN
F2 = M21i1 + L22i2 + M23i3 + ... + M2NiN

                                                .                 .      . .
                                                .                 .      . .
                                                .                 .      . .

FN = MN1i1 + MN2i2 + MN3i3 + ... + LNNiN (11.47)

Note that Mnm = Mmn (a general proof of this reciprocal property based on the stored energy
follows immediately).
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Multiplying each flux by the corresponding current, i.e. F1 by i1, F2 by i2, F3 by i3, . . .,

FN by iN, and adding up, the expression for the stored energy is

2 2 2
11 1 22 2 12 1 2 13 1 3

1 ... ...2 2
2 NN NW L i L i L i M i i M i i

⎛ ⎞ ⎡ ⎤= + + + + + +⎜ ⎟ ⎣ ⎦⎝ ⎠
(11.48)

The expression for a single coil is a particular case of this general expression.

11.7.1 Reciprocal Property of Mutual Inductance

This property for the two circuits was stated in the Section 10.6 without giving a proof for it . So,
now we prove it for the two circuits with mutual inductance, by considering the energy in them.
Let the currents i1 and i2 (in the two circuits) be established in them, first by bringing the current
in the circuit (1) to the value i1, and then the current in the circuit (2) to the value i2.

The establishment of the current i1 requires the energy, i.e.

2
11 1

1

2
W L i

⎛ ⎞= ⎜ ⎟⎝ ⎠
from the source in the circuit (1).

During the establishment of i2, i1 remains constant, and so, there is no change of the flux in
the circuit (2).

\ The energy required from the source in the circuit (2) is simply the amount associated
with i2, i.e.

2
2 22 2

1

2
W L i

⎛ ⎞= ⎜ ⎟⎝ ⎠
While the current in the circuit (2) (let us call it i2¢ during the intermediate stage) is

increasing to its final value i2, it induces in the circuit (1), an emf of value M12(di2¢/dt). With the
positive mutual inductance, this emf makes it more difficult for the current i1 in the circuit (1) to
be maintained at that value. Its maintenance requires an extra amount of energy from the source in
the circuit (1), this being given by

S
′⎛ ⎞= =⎜ ⎟⎝ ⎠
2

3 1 12 12 1 2
di

W i M dt M i i
dt

\ The total energy in the system, when both the currents have reached their final
values, is

2 2
1 2 3 11 1 22 2 12 1 2

1 1

2 2
W W W W L i L i M i i

⎛ ⎞ ⎛ ⎞= + + = + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
(11.49)

If the currents i1 and i2 had been built in the reverse order, then

2 2
22 2 11 1 21 2 1

1 1

2 2
W L i L i M i i

⎛ ⎞ ⎛ ⎞′ = + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
(11.49¢)

Now, W = W¢, otherwise by storing the energy in one order, and depleting it in another order, we
would have a perpetual source of energy.

\ M12 = M21 (This is same as in Section 10.6.)
This is true for the air-cored circuits, and may not be generally true for the iron-cored

circuits.
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11.8 DISTINCTION BETWEEN THE POTENTIAL ENERGY
AND THE STORED ENERGY

The expression for the potential energy is
U = - IF (11.10)

and the expression for the stored energy is

S F⎛ ⎞= ⎜ ⎟⎝ ⎠
1

2
W I (11.46)

As an example, we consider a pair of circuits carrying the currents I1 and I2, respectively, in
the same direction (Figure 11.14).

dx

I2

I1

(1) (2)

Figure 11.14 Energy in two circuits.

The potential energy in the field of either circuit is given by

U = - M12I1I2 (11.49a)

and the stored energy in the field is given by

2 2
11 1 22 2 12 1 2

1 1

2 2
W L I L I M I I

⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ (11.49b)

Let the circuit (2) be moved by a distance dx, so that the mutual inductance between the two
circuits increases by dM12. The potential energy of the circuit then decreases by dM12I1I2 and this
energy is transformed into the mechanical work done by the force acting on the circuit (2). At the
same time, the potential energy of the circuit (1) in the field of the circuit (2) is also reduced by
dM12I1I2. And this is balanced by the energy stored in the field.

The storing places of the potential energy are the current sources in the circuits. An equal
quantity is withdrawn from each source, but only half the amount withdrawn is used in doing the
mechanical work, the rest being stored in the field.

In fact, there are two sources of the energy: the current source, and the field.
Everything is so arranged that for every unit of energy (joule) taken from the source of the

potential energy for the external consumption, a second unit from this source is transferred to
the storage in the field. On the other hand, if the extraneous forces pull the circuits apart, then the
current sources are enabled (through the withdrawal of the energy from the field), to receive
energy equal to twice the work done by the forces. In fact, the ‘stored energy’ is only another
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form of the potential energy. If we are to speak more accurately and rigorously, what we should
say is:

“The potential energy of a group of current-carrying circuits takes two forms: the current-
source-stored energy U, and the field-stored energy W ”.

11.9 FORCES BETWEEN THE TWO CIRCUITS IN TERMS OF
THE MUTUAL INDUCTANCE

From Eq. (11.49b), the potential energy of a circuit (2) in the field of a circuit (1) is given by

U = - M12I1I2

\ From Eq. (11.17),

12
1 2x

MU
F I I

x x

∂∂ ⎛ ⎞= − = ⎜ ⎟∂ ∂⎝ ⎠
(11.49c)

Hence, if the mutual inductance between the two circuits is known, then the force between them
for various spacings can be found out.

11.10 STORED ENERGY IN TERMS OF THE MAGNETIC
FIELD VECTORS

We start from the expression for the stored energy, which is

S F⎛ ⎞= ⎜ ⎟⎝ ⎠
1

2
W i

We now consider a closed filament bounded by the lines of force, containing a flux dF.
The contribution of this flux to the stored energy is given by

1

2
W id d F S⎛ ⎞= ⎜ ⎟⎝ ⎠ (11.50)

where S i = all the currents linking with dF (Figure 11.15).

= 
C

d◊Ú H l (by Ampere’s law)

Contour C

Flux df

Cross-sectional
area dS

A
B

dl

Figure 11.15 A closed filament.
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                         \ dW = 
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ddÊ ˆ F ◊Á ˜Ë ¯ Ú H l

    = dF S⎛ ⎞ ⋅⎜ ⎟⎝ ⎠
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Also, d F = BdS.

\ dW = 
1

2
⎛ ⎞
⎜ ⎟⎝ ⎠

S [BH (dSdl)] = 
1

2
⎛ ⎞
⎜ ⎟⎝ ⎠

S (BHdv) (11.51)

where dv is the volume element = dSd l.

\ Over the whole volume, W = 
⎛ ⎞
⎜ ⎟⎝ ⎠ ∫∫∫1

( )
2

BHdv (11.52)

Thus the energy appears to be distributed all over the field, the energy density at any point
being [(1/2)(BH)] joules/metre3. We compare this with the similar relation for the electric field, i.e.

⎛ ⎞= ⎜ ⎟⎝ ⎠
e

1
( )

2
W DE dv

In this derivation, it was assumed that the flux increased linearly with the current, which is
true for all media with constant permeability. But this is not true for the ferromagnetic materials,
like iron.

11.11 ENERGY STORAGE IN A REGION CONTAINING IRON

From the previous section, we now generalize the expression for the energy storage for iron, where
m is not constant. We consider an iron ring of mean circumference l, and cross-section S. Initially
it is in a demagnetized state. It is magnetized by a current I through a uniform toroidal winding
of N turns. At an intermediate stage of magnetization, in a time-interval dt, the current increases
by dI, and the flux by d F.

\ The induced emf in this interval = N
t

F⎛ ⎞
⎜ ⎟⎝ ⎠

d
d

\ To maintain the current I, the extra energy needed is

W IN t NI
t

dd d d
d
F

F⎛ ⎞= =⎜ ⎟⎝ ⎠
\ Over the whole process, the total energy required is

0

W NI
F

F= ∫ d

The mean values of B and H in the iron are given by B = F/S and H = NI/ l. Hence writing the last
equation in terms of B and H, we get

= = ×∫ ∫
0 0

volume of iron
B B

W lS H dB H dB (11.53)
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Though this relation has been proved for an iron ring, it is true, in general.

\ Energy density = ∫
S

0

B

HdB joules/m3 (11.54)

The significance of these equations can be better appreciated with reference to an actual B–H
curve (Figure 11.16). The iron starts from the demagnetized condition, which is represented by the
point O and is brought up to the flux density BS at the point S. Equation (11.54) states that the
energy storage density is equal to the shaded area (OKNSBSO). If however the permeability of the
iron was assumed to be constant, then the energy density would be given by the triangle (OSBS).
If in a magnetic circuit, a part is air and a part is iron, then the value of H in iron is much less
than in air. Hence the density of the magnetic energy is much greater in air than in iron.

B

H

K

N

S

O

Figure 11.16 B–H curve for iron.

11.12 ATTRACTIVE FORCE BETWEEN MAGNETIZED IRON
SURFACES

We consider a U-shaped electromagnet attracting an iron plate as shown in Figure 11.17. Let the
gap between the surfaces be increased by dx. If, during this change, B is maintained at its constant
value, then the stored energy in the iron does not change, but that in the air-gap increases by
(1/2)BHAdx. This extra energy is supplied by the work done by the mechanical force F which
caused the gap to increase.

Area A/2
per pole

Figure 11.17 U-shaped electromagnet.

F

BS
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\ Force per unit area = 
2

02

B

m
 newtons/metre2 (11.55)

Note that, if B is 1 W/m2, the force will be 4 kg/cm2. It must be noted that the force on the iron
depends on the local value of B, and not on the distant apparatus by which B is produced. In
practice, the current in the electromagnet remains constant as the plate is pulled away, because as
the air-gap increases, the flux density both in the iron and the air-gap, decreases. In such prob-
lems, the assumption of the constant flux is the simplest approach, as then there is no induced emf
in any winding, and hence no exchange of energy between the current sources and the field.

11.12.1 Forces on Circuits with Associated Iron

We consider, now, a circuit C which carries a current i, and is situated in a magnetic field
containing other circuits and iron. When there is a force Fx on the circuit, in the direction x,
causing the circuit to move a distance dx, the flux-linkage increases by an amount dF, and a
consequent increase in the stored energy of the field by an amount dW. So the current source has
to supply an amount of extra energy idF, a part of which is stored in the field and a part of it
being converted to the mechanical work, i.e.

       id F = Fx dx + dW

\ x
W

F i
x x

F∂ ∂= −
∂ ∂

(11.56)

Similarly in a rotation dq, the torque is given by

W
T iq q q

F∂ ∂= −
∂ ∂

(11.57)

These equations are useful for solving the problems related to the electrical machines, where the
circuits are of composite types as mentioned here.

11.13 ENERGY LOSS ASSOCIATED WITH HYSTERESIS IN IRON

In Section 11.11, we have seen that the energy stored in a volume dv of the magnetized iron is

d d= ∫
1

0

B

W v H dB (11.53)

In this expression, the energy input is calculated as B is increased from zero to a value B1, the
implicit assumption being that when the magnet was demagnetized, the initial condition was that
B = 0 and H = 0. But this condition is not always correct due to the hysteresis characteristic of the
material. So, we generalize the above expression for a change of the flux density level from B1 to
B2 in the material, the required energy for the change being

d d= ∫
2

1

12

B

B

W v H dB (11.58)
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Now, this formula is applied to a specimen which is undergoing cyclic changes of magnetization
according to the hysteresis cycle shown in Figure 11.18. If B changes from the negative value at
the point P to the positive value at R, then the energy input necessary for this change is

dWPR = dv ∫
R

P

H dB  = dv ¥ Area PQRS

B
S

T

R

H
Q

P

Figure 11.18 Hysteresis loop of iron.

In the next step, when B is reduced from the point R to the point T, the energy recovered from the
specimen is

dWRT = dv ∫
T

R

H dB  = - dv ¥ Area RST

since during the traverse from R to T, dB is negative. Adding these two steps, the reversal of B
from its negative value at P to its positive value at T has been accompanied by an energy input
of

dWPR + dWRT = dv ¥ (Area PQRS - Area RST)

 = dv ¥ Area PQRT (11.59)

It should be noted that if the material had no hysteresis, then the energy input for such a reversal
of B (from -B1 to +B1) would have been zero. This energy required by the hysteretic material
is not recoverable. If B is changed from its positive value at T to the equal negative value at P,
it will be seen that an equal amount of energy as given by Eq. (11.59) is drawn in. So we find
that

Energy input per cycle of magnetization = dv ¥ Area of the hysteresis loop (11.60)

The area must be calculated in terms of the SI units of B and H, and the result gives the energy
input in joules per metre3 per cycle. This energy is converted into heat and represents a loss
which is known as the ‘hysteresis loss’. This energy cannot be called the stored energy as it is not
recoverable. This loss is the energy transformed into heat in periodically orienting the magnetized
domains between which a kind of friction exists. C.P. Steinmetz observed that for a variety of
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iron, and for a range of flux density, the area of the loop was empirically proportional to (Bmax)
n,

so that
Loss per metre3 per cycle = lh(Bmax)

n  joules (11.61)

where lh and n are the material characteristics. However n  1.6 for iron, mild steel, silicon steel,
and cast iron. The other constant lh which is known as the Steinmetz constant, varies from 500 for
silicon steel to 3000 for the cast iron.

The law which we have discussed so far, applies to the situations where B purely alternates
in magnitude, but does not change its direction. In electrical machines and transformer corners,
the direction of B rotates as well as the magnitude changes. Such a process is associated with a
power loss known as the ‘rotational hysteresis loss’, and this loss does not follow the Steinmetz
law.

11.14 MAXWELL’S STRESSES IN THE MAGNETIC FIELD

Let us consider the force between two bar magnets A and B, as shown in Figure 11.19. We shall
now see, if we can calculate the forces between them, by considering a system of stresses on any
closed surface round either of the magnets. Such an approach has been found to be very
convenient in a number of practical problems, such as the design of the structures of electrical
machines.

SS N N

Figure 11.19 Force between two bar-magnets and stresses in the field space.

BA

We have already seen in Section 11.12, that when the magnetic flux enters a piece of iron
normally, there is an outward normal force on the iron surface at the rate of B2/2m0 where B is the
local value of the flux density. So we can argue that any stress in the direction of the lines of
force must be the tensile stress of magnitude B2/2m0. But this is not the complete picture. When
we have two parallel wires carrying currents in the opposite directions, there is a repulsive force
between them which is at right angles to the flux lines (which are circles surrounding the wires).
This is equivalent to a compressive stress at right angles to the lines of force. To find the
magnitude of this stress, let us consider two concentric hollow tubes of radii a and b respectively
(a < b) and the currents ± I as shown in Figure 11.20.

\          B = 0

2

I

r

m
p

for a < r < b

                                     B = 0     for r < a and r > b

\ Just inside the outer tube,   B = 0

2

I

b

m
p

     and just outside it,          B = 0
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\ The mean value of B inside the wall of the outer tube = 0

4

I

b

m
p

The current per unit length of the circumference = 
2

I

bp

\ The pressure on the outer tube = 0

4 2

I I

b b

m
p p

×

                                        = 
2

02

B

m
(11.62)

Hence we can say that the force between the magnetic bodies separated by an air-space can be
considered to be transmitted by a system of stresses, which are:

1. A tensile stress B2/2m0, in N/m2, along the line of force at each point (normal stress)
2. A compressive stress B2/2m0, in N/m2, in every direction at right angles to the line of

force at each point (shear stress).
(11.63)

These stresses are valid not only for the air-space but also for all non-magnetic media. For the
ferromagnetic media, Maxwell derived the following system of stresses (the only assumption
being negligible hysteresis):

1. A tensile stress [BH - m0H2/2], in N/m2, along the line of force at each point (normal
stress)

2. A compressive stress [m0H
2/2], in N/m2, in every direction at right angles to the line of

force at each point (shear stress).
(11.64)

These are known as the Maxwell’s stresses, and are completely general except for the hysteresis
assumption.

Equations (11.64) can also be rewritten as:

1. A tensile stress BH, in N/m2, along the line of force at each point
2. A compressive stress m0H

2/2, in N/m2, in every direction at each point.

I

I

B

a

b

Figure 11.20 A portion of concentric tubes carrying current +I and –I in opposite directions.
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11.15 A DEFINITION OF THE SELF-INDUCTANCE IN TERMS
OF THE STORED ENERGY

Inductances, both self- and mutual-, have been defined in Chapter 10, Section 10.6, in terms of
the flux-linkage per unit current. But there were difficulties in calculating the self-inductance of
some configurations, such as the parallel wire circuit. So, now, we try to find a new definition of
the self-inductance in terms of the stored energy. Let us note that the stored energy associated
with a coil of inductance L and carrying a current I is

W =
1

2
⎛ ⎞
⎜ ⎟⎝ ⎠

LI2 [Eq. (11.45)]

Also, the expression for the stored energy W in terms of the flux and the current, applicable to the
wires of finite dimensions, was obtained as

W = 
1

2
⎛ ⎞
⎜ ⎟⎝ ⎠

(S Fdi)

\ L(self-inductance) = 
2

1
i

I
S F⎛ ⎞

⎜ ⎟⎝ ⎠
d (11.65)

where I stands for the total current = (S d i).
In this case, both the current and the flux can be divided into closed tubes such that each

tube contains the same flux dF, and each current tube the same current di. Then each linkage of
a flux tube and a current tube contributes (dFd i) to the quantity (S Fdi). It is possible that both
the tubes may form complicated spirals.

But, in fact, one may concentrate on a particular di tube, and count the linkages of all the
flux tubes to obtain Fdi, or vice versa, so that the alternative expression will be:

L (self-inductance) = 
2

1
i

I
S F⎛ ⎞

⎜ ⎟⎝ ⎠
d (11.66)

i.e. divide the flux into the elements, and count the current tubes linking it. It should be noted
that there may be cases where i can exceed the total current I, depending on the convolutions
round a flux tube.

Furthermore, since the stored energy can be expressed in terms of the field vectors, the self-
inductance can be expressed as

⎛ ⎞= ⋅⎜ ⎟⎝ ⎠ ∫∫∫2

1

v

L dv
I

B H (11.66a)

and the mutual inductance between the two circuits as

⎛ ⎞
= ⋅⎜ ⎟

⎝ ⎠ ∫∫∫12 1 2
1 2

1

v

M dv
I I

B H (11.66b)

11.15.1 Internal Self-inductance of a Straight Cylindrical Conductor

When the self-inductances of the circuits were calculated, say, in Section 10.6.2, the contribution
to L was from the flux which did not cross the cross-section of the current-carrying conductors. So
we call such Ls as the ‘external self-inductance’. When the contributions from the flux traversing
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the conductor cross-section are considered, the inductance is called the ‘internal self-inductance’.
The inductance of the parallel wire circuit, obtained in Section 10.6.2, as

�

�

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠

0 ln
b
a

H/m

was the external self-inductance of the circuit.
Now, we consider a straight circular cylindrical conductor of radius a, carrying a current I

which is uniformly distributed over its cross-section. The parallel return conductor for the current
is so far away, i.e. b ����a, that the flux lines within the conductor cross-section can be considered
as concentric circles (Figure 11.21).

� � �

�

�������� I� 	
����
���
�� ���������

�������		
�	 ��������	���
����
��

The flux density within the conductor at a radius r, is
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We use the formula (11.65), and divide the internal flux into the rings of radius r and width �r.
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and hence for the parallel circuit, LiC = 0

4

m
p

and we have                         Le = 
m
p
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\ The total self-inductance, L = Le + LiC
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(11.68)

It should be noted that the internal self-inductance of the conductor is independent of the
radius of the conductor.

11.16 ENERGY AND FORCES IN ELECTROMECHANICAL
SYSTEMS

An electromechanical device (i.e. an electrical motor or generator or any other transducer, in
general) is a link between an electrical and a mechanical system. The coupling between the two
systems is through the medium of the fields of the electric charges. Both the electric and the
magnetic fields are present in general, and the energy storage in these fields is associated with the
energy conversion. During the process of energy conversion, the energy in the coupling field may
change or tend to change. The electromechanical energy conversion thus depends on the
existence of the phenomena interrelating the magnetic and the electric fields on one hand and the
mechanical force and the motion on the other.

We have found from our previous discussion in Section 11.8 on ‘Distinction between
Potential energy and Stored energy’, that when the potential energy in a system is used for any
mechanical work, out of the total energy taken, only half is used for the mechanical work and the
other half is stored in the field. So remembering that the potential energy of the system itself is in
the electrical sources, we can now write down the energy balance equation. However we restrict
our treatment to the quasi-static (or low frequency) systems and the fields which give rise to the
forces in a particular element are either electric or magnetic, but not both. So we can consider
separately the forces due to the electric fields and the forces due to the magnetic fields. In the
systems under consideration, there are four important forces of electrical origin, i.e.

1. the force due to an electric field acting on a free charge;
2. the force due to an electric field acting on a polarizable material;
3. the force due to a magnetic field acting on a moving free charge (current);
4. the force due to a magnetic field acting on a magnetizable material.

So we shall now write down the energy balance equation, using the principle of
conservation of energy, for a magnetic field electromechanical system (Figure 11.22).

Increase in the potential energy (= Energy input from the electrical source)

= Mechanical energy output + Increase in the energy stored in the
(+ friction and windage losses) coupling magnetic field

(+ associated losses)
or

dWelec = dWmech + dWfld (11.69)
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Now, the change in the potential energy, or the electrical energy input

= dWelec = e i dt (11.70)
where

e = the time-rate of change of flux linked by the electrical circuit in the system
 i = the current in the system.

If we use the notation l—to denote the flux-linkage (so as to distinguish from F—which is used
as the notation for the magnetic flux in a region), then

      e dt = dl
                                 \ dWelec = i dl (11.71)

In general, the flux linked by the electrical circuit is a function of the current i and the
displacement x, i.e.

l = l (i, x) (11.72)

Also, when we know i and x of the magnetic field system, the value of the flux-linkage l
would be known.

We next make an assumption about the mechanical force of the electrical origin and say
that for a given current i and position x, the force is single-valued and has the form

Fe = Fe (i, x) (11.73)

This is justifiable if these variables are the ones controlling the stored energy in the field.
We define Fe, the mechanical force of electrical origin applied to the mechanical node of

the system, in a direction so as to increase the displacement x.

\ dWmech = Fedx (11.74)

From Eq. (11.72), we can solve for the current i in terms of the flux-linkage l and the
displacement x, i.e.

i = i (l, x) (11.75)

Hence Fe can also be expressed as a function of the magnetic field in which the energy is
stored, i.e.

Fe = Fe (l, x) (11.76)

However, it should be noted that Fe is not the same function in the two Eqs. (11.73) and (11.76).

Lossless magnetic field system x

M

l

Figure 11.22 A terminal characteristic representation of a magnetic field
electromechanical system.

l = l(i, x)
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Though in our present analysis, we are considering a system with one electrical and one
mechanical terminal pair, this discussion can be generalized to any arbitrary number of terminal
pairs.

We can now consider the energy of the system. For the simplicity of the analysis, we
consider the coupling network to be lossless, i.e. the energy fed into the system by the electrical
and the mechanical terminal pairs is stored in the magnetic field and is completely recoverable,
i.e. it is a ‘conservative system’. Since we are considering the magnetic field storage, we use the
notation Wm, i.e. Wfld = Wm and the conservation of the power of the system can be written as

m
e

dW d dx
i F

dt dt dt

l= − (11.77)

In this equation

   mdW

dt
= the time-rate of increase of the stored magnetic energy

    
d

i
dt

l
= the electrical power input at the electrical terminals of the system

e
dx

F
dt

− = the power input at the mechanical terminals.

The negative sign of the mechanical power is due to the definition of Fe which is defined to act
on (i.e. into) the mechanical node. We multiply this equation by the time element dt to obtain the
equation for the conservation of energy, i.e.

dWm = i dl - Fedx (11.78)

Next, we now wish to obtain the Force-Energy relations. From Eqs. (11.75), (11.76), and (11.78),
it is clear that the magnetic energy Wm can be expressed as a function of the two independent
variables l and x; i.e.

Wm = Wm (l, x) (11.79)

Since we are considering a conservative system, the energy must be a single-valued function of
the independent variables (l, x) with finite second partial derivatives. So we can take the total
differential of the field energy Wm and we get

l
l

∂ ∂⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
m m

m
W W

dW d dx
x

(11.80)

Subtracting this equation from Eq. (11.78), we get

l
l

∂ ∂⎛ ⎞ ⎛ ⎞= − − +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
m m

e0
W W

i d F dx
x (11.81)

Since the variables x and l are independent, the required condition to hold the above equation is
given by

[ ]m ( , )i W xl
l
∂=

∂

[ ]e m ( , )F W x
x

l∂= −
∂ (11.82)
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\ If the stored energy is known, the electrical and the mechanical terminal relations can
be calculated.

These equations can be generalized for a system with an arbitrary number of electrical and
mechanical (translational and/or rotational) terminal pairs.

11.16.1 Force–(Co-energy) Relations of the Electromechanical
System

In the magnetic field problem, the flux-linkage l is used as the independent variable, while the
current is described by the terminal relation. This is a natural choice because of the form of the
conservation of energy equation [i.e. Eq. (11.78)]. However it should be possible to analyze such
systems using the current i as an independent variable, which is a more convenient choice. We
start with the same conservation of energy equation, i.e.

dWm = i dl - Fe dx (11.78)

and since i is the independent variable now,

l = l(i, x) (11.72)

Fe = Fe(i, x) (11.73)

These are our terminal relations.
By the rules of differentiation

d(li) = idl + ldi
and Eq. (11.78) becomes

dWm = d(li) - ldi - Fedx

\ d(li) - dWm = dWm¢ = ldi + Fedx (11.83)
where

dWm¢ = d(li) - dWm (11.84)

and is called the co-energy of the system.
Since

Wm¢ = Wm¢ (i, x) (11.85)

\ 
′ ′∂ ∂⎛ ⎞ ⎛ ⎞′ = +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
m m

m
W W

dW di dx
i x (11.86)

Subtracting Eq. (11.86) from Eq. (11.83), we get

l
′ ′∂ ∂⎛ ⎞ ⎛ ⎞= − + −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

e0 m mW W
di F dx

i x
(11.87)

Since di and dx are independent,

[ ]( , )mW i x
i

l ∂⎛ ⎞ ′= ⎜ ⎟∂⎝ ⎠
and

[ ]e ( , )mF W i x
x

∂⎛ ⎞ ′= ⎜ ⎟∂⎝ ⎠
(11.88)
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\ If the stored energy, and hence the co-energy are known, the electrical and the
mechanical terminal relations can be calculated. Also, as before, these equations can be
generalized for a system with any arbitrary number of electrical and mechanical terminal pairs.

Note: This manipulation of the conservation of energy in terms of the new independent
variables, is called a ‘Legendre Transformation’ in Classical Mechanics and Thermodynamics.

The energy and the co-energy relations can be easily appreciated graphically by studying
the flux–mmf characteristic. Figures 11.23(a) and (b) show this relationship for both the linear and
the nonlinear cases.

l

l1

Co-energy

dWelec

idl
dW ¢m ldi

i1
i

l1

l

idl

i
i1

Co-energy

ldi

Figure 11.23 Flux–mmf characteristic and magnetic co-energy: (a) linear and (b) nonlinear.

Note: dWelec = idl
                 = dWfld(= dWm) + Fedx

If the configuration is fixed, only then

dWelec = dWfld + 0 = dWm

11.17 STABILITY OF MAGNETIC SYSTEMS

It has been shown in Section 3.8, that a static system consisting of particles, which either repel or
attract one another with forces varying inversely with their distances, is basically unstable. This
was proved by Earnshaw (as mentioned earlier). It had been applied by Maxwell to the
electrostatic field, and by L. Tonks to the magnetostatic fields. The most complete theory was
given by Braunbek in 1939. He proved that the levitation in electrostatic, magnetostatic, and
stationary electromagnetic fields is impossible, because of instability, if the relative permittivity
er and the relative permeability mr are ≥ 1 everywhere in the system. Since er ≥ 1, for all materials
under all circumstances, it follows that levitation is impossible in an electrostatic field, whereas it
is at least not impossible if the field is magnetic and materials with mr < 1 are present. There are
two classes of such materials, i.e. diamagnetic materials whose mr is slightly less than unity, and
materials in the superconductive state for which mr  0. Furthermore it should also be appreciated
that Earnshaw’s theorem deals with potential energy only. For those systems, which possess other

(Path of operation to reach the final energy when
the mechanical coordinates are held at constant values.)

(a) (b)
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types of energy as well, such as the gravitational system of sun and the planets possessing both
kinetic and potential energy, stable equilibrium is possible. So also, by a suitable interaction of
potential and kinetic energy, it is possible to suspend objects in stable equilibrium (i.e. levitate)
in electromagnetic fields. Various electromagnetic levitation schemes for transport (viz. Maglev
scheme, etc.) are examples of such energy combinations. It should also be noted that in a number
of electromagnetic levitation devices, the constraints for the stability are themselves not
electromagnetic in nature, though there are systems where both the suspension as well as the
stability have been achieved by electromagnetic means, such as Laithwaite’s ‘Magnetic River
Principle’.

PROBLEMS

11.1 Two coils having the same self-inductance are connected in series. When a current I
flows through the coils, the magnetic energy stored in their fields is W joules. If the
connections of one coil are interchanged and the current reduced to I /2, the energy
stored again is W joules. Calculate the ratio of the mutual inductance to the self-
inductance.

Ans.: M /L = 3/5

11.2 A current I flows round a circle of radius a and a current I¢ flows in a very long wire in
the same plane. Show that the mutual attraction is m0II¢(sec a – 1) where 2a  is the angle
subtended by the circle at the nearest point of the straight wire.

11.3 Two long solenoids, one of which extends a distance l within the other, have currents
flowing in the same direction in them. Neglect the end effects and assume that their
diameters are approximately equal (cross-sectional area being A) for simplicity of
calculations. Show that the force between them is axial and attractive (why?) and is
given by

F = m0NaNbIaIbA

where Na and Nb are respectively the turns on the two solenoids per metre, carrying
currents Ia and Ib respectively. Solve the problem by both the methods, i.e.
(i) evaluating the mutual inductance, and (b) considering the magnetic energy of the
system.

11.4 The diagram shows an air-cored choke, having 200 turns wound on a laminated core of
iron. Estimate the inductance:

(i) when the magnetic circuit is as shown by
full lines

(ii) when the portion hatched is removed.

In both the cases, assume that the iron is
infinitely permeable, and neglect leakage and
fringing. In practice, the iron can be considered
to be completely saturated at B = 1.8T. Show
that this means the choke can be used satisfac-
torily for currents up to approximately 7 amps.

        Ans.: (i) L1 = 503 mH (ii) L2 = 302 mH

1 mm

5 cm

15 cm

5 cm

3 cm
2 cm

Depth into
paper = 20 cm
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11.5 An electromagnet has opposed poles having square faces of side l, separated by an air-
gap G. Into this air-gap is moved an iron plate with faces parallel to the pole faces and
its edges parallel to the pole-edges; its length and width are l, but its thickness is
(G – g). The plate overlaps the poles by a distance x in one direction, and in the
perpendicular direction they overlap completely. The remaining magnetic path of the
electromagnet is of iron and U-shaped, and is wound with a winding of N turns carrying
a current I; but the exact shape is immaterial, since the iron of both the magnet and the
plate is of zero reluctance so that the mmf NI is solely employed in forcing the flux
across the air-gaps. Prove the following:

(i) The flux traversing the air-gap is m −⎛ ⎞+⎜ ⎟⎝ ⎠
0

l x x
NIl

G g

(ii) The energy stored in the air-gap field is m −⎛ ⎞= +⎜ ⎟⎝ ⎠
2 2

0
1
2

l x x
N I l

G g

(iii) The force tending to draw the iron plate further into the air-gap is

m −⎛ ⎞= ⎜ ⎟⎝ ⎠
2 2

0
1
2

G g
N I l

Gg

Flux fringing should be neglected.

11.6 Find the cyclotron frequency for electrons in a magnetic flux density of 0.2 Wb/m2.

Ans.: 5600 MHz

11.7 An ultraviolet radiation releases photo-electrons from a plate at negligible initial
velocity. A magnetic field B is maintained parallel to the plate and the E field normal
to it. The E field is generated by using a second plate kept parallel to the first plate, at
a distance d from it and at a potential +V with respect to it. Prove that the value of d for

which current just fails to pass between the plates is 2(2 / )mV eB , where e = charge of
the electron, and m = mass of the electron.
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12.1 INTRODUCTION

So far we have studied the special cases of the electromagnetic fields. We started with the electric
fields produced by the static electric charges, then proceeded to the electric currents produced by
the moving charges, the magnetic fields due to the steady currents, and the electromagnetic fields
due to the quasi-stationary (i.e. low-frequency alternating) currents. The method of analysis which
we have used so far has been inductive. Our starting point was the Coulomb’s law of force
between particle charges, slowly moving in an arbitrary manner relative to the observer, and a
model of the atomic structure of matter. From there we defined the concepts of the electric and the
magnetic fields and investigated the properties of these vector fields. This approach has given us
a deep insight into the basic relations between the electric and the magnetic fields, and thus
enabled us to understand various related problems in engineering with elegance and simplicity.

However a stage has now been reached, where our knowledge is sufficient to let us consider
the most general types of the electromagnetic fields. We shall see now that, with some further
modifications or additions to the relations which have been derived for the special fields, a
consistent system of generally valid equations is obtained. These equations are known as the
‘Maxwell’s electromagnetic field equations’. They are, in fact, not new for us. We have already
come across them in various places during our present study, under different restricted conditions.

Maxwell’s equations, when expressed in differential form, comprise a system of partial
differential equations, which the electric and the magnetic components of the unique electro-
magnetic field must satisfy in all cases. All which have been derived earlier, are special cases of
these general equations. Based on the work done by his predecessors like Michael Faraday,
Ampere, and others, Maxwell unified the relationships between the electric and the magnetic
fields, and expressed the generalized unification in four equations written down in integral form.
As mentioned earlier, some of these equations had been derived in restricted form by the previous
workers in these fields. However it was Maxwell’s insight into these apparently disparate areas
that enabled him to combine and extrapolate them to achieve a unified picture. These unified
equations, in fact, anticipated the possibility of existence of the varying electromagnetic fields
independent of the ‘conduction currents’. These predictions were proved experimentally some
twenty years later by Heinrich Hertz, a German army officer. The propagation of energy in the

Maxwell’s
Equations12
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form of the time-varying electromagnetic fields along the transmission lines, and in the wave-
guides, as well as the behaviour of the antennae cannot be analyzed without an understanding of
the Maxwell’s equations.

In this chapter, we shall introduce these equations, first in the integral form and then in the
more familiar differential form along with the associated relationships, and analyze some of their
general important consequences. In the later chapters, the analysis will start from the Maxwell’s
equations, i.e. the method of analysis will no longer be inductive, but rather be deductive. Special
cases, ranging from the low-frequency eddy currents to high frequency wave propagation, will be
analyzed by means of these general equations.

The reader must take great care to read and to understand the contents of this chapter
carefully.

12.2 THE EQUATION OF CONTINUITY (OR THE LAW OF
CONSERVATION OF ELECTRIC CHARGE)

We have already discussed in detail the equation of continuity in the Section 6.4. However we
shall very briefly recapitulate the mathematical steps in its derivation, as this is an essential step
in explaining the generalization which would lead us to the Maxwell’s equations.

We consider a fixed closed surface S in a region containing a space charge of density rC

which is changing with time. This means that there must be currents, specified by a current
density vector J.

\ The rate of loss of charge from within S is given by

(div )
S v

d dv◊ =ÚÚ ÚÚÚJ S J
(12.1)

where v is the volume enclosed by S (Figure 12.1). The above equation is a consequence of the
‘divergence theorem.’

Figure 12.1 A closed surface with space charge of density rC.

At an instant, the charge remaining in the volume v is given by

C

v

dvr∫∫∫

\ The rate of loss of charge = C

v

dv
t

∂⎛ ⎞−⎜ ⎟∂⎝ ⎠ ∫∫∫ r (12.2)

S

v
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\ Equating these two rates of loss of charge,

d
S

◊ÚÚ J S  = C

v

dv
t

∂⎛ ⎞− ⎜ ⎟∂⎝ ⎠ ∫∫∫ r
Or, substituting from Eq. (12.1),

div J + 
r∂
∂

C

t
 = 0 (12.3)

This is the equation of continuity, expressing the fact that the electric charges can neither be
created nor be destroyed in macroscopic quantities.

12.2.1 A Note on the Continuity Equation

Just now, we have seen that the equation of continuity is

div J + 
r∂
∂

C

t
 = 0 (12.3)

Gauss’ theorem in electrostatics states that

div D = — . D = rC

Substituting in Eq. (12.3), we get

div J + 
t

∂
∂

(div D) = 0

Since the space operator div is independent of the time-operator (∂/∂t), we can reverse their order
in this equation.

\ div J + div
t

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

D
 = 0

or
∂⎛ ⎞+⎜ ⎟∂⎝ ⎠

div
t

D
J  = 0 (12.4)

i.e. 
∂+
∂t

D
J  is a solenoidal vector.

This vector will be found to be very important, e.g. we consider the discharge of a capacitor
through a resistive circuit (Figure 12.2). If one considers a closed surface like S1 on a part of this
circuit (as shown in the figure), then the current leaving S1 equals the current entering it. The

Figure 12.2 Discharge of a capacitor through a resistor.

S1

S2



CHAPTER 12 MAXWELL’S EQUATIONS 385

same cannot be said of the closed surface S2, until one admits a displacement current (∂D/∂t) as
equivalent to the conduction current J. But with this equivalence, we have a closed circuit, which
takes the form of a conduction current in the wire, and a displacement current in the capacitor
dielectric. Equation (12.4) underlies the treatment of the capacitor as a circuit element.

12.3 DISPLACEMENT CURRENT AND THE GENERALIZATION
OF THE MAGNETIC CIRCUIT LAW

If the Ampere’s magnetic circuit law in its elementary form is applied to a small circuit Cx, of area
d Sx directed along the coordinate axis Ox as shown in Figure 12.3, we get

z

x

O

y

Cx

1

xC

H dlÚ  = Jx dSx (12.5)

But the left-hand side of this equation = dSx curlx H.
Thus Eq. (12.5) reduces to

curlx H = Jx

Or, taking account of the other two components, we get

curl H = — ¥ H = J (12.6)

but this equation cannot be universally true; for we have seen that for any arbitrary vector A,
div curl A = 0 (an identity); hence the truth of Eq. (12.6) must depend on

div J = 0

We have seen however from the continuity equation,

div J = 
r∂

−
∂

C

t

so that the condition div J = 0 is not satisfied.
On the other hand, we did discover that

div
t

⎛ ⎞∂+⎜ ⎟∂⎝ ⎠

D
J  = 0

Figure 12.3 Loop for Ampere’s law.
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Thus Maxwell postulated that the current density in the magnetic circuit law is not J but
[J + (∂D/∂t)], and he called (∂D/∂t) the ‘displacement current density’, and [J + (∂D/∂ t)] is called
the ‘total current density’.

Working out the consequences of this, Maxwell proved that the electromagnetic signals
could be transmitted with a finite velocity equal to the measured velocity of light in free space.
This led him to the ‘Electromagnetic Theory of Light’, and mankind to radio, telegraphy, etc.
Maxwell’s postulate therefore accords with the observed results, and the general form of the
magnetic circuit law is proved to be

curl H = 
t

∂+
∂
D

J (12.7)

where J is the conduction current density, and (∂D/∂t) is the displacement current density.
It will be seen that the displacement current can be neglected, in general, at low frequencies.

For example, considering a conductor of resistivity r (say), we have

D = e0erE and E = rJ

\  D = e0errJ, 
t

∂
∂
D

 = e0err
t

⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

J

Let J = ˆ exp( )j twJ  (i.e. sinusoidally varying with time).

\ The ratio of displacement current to the conduction current

0 r
t

∂
∂= =

D

J
e e rw

For a conducting metal like copper,

er = 1, r = 1.7 ¥ 10-8 W-m, e0 = 8.854 ¥ 10-12

\ The ratio = 8.854 ¥ 10-12 ¥ 1 ¥ 1.7 ¥ 10-8 ¥ 2p f

                = 9.46 ¥ 10-19 f ª 10-18 f

\ The displacement current is negligible in the total current at the normal power
frequency of 50 Hz, and easily up to the radio frequencies.

12.4 MAXWELL’S EQUATIONS AND THE CONSTITUTIVE
RELATIONS

We shall now state the Maxwell’s equations, using the electric and the magnetic field vectors
which we have studied so far and generalized them, i.e. E, H, D, and B, etc. to make them all
inclusive taking account of all kinds of different media. The equations will be written in terms of
all these generalized vectors, though when we refer to a specific medium or to a restricted
condition, we shall explicitly state the restrictions and draw suitable conclusions.

Maxwell’s equations in integral forms will be stated first, even though these equations in
differential form are more widely used. The reason for this approach is that the integral forms of
these equations are more fundamental in nature than the differential forms, for the reason that
these equations are used for deriving the boundary conditions on surfaces or lines of disconti-
nuity. These equations in differential forms require implicitly the assumption of continuity and
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hence cannot be used for deriving such conditions. However since the differential forms of these
equations have been derived from the integral forms, it should be understood that the continuity
requirement is not a necessary condition for the satisfaction of these equations. Hence the
mathematically rigorous approach to study these equations is to start from their integral forms.

12.4.1 The Integral Form of Maxwell’s Equations

The four basic equations derived so far are collectively known as the Maxwell’s equations. The
first two concern the flux out of any arbitrarily chosen closed surface S, and the last two concern
the line-integral round any arbitrarily chosen closed contour or circuit C. They are:

C

(also known as the Gauss theorem)
S v

d dvr◊ =ÚÚ ÚÚÚD S
(12.8)

and

0

(for the solenoidal property of )
S

d◊ =ÚÚ B S

B
(12.9)

The next two equations are

=

(generalized Faraday s law of Induction)
C S

d
d d

dt
Ê ˆ◊ - ◊Á ˜Ë ¯Ú ÚÚE l B S

(12.10)

and

=

(generalized Ampere s Magnetic Circuit law)
C S

d d
t

∂Ê ˆ◊ + ◊Á ˜Ë ¯∂Ú ÚÚ D
H l J S

(12.11)

The equation of continuity is implicit in the last equation (12.11), since it can take the form

div 0
t

∂⎛ ⎞+ =⎜ ⎟∂⎝ ⎠
D

J

These are the four equations with six unknowns, and hence need supplementing in any given
problem by others which are called the ‘constitutive equations’, because they describe, perhaps
approximately the constitution of the materials in the field.

In free space, or in dielectric, the relation between D and E is

D = e0erE = eE (12.12)

which is accurate for vacuum, and a good approximation for the behaviour of many homogeneous
dielectrics.

In free space, or any material, the relation between B and H is given by

B = m0mrH = mH (12.13)

which is accurate for vacuum, and for non-magnetic materials. For ferromagnetic materials, mr is
not a constant.

’

’

’
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Lastly, for ohmic conductors,
E = rJ

or
J = s E (12.14)

which is a good approximation for the behaviour of the metals. So we can say that, in general, these
constants, i.e. e r (relative permittivity) and m r (relative permeability) (and r or s for the metals) are
only good approximations for most media, except for the free space, where they are constants
rigorously. However for the progress of our analysis, the assumption of linearity is essential.

The physical interpretations of the four equations of Maxwell can be stated briefly as given
below:

The first equation [Eq. (12.8)] is the extension of Coulomb’s law for point charges to
distributed charges as well as to charge clouds. This is also known as Gauss’ theorem.

The second equation [Eq. (12.9)] is a mathematical statement of the fact that magnetic poles
(i.e. monopoles) do not exist in  isolation in nature.

The third equation [Eq. (12.10)] is the mathematical form of the generalized Faraday’s law
of electromagnetic induction which has been discussed in detail earlier in Chapter 10.

The fourth equation [Eq. (12.11)] is really the completion and extrapolation of Ampere’s law

to take account of the displacement current (i.e. 
∂
∂t

D
) from which Maxwell theoretically predicted

the existence of electromagnetic waves (refer to Sections 12.5 and 12.6).

12.4.2 Maxwell’s Equations in Differential Form

Rewriting the four Maxwell’s equations, i.e. (12.8) to (12.11) in differential form, we have

div D = — ◊◊◊◊◊ D = rC (12.15)

div B = — ◊◊◊◊◊ B = 0 (12.16)

curl E = — ¥ E = - 
t

∂
∂
B

(12.17)

   curl H = — ¥ H = J + 
t

∂
∂
D

(12.18)

As before, the equation of continuity is a consequence of these equations. These equations,
together with the constitutive relations mentioned in Section 12.4.1, comprise the complete set of
the equations.

12.4.3 Complex Representation of Maxwell’s Equations

When the time-variation of all the field vectors is sinusoidal (i.e. the time-harmonic type), the
vectors can be written in the complex variable form [i.e. A exp ( jw t) type], and then these
equations become (from Sections 0.9 to 0.93)

  — ◊◊◊◊◊ Dc = rC (12.19)

— ◊◊◊◊◊ Bc = 0 (12.20)

      — ¥ Ec = - jwBc (12.21)
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         — ¥ Hc = Jc + jwDc  (12.22)
and the equation of continuity is now

— ◊◊◊◊◊ Jc + jwrC = 0 (12.23)

where the suffix c for the vectors stands for the complex forms.

12.4.4 Historical Comments on Maxwell’s Equations

In fact the ‘Maxwell’s equations’ as have been presented here were not how Maxwell wrote them.
Though Maxwell thought vectorially (as shown by his invention of curl, div and grad), his results
had been presented in triple component Cartesian form, and the compact vector notation had to
wait for the work of Heaviside and Willard Gibbs. Maxwell wrote the equations using
‘Quaternions’ as discovered by the Irish mathematician, William Rowan Hamilton. This was
basically a combination of a scalar potential and a vector quantity somewhat akin to the vector
potential. In particular the equation for Faraday’s law of electromagnetic induction was written
down by Maxwell in terms of the magnetic vector potential (?) A which he named ‘electrokinetic
momentum vector’. This name itself would give some idea about the physical interpretation of
this device. At that time ‘vector calculus’ had not been discovered, and it was subsequently
discovered by the self-taught British physicist and engineer Oliver Heaviside and the American
mathematician J. Willard Gibbs of Princeton University. A point that should be noted in this
context is that the reason for the discovery of vector calculus was ‘problems in electrodynamics
and not any problems in applied mechanics’ as might seem to be more likely.

Maxwell was a person far ahead of his times and it took scientists another 20 years or so
before they could verify experimentally what Maxwell had predicted from his theoretical analysis.
The present form of these equations as stated here (the most familiar version) which has a type of
symmetry in terms of the four vectors, i.e. D, E, H and B, was really given by the eccentric British
genius Oliver Heaviside and used  by the German physicist Heinrich Hertz for the experimental
verification of Maxwell’s prediction. So initially they were called

Heaviside–Hertz form of Maxwell’s equations.

Heaviside considered Maxwell’s analysis as the work of a “heaven-born genius”.

12.5 CONSEQUENCES OF MAXWELL’S EQUATIONS

The four equations as postulated by Maxwell have been expressed in terms of the five field
vectors E, D, J, H, and B, which are interrelated between themselves by the three constitutive
relations. Since these equations, particularly the ‘curl’ equations are in terms of more than one
field vector, we shall now reduce these equations to a form in which the operating equation is
expressed as a function of single field vector. We shall start with the differential form of these
equations, i.e. (12.15) to (12.18), and the constitutive relations (12.12) to (12.14). We will also
assume a region of linear media, i.e. the characteristic constants e r, m r, and s (or r) as constants,
and the time-variation as sinusoidal which will permit us to use the complex representation of the
field vectors. However for the sake of simplicity and generality, we shall not use the complex
suffix notation c with the field vectors. So we start with Eq. (12.18), which is

curl H = — ¥ H = J + 
t

∂
∂
D

 = sE + e
t

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

E
(12.24)

using the constitutive relations.
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Taking the curl operation again on this equation, we have

— ¥ — ¥ H = s (— ¥ E) + e
t

⎡ ⎤∂⎛ ⎞∇ × ⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦

E
= s (— ¥ E) + e

t

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

(— ¥ E)

                      = - s e∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠t t t

B B

                      = - ms me
⎛ ⎞∂ ∂⎛ ⎞ − ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

2

2t t

H H
(12.25)

using Eq. (12.17) and the constitutive relations.
We now consider the vector identity:

— ¥ — ¥ H = — (— ◊◊◊◊◊ H) - —2H = grad (div H) - —2H (12.26)

Since we are considering linear media at present, from Eq. (12.16), we have

div B = div mH = m (div H) = 0 (12.27)

and it should be noted that the operator —2 is the Laplacian operator, which (say) in Cartesian
coordinates is

2 2 2
2

2 2 2x y z

∂ ∂ ∂— ∫ + +
∂ ∂ ∂ (12.28)

and when it is operated on a vector, the result is a compact expression for this operator operating
on all the three components of the vector, e.g. in Cartesian coordinates:

—2H = ix—2Hx + iy—2Hy + iz—2Hz (12.29)

\ From Eqs. (12.26) and (12.27), we get

— ¥ — ¥ H = - —2H (12.30)

Substituting Eq. (12.30) in Eq. (12.25),

—2H = ms
t

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

H
+ me

2

2t

⎛ ⎞∂
⎜ ⎟⎜ ⎟∂⎝ ⎠

H
(12.31)

and using the constitutive relation (12.13) in the linear media, from the above equation we get

—2B = ms
t

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

B
+ me

2

2t

⎛ ⎞∂
⎜ ⎟⎜ ⎟∂⎝ ⎠

B
(12.32)

Thus the magnetic field vectors both satisfy the same operating equation.
Next, we consider Eq. (12.17), and take a second curl operation on it as before, and we get

— ¥ — ¥ E = - — ¥ 
t

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

B
= - m

t

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

(— ¥ H)
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                           = - m m s e⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ = − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦t t t t

D E
J E

  = - ms me
⎛ ⎞∂ ∂⎛ ⎞ − ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

2

2t t

E E
(12.33)

[this is similar to Eq. (12.25)], and

— ¥ — ¥ E = — (— ◊◊◊◊◊ E) - —2E = grad (div E) - —2E (12.34)

Gauss’ theorem gives [i.e. Eq. (12.15)] us:

div D = (— ◊◊◊◊◊ D) = rC ¨ the charge density

\ In the charge-free region only, rC = 0.

\ (— ◊◊◊◊◊ D) = 0 and (— ◊◊◊◊◊ E) = 0.

\ Combining this with Eqs. (12.33) and (12.34), we get

—2E = ms me
⎛ ⎞∂ ∂⎛ ⎞ + ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

2

2t t

E E
(12.35)

Since the vectors D and J are related to E by the constant factors in any linear media, both D and
J also satisfy the same equation.

\ In the charge-free and linear region, all the five field vectors satisfy the same operating
equation of the form derived in the relation (12.31) or (12.32) or (12.35).

We shall now consider the time-varying fields, and consider the type of variation most
commonly used, i.e. the steady-state alternating current operation of the form given by
(Sections 0.9–0.9.1)

ˆ exp ( )twH H= j (i.e. sinusoidal variation with time)

The time-derivatives in these equations then become

t

∂
∂

 = jw and
2

2t

∂
∂

 = -w2, w being the angular frequency = 2pf, and f = frequency

And the Eqs. (12.31) and (12.35) become

—2H = ( jwms - w2me)H

—2E = ( jwms - w2me)E (12.36)

In fact, all the five field vectors satisfy the same operating equation. These equations are known

as the ‘Vector Helmholtz equations’. It will be seen that 1/ me  has the dimension of velocity,
and in free space me = m0e0 = 1/c2, where c is the velocity of propagation of light, e.g.

m0e0 = (4p ¥ 10-7) henries/metre ¥ [10-9/36p] farads/metre

      = [10-16/9] [coulombs2/newton-metres2 ¥ newtons/ampere2]
                    and ampere = coulombs/second

            = [1/(9 ¥ 1016)] [(second/metre)2]
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\  c = 0 01/ m e = (3 ¥ 108) metres/second

And, we substitute (w/c) = b, and Eqs. (12.36) become

—2H = ( jwms - b2)H

—2E = ( jwms - b2)E (12.37)

Limiting cases

1. If the conductivity of the medium is very low (i.e. s is very low, or r is very high),
then b2 >> wms, and in the above equations the (wms) term can be neglected. Hence
Eqs. (12.37) simplify to:

—2H + b 2H = 0

—2E + b 2E = 0 (12.38)

This is known as the vector wave equation. It considers only the displacement current, and is used
for the wave propagation, waveguides, and plasmas, etc. problems.

2. When the conductivity s is very high, such that b2 << wms, then the b2 term becomes
negligible, and Eqs. (12.37) simplify to:

—2H - jwmsH = 0

—2E - jwmsE = 0 (12.39)

This is the vector diffusion-type equation, and considers the effects of the conduction currents
only. It is used in all skin effect and eddy current problems (in metallic conductors).

12.6 PLANE ELECTROMAGNETIC WAVES IN FREE SPACE

We shall now consider the Maxwell’s equations to investigate the simplest pattern of
electromagnetic fields in free space, independently (at this stage) of the means by which the fields
are produced. In free space, the charge density rC = 0, and, the conduction current density J = 0;
and also, D = e0E, and B = m0H.

We use the right-handed rectangular Cartesian coordinate system. Let the electric field
vector E have one component only Ex (hereafter to be called E), and let this vary with z and time
t only, i.e. the value is uniform at any instant over the whole of any plane perpendicular to Oz
(Figure 12.4). [In other words, the coordinates are so chosen (for a uniform plane wave, to be
defined later) as to simplify the mathematical analysis without any loss of generality]. We could
have started from the general wave equation which we have derived before, but for clarity, we will
start from the Maxwell’s equations, simplify each for the present problem, and derive the one-
dimensional wave equation for the plane wave as defined by the vector E field which has no
variation normal to the z-direction; i.e.

Ex = Ex(z, t) = E(z, t) = E, Ey = 0, Ez = 0

The components of curl E are then:

          curl E = — ¥ E
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\ Maxwell’s equation: curl E = -
t

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

B
gives:

0, , 0y zx x
B BB E

t t z t

∂⎛ ⎞ ∂∂ ∂ ⎛ ⎞⎛ ⎞ ⎛ ⎞= = − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
Setting aside any possible direct (steady) component like earth’s magnetic field, this shows that
the time-varying part of B (associated with the defined E field) has only the y-component (to be
called from now on as B), related to E (which is Ex) by the equation:

E B

z t

∂ ∂= −
∂ ∂

(12.40)

In absence of J, the other Maxwell’s equation is

curl H = 
t

∂
∂
D

Also in free space,

0
0

and e
m

= =B
H D E

Hence,

curl B = 0 0 t
m e ∂⎛ ⎞

⎜ ⎟∂⎝ ⎠
E

and with E and B restricted to the components described, this becomes

0 0 0 0, which is, y xB EB E

z t z t

∂⎡ ⎤∂∂ ∂ ⎛ ⎞⎛ ⎞= − − =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
m e m e (12.41)

Differentiating Eq. (12.40) with respect to z and Eq. (12.41) with respect to t, we get

y

x

O

z

Figure 12.4 A uniform plane wave.
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2 2 2

0 02 2

E B E

z tz t
m e

⎛ ⎞∂ ∂ ∂= − = + ⎜ ⎟⎜ ⎟∂ ∂∂ ∂⎝ ⎠

We write m0e0 = 
2

1

c
, and so get

2 2

2 2 2

1

c

E E

z t

⎛ ⎞∂ ∂⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
(12.42)

This is the one-dimensional wave equation; and it is satisfied by

E = f (z ± ct) (12.43)
where f is any function. For

( ) ( )
2

2
c and c

E E
z t z t

z z

∂ ∂
= ± ± = ±′ ′′

∂ ∂
f f

where f ¢ and f ¢¢ are derivatives with respect to the whole argument. Similarly

( ) ( )
2

2
2

c c and c c
E E

z t z t
t t

∂ ∂
= ± ± = ±′ ′′

∂ ∂
f f

Therefore Eq. (12.42) is satisfied by Eq. (12.43).
We consider first the solution,

E = f (z - ct)

and we have from Eq. (12.41)

( )2

1 1
c

cc

B E
z t

z t

∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = + −′⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠∂ ∂
f

whence

( )1
c

c c

E
B f z t

⎛ ⎞= − =⎜ ⎟⎝ ⎠
(12.44)

Thus E and B are proportional. If we compare their values at times t = 0 and t = t1

(see Figure 12.5), we see that the shape of the pattern is unchanged, but the whole pattern has
moved to the right by a distance equal to ct1. We call this moving pattern a travelling wave. The
velocity is c, given by

c = (m0e0)
-1/2 = 2.998 ¥ 108 m/s (12.44a)

This equals the measured velocity of light in free space, and it led Maxwell to identify light as an
electromagnetic radiation. To him, c came as the ratio of the electromagnetic to the electrostatic
unit of charge.

In a similar way, we shall see that E = f(z + ct) describes a wave pattern travelling to
the left; and in this pattern B = -E/c. Note also that the direction of propagation of the wave
(labelled ÆÆ in Figure 12.6 below) is that of the vector product (E ¥ B) or since B = m0H, of
(E ¥ H). This later will prove to be highly significant.

Since

B = ( )0 0c

E
E= m e
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H = 
e

m m
⎛ ⎞

= ⎜ ⎟⎜ ⎟⎝ ⎠
0

0 0

B
E or E = 0

0

H
m
e

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

(12.45)

Now E is in volts/metre and H is in amps/metre. Hence 0 0/m e is measured in ohms, and we write

Z0 =
m
e

0

0

= 376.7 W (12.46)

Z0 is called the Wave Impedance or the Intrinsic Impedance of free space.
The wave system described here is said to be a plane wave, because E and B are constant

over planes perpendicular to the direction of propagation Oz.
The most important case is that of the waves in which E and B are sinusoidal functions of

(z ± ct). The solution to the E field may then be written as

E = Ê cos K(z - ct), for the forward travelling wave.

If w is the angular frequency, then Kc = w. Hence substituting for K, we get

ˆ cos
c

z
E E t

⎛ ⎞= −⎜ ⎟⎝ ⎠
w

E
t = 0 t = t1

ct1

z

Figure 12.5 A travelling wave pattern.

Figure 12.6 Direction of propagation of E and B (or H) waves.

Direction of propagation
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EE

B

Direction of propagation
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and

ˆ cos
c

z
B B t

⎛ ⎞= −⎜ ⎟⎝ ⎠
w

where

                                     
ˆ

ˆ
c

E
B = (12.47)

There is thus a phase lag of wz/c in the oscillations at z = z compared with z = 0; planes
perpendicular to Oz are planes of constant phase, and so c is now referred to as the phase velocity.
The wave length l of the wave is the distance corresponding to a phase change of 2p; thus

2p = 
c

wl
or wl = 2pc or fl = c (12.48)

where f is the frequency of oscillation of the wave, 2p f = w (Figure 12.7).

Figure 12.7 (a) Wavelength and (b) time period of a sinusoidal wave.

Amplitude

Amplitude

l = 2pc /w

z

(a)

(b)
T = 2p /w

t

The quantity w/c (or more generally w /u, where u = velocity) is called the wave number and is
denoted as k or b, i.e.

( )
c u

k = = =w w b

Thus the wave number is 2p times the reciprocal of the wave length. It should also be noted that
this wave number is 2p times the one that is used in optics (which is the reciprocal of the
wavelength), i.e.

k or b =
2

c
=w p

l



CHAPTER 12 MAXWELL’S EQUATIONS 397

Thus it is seen that the uniform plane wave has no component in the direction of propagation and
is transverse in nature, i.e. the wave has components (of E and H) only in the directions
perpendicular to the direction of propagation.

The properties of the polarized light were found to be associated with the directions of
E and B (or H); the wave described here is ‘plane polarized’, the optical ‘plane of polarization’
being a plane defined by the line of polarization Oz and the direction of B or H. In referring to
the radio waves, however, E and not B (or H) is used to define the direction of polarization, and
(since a direction is defined by a line), the preferred description is linearly polarized. The cross
members in a television aerial indicate the direction of polarization of the transmitted waves.

In some books, a plane wave is defined as a wave in which only the phase, not necessarily
the magnitude, of E or B is constant over a plane perpendicular to the direction of propagation.

12.7 BOUNDARY CONDITIONS (GENERALIZATIONS)
Earlier we have discussed separately the two types of boundary conditions for the electric
fields (Chapter 2, Section 2.9), and the boundary conditions for the electric currents (Chapter 6,
Section 6.9), and also the conditions for the magnetic fields (Chapter 8, Section 8.7). Since, for
the general time-varying electromagnetic fields, both the electric and the magnetic fields coexist,
we shall now generalize the boundary conditions for electromagnetic fields. However it should
be clearly understood that the two conditions of the electrostatic fields and the two conditions of
the magnetostatic fields do not produce four independent conditions for the electromagnetic
fields. Essentially there are only two independent boundary conditions, i.e. one based on the
Gauss’ theorem, and the other one based on the line-integral theorem, and the remaining two
conditions are always reducible to the former two. A mathematical proof of this statement is
given in Appendix 8. We shall now state below, in completely general terms, the definition and
the derivation of the boundary conditions.

When there exists discontinuity in the material, the components of the field vectors on the
two sides are related by conditions called the ‘boundary conditions’. In some cases, a vector may
have a zero value on one side, e.g. in an air-gap between the surfaces of iron for which m Æ •,
H = 0 in iron, so that its surface is the boundary for the field. In theory, we may have infinity as
one of the boundaries, and have to consider what happens there.

The surfaces of discontinuity (denoted by S) are invariably investigated by two tools.

1. Application of the appropriate flux theorem (Figure 12.8) to a coin-shaped surface S,
enclosing a part of S (coin-shaped means ‘very thin’ compared with its lateral
dimension). The flux equations are those underlying the equations div D = rC, and
div B = 0 (in integral forms), which give information about D and B.

2. Application of the appropriate line-integral theorem to a suitably directed circuit C,
enclosing a part of S (Figure 12.8). This means the width is << the length. From the curl
equations, i.e.

Figure 12.8 A discontinuous interface.

S
Circuit C

S
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curl E = - 
∂
∂t

B
and curl H = 

t

∂⎛ ⎞+⎜ ⎟∂⎝ ⎠
D

J  (in integral forms)

we get information about E and H.

12.7.1 Some Examples of Generalized Boundary Conditions

Static charge density sS on the surface of a perfect conductor

In this condition, the surface S separates the region (1) (free space) from the region (2)
(conducting) as shown in Figure 12.9. In a perfect conductor, E = 0. This is assumed to imply
D = 0. Thus we have no electric field in the region (2), but possibly the components shown in the
region (1).

+ + + + + + + + + + + + + + +
(2)

(1) S

E1n, D1n

E1t, D1t

Figure 12.9 Static charge density on the surface of a perfect conductor.

Gauss applied to the coin-shaped surface S on the interface, the cross-sectional area of S
being dS, gives

D1ndS + edge contribution from D1t = sSdS

sS being the surface charge density.
But the edge contribution Æ 0 if the coin is made very thin compared with its width, so we

get the boundary condition: D1n = sS.
The electromagnetic induction equation applied to the circuit C (on S) supposedly of

length dl gives
E1td l + edge contribution from E1n = 0

Again the edge contribution Æ 0, and we get

E1t = 0 (12.49)

Thus the field is entirely normal and has the value given by

D1n = sS (12.50)

Discontinuity of dielectrics (Figure 12.10)

This problem has been discussed for the static fields in Section 2.9 but now here we are
generalizing it for the electromagnetic fields. Hence there is no need to assume static conditions.

Gauss applied to the coin-shaped surface S gives

(D1n - D2n)dS + edge contribution from D1t, D2t = 0,

since $ no charge; therefore, since the edge contribution also Æ 0
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D1n = D2n (12.51)

The electromagnetic induction in a contour of length d l and width d l¢, gives

(E1t - E2t)dl + edge contribution μ d l¢ =
∂⎛ ⎞

⎜ ⎟∂⎝ ⎠
tB

t
d ld l¢

With d l¢ << d l, only the first term is significant in the above equation, and hence

E1t = E2t (12.52)

Let the lines of force make angles a1 and a2 with the normal to S, where

a a= =1t 2t
1 2

1n 2n

tan and tan
E E

E E

\ a e
a e

⎛ ⎞⎛ ⎞
= = =⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
1 2n 2n 1

1n 2n
2 1n 2 1

tan
and

tan n

E D
D D

E D

\ 1 1

2 2

tan

tan

a e
a e

= (12.53)

Tangential H on a conducting surface (Figure 12.11)

We consider the surface of a block of metal of finite conductivity s. (We neglect the displacement
current effects for the present, though our final results will not be affected by their presence.)
When an alternating current distribution parallel to the surface is generated in the conducting
block (by whatever means, i.e. by induction or from an external source), the current flow is not

Figure 12.10 Dielectric discontinuity.
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Figure 12.11 Alternating current distributions in conducting media, and interface conditions.
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PROBLEMS

12.1 State Maxwell’s equations for free space, and prove that they are satisfied by

∂= − =
∂

, curl
t

A
E B A

provided that div A = 0,
2

2
2 2

1

c t

∂∇ =
∂

A
A .

Derive E and H when

A = ixa cos 2pk (z – ct) + iyb sin 2pk (z – ct) + iz = 0

Verify that E and H are orthogonal, and their directions rotate about the z-axis with the
frequency kc.

12.2 From the equations:

curl
t

∂= +
∂
D

H J

                                  curl
t

∂= −
∂
B

E

                                   div
t

∂= −
∂

J
r

prove that for time-varying fields div B = 0, and div D = r
12.3 Prove that the two divergence Maxwell’s equations can be deduced from the two curl

equations of Maxwell and the continuity equation.

12.4 Show that the flux of the sum 
∂⎛ ⎞+⎜ ⎟∂⎝ ⎠t

D
J through any closed surface is zero.

12.5 By taking the divergence of one of the Maxwell’s equations, show that:

r∂∇ ⋅ + =
∂

0
t

J

uniformly distributed over the depth, but there is a tendency for the currents to concentrate near
the surface due to the skin effect phenomenon, which we shall study in a rigorous manner in
Chapter 15. We use the line-integral theorem

S

C S

d d◊ = ◊Ú ÚÚH l J S

i.e. n ¥ (Ht1 - Ht2) = JS ¨ the surface current density

                               or           = 0 (12.54)

if (1) either there is no surface current, or (2) if the currents are distributed in depth in the
direction normal to the outer surface or the interface (Figure 12.11). This is because, in the limit,
the current enclosed by the contour C1 or C2 is infinitesimally small compared with the total
current.
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z

e, m, s

Generating
part

x y

Full scale device,
frequency, f(= w /2p)

x ¢

n times smaller model,
frequency, f ¢(= w ¢/2p)

Generating
part

e ¢, m¢, s ¢

z ¢

y ¢

12.6 In a house, where the local AM transmitter is providing a field strength of

E = ix ◊◊◊◊◊ 0.02 sin [0.1927 (3 ¥ 108t – z)] V/m

calculate the rms displacement current density.

Ans.: 0.723 mA/m2

12.7 Scaled modelling is a normal engineering practice. But since all parameters (physical as
well as geometrical) cannot be scaled (up or down) to the same numerical value in a
required model, it is necessary to use some figures of merit. Hence for an
electromagnetic model, starting from Maxwell’s equations, derive the necessary
conditions for an electromagnetic field in a small-scale model which has to be similar to
the field in a real, n times larger device. (These conditions are often referred to as the
‘conditions of electrodynamic similitude’.)
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13.1 INTRODUCTION

At this stage, we shall introduce a ‘new’ magnetic field vector, which is extremely useful for the
proper discussion of inductance problems and also is a highly versatile tool for many other
problems. Though we say that this is a new vector, which is denominated as the ‘Magnetic vector
potential’ and its notation being A, it has been mentioned briefly in passing [Ref.: Sections 8.2–
8.2.2, 10.2–10.2.1, and 11.1.2), we have not established it on a rigorous basis, which we shall do
now. One possible way of looking at this vector A is that we start from an electromagnetic field
(E, B) in space. This can be explored by means of a test particle of mass m, and charge e moving
with a velocity v relative to the observer. The charge e is assumed to be small enough not to
disturb the field under study. The test particle possesses a mechanical momentum mv on account
of its mass. But it also possesses electromagnetic momentum, given by eA on account of its
charge, so that the total momentum of the particle is

p = mv + eA (13.1)

The electromagnetic momentum per unit charge of a test charge is known as the magnetic vector
potential A of the electromagnetic field at the point. We also know that the electric potential
energy per unit charge of the test charge at the point is known as the electric scalar potential V
(or denoted as f sometimes) of the electromagnetic field at the point. This is the physical basis for
this new field vector A. In fact, it should be noted that it is quite usual to introduce A more as a
mathematical device and convenience, because it then (apparently?) lacks the physical basis of
the potential energy distribution on which the electrostatic scalar potential V or f is based. In that
sense, it might be argued that the name ‘vector potential’ is somewhat of a misnomer. Yet as we
shall see that there may be a strong physical basis for this vector, as Maxwell himself expressed
his equation of the law of electromagnetic induction in terms of A and not in terms of E. Maxwell
called A the electrokinetic momentum vector. From these considerations, the initial introduction of
A as an electromagnetic momentum has strong justification.

However we shall now introduce this vector as an adjunct to the set of Maxwell’s equations
and later show that there are other analogous ‘vector potentials’ quite useful for solving a wide
range of problems.

Vector Potentials13
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13.2 MAGNETIC VECTOR POTENTIAL

We start with the Maxwell’s electromagnetic field equations, which written in the differential
form are

div D = — ◊◊◊◊◊ D  = rC (13.2a)

div B = — ◊◊◊◊◊ B  = 0 (13.2b)

curl E = — ¥ E = - 
t

∂
∂
B

(13.2c)

curl H = — ¥ H = J + 
t

∂
∂
D

(13.2d)

Equation (13.2b) is automatically satisfied, if

B = curl A = — ¥ A (13.3)

and it can be shown that any vector whose divergence is zero can be written as the curl of another
vector [Ref.: Section 0.7.7]. Thus for any field B, A can be found (or at least exists).

A is called the vector potential of the magnetic field vector B. It is not completely defined
(i.e. not uniquely defined) by Eq. (13.3), since if A¢ is any vector of appropriate dimensions whose
curl is zero, then,

curl (A + A¢) = curl A + curl A¢ = curl A

so that (A + A¢) will do as well as A as a vector potential. We can, in fact, make A satisfy another
condition such as

div A = 0 (13.4)

[Compare the arbitrary constant in the scalar potential of the electric or the magnetic field, as it
(the constant) disappears on differentiation, making no difference to the calculated value of the
field.]

Let us now consider a closed circuit or a contour C in a magnetic field B (Figure 13.1). The
flux F traversing C is given by

(curl )
S S

d dF = ⋅ = ⋅∫∫ ∫∫B S A S

Figure 13.1 A closed contour in a magnetic field B.

B

C

dS
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where S is the area enclosed by C, and dS is one element in a meshwork spanning C. But, by the
definition of curl,

curl A ◊ ◊ ◊ ◊ ◊ d S = Line integral of A around the edge of d S
Hence,

d⋅∫∫curl A S = Sum of line-integrals of A around the edge of all elements d S

= Line-integral of A round C.

=
C

d◊Ú A lv (Stokes’ theorem)

i.e. the flux through any closed circuit C is equal to the line integral of A round C. (13.5)

This shows that the unit of A is webers/metre.
Let us now consider a magnetic field B which is fixed in direction at each point, but varies

in magnitude with time (Figure 13.2). The associated electric field E is then related by

∂= ∇ × = −
∂

curl
t

B
E E

Figure 13.2 An electromagnetic field.

B

E

Now, if we write

A = - dt⋅∫E  at each point (13.6)

then we shall have

∂ = −
∂t

A
E

and

curl E = - curl 
∂⎛ ⎞

⎜ ⎟∂⎝ ⎠t

A
 = - 

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠t

 curl A

so that the A will serve as the vector potential. This gives some hint of a physical interpretation
of A. In the particular case, where the magnetic field is varying in magnitude only (e.g. an
alternating field), but fixed in direction, A has the same direction as E.

Earlier we have derived the magnetic fields from a scalar potential W, through an equation
whose vector form is

H = -grad W = - —W

But curl grad W = 0, ¨ a vector identity.
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Hence, in the magnetic field so defined, we have curl H = 0. In general, however,

curl H = J + 
t

∂
∂
D

Thus curl H π 0 in any region containing either conduction or displacement current. This
requirement severely restricts the use of the magnetic scalar potential W to determine the magnetic
fields. If we write B = curl A = — ¥ A, then since div curl A = 0 (¨ a vector identity), hence
— ◊◊◊◊◊ B = 0, which however is a universal property of the magnetic fields; and so it follows that,
whereas W can be used in special cases only, the vector potential A can always be used for
evaluation of the magnetic fields. Its special spheres are in problems where W is useless, viz:

1. Regions containing conduction currents (J π 0);
2. Regions containing displacement currents ¨ this covers all radiation problems [(∂D/∂t) π 0].

General comments. In this section, we have introduced the vector A from two different angles,
i.e. (a) a vector whose line-integral around a closed contour is equal to the flux linked with the
contour; and/or (b) the electric field vector integrated with respect to time gives the vector A.
Since by this second approach, the time-derivative operator gets eliminated, then A exists not
only for the constant fields but also for all fields. The second approach further gives a physical
basis for A whereas the line-integral approach does not make obvious any physical basis for A.
However it should also be noted that it is possible to use either of the two approaches as a
starting point, and derive the other from it.

13.3 CALCULATION OF MAGNETIC VECTOR POTENTIAL IN
SOME IMPORTANT CASES

13.3.1 Vector Potential of the Field of Current in a Circuit

We know from Biot–Savart that the magnetic field of an arbitrary circuit can be made from the
contributions,

2

sin

4

i l
H

r

d qd
p

= (13.7)

where d H is perpendicular to both d l and r [Figure 13.3(a)].

Figure 13.3 A current circuit and its element dl.

(a) (b)

q

I

rr + dr

S

P Q

R
PQ = RS = dl¢
SP = QR = MN
    = dl¢¢ N

q I

r

d l

dH
M

dl
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We shall now show that this contribution can be deduced by supposing the element dl to
set up a vector potential whose direction at every point is the direction of d l, and whose
magnitude is

0

4

i l

r

m d
p

⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

(13.8)

Let us consider a small rectangular circuit PQRS, shown in the Figure 13.3(b), in the plane of d l
and r. On PQ, A has the mean value (assuming the above expression) of

0

4

i l

r

m d
p

⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

and on RS of

0

4

i l

r r

m d
p d

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ +⎝ ⎠ ⎝ ⎠

To calculate the flux through PQRS, we form

1

PQRS

A dlÚv
$ no contribution from QR or SP, so:

0
1

PQRS

1 1

4
A dl i l l

r r r

m d d
p d

È ˘Ê ˆ= - ¢Í ˙Á ˜Ë ¯ +Î ˚Úv

                          
( ) ( )0

2

4
i l r l

r

⎛ ⎞ ′⎜ ⎟⎝ ⎠=

m d d d
p , when d r is small.

But MN = dl¢¢ = 
sin

rd
q ; hence

0

1 2
PQRS

sin
4

i l

A dl l l
r

m d q
p

d d

Ê ˆÈ ˘
Á ˜Í ˙Ë ¯

Í ˙= ¢ ¢¢
Í ˙
Í ˙Î ˚

Úv (13.9)

Thus the bracketed quantity in the above Eq. (13.9) is same as the flux density deduced from
Biot–Savart. It may be verified that the assumed A gives no component of B in any other
direction. Thus the assumed formula for A which may be expressed by the vector equation

dA = 0

4

i

r

m d
p

⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

l
(13.10)

is consistent with Biot–Savart.
Extrapolating this expression to the surface current, we get

dA = 0 S

4

J

r

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

Sm d
p

(13.11)

and to the volume current

dA = 0

4
vJ v

r

m d
p

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

(13.12)
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The theory of this section applies to the steady-state conditions. In the next few sections, it is
going to be applied to the transmission lines, with particular reference to the travelling waves—
which is a quasi-steady or non-steady problem. Then we shall be answering the question regarding
the justification of this extension.

Later it is also shown (in Sections 19.2.1 to 19.2.2, on oscillating dipoles) that

0 [ ]

4

i

r

m dd
p

⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
l

A (13.13)

where [i] is a retarded value of the current. Thus A is related to the conduction current only,
provided the retarded values are taken (see Section 13.6 for the explanation of the retardation
effects).

The same argument applies to the relation of the scalar potential V with the charges. Thus
although the parallel between A and V, in the subsequent sections, is developed for the quasi-
steady cases, it does in fact hold good in dynamic cases. For example, the conclusion (LC = 1/c2)
is generally valid.

13.3.2 Systems of Parallel Current-carrying Conductors

If the currents are all parallel to one direction, A has only one component, and is virtually a
scalar.

13.3.2.1 A single short conductor

As shown in Figure 13.4, a straight conductor AB of finite length (b - a), is carrying a current i.

Figure 13.4 A short straight conductor.

We wish to find the vector potential at a point P, distant r1 from the line of the conductor. Hence

m
p

=

=

⎛ ⎞= ⎜ ⎟⎝ ⎠ ∫0
P 4

x b

x a

i dx
A

r

We change the variable to q, so that x = r1 tan q, dx = r1 sec2 qdq, r = r1 sec q, and the limits of
q are a and b corresponding to x = a and x = b, respectively, and so

[ ]0 0
P sec ln (sec tan

4 4

i i
A d

⎛ ⎞ ⎛ ⎞= = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∫
b

b
a

a

m mq q q q
p p

r1

P

A B

b

d x
x = b

a

q

x = a
x

r
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Also,

a a
+

= =
2 2

1

1 1

sec , tan
r a a

r r
and

b b
+

= =
2 2

1

1 1

sec , tan
r b b

r r

\ AP = ix

2 2
10

2 2
1

ln
4

r b bi

r a a

m
p

⎛ ⎞+ +⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ + +⎝ ⎠
(13.14)

13.3.2.2 A pair of long conductors (go and return)

We extrapolate from the last problem, and referring to Figure 13.4, we move the point P (under
consideration) to a plane which bisects the conductor AB normally, so that a = -b, and then

AP = ix

2 2
10

2 2
1

ln
4

r b bi

r b b

m
p

⎛ ⎞+ +⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ + −⎝ ⎠

     = ix
m

p

⎛ ⎞+ +⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

2 2
10

1

ln
2

r b bi

r
(13.15)

At this stage, we cannot let b Æ •, because this would make A also Æ •. So we take a conductor
pair, with currents ± i and the distance of the point P from them being r1 and r2 respectively
(Figure 13.5). We get

AP = ix
m

p

⎛ ⎞ ⎛ ⎞+ +⎛ ⎞ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ + +⎝ ⎠ ⎝ ⎠

2 2
10 2

2 21 2

ln
2

r b bi r

r r b b

Figure 13.5 A pair of parallel long conductors.

+ I

r1

P

r2

– I

Now, we permit b to become larger and larger, so as b Æ •,

AP Æ ix
0 2

1

ln
2

i r

r

m
p

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

(13.16)

Hence from this we can deduce the potential for the single conductor.
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13.3.2.3 A single infinitely long conductor

This gives directly

A = -ix
0

2

im
p

⎛ ⎞
⎜ ⎟⎝ ⎠

ln r (13.17)

at a point distant r from the conductor. As with the scalar potentials, a constant can be added
without affecting the validity of the formula. Now, we apply a check by calculating the magnetic
flux density. For this, we use the cylindrical polar coordinate system with the current and the
conductor in the z-direction. Hence, in the (r, f, z) system, we have

A = irAr + ifAf + izAz = ir0 + if0 + iz
0 ln

2

i
r

m
p

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦
and

curl A = ir
1 1z z r

z

A AA A AAr

r z z r r r

∂ ∂⎡ ⎤ ⎡ ⎤∂ ∂ ∂∂⎡ ⎤− + − + −⎢ ⎥ ⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎣ ⎦ ⎣ ⎦
i if f
ff f

from which

B = irBr + ifBf + izBz = ir0 + if
0

2

i

r

m
p

⎛ ⎞
⎜ ⎟⎝ ⎠

+ iz0 (13.18)

which we know to be true.
The resemblance between the magnetic vector potential for a line current and the formula

for the scalar potential of a charged wire, which is

V = -
0

ln
2

Q
r

pe
⎛ ⎞
⎜ ⎟
⎝ ⎠

(13.19)

is striking and not accidental. Thus, if we take two wires of radius a, spacing b, and carrying the
charges ±Q coulombs per unit length (Figure 13.6), then the electrostatic potential at P is

pe
⎛ ⎞ ′⎡ ⎤⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠

P
0

ln
2

Q r
V

r
(13.20)

Moving the point P to the surface of the charged conductors successively, we get

on the +ve wire, V+ = 
pe

⎛ ⎞ ⎡ ⎤⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠0

ln
2

Q b

a

on the -ve wire, V- = 
pe

⎛ ⎞ ⎡ ⎤⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠0

ln
2

Q a

b

Figure 13.6 Two parallel line charges.
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\ The capacitance C per unit length = 
pe

+ −
=

− ⎛ ⎞
⎜ ⎟⎝ ⎠

0

ln

Q

bV V
a

(13.21)

Now let the same wires carry currents ± i. Similar to the case of the line charges, we have at P the
magnetic vector potential as

0 ln
2

i r
A

r

m
p

′⎡ ⎤⎛ ⎞= ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
(13.22)

Hence on the conductor surfaces, A will be

0 ln
2

i b
A

a

m
p

⎡ ⎤⎛ ⎞= ± ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
(13.23)

but we have seen from Eq. (13.5),
the change in A between one conductor and the other = the flux between them.

Hence, F = 0 ln
i b

a

m
p

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟⎢ ⎥⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎣ ⎦

per unit length (13.24)

and

\ the inductance L per unit length = 0 ln
2

b

a

m
p

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟⎢ ⎥⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎣ ⎦

(13.25)

(Note: The above value of self-inductance neglects the internal self-inductance of the wires.)
\ From Eqs. (13.21) and (13.25),

LC = m0e0 = 
2

1

c
(13.26)

It can be shown that the travelling wave on the line, travels with the velocity (LC)–1/2. Equation
(13.26) shows that, for an air-insulated line, this is the velocity of light.

It is to be further noted that if the two points lie on the same line of force, there is no flux
between them, and so there is no change in A, i.e. in a two-dimensional field,

A = constant, is a line of force (13.27)

The above applies to more complex systems of parallel conductors, with extensive analogues with
the electric case. For example, charged wires over a perfectly conducting earth (Figure 13.7) give
rise to a field ascribed to image charges which make the earth equipotential. Time-varying
currents give similar images; for if the flux penetrated the earth, it would give rise to eddy

Figure 13.7 Charges and line currents above the equipotential earth surface,
and their equivalent images.

– I+ Q + I– Q

Earth’s
surface

+ I– Q – I+ Q
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currents, tending to exclude it (the flux). Thus the earth’s surface, if perfectly conducting, is a line
of force. Hence, we can get L for the conductors in presence of the earth.

(The theory of eddy currents—due to finite conductivity—and their effects will be studied
subsequently in Chapter 15.)

13.4 INDUCTANCE IN TERMS OF VECTOR POTENTIAL

We have defined inductance earlier both in terms of the flux-linkage (Sections 10.6 to 10.6.3) as
well as in terms of the stored energy (Sections 11.15 to 11.15.1), and also considered simple
configurations in terms of the vector potential in the previous two sections. Now we shall derive
the general expressions for inductance in terms of the magnetic vector potential.

The self-inductance of a circuit is given by

2

1
L i

I
dF⎛ ⎞= ⎜ ⎟⎝ ⎠∑ [see Eq. (11.64)]

where di is a filament of current, and F is the flux linked with that current filament.
Let A be the magnetic vector potential set up by the whole current I. Then

C

dF = ◊Ú A lv [see Eq. (13.5)]

where C is the contour of the particular filament for which the flux is being calculated
(Figure 13.8). Also, if J is the current density in the filament, and dS is the cross-sectional area of
the filament, then

di = J ◊◊◊◊◊ dS

Figure 13.8 A current filament.

dldS

C

\ The relation for the inductance can be written as

12

1

C

L A dl d
I

È ˘Ê ˆ Í ˙= ◊Á ˜Ë ¯ Í ˙Î ˚
Â Ú J Sv (13.28)

In this expression, the flux-linkage with a particular filament C is obtained by adding up (SAldl)
for each element dl along the length of the filament, and then it is multiplied by J ◊◊◊◊◊ dS, and then
a second summation is performed to take account of every filament in the wire. In the associated
figure (Figure 13.8), the cross-section of the wire has been greatly exaggerated for the purpose of
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clarity. In reality, the diameter of the wire is quite small compared with the length dimension of
the circuit. So the expression for the inductance [i.e. Eq. (13.28)] can be further simplified. This is
done by assuming the wire to be divided into short slices in which dl is same for all filaments,
and reverse the order of summation; i.e. first add for all the filaments in the slice, and then for all
the slices in the circuit. Hence,

[ ]S S⎛ ⎞ ′= =⎜ ⎟⎝ ⎠∑ 12

1
( ) ( )L A J dS dl L dl

I
(13.29)

where

   ⎛ ⎞ ⎛ ⎞′ = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∑ ∫∫1 12 2

1 1
( ) ( )

S

L A J dS A J dS
I I

(13.30)

This integration is over all the elements of the area in the cross-section. If the current distribution
is uniform over the whole cross-sectional area, then, J = I/S, and

1
1

( )
S

L A dS
IS

⎛ ⎞′ = ⎜ ⎟⎝ ⎠ ∫∫ (13.31)

The significance of this derivation is that the inductance L which has been considered so far as a
property of the circuit as a whole (as a consequence of the total flux-linkage) is now associated
with (L¢dl). L¢ is now defined in terms of A, and hence is not unique as A itself is not unique. But
S(L¢dl) added all around the circuit, results in a unique sum. Also, since the vector potential due
to a current in a conductor of any section, is same as if the current were concentrated in a
filament, we can use Eqs. (13.31) and (13.29) to calculate the inductance L.

13.4.1 Mutual Inductance

Similar expressions as in the previous section can be derived for the mutual inductance. Now
there are two circuits (1) and (2). So we find the vector potential A2 set up by the current I2 in the
circuit (2), and the mutual inductance between the two circuits M12, which is given as

M12 = S (M12¢ dl1) (13.32)
where

1

12 21 1 1
1 2

1

S

M A J dS
I I

⎛ ⎞′ = ⎜ ⎟
⎝ ⎠ ∫∫ (13.33)

I1 and I2 being the currents in the circuits (1) and (2) respectively. If the currents are uniformly
distributed, then
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12 21 1
2 1

1

S

M A dS
I S

⎛ ⎞′ = ⎜ ⎟
⎝ ⎠ ∫∫ (13.34)

If the spacing between the two circuits is large enough to allow A2 to be regarded constant over
the cross-section of the conductor in (1), then we get

21
12

2

A
M

I
′ = (13.35)

Note that A2l is the component of the vector potential of I2 which is tangential to the element dl1
of the circuit (1).
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The vector potential at the point P due to the current I1 in the circuit (1) is
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Ê ˆ= Á ˜Ë ¯ Ú l
A v

The corresponding flux density at P is

B = curl A = — ¥ A

\ The total flux through the circuit (2) is
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By Stokes’ theorem,
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Similarly a current I2 in the circuit (2) produces a flux F21 which links the circuit (1), and is given
by

0 2 2 1
21 1

1 2 1
4

I d d
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◊Ê ˆF = ◊ = Á ˜Ë ¯Ú Ú Ú l l
A lv vv

13.4.2 Neumann’s Formula for Mutual Inductance

This formula was derived by Franz Neumann, a German mathematician, in 1845, through the
concept of the flux-linkage and the vector potential.

In Figure 13.9, a current I1 in the circuit (1) produces a flux F12 which links the circuit (2).
The mutual inductance M12 is

12
12

1

M
I

F= (13.36)

Figure 13.9 Mutual inductance between two loops.
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Hence the mutual inductance is the same as given by Eq. (13.37), and

\ M12 = M21

13.4.3 Mutual Inductance between Parallel Conductors of Length l

We consider two parallel filaments of the same length l as shown in Figure 13.10. From the
dimensions indicated on the figure, we have

⋅
=

⎡ ⎤+ −⎣ ⎦
1

2

2 1 1 2

/2 2
1 2( )

d d dy dy

r
b y y

l l

Figure 13.10 Parallel conductors of length l.

Hence the integral of Eq. (13.37) becomes, on using the substitution (y1 - y2) = z:
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Since the circuit is symmetrical, we can choose the elements such that their contributions to the
self-inductance are the same for each conductor. Since the currents in the two conductors are
equal and opposite, the arbitrary constant in A be so assigned that the values of A at the
corresponding points in the two conductors are equal and opposite. Hence A must be zero at O,
the centre of symmetry. Hence, if the vector potential at P due to (1) is given by

A1 = f (r1, q1)
then A2 must be

   A2 = - f (r2, q2) (13.40)

so that at O, r1 = r2
 and q1 = q2, which would make

A1 + A2 = 0 at O.

13.4.5 Rods of Circular Cross-section
We shall consider a pair of parallel straight rods of radius a and spacing b, carrying currents in

Figure 13.11 Inductance of a pair of parallel long conductors of any cross-section.
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(13.38)

This equation can be used to evaluate the mutual inductance between two rectangular coils by
using the principle of superposition.

13.4.4 Self-inductance of a Pair of Parallel Conductors of any
Cross-section

We consider a go-and-return circuit of a pair of long straight parallel conductors. The sections of
the two conductors are similar and also are similarly oriented. Since A now has only one
component, parallel to the direction of the currents, we can drop the suffix l of Eq. (13.31) which
we shall use for calculation. We subdivide A into two components A1 and A2 for the currents in
the two conductors (1) and (2) as shown in Figure 13.11. Then, Eq. (13.31) applied to this
configuration becomes

1 2
1

( )L A A dS
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′ = +∫∫ (13.39)
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opposite directions. For this purpose, we shall derive the vector potential due to a single straight
rod of radius a and carrying a current I. The potential outside the rod is same as that due to a line
filament, which we found to be [from Eq. (13.17)] as

0 ln ,
2

I
A C r r a

m
p

⎛ ⎞= − >⎜ ⎟⎝ ⎠
where A is parallel to the direction of the current. To find A inside the rod, we remind ourselves
that the magnetic flux density inside is circumferential, but its magnitude is

0
22
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m
p
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and remembering from Eq. (13.18) that
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which on integrating gives us
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We have to adjust the constants C and C¢, so that A remains continuous on the surface of the
conductor, i.e. r = a. If we choose A to be zero on this surface, then
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(13.41)

The variation of A with r is shown in Figure 13.12. With the boundary condition used, A has the
same direction as I inside the conductor, but opposite that of the current outside it.

Figure 13.12 Vector potential of a single straight conductor of circular cross-section.
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and
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outside the conductor C2.

As before, A1 + A2 = 0 at the point O.
Hence, we get L¢ as
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This has to be integrated over the cross-section of the conductor C1.

By taking a thin circular annulus as the surface element, we get
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where R2 is the geometric mean distance between the centre of C2 and the cross-section of C1.
Note that R2 � b.

\ Combining both the terms,
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Now, we consider the two parallel conductors, as shown in Figure 13.13. The vector
potential components, similar to the problem in Section 13.4.4 are
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Figure 13.13 Two parallel conductors of circular cross-section, carrying the same current I
in opposite directions.
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circuits, six being the number of ways of pairs up the conductors. These six circuits would have
six self-inductances, and fifteen mutual inductances, which can be associated with the elements of
lengths in the conductors (as per Section 13.4). These 21 inductances can then be expressed in
terms of four self-inductances of the conductors and six mutual-inductances of the conductor
pairs.

Let the currents in the four conductors R, Y, B, N of Figure 13.14 be iR, iY, iB, iN,
respectively, considered to be positive when coming out of the plane of the paper . Since we have
shown no return path, it implies that at every instant,

iR + iY + iB + iN = 0 (13.44)

For the purpose of our calculation, we imagine a ‘dummy return conductor D’ in any position. We
shall see that this dummy need not have any physical existence. We imagine that the current
iR circulates in the circuit (R, D); the current iY in the circuit (Y, D); the current iB in the circuit
(B, D); and iN in the circuit (N, D). The total current in the dummy would be (iR + iY + iB + iN)
which is always zero and hence D does not need to have a physical existence. The self-inductance
LRR of the circuit (R, D) is called the ‘self-inductance of the conductor R’; and the mutual
inductance MRY between the circuits (R, D) and (Y, D), is called the ‘mutual inductance between
the conductors R and Y’. Thus we have defined LRR and MRY quite unambiguously.

Figure 13.14 Three-phase transmission line with a neutral and a dummy return.

This is the self-inductance per metre length of the conductor, and the self-inductance of the circuit
will be double this quantity which is what was seen in Section 11.5.1.

13.4.6 The Inductance of a System of Several Circuits

We consider a group of N conductors (circuits) surrounded by air or other non-magnetic materials.
The flux-linkage in any circuit is due to the combined effect of the current in that circuit and in
all others, so that the flux-linkages can be expressed as

F1 = L11i1 + M12i2 + M13i3 + ... + M1NiN

F2 = M21i1 + L22i2 + M23i3 + ... + M2NiN

. . .

. . .

. . .

FN = M1Ni1 + M2Ni2 + M3Ni3 + ... + LNNiN (13.43)

In deriving these N equations, generally we think of N electrically distinct circuits. But, in reality,
there are times when the same conductor belongs to more than one circuit. For this purpose, we
consider a three-phase transmission line with a neutral conductor, which consists of four parallel
conductors (and a dummy return) as shown in Figure 13.14. Such a system really consists of six

DNBYR

INIBIYIR

IR + IY + IB + IN = 0

• • • •
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Now we consider the circuit (R, Y). Its self-inductance is set up by a current of +1 amp in R
and of -1 amp in Y. This linkage is equivalent to that by a current of +1 amp in (R, D) which is
(LRR - MRY); and that by a current of -1 amp in (Y, D) which is (LYY - MRY). Hence the self-
inductance of the circuit (R, Y) is then given by

L (self) = LRR + LYY - 2MRY (13.45)

Similarly, the flux-linkage set up in (B, N) by a current of +1 amp in (R, D) is (MRB - MRN); and
that set up by a current of -1 amp in (Y, D) is (MYN - MYB). Thus the mutual inductance between
the circuits (R, Y) and (B, N) is thus

M(mutual) = MRB + MYN - MRN - MYB (13.46)

Similarly, the mutual inductance between the circuits (R, Y) and (R, B) can be deduced and be
shown to be:

M(mutual) = LRR + MYB - MRY - MRB (13.47)

This is how the inductance associated with various circuits can be derived from the knowledge of
the inductances associated with the conductors. The conductor inductances (both self- and
mutual) depend on the location of the dummy conductor, but when they are combined in the
equations of the types shown in (13.45) to (13.47), the terms depending on the location of the
dummy conductor D will disappear.

Similarly, we can obtain the equivalent equations of a three-wire system, which will be
comparatively simpler and easier.

13.5 APPLICATION OF THE MAGNETIC VECTOR POTENTIAL
IN TIME-VARYING FIELDS

So far we have considered the magnetic vector potential for the time-invariant magnetic fields, in
the rigorous sense. Now we shall generalize the concept and cover its application to the whole
range of electromagnetic fields, i.e. the time-varying fields as well. Hence, we start again from the
Maxwell’s equations which we write in differential form as

 div D = — ◊◊◊◊◊ D = rC (13.2a)

div B = — ◊◊◊◊◊ B = 0 (13.2b)

curl E = — ¥ E = -
∂
∂t

B
(13.2c)

  curl H = — ¥ H = J +
∂
∂t

D
(13.2d)

As before, we assume for the magnetic vector potential A to be

B = curl A = — ¥ A (13.3)

then Eq. (13.2b) is automatically satisfied.
Substituting the value of B in terms of A in Eq. (13.2c), we get

curl E = — ¥ E = -
t

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

 (— ¥ A).
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Since the space and the time-differentiations can be reversed, i.e.

— ¥ E = -
t

∂⎛ ⎞∇ ×⎜ ⎟∂⎝ ⎠
A

which gives

— ¥
t

∂⎛ ⎞+⎜ ⎟∂⎝ ⎠
A

E = 0 (13.48)

Hence [E + (∂A/∂t)] is an Irrotational vector, and thus can be expressed as the gradient of a scalar,
i.e. say (= -grad V ), where V is a scalar potential. Then

grad V V
t t

∂ ∂⎛ ⎞ ⎛ ⎞= − − = − − ∇⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
A A

E (13.49)

Now Eqs. (13.2a) and (13.2d) remain to be dealt with, and require the assumption of the
constituent relations:

D = eE (12.12)

B = mH (12.13)

With Eq. (12.12), Eq. (13.2a) gives

Cr
e

= div E = — ◊◊◊◊◊ E = — ◊◊◊◊◊ V
t
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A

    = -— ◊◊◊◊◊
t

∂
∂
A - —2 V (13.50)

and Eq. (13.2d) gives

curl curl A = — ¥ — ¥ A = m
t

∂⎛ ⎞+⎜ ⎟∂⎝ ⎠
D

J

If A is specified in the Cartesian coordinates, then its components are (Ax, Ay, Az), and it may be
verified that for each component of A, (curl curl A)x = (grad div A)x - —2Ax, and similar
expressions can be found for Ay and Az.

Hence, we can write the vector equation

grad div A - —2A m m

m me

m me

∂⎛ ⎞= + ⎜ ⎟∂⎝ ⎠
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by substituting from Eq. (13.49).
By rearranging the terms in the above equation:
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1 1
grad div

u u

V

tt
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A
A J Am (13.51)

where (1/u2) = me, so written because u has the dimension of velocity; and also:

—2A = ix—2Ax + iy—2Ay + iz—2Az
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It has been remarked that A is not uniquely defined by Eq. (13.3), and can be made to
satisfy a condition additional to:

curl A = — ¥ A = B
This condition we choose to be is

2
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div 0

u

V

t

∂⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠
A (13.52)

(this condition is known as the ‘Lorentz Condition’)

and then Eq. (13.51) reduces to
2
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A Jm (13.53)

Also by substituting for div A from Eq. (13.52) into Eq. (13.50), we get
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(13.54)

Thus by the use of the magnetic vector and the electric scalar potentials A and V respectively, the
Maxwell’s equations are reduced to two equations, i.e. (13.53) and (13.54). The vector equation
(13.53) is really equivalent to three scalar equations, and this equation associates A with the
conduction currents in the field; whilst Eq. (13.54) associates the electric scalar potential V with
the charges in the system. Hence, given the system of the currents and the charges, A and V can
be calculated; and the actual field vectors are then given by the equations:

V
t

∂⎛ ⎞= − − ∇⎜ ⎟∂⎝ ⎠
= ∇ ×

A
E

B A
(13.55)

and it is seen that the magnetic vector potential A is the sum of two parts; one associated with the
changes in the magnetic field, and one (the electrostatic part) set up by the charges.

The condition imposed on the potentials, i.e.
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t
A

∂⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∂ (13.52)

is called the ‘Lorentz Condition’ or the ‘Lorentz Gauge’. Such a constraint imposed on the
definition of the vector potential is called a ‘gauge transformation’. The advantage of this
transformation is that the two potentials A and V have been separated into two equations which
are not interdependent, i.e.

2
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u t
mA

A J
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⎛ ⎞∂⎛ ⎞∇ − = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ∂⎝ ⎠ (13.54)

In this case, whilst the vector potential A is a consequence of the conduction currents (i.e. the
changes in the magnetic field), and V is due to the charge distributions of the system, it must be
noted that this V (though it is associated with the charges in the system) is not the electrostatic
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potential (as defined in Chapter 1, Section 1.6.1) which was based on the potential distribution
due to the static charges of the system. It (i.e. the present V based on the Lorentz gauge) is merely
a scalar electric potential function which is a consequence of the static charges of the system.

The other condition (or the constraint):

div A = — ◊◊◊◊◊ A = 0 (13.4)

which we had imposed in the earlier sections of this chapter (i.e. Sections 13.2 to 13.4.6) is called
the ‘Coulomb Condition’ or the ‘Coulomb Gauge’ and is another gauge transformation. This
transformation reduces the Maxwell’s equations to again two potential equations which are of a
form different from the equations obtained by the Lorentz gauge. These two equations (i.e. those
obtained by the Coulomb gauge) can be easily obtained from Eqs. (13.51) and (13.50) with the
substitution from (13.4). The potential equations for the Coulomb condition then are
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u u
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tt
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A
A Jm (13.56)

and
2 CV∇ = −

r
e

(13.57)

In this case, whilst A and V have not been separated as before (as by the Lorentz gauge), the
present scalar electric potential V is now the electrostatic potential (as defined in Section 1.6.1)
of the system, based on the potential energy distribution of the system. With this transformation,
the electric field vector E is now separable into an electrostatic field and a wave field given by
- (∂A/∂t).

However in a lot of analyses, the Lorentz condition is often preferred, because it yields
relativistically invariant expressions. Thus we see that the potentials are really a matter of choice
for maximum convenience. It is E and B which are the physically important quantities. Maxwell’s
equations are invariant under the choice of the gauge.

Gauge invariance. As only the curl of A is fixed by the equation:

B = — ¥ A

then any vector field which can be expressed as (grad f or —f ) can be added to A without
changing B. Thus if A0 is an acceptable vector potential, then so is

A = A0 + (grad f ) (13.58)

Similarly if V0 is the scalar potential corresponding to A0, then

0
∂Ê ˆ= - Á ˜Ë ¯∂
f

V V
t (13.59)

would leave E unchanged, and hence is acceptable. These transformations of the type given by
Eqs. (13.58) and (13.59) are known as ‘gauge transformations’.
Note: A point to be noted is that the Lorentz gauge (also known as the co-variant gauge)

2

1
0

u

V

t

∂⎛ ⎞ ⎛ ⎞∇ ⋅ + =⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠
A
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is very similar in appearance to the equation of continuity which is

C 0
t

∂⎛ ⎞∇ ⋅ + =⎜ ⎟∂⎝ ⎠
J

r

This has tempted a number of authors to say that the ‘Lorentz condition’ is the equation of
continuity in terms of potentials, or a disguised form of the continuity equation. This is not quite
a rigorously correct statement. This is because the continuity equation is based on a physical truth
and holds good under all conditions. But this is not so with the Lorentz condition. This is one of
the possible mathematical solutions, and is not the unique solution. If we wish to make a rigorous
statement to compare these two equations, then our statement would be as given below:

Lorentz condition is consistent with the continuity equation because if we start by
assuming the truth of the continuity equation, the truth of the Lorentz condition is not
followed uniquely, i.e. it is not the only solution.

13.6 RETARDED POTENTIALS

We have seen in Chapter 12, that in the time-varying fields the electric and the magnetic field
signals propagate with the velocity of light c in free space. The classical vector analysis is
concerned with the functions of the three space coordinates (x, y, z). The subjects of electrostatics
and magnetostatics employ the vectors in the same way. But in the general time-varying fields,
the quantities which specify a field, like the scalar potentials V, W and the vector potential A are
time-variant. So these field quantities are functions of four variables (x, y, z, t). However, even in
such cases, the vector analysis considers that all the quantities are taken at the same instant of
time, i.e. we work with a three-dimensional section (t = constant), through the four-dimensional
continuum.

Another way of taking a section of the four-space is to fix the time t at the observer field
point P, and to consider all other points at ‘retarded times’ t = (t - r/c) where r is the distance
between the observer point P and any other point Q, and c is the velocity of light in free space
(Figure 13.15). So the potential at P, due to a charge Q, varying with time, at the point Q is

( )
pe

=
04

Q t
V

r
(13.60)

Figure 13.15 Field produced at the point P due to charges at the point Q.
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at points close to the charge; and if the distances are large enough, then:

0

c

4

r
Q t

V
r

⎛ ⎞−⎜ ⎟⎝ ⎠=
p e

(13.61)

This potential is called the ‘retarded potential’ at O due to the varying charge located at the point
Q. If instead of the point charge, there is a charge cloud of density rC(t), then the retarded scalar
potential is

0

c1
( )

4
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r
t

V t dv
r

r

pe

⎛ ⎞⎡ ⎤−⎜ ⎟⎢ ⎥⎝ ⎠
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

∫∫∫ (13.62)

And similarly the retarded magnetic vector potential due to a time-varying current density J(t) is

0 c
( )
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r
t

t dv
r
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J

A

⎛ ⎞⎡ ⎤−⎜ ⎟⎢ ⎥⎝ ⎠⎛ ⎞ ⎢ ⎥= ⎜ ⎟⎝ ⎠ ⎢ ⎥
⎢ ⎥⎣ ⎦

∫∫∫ (13.63)

The retarded values are represented by square brackets, i.e. [r] and [J]. The retarded values shed
new light on many aspects of electromagnetic theory, e.g. in antenna theory. Experiments show
that it takes ~2.56 seconds to send radar signals to the moon and back, i.e. the signals received on
the earth depend on the electric currents in the transmitter antenna at a time 2.56 seconds earlier.

The quasi-stationary electromagnetic field, where we ignore the retardation is only a
limiting case. The approximation that the fields vary in synchronism with the source charges and
currents is permissible only when the retardation can be justifiably ignored. This is possible at
low frequencies, but not at very high frequencies.

When the charges and the currents are varying sinusoidally with time, the complex form of
the retarded scalar and the vector potentials will be
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∫∫∫ (13.64)

13.7 ELECTRIC VECTOR POTENTIAL T (WITH THE
MAGNETIC SCALAR POTENTIAL W)

This method, which is quite analogous to that of the magnetic vector potential A (with
the electric scalar potential V) has been comparatively recently suggested by C.J. Carpenter
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(in 1977). He suggested the use of an ‘electric vector potential T’ to solve mostly eddy current
problems, i.e.

J = — ¥ T (13.65)

This device has since then been used by a number of workers in the field of eddy current
problems in electrical machines, in particular, and hence we shall present here a brief discussion
of the method. Since we are restricting ourselves to eddy-current problems, we neglect here the
displacement current terms, and the relevant Maxwell’s equations for our consideration are:

curl H = — ¥ H = J (13.2¢a)

curl E = — ¥ E = -
t

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

B
(13.2¢b)

div B = — ◊◊◊◊◊ B = 0 (13.2¢c)
and

div J = — ◊◊◊◊◊ J = 0 (13.2¢d)

Equations (13.2¢a) to (13.2¢c) are the Maxwell’s equations neglecting the displacement current
term, and Eq. (13.2¢d) is also the restricted form of the equation of continuity. The constituent
relations of use to us, now, are

B = mH (12.13)

J = s E (12.14)

 Combining Eq. (13.65) with Eq. (13.2¢a), we get

— ¥ H = J = — ¥ T
or

— ¥ (H – T) = 0

Hence the vector (H – T) can be expressed as the gradient of a scalar, i.e.

H = T – —W (13.66)

where W is a magnetic scalar potential.
Note the similarity of this equation with Eq. (13.49) which states

V
t

∂⎛ ⎞= − − ∇⎜ ⎟∂⎝ ⎠
A

E (13.49)

Now, we substitute from Eq. (13.65) into Eq. (13.2¢b)

( )0 r
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t t

⎡ ⎤ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞∇ × = ∇ × ∇ × = − = − − ∇Ω⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

B
E T Tm m

s

                  0 r t t

∂ ∂Ω⎛ ⎞ ⎛ ⎞= − − ∇⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
Tm m . (13.67)

Or, in linear media

— ¥ — ¥ T = -ms
t t

⎡ ⎤∂ ∂Ω⎛ ⎞− ∇ ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦

T
(13.68)

Now the operator

— ¥ — ¥ ∫ grad div -—2

by referring to Section 13.5 and Section 0.7.6, Eq. (0.74) (in Cartesian coordinate system).
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Hence, by this substitution in Eq. (13.68) and rearranging the terms,

2 grad
t t

ms ms⎡ ⎤∂ ∂Ω⎛ ⎞ ⎛ ⎞∇ − = ∇ ⋅ −⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

T
T T (13.69)

So far we have not defined T uniquely by Eq. (13.65). Hence we can impose an additional
constraint, and as in the case of the magnetic vector potential, this constraint can be chosen in
two possible ways, i.e. Lorentz condition which for this potential will be

ms ∂Ω⎛ ⎞∇ ⋅ − =⎜ ⎟∂⎝ ⎠
0

t
T (13.70)

So Eq. (13.69) simplifies to

ms ∂⎛ ⎞∇ − =⎜ ⎟∂⎝ ⎠
2 0

t

T
T (13.71)

The restricted form of the continuity equation (13.2d) is automatically satisfied by the potential
vector T as

div J = div curl T = 0 is a vector identity.

So now we can consider the remaining Maxwell’s equation (13.2c) in which we substitute
from Eq. (13.66), i.e.

div B = div [m(T – —W)] = 0

m— ◊◊◊◊◊ T - m— ◊◊◊◊◊ —W = m—2W (13.72)

From Lorentz equation condition (13.70), the above equation reduces to

ms ∂Ω⎛ ⎞∇ Ω − =⎜ ⎟∂⎝ ⎠
2 0

t
(13.73)

Hence by using the Lorentz gauge, Maxwell’s equations have been reduced to two separate
equations in electric vector potential W, i.e.

ms ∂⎛ ⎞∇ − =⎜ ⎟∂⎝ ⎠
2 0

t

T
T (13.74a)

ms ∂Ω⎛ ⎞∇ Ω − =⎜ ⎟∂⎝ ⎠
2 0

t
(13.74b)

If, on the other hand, we use Coulomb gauge for the vector potential, i.e.

— ◊◊◊◊◊ T = 0 (13.75)
then Eq. (13.69) reduces to

ms ms∂ ∂Ω⎛ ⎞ ⎛ ⎞∇ − = − ∇⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
2

t t

T
T (13.76a)

and
—2W = 0 (13.76b)

As in the case of the electric vector potential, T and W have not been separated, but now W is a
Laplacian field containing no sources in the region, whereas the Lorentz gauge not only separates
the two potentials, but also both satisfy the diffusion type equations.
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The electric vector potential has been used to solve the problem of end region losses in
turbo generators—a problem which is three dimensional in nature, and when this problem is
solved by using A and V, we need to solve for all the three components of A, whereas using the
T-W method, T can be simplified to produce a solution with two components of T. However the
physical interpretations of the boundary conditions need to be handled carefully.

13.8 MAGNETIC VECTOR POTENTIAL ‘A’ AND
THREE-DIMENSIONAL PROBLEMS

Solving electrostatic problems by using the concept of the potential (which is a scalar quantity in
such problems) has been relatively easy and straightforward. We usually find the potential due to
a fixed charge distribution, and then this potential is modified by superimposing a suitable
perturbing potential (or potentials) to satisfy the relevant boundary conditions on dielectric or
conducting boundaries of the problem. The same method is used in solving the magnetic field
problems in which part of the vector potential due to the given current distribution is obtained
and then it is superimposed by the suitable perturbing potentials to fulfill the requisite magnetic
boundary conditions.

Though the underlying principles for both sets of the problems (i.e. electrostatics and
magnetostatics, as well as electromagnetic) are the same, the problem has now become more
complicated because the potential is now a vector having more than one component as distinct
from the scalar potential. However in two-dimensional problems in which the vector potential
has only one component the problem can be tackled by methods very similar to those of the
scalar potential. But as soon as we enter the domain of three-dimensional problems in which the
vector potential can have 2 or 3 components (i.e. more than one component), the method of
solving the problems becomes more complicated. Even the direct method of solving the
Laplace’s equation (or equations with Laplacian operator) is not easy because the Laplacian
operator is now being applied to a vector. This gives rise to three scalar equations, one for each
component of the vector. Only in rectangular Cartesian coordinates these three components
satisfy an identical equation. But then the solution of each component gets modified and altered
because of different boundary conditions on the relevant boundaries of the region. This relative
simplification exists in the rectangular coordinates only, because the ‘unit vectors’ parallel to
the coordinate directions are constant both in magnitude and direction over the whole region
of the problem. It should now be noted that this simplification is no longer available in other
coordinate systems such as cylindrical polar and spherical polar systems. In Cartesian
coordinates the Laplacian operator operates only on the magnitudes of the components of the
vector potential and the unit vectors are constants with respect to the derivatives of the
coordinate variables. So the effect of the Laplacian operator on all the three components of the
potential vector is same. But in the other two coordinate systems, some of the unit vectors change
their directions and so the Laplacian operator derivative terms have to be operated on these unit
vectors producing additional non-zero terms which come out to be different for the different
components of the potential vector. (This behaviour of these unit vectors has been explained and
shown in Appendix 4, Section A. 4.14.). This makes the three partial differential equations for
the three components of the vector potential different from one another and some of the solutions
do become very complicated. Hence we have to look for a simple method, and this is done on
the basis of some of physical characteristics of the magnetic field problems.
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13.8.1 Orthogonal Expansions for Vector Potential (Magnetic, i.e. A)

It has been seen that in free space where there are no electric charges, the divergence of the E

field is zero. i.e. div 0= —◊ =E E  and hence we can write grad ,V V= - = - —E where V is a

scalar (potential).

Hence this E would satisfy the condition curl 0.= — ¥ =E E
Similarly in free space, where there are no electric currents, the magnetic flux density B would

have zero divergence and zero curl.

i.e. 0 and 0—◊ = — ¥ =B B

In such regions, the expansions for these two fields can be written in terms of orthogonal
functions in the same form. This has been done in Chapter 4, Sections. 4.2.4 to 4.2.8. The Laplace’s
second order partial differential equation was solved by breaking up the p.d.e. into three total
o.d.e’s each involving a single coordinate variable, connected by two indices. The solution thus
obtained contained the two corresponding indices and six integration constants. Due to the
mathematical similarity between the electric and the magnetic fields (as indicated above), it is
justifiably expected that the part of the vector potential which contributes to B would also have
the same number of indices and integration constants.

This vector potential can thus be derived from three scalar potential functions, because in
the rectangular coordinates, each component of the vector potential satisfies the Laplace’s
equation. It should be noted that these three components are not independent but are connected

by the gauge condition. We choose the Coulomb gauge here, i.e. div 0= —◊ =A A  because of its
simplicity as well as its wide applicability to various eddy current problems. However this does
not mean that we are restricted to eddy current problems only and the solutions obtained here apply
equally well to electromagnetic radiation as well. The gauge  condition implies that we are using
only two independent scalar functions at most. The general expression for the vector potential,
having zero divergence, is

= — ¥A W (13.77)

where W is a vector, which can be derived from two scalar potential functions. While solving
both eddy current and electromagnetic radiation problems, it is convenient to sub-divide W into
two orthogonal components, each of which can be derived from a different scalar potential
function. Thus,

1 2( )W= + ¥ —W uW u (13.78)

where u is an arbitrary vector which has been so chosen that

2 2 2( ) ( ) 0— = — — ¥ = — ¥ — =A W W
(13.79)2 2

1 20 and 0W W— = — =
It can be easily verified in rectangular coordinate system, that

or
2 2

1 1( )W W— = —u u
2 2

1 1 1( ) 2W W W— = — + —u u (13.80)

and 2 2
2 2( ) ( )W W— ¥ — = ¥ — —u u

where , , orx y z r=u i i i i  (i.e. unit vector in the direction of r)
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Because of the similarity between B and E, it can be argued that B (like E) can be derived from
a single scalar function. This conclusion can be checked from the above steps of this derivation.
The scalar function W2 contributes to A the vector potential. Hence,

when 2
2 2 2or or , ( ) ( ) ( )x y z W W W= — ¥ ¥ — = — - — ◊—u i i i u u u (13.81)

and 2
2 2 2 2, ( ) ( ) ( )r W W W W= — ¥ ¥ — = — - — ◊— - —u i u u u (13.82)

Since 2
2 0,W— =  the part of A which is derived from W2 is then the gradient of a scalar and hence

does not contribute anything to B in the magnetostatic problems.

(Note: This above derivation has been given as Problem 13.7 in this book,  without the physical
basis presented above and solved as Problem 9.17 in Electromagnetism—Problems and Solutions,
2nd Edition, 2008.)

If u1, u2, u3 are orthogonal curvilinear coordinates (as explained in Appendix 4) and if u given
above lies in the direction of u1, and if W1 is of the form

1 1 2 3( ) ( , )W U u F u u= (13.83)

then 0.◊ =B A

Next, we use this theory, so developed, to obtain the solutions of the equation

2 0— =A (13.84)

in the three different coordinate systems.
So, in terms of the general orthogonal curvilinear coordinate system, the solution would be

in the form
A = i1 U11 U12 U13 + i2 U21 U22 U23 + i3 U31 U32 U33 (13.85)

where i1, i2, i3 are the respective unit vectors in the directions of the coordinates u1, u2, u3 and Urs

is a function of us only. The form of the solution should be such that the vector potential
anywhere inside a specified volume, which is free of sources and is bounded by a set of surfaces,
each of which is parallel to one of the coordinate surfaces, can be evaluated when the tangential
component of A on these surfaces is given.

13.8.2 Vector Potential in Rectangular Cartesian Coordinates

In rectangular Cartesian coordinates, since each component of A satisfies directly the Laplace’s
equation in charge-free and current-free regions, there is really no need to evaluate W as the
expressions for Ai (i = x, y, z) can be written down from the scalar potential solution. Hence,

2 2 sin sin
, , ,

cos cos
x yk k z

i x yA e k x k y i x y z
± + Ï ¸ Ï ¸

= =Ì ˝ Ì ˝
Ó ˛ Ó ˛

(13.86)

with six constants of integration and two independent indices kx, ky. The solutions will be
orthogonal in terms of two coordinate variables out of three. A point to be further noted is that
the orthogonality of the any two coordinate variables out of the three can be suitably chosen
depending on the boundary surface conditions of the parallelepiped (or cuboid) region under
consideration.
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13.8.3 Vector Potential in Cylindrical Polar Coordinates

The general solution of Laplace’s equation in cylindrical coordinates can be built up of a sum
of terms involving Bessel functions (except in some particular cases) as shown in Chapter 4,
Sections 4.2.5–4.2.6. So now we consider the analogous solution for the vector potential A
possessing orthogonal properties on the surfaces of a right circular cylinder such that the
tangential components of A on them (i.e. on these surfaces) can be expressed as a sum of such
solutions and hence determine its value at any interior point. Choosing the Bessel function
solution of —2W1 = 0 in terms of ordinary Bessel function, and setting u = iz, the W of
Eq. (13.77) becomes

1( ) { ( ) ( )} sin ( )kz kz
z n n nk Ae Be CJ kr DY kr nf d- -= + + +W i (13.87)

using simpler notations for the indices k and n instead of kf and kz.
Deriving the vector potential from this by using Eq. (13.77),

( ) {( ( ) ( )} cos( )kz kz
r n n n

n
A Ae Be CJ kr DY kr n

kr
f d-= - + + +

(13.88)
( ) {( ( ) ( )} sin( )kz kz

n n nA Ae Be CJ kr DY kr nf f d- ¢ ¢= + + +

This is the orthogonal surface vector function. If, for a given value of z, either component of
iz ¥ A vanishes for r = a, then at this value of z, iz ¥ A can be expressed as sum of such functions.

For suitable solutions to express the tangential component of A on the curved surfaces, the
solution in terms of modified Bessel functions have to be used, and now the orthogonal functions
are in z and f. So Eq. (13.88) is now replaced by:

{( ( ) ( )} cos( ) cos( )r n n k n
n

A CI kr DK kr kz n
kr

g f d= - + + +

(13.89){ }( ) ( ) cos ( ) sin( )n n k nA CI kr DK kr kz nf g f d¢ ¢= + + +

The z-component satisfies the scalar Laplace’s equation and can be written as:

{ }( ) ( ) cos( ) cos( )z n n k nA C I kr D K kr kz ng f d¢ ¢= + + +¢ ¢ (13.90)

When k = 0 and n π 0, the solutions for the curved surface, reduce from the above to:

1 1( ) ( ) sin( )n n
r nA Ar Br Cz D nf d- - -= + + +

1 1( ) ( ) cos ( )n n
nA Ar Br Cz D nf f d- - -= - + + + (13.91)

( ) ( ) cos ( )n n
z nA A r B r C z D nf d- ¢= + + +¢ ¢ ¢ ¢

For the index k = 0, no solutions exist, which would be orthogonal in both r and f and suitable
for the end surfaces.

When both k and n are zero, i.e. k = 0, n = 0, some forms of interest are

[ ]( ) ln ( )zW Az B Cz D r Ez F Gzf f f= + + + + + +i r (13.92)

¸
Ô
˝
Ǫ̂

¸
Ô
˝
Ǫ̂

¸
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˝
Ô
Ǫ̂
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1 1 1ln lnrA Ar z r Br r Er z F- - -= + + +
1 1 1 1A Ar z Br Cr z Dr Grf f f- - - -= - - - - + (13.93)

( ) lnzA G H r If f= + +

13.8.4 Vector Potential in Spherical Polar Coordinates

The general solution of Laplace’s equation in spherical polar coordinates has been obtained in
Chapter 4, Sections 4.2.7–4.2.8 as a sum of terms involving spherical harmonics (i.e. Legendre
function). Now we derive analogous solutions for the vector potential. These solutions should
have orthogonal properties on the surface of a sphere so that the tangential components of the
vector potential on this surface can be added up so as to obtain the value of the potential at any
internal point. We choose the spherical harmonic solution of

2
1 0W— =

and setting u = ir (Note: ir in this coordinate system is different from ir of Section 13.8.3., as ir in
the cylindrical coordinate system is normal to the z-axis and always lies in x–y or parallel planes,
whereas in this case ir is in the radial direction emanating from the centre of the sphere.) So,

1( ) { (cos ) (cos )} sin( )n n m m
r n n mW Ar Br C P DQ mq q f d- -= + + +i (13.94)

1( ) { (cos ) (cos )} cosec cos( )n n m m
n n mA Ar Br CP DQ m mq q q q f d- -= + + ◊ +

(13.95)
1( ) { (cos ) (cos )} sin sin( )n n m m

n n mA Ar Br CP DQ mf q q q f d- -= + + ◊ +

This A is the orthogonal surface vector function.

When 0 and / 2, thenmm d p= =

1 1 1( ) { (cos ) (cos )}n n
n nA Ar Br CP DQf q q- -= + +

Expressing B in terms of W,

( ) ( ) ( ) 2W W r W W
r

∂= — ¥ — ¥ = - — ¥ ¥ — = — + —
∂

B r r (13.97)

13.8.5 Vector Potential of Eddy Currents

Induced currents in conducting media have been studied in detail in Chapter 15. (So this section
will be better appreciated after studying Section 15.2, though this is not an essential requirement.)
Faraday’s law of electromagnetic induction, stated mathematically, gives

d

dt
— ¥ = -

B
E (13.98)

We define the magnetic vector potential A as B = — ¥ A.
Combining the above two equations, we get

d

dt
= -

A
E (13.99)

¸
ÔÔ
˝
Ô
Ǫ̂
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Since the electric field is produced in a conductor, there will be a current flow in it. If J is the
current density and r is the resistivity of the medium (or its reciprocal conductivity = s = 1/r)
then, we have

rJ = 
d

dt
-

A
(13.100)

The Ampere’s law, neglecting the displacement current (which is justifiable here) is

m— ¥ =B J (13.101)

In terms of vector potential, this reduces to

2 m— = -A J (13.102)

(by using Coulomb’s gauge)

It can be easily shown by suitably combining these equations that J, B and A satisfy the same
equation, i.e.

2 2 2, and
d d d

dt dt dt
ms ms ms— = — = — =J B A

J B A (13.103)

Now as in Section 13.8.1, A can be written in terms of a vector W such that

= — ¥A W
(13.104)

1 2( )W W= — ¥ + ¥ —u u

where u is a unit vector = ix or iy or iz or ir.

As before, the vector W is derivable from two scalar potential functions and the two
component vectors are normal to each other. Then

2 2 2
1 2{ ( )}W W— = — ¥ — + ¥ — —A u u (13.105)

Substituting from these two equations in Eq. (13.103),

2 21 2
1 2 0

dW dW
W W

dt dt
ms msÈ ˘Ê ˆ Ê ˆ— ¥ — - + ¥ — — - =Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

u u

If W1 and W2 are the solutions of the diffusion equation, i.e.

2 dW
W

dt
ms— = (13.106)

then from these and (13.104), the vector potential of the eddy currents can be obtained. B can be
evaluated in terms of W1 and W2,

B = — ¥ A

2
1 2( ) ( )W W= — ¥ — ¥ + — ¥ —u u (13.107)

2 1( )
d

W W
dt

msÈ ˘= — ¥ - ¥ —Í ˙Î ˚
u u (13.108)
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where from Eqs. (13.81) and (13.82), u = ix or iy or iz or ir.
Since B and A satisfy the same Eq. (13.103), Eqs. (13.104) and (13.108) will be of the same

form.
It should be noted that here both W1 and W2 contribute to B.
B can be further simplified to the form below by using Eqs. (13.81) and (13.82), i.e.

when or orx y z=u i i i

2 1 1( ) ( )
d

W W W
dt

ms= - ¥ — + + ◊— —B u u u (13.109)

and when r=u i

2 1 1 1( ) ( ) 2r r r
d

W W W W
dt

ms= - ¥ — + + ◊— — + —B i i i (13.110)

13.9 HERTZ VECTOR

The German physicist Heinrich Hertz, who proved experimentally the existence of electromagnetic
waves in 1888 as per the theoretical predictions of Maxwell based on his study of
electromagnetism, was rather uncomfortable with Maxwell’s presentation of the electromagnetic
equations, in particular his use of the magnetic vector potential A. This was because Hertz found
that the vector A needed a scalar potential (V or f) for the complete definition of the four
electromagnetic equations. So he proceeded to invent a new vector quantity, which was later
known as the ‘Hertz Vector’, such that it was totally sufficient and did not need the support of
any scalar potential for defining completely these four field equations. Now, starting from the
Maxwell’s equations, we proceed to derive this vector.

The Maxwells equations are:

 Cdiv r= —◊ =D D (13.2a)

div 0= —◊ =B B (13.2b)

curl
t

∂
= — ¥ = -

∂
B

E E (13.2c)

curl
t

∂
= — ¥ = +

∂
D

H H J (13.2d)

and the constitutive relations in linear, isotropic, homogeneous (LIH) media are

, , = or where = 1/m e r s s r= = =B H D E E J J E, (13.2e)

By taking the curl of Eq. (13.2d) and combining with (13.2e),

2( ) ( ) ( )
t

m s e ∂Ï ¸— ¥ — ¥ = — —◊ - — = — ¥ + — ¥Ì ˝∂Ó ˛
B B B E E (13.111)

Combining Eq. (13.111) with (13.2c) and (13.2b),

2
2

t t
ms me∂ ∂

— = +
∂ ∂ 2

B B
B (13.112)
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By a similar process with Eq. (13.2c) and combining with (13.2e), (13.2d) and (13.2a), we get

2
2

t t
ms me∂ ∂

— = +
∂ ∂ 2

E E
E (13.113)

provided re = 0 in the region, i.e. no free charge.
Both Eqs. (13.112) and (13.113) are general wave propagation equations, i.e. B and E vectors

are propagating waves.
Next, we choose a general magnetic vector potential A, such that

B = curl A = — ¥ A (13.114)

(Note:  At this stage no other constraint has been imposed on A, i.e. neither the Coulomb gauge
nor the Lorentz gauge.)

Substituting (13.113) in Eq. (13.2e),

( )
t t

∂ ∂
— ¥ = - — ¥ = - — ¥

∂ ∂
A

E A

\ V
t

∂= - - —
∂
A

E (13.115)

where V is a scalar potential.
Now both A and V can be made to satisfy the same propagation equations [i.e. Eqs. (13.112)

and (13.113)] which is a matter of convenience, but is not a necessary condition. We next proceed
to do so.  Taking curl of Eq. (13.114) and combining with (13.2d) and (13.2e),

2( )
t

ms me ∂
— ¥ — ¥ = — —◊ - — =

∂
E

A A A E +

Combining this equation with (13.115),

2( ) V V
t t t

ms me∂ ∂ ∂Ê ˆ Ê ˆ— —◊ - — = - - — + - - —Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂
A A

A A

2

2

V
V

t tt
ms me ms me∂ ∂ ∂Ê ˆ= - - - ◊— - —Á ˜Ë ¯∂ ∂∂

A A

Rearranging the terms,
2

2
2

( )
V

V
t tt

ms me ms me∂ ∂ ∂Ê ˆ— - - = — —◊ + — + — Á ˜Ë ¯∂ ∂∂
A A

A A

                     
V

V +
t

ms me ∂Ê ˆ= — —◊Á ˜Ë ¯∂
A + (13.116)

So, now we define a new vector, Ze, called ‘Hertz electric vector’, such that

ande
e eV

t
ms me ∂

= + = - —◊
∂
Z

A Z Z (13.117)

then  ( )e e
V

V
t t

ms me ms me∂ ∂
+ = - —◊ - —◊

∂ ∂
Z Z
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e
e t

ms me ∂Ê ˆ= - —◊ +Á ˜Ë ¯∂
Z

Z

= -—◊A (13.118)

using the definition of A and V in terms of the new vector Ze.
Hence, from Eq. (13.118),

        
V

V
t

ms me ∂+ + —◊
∂

A = bracketted term on the R.H.S. of Eq. (13.116)

= 0

\ A now satisfies the equation [from Eq. (13.116)]

2
2

2t t
ms me∂ ∂

— = +
∂ ∂
A A

A (13.119)

which is the wave propagation equation [specified in (13.112) and (13.113)].

Note: e
e t

ms me ∂Ê ˆ= — ¥ = — ¥ +Á ˜Ë ¯∂
Z

B A Z

                   ( ) ( )e et
ms me ∂

= — ¥ + — ¥
∂

Z Z (13.120)

Next, we consider the reduction of the scalar potential to the wave propagation equation. So we
start with Eqs. (13.2a) and (13.2e),

C
C or

rr
e

—◊ = —◊ =D E

or

C , from Eq. (13.115)V
t

r
e

∂Ê ˆ= —◊ = —◊ - - —Á ˜Ë ¯∂
A

E

2V
t

∂Ê ˆ= - —◊ - —Á ˜Ë ¯∂
A
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2 C ( )V A
t

r
e

∂— + = - —◊
∂

 
V

V
t t

ms me∂ ∂Ê ˆ= + +Á ˜Ë ¯∂ ∂ , from Eq. (13.118).

\
2

2 C
2

V V
V

t t

r ms me
e

∂ ∂
— + = +

∂ ∂
(13.121)

Since we are considering charge-free region, rC = 0

\
2

2
2

V V
V

t t
ms me∂ ∂

— = +
∂ ∂

(13.122)
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Hence, now V also satisfies the general wave propagation equation.
Thus the new vector Ze, called Hertz electric vector,

,e
e eV

t
ms me ∂

= + = - —◊
∂
Z

A Z Z (13.117)

completely describes the whole electromagnetic field, as it includes both A and V in its definition
above. It should be noted that now a single vector Ze has been so defined that it does what was
being done by the combination of the vector potential A and the scalar potential V. The
relationship between A and V from the propagation Eqs. (13.119) and (13.122) gives rise to
another relation between A and V. This can be derived by taking the divergence of both the sides
of Eq. (13.115),

i.e.
1

div ( ) ( )V
te

∂
= —◊ = —◊ = - —◊ - —◊ —

∂
E E D A

or

2
C

1
( )V

t
r

e
∂

— = - —◊
∂

A

Since we are considering charge-free region, rC = 0, and so

2 ( )V
t

∂
— = - —◊

∂
A (13.123)

Comparing this with Eq. (13.122), it is found that the above equation holds if

2

2
( )

V V

t t t
ms me∂ ∂ ∂

- —◊ = +
∂ ∂ ∂

A

Integrating w.r.t time, it reduces to

V
V

t
ms me ∂

—◊ = - -
∂

A

which is Eq. (13.118), and hence the truth of Eq. (13.123) follows.
A similar consistency for A for Eqs. (13.119) and (13.118) can be shown by taking the

gradient of both sides of Eq. (13.118), i.e.

( ) ( )V V
t

ms me ∂
— —◊ = - — - —

∂
A (13.124)

Its 2L.H.S. ( )= — —◊ = — ¥ — ¥ + —A A A

= — ¥ + —2 ,B A from Eq. (13.113)

m ∂Ê ˆ= + + —Á ˜Ë ¯∂
2 ,

t

D
J A from Eq. (13.2d)

ms me ∂= + + —
∂

2 ,
t

E
E A from Eq. (13.2e)

Its R.H.S. ( )V V
t

ms me ∂
= - — - —

∂
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2

2
, from Eq. (13.115)

t t t
ms me

Ê ˆ∂ ∂ ∂Ê ˆ= + + +Á ˜ Á ˜Ë ¯∂ ∂ ∂Ë ¯
A E A

E

Equating the L.H.S. and the R.H.S., we get

2
2

2t t
ms me∂ ∂

— = +
∂ ∂
A A

A

which is the propagation Eq. (13.119) for A.
Hence the consistency is confirmed.
It can be shown that Ze also satisfies the wave propagation equation, under certain

conditions. Hence we again start from Eq. (13.115), i.e.

V
t

∂
= - — -

∂
A

E

2

( ) , from Eq. (13.117)e e
e t t

ms me∂ ∂
= — —◊ - -

∂ ∂ 2

Z Z
Z (13.125)

The new condition which is imposed at this stage is

2( )e e e= — ¥ — ¥ = — —◊ - —E Z Z Z (13.126)

Substituting in Eq. (13.125), we get

2
2

2
e e

e t t
ms me∂ ∂

— = +
∂ ∂
Z Z

Z (13.127)

which again is the wave propagation equation in Ze.
Note that, in general terms, the Hertz vector satisfies the condition (i.e. the constraint for the

uniqueness of the vector or the gauge condition),

0
V

V
t

ms me ∂
—◊ + + =

∂
A (13.118)

This can be shown to be a vector identity when V and A are substituted in terms of Ze from its
definition.

When there is no conducting medium, i.e. s = 0, the above constraint reduces to

0
V

t
me ∂

—◊ + =
∂

A (13.128)

which is the Lorentz gauge (or condition):
Now Ze is given by

ande
eV

t
me ∂

= = - —◊
∂
Z

A Z (13.129)

In this case, the Hertz vector is another potential function.
In this sense, the Hertz vector is a more general vector than the ‘potential function vectors.’
We have derived the magnetic flux density vector B in terms of Ze [i.e. Eq.(13.120)], and

E (the electric field vector) is obtained in terms of Ze from the condition imposed on it by
Eq. (13.126).
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Also, in non-conducting medium, from Eq. (13.115) and the constraint Eq. (13.118),
eliminating V, we get

1
( )V dt

t t me
∂ ∂

= - - — = - + — —◊
∂ ∂ ÚA A

E A

t

∂ ¢= -
∂
A

(13.130)

and = — ¥ ¢B A

When the region is charge free (i.e. rC = 0), the new vector potential A¢ has zero divergence
[i.e. Eq. (13.2a)].

There is also a similar Hertz magnetic vector Zm which has been defined by

V = 0 and A = — ¥ Zm (13.131)

It can be easily seen that Zm automatically satisfies the Lorentz gauge, because in this since
V = 0, the Lorentz gauge reduces to

0 0
V

t
me ∂

—◊ + = Æ —◊ =
∂

A A (13.132)

i.e. same as Coulomb gauge, and

( ) 0 is a vector identity.m—◊ = —◊ — ¥ =A Z

In this case too, A satisfies the wave propagation equation, as considering Eq. (13.116), its R.H.S.
comes out to be zero, i.e.

0 ( 0 and 0)
V

V V
t

ms me ∂—◊ + + = = —◊ =
∂

∵A A (13.133)

The expressions for E and B vectors come out to be

( )mt t

∂ ∂
= - = - — ¥

∂ ∂
A

E Z (13.134)

m= — ¥ = — ¥ — ¥B A Z

2( )m m= — —◊ - —Z Z (13.135)

Note: Some authors have used Pe and Pm to denote these two vectors.

13.9.1 Some Comments on Useful Types of Vector Potential

The following comments are in fact pertinent to the analyses of antennae, or, to be more precise,
of oscillating dipoles and other multipole structures which have current distributions in the source
and retarded vectors have to be used.

When the current distributions in the source are given, the charge distribution can be found
from the equation of continuity. As in magnetostatics and in electrostatics, the retarded vector and
scalar potentials are obtained from the current and the charge respectively, by integration. The
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Hertz vector, which incorporates in itself the effects of both the vector potential and the scalar
potential, when taken in retarded form would give all the fields so that they satisfy the continuity
equation at the source, is obtained from the current by a single integration.

These methods, in general, yield vector potentials whose divergence is not zero and have
components tangential to the antenna surfaces. When all the charges are confined to perfectly
conducting surfaces which bound the region of interest where the fields are to be evaluated, it is
often easier and preferable to use a second type of vector potential whose divergence is zero and
to eliminate the scalar potential completely as in Eq. (13.130). This vector potential is always
normal to the antenna surfaces. If there is a charge outside the conductors, then A can be
sub-divided into two parts: a solenoidal part A1 and a lamellar part A2.

1( 0)—◊ =A       2( 0)— ¥ =A
The time derivative of the latter can then be written as the gradient of a scalar V2. So we start from

V
t

∂
= - - —

∂
A

E

              (13.130)
t

∂ ¢Ê ˆ= -Á ˜Ë ¯∂
A

and taking divergence of the above

1 2. V
t t

∂ ∂
—◊ = - — - —◊ - —◊—

∂ ∂
A A

E

22 V
t

∂
= - —◊ - —

∂
A ( )1 0 — solenoidal—◊ =A∵

2
2V V= - —◊— - —

2
2( )V V

r
e

= - — + = (from )r—◊ =D

A new scalar f can be substituted in place of (V2 + V), thus

2 rf
e

— = -

Thus the presence of charge makes it necessary to solve the Poisson’s equation for which E.S.
methods are available. This is the only complication.

It should be noted that f is in phase with r and does not involve any energy propagation.

PROBLEMS

13.1 Find the vector potential Az due to two parallel infinite straight currents I flowing in the
+ z and – z directions respectively. Find the equations for the equipotentials and
evaluate B. Show that B satisfies the equation B ◊◊◊◊◊ grad Az = 0, and thus the lines of B
are the curves Az = constant.

Ø Ø



440 ELECTROMAGNETISM: THEORY AND APPLICATIONS

13.2 Define the gradient of a scalar and the curl of a vector, and give their differential
notations in the Cartesian coordinate system.

The scalar magnetic potential in a region is

Ω = +2 2lnC x y

Find the magnetic vector potential which produces the same magnetic field, assuming
that (a) the z-component of the vector potential is zero everywhere, and (b) only the
z-component of the vector potential exists.

13.3 The parallel conductors intersect a plane perpendicularly at points (–a, 0), (0, 0) and
(a, 0), and carry currents of –1, +2, –1 units respectively. Find the equation of a line of
force in terms of some parameter which distinguishes one line from another, and prove
that a particular line is the rectangular hyperbole

2 (x2 – y2) = a2

13.4 The direction of a vector A is radially outwards from the origin, and its magnitude is
kr n where

r2 = x2 + y2 + z2

Find the value of n for which div A = 0

Ans.: n = – 2

13.5 A straight metal ribbon of width 2a and negligible thickness, carries a uniformly
distributed current I. Show that the vector potential at any point on the ribbon is

[ ]0 ( ) ln ( ) ( ) ln ( ) 2
4

I
A a x a x a x a x a

a
= − + + + − − −

m
p

Hence derive the expression for the magnetic flux density which traverses the ribbon
normally to its plane at any point.

13.6 Show that the vector potential (in Cartesian coordinates) associated with a uniform
magnetic field B = izB0 has only two components and is given by

A = – ixayB0 + iy(l – a ) xB0

where a is any arbitrary number.

Derive the expression for A in cylindrical coordinates and comment on the shape of
lines of A.

13.7 The magnetic vector potential A is made to satisfy the constraint — ◊◊◊◊◊ A = 0. Then the
general expression for the vector potential, giving zero divergence, is

Direction of current is into
the plane of the paper ƒ.

2a
O

x

x
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A = — ¥ W (13.7.1)

where W is a vector which should be derivable from two scalar potential functions. So
W can be split up into two orthogonal components (i.e. normal to each other), i.e.

W = uW1 + u ¥ —W2 (13.7.2)

where u is an arbitrary vector so chosen that

—2A = —2(— ¥ W) = — ¥ (—2W) = 0 (13.7.3)

—2W1 = 0,  and  —2W2 = 0 (13.7.4)

Hence, verify in rectangular Cartesian coordinates, that

—2uW1 = u—2W1

                   = u—2W1 + 2—W1 (13.7.5)
and

—2(u ¥ —W2) = u ¥ —(—2W2) (13.7.6)

where u = ix, iy, iz, or r (i.e. unit vector in the direction of r).

Hence for a magnetostatic field, show that the part of A derived from W2 is the gradient
of scalar and contributes nothing to B.
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Energy Transfer in
Electromagnetic
Fields and Poynting
Vector14

14.1 INTRODUCTION

Earlier in Chapter 3, we studied the storage of potential energy in an electric field; and in
Chapter 10, the storage of energy in the magnetic fields due to the motion of the charges (i.e. the
current flow). We shall now consider the interaction between the electric and the magnetic
energy in systems where both forms of energy are involved. Such a system  can be considered
analogous to mechanical systems in which both potential and kinetic energy are stored.

14.2 FLOW OF ENERGY IN THE FIELD OF A SIMPLE
ELECTROMAGNETIC OSCILLATORY SYSTEM

A simple pendulum is a mechanical example of an oscillatory system in which the energy
oscillates between the potential form when the bob has its maximum height, and the kinetic form
when the bob has maximum velocity. Similarly a simple electromagnetic oscillatory system can
be made up of an inductor connected to a capacitor in such a manner that the energy can
oscillate back and forth between the two. As an example of such a system, we consider an
inductor made up of a hollow metal cylinder of radius a and axial length l in free space,
connected to a parallel plate capacitor having plates of length l, width d and the gap between
the plates being g, as shown in Figure 14.1. When a current flows round the inductor, it charges
the capacitor; and when the capacitor discharges, it causes a current to flow in the  inductor.
Since we are considering a low frequency operation (i.e. quasi-static), such a device will be a
multi-turn one, so that its size is reasonably small. For the purpose of analysis, we shall consider
a system, which is slightly modified as shown in Figure 14.2, so as to make it axially
symmetrical, so that it is sufficient to take only half of the system. We also assume the metal to
be a perfect conductor, and the interior of the resonator to be a vacuum. Then we can take this
as a loss-less system and assuming g << a << d, the inductance and the capacitance to be

22
0 0,

2

da
L C

a d g

m e p⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠
(14.1)
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At an instant of time t, let the current round the inductor be I(t), and the voltage across the
capacitor plates be V(t). Let the positive direction of the current round the inductor be towards
the positive plate of the capacitor, so that the E field in the capacitor has the same direction as
the electric current, which is shown in the circuit representation of the system in Figure 14.3. At
the instant of time t, the energy stored in the inductor and the capacitor are respectively

2 2
m e

1 1
,

2 2
W LI W CV= = (14.2)

Figure 14.1 Inductor connected in parallel with a parallel plate capacitor.

d

l

g a

d

g
a

Figure 14.2 Section of a symmetrically modified system of Figure 14.1, where the
inductor is a circular metal toroid and the parallel plate capacitor is now

made up of circular plates of radius d and gap g.

Figure 14.3 Circuit diagram of the oscillatory system.

C V(t)
+

I(t) L
–
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and their time-rates of change are

em and
dWdW dI dV

LI CV
dt dt dt dt

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
(14.3)

By Faraday’s law of induction,

dI
V L

dt
⎛ ⎞= − ⎜ ⎟⎝ ⎠

(14.4)

and by the principle of conservation of charge,

dV
I C

dt
⎛ ⎞= ⎜ ⎟⎝ ⎠

(14.5)

\ Substituting in Eqs. (14.3), we get

em ,
dWdW

VI VI
dt dt

= − = (14.6)

Adding these two equations, we have

( )m e 0
d

W W
dt

+ = (14.7)

so that
Wm + We = W0 (14.8)

where W0 is the total electromagnetic energy of the system which is constant. This derivation
shows that the magnetic energy stored in the inductor decreases as the electric energy stored in
the capacitor increases and vice versa. The total energy of the system remains constant as we
have assumed it to be a loss-less one, so that the losses like radiation, conduction, and hysteresis
can be neglected. Equations (14.6) show that the product VI is the rate of flow of energy from the
inductor to the capacitor; and if the positive direction of V or I gets reversed, then this product
would give the flow of energy from the capacitor to the inductor. If V or I is eliminated from
Eqs. (14.6), then the operational equations become of the form

2 2
2 2

2 2
0, 0

d I d V
I V

dt dt
w w+ = + = (14.9)

where w = (LC )-1/2.
The form of the equations is that of the simple harmonic vibration, and w is the resonant

angular frequency of the system. If we measure the time from the instant that the voltage V is
positive maximum V0 at t = 0, then the solution of Eqs. (14.4), (14.5), or (14.9) will come out
to be

pw w⎛ ⎞= = +⎜ ⎟⎝ ⎠
0 0cos , cos

2
V V t I I t

where

w
w

= = =0

0

1V L
L

I C C
(14.10)

Substituting from above in the energy expressions (14.2), we get

Wm = W0 sin2w t,   We = W0 cos2w t
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So it can be seen that on the average, half the energy of the system is stored in the inductor, and
the other half in the capacitor, i.e.

Wm, av = We, av = 
1

2
W0 (14.14)

Substituting from Eqs. (14.12) in Eq. (14.6), we get

VI = -wW0 sin 2w t = wW0 cos 2
2

t
⎛ ⎞+⎜ ⎟⎝ ⎠

pw (14.15)

This quantity plotted as a function of time, gives the rate of flow of energy from the inductor to
the capacitor; and when it is negative, the magnitude obtained is the rate of flow of energy from
the capacitor to the inductor (Figure 14.5).

where

W0  = 2 2
0 0

1 1

2 2
LI CV=

                   =  total energy of the system (14.11)

Hence the energy expressions can be rewritten as

w w= − = +m 0 e 0
1 1

(1 cos2 ), (1 cos 2 )
2 2

W W t W W t (14.12)

These two equations do satisfy the energy Eq. (14.8). The complementary variations of Wm and
We are shown in Figure 14.4. The stored electric energy is plotted vertically upwards from the
bottom of the diagram, and the magnetic energy in the inductor is plotted vertically downwards.
The period of oscillation is

p= 2T LC (14.13)

Figure 14.4 Oscillation of energy between the capacitor and the inductor
of a resonant oscillatory circuit.

Wm (t)

We (t) t
T3T/4T/2T/40

wW0

t
3T/4T/2T/4

Power into
capacitor

Figure 14.5 Rate of flow of energy between the inductor and the capacitor in a resonant
oscillatory circuit.

wW0

Power into
inductor

T
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14.3 FLOW OF ENERGY

We have so far considered the flow of energy in an idealized loss-less oscillatory circuit. Now we
shall generalize the concept in terms of the field vectors and apply it to some more simple
problems.

So we start with an electrostatic field. The energy in an electrostatic field may be
considered as stored with a density

3joules/metreE dD∫ (14.16)

or in a linear medium (Chapter 3, Section 3.3):

We = 
1

2
DE = 

1

2
eE2 joules/metre3

           = 
1

2
D ◊◊◊◊◊ E = 

1

2
eΩEΩ2 joules/metre3 (14.17)

Similarly in a magnetic field, the stored magnetic energy Wm is

Wm = 
3joules/metreHdBÚ (14.18)

or in a linear medium (Chapter 11, Section 11.10):

Wm = 
1

2
BH = 

1

2
mH2 joules/metre3

            = 
1

2
B ◊◊◊◊◊ H = 

1

2
mΩHΩ2 joules/metre3 (14.19)

In an electromagnetic field, both the above fields are present; so in free space

We = 
1

2
e0E2

and
2 2

2
m 0 0 0

0 0

1 1 1

2 2 2 c

B E
W H

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
m m m

m m
[from Chapter 12, Section 12.6, Eq. (12.44)]

\ We = Wm = 
1

2
e0E2 (14.20)

14.3.1 Energy of a Uniform Plane Wave

We now consider the energy of the uniform plane wave described in Chapter 12, Section 12.6.
As derived and discussed in that section, the plane wave was advancing into free space in

the positive z-direction of the Cartesian coordinate system. The wave-front separates a region of
zero field from a region where the electric field is E (x-component). We now consider a small
time element d t, during which the wave-front advances through a distance (cd t) (shown in
Figure 14.6), and the energy (e0E

2cdt) flows from somewhere into the each square metre of the
added slab. Furthermore,

1/2 1/22
2 20 0

0
0 0 0

c
E

E E EH
⎛ ⎞ ⎛ ⎞

= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

e ee
m e m

(14.21)
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We must assume that the advancing wave-front is accompanied by power EH watts/metre2.
(N.B.: E is volts/metre, H is amps/metre, and so EH is watts/metre2.)

Since the field vectors E and H are at right angles, (EH) is the magnitude of the vector
product (E ¥ H). We have already seen that the direction of the vector (E ¥ H) is an arrow
defining the direction of propagation of the wave (see Figure 12.6 in Section 12.6 of
Chapter 12). We have thus proved that in this case, the vector defined by

S = (E ¥ H) (14.22)

denotes the power per unit area, in both magnitude and direction. Behind the wave-front, if E is
uniform, there is no net power in any slab; at the wave-front, the vector S just provides the new
energy needed for the forward extension of the field.

14.3.2 Power Transmission in an Ideal Coaxial Cable

We now consider another case of power transmission. One of the simplest field configuration is
given by an ideal coaxial cable (i.e. resistance-less) carrying a direct current.

The cable as shown in Figure 14.7 is resistance-less and transmits power VI from the left to
the right [as per Figure 14.7(b)]. The electric and the magnetic fields are as shown, i.e. E is radial
and H is circumferential [Figure 14.7(a)], so that they are mutually perpendicular everywhere.
Hence (E ¥ H) is in the direction of power flow. Also at a radius r,

2

Q
E

rpe
=

and so

ln ln
2 2

b
b

a
a

Q Q b
V d r

ape pe
⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅ = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠∫E r

(Q being the charge per unit length of the conductor), and so

p
= =

⎛ ⎞
⎜ ⎟⎝ ⎠

and
2

ln

V I
E H

b r
r

a

(14.23)

Because of the directions of E and H, the magnitude of (E ¥ H) is (EH). Integrating this quantity
over the field space, we get

p = =
⎛ ⎞
⎜ ⎟⎝ ⎠

∫ ∫2
ln

b b

a a

VI dr
EH rdr VI

b
r

a

(14.24)

Figure 14.6 A uniform plane wave-front of E field travelling forward in the +z-direction.

x
cd t

B
z

c

E
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This is again consistent with the hypothesis that the power is transmitted in the field with the
direction and the density denoted by the vector

S = (E ¥ H) (14.25)

14.4 POYNTING VECTOR

We now prove in general terms that the vector S (called the Poynting vector) describes the
energy flow. If such a vector exists, then for any closed surface S (Figure 14.8),

Flux of S into S = Power requirement within S.

Outer
conductor

Figure 14.7 A coaxial cable carrying direct current.

(a)
(b)Inner

conductor

V = Potential drop
between the
two conductors

I

I

I

E

H

a

r
b

Figure 14.8 A closed surface S, enclosing a volume dv.

S

Inner conductor
carrying current I

A (bisected) section
of the outer conductor
carrying I in the
opposite direction

In particular, if S is small and encloses a volume d v, then

Flux of S into S = - (div S)d v (14.26)

Hence, - (div S)d v = Power requirement in d v
               = Power storage in d v + Power dissipation in d v (14.27)

Now the rate of dissipation of energy in the volume element d v, assuming an ohmic conductor,
and hence the ohmic losses are

r d∂
=

∂
21W

J v
t

J being the local value of the current density vector at the instant under consideration.
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But rJ = E, r being the resistivity of the conducting material in the region. Hence,

d∂
=

∂
1W

EJ v
t

(14.28)

Let us consider again, the rate of increase of the stored energy in the electric field within the
small volume element dv—whether located in a conductor or an insulator or in free space. The
value of the stored energy may be written as

2
e 0 r

1

2
W E v=d e e d

\ In a changing electric field,

the rate of input of energy in 2e
0 r

1

2

W
v E v

t t

∂ ∂ ⎛ ⎞= = ⎜ ⎟∂ ∂ ⎝ ⎠
d e e d

                                        (= power input for storage)
or

e
0 r

W E D
E v E v

t t t

∂ ∂ ∂⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
e e d d (14.29)

Similarly the energy input for the increase in the magnetic field in the volume element dv is

dWm = HdBd v

\ Power input for storage in the magnetic field is

mW B
H v

t t
d∂ ∂⎛ ⎞= ⎜ ⎟⎝ ⎠∂ ∂ (14.30)

\ The total power input to the volume for storage is

d∂ ∂⎛ ⎞= +⎜ ⎟∂ ∂⎝ ⎠
D B

E H v
t t

(14.31)

\ The total power requirement in the volume element dv is

d⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

D B
E J H v

t t
(14.32)

It should be understood that we are confining our considerations to ohmic conductors in which
E and J, dielectrics in which D and E, and magnetic materials in which H and B are in the same
lines. (We thus exclude iron having hysteresis—though this can also be covered in the analysis.)
Under these circumstances, the right-hand side of the above Eq. (14.32) can be expressed in
terms of the scalar products of the field vectors, i.e.

Power requirement in the volume element dv

            = d⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞⋅ + + ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
v

t t

D B
E J H

  = [E ◊◊◊◊◊ curl H - H ◊◊◊◊◊ curl E]dv = [E ◊◊◊◊◊ (— ¥ H) - H ◊◊◊◊◊ (— ¥ E)]d v (14.33)

by substituting from the Maxwell’s equations.
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The bracket above is transformed by using the Cartesian components:

( ) yz zx
x y

HH HH
E E

y z z x

∂⎛ ⎞∂ ∂∂⎛ ⎞⋅ ∇ × = − + −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
E H

                                   
y x

z

H H
E

x y

∂⎛ ⎞∂
+ −⎜ ⎟∂ ∂⎝ ⎠

( ) yz zx
x y

EE EE
H H

y z z x

∂⎛ ⎞∂ ∂∂⎛ ⎞⋅ ∇ × = − + −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
H E

                                  
y x

z

E E
H

x y

∂⎛ ⎞∂+ −⎜ ⎟∂ ∂⎝ ⎠
\ [E ◊◊◊◊◊ (— ¥ H) - H ◊◊◊◊◊ (— ¥ E)]

y yz z
y z y z

z zx x
x z x z

y yx x
x y x y

H EH E
E E H H

x x x x

H EH E
E E H H

y y y y

H EH E
E E H H

z z z z

⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂⎛ ⎞ ⎛ ⎞= − + + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤∂ ∂∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − − +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂⎛ ⎞ ⎛ ⎞+ − + + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

by rearranging and regrouping the terms.

\ [E ◊◊◊◊◊ (— ¥ H) - H ◊◊◊◊◊ (— ¥ E)]

( ) ( ) ( )⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞= − − − − − −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
y z z y z x x z x y y xE H E H E H E H E H E H

x y z

        = -div (E ¥ H) = -— ◊◊◊◊◊ (E ¥ H) (14.34)

So we have proved that the power requirement of the volume element dv is

-— ◊◊◊◊◊ (E ¥ H)d v (14.35)

which is the inward flux of S = (E ¥ H) into d v. This proves the validity of using S to describe
the energy flow.

There are two points about this vector S, which are worth noting:

1. S only denotes an energy flow if — ◊◊◊◊◊ S π 0. In some static fields (e.g. E and H fields
of an electrically charged magnet), S exists, but — ◊◊◊◊◊ S = 0. This S is meaningless
(Figure 14.9).

2. There are other vectors besides (E ¥ H), which can represent the energy flow, for it is
— ◊◊◊◊◊ S, which is significant, and other vectors than S, can have the same divergence at
every point.

Further applications of the Poynting vector will ensue.
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14.4.1 Power Transmission in a Coaxial Cable Having Resistance,
Carrying Direct Current

When the conductor resistance is taken into account, the potential difference V between the inner
conductor and the outer conductor is no longer constant along the length of the cable (see
Figure 14.10). However, Eqs. (14.23) still give the axial component of S at any point of a
particular cross-section, i.e.

f p
⎛ ⎞= = ⎜ ⎟⎝ ⎠

ax 2
ln

2
r

VI b
S E H

ar
, (14.36)

Figure 14.10 A coaxial cable having resistance and carrying a direct current.

H

E

I

I

Figure 14.9 An electrically charged magnet.

E E – – – – –
H –––––––

H

which on integrating over the surface normal to the axis of the cable, gives the power flowing
across the plane, and hence the power transmitted by the cable. (Note that the Poynting vector
implies that the flow of energy is located in the field space between the conductors).

Now that the cable has a resistance as well, this would imply that another component of E
is now present, i.e. an axial component of E, and hence the lines of E would be as shown in
Figure 14.10. Let us assume that the inner conductor has a resistance of R ohms (W) per metre.
Hence the axial component of E within the conductor is RI. The value of H on the conductor
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surface is (I /2pa). These two vectors combine to give a Poynting vector, at the conductor surface
which has an inward radial component, i.e.

2

2r
RI

S
a

= −
p

(14.37)

This supplies the ohmic energy loss (RI2) per unit length. Thus the flow of energy still takes
place in the space between the conductors (i.e. the field space), but now a certain amount of
power passes from the field to the conductors to supply the ohmic losses, so that the axial flow
of power now diminishes along the length of the line. So over the length of the cable, a point
will be reached where there will be no axial flow, but only a radial flow supplying the ohmic
losses in the conductor.

14.4.2 Coaxial Cable (Ideal and without Resistance), Carrying a
Time-varying Current

We have chosen this particular problem, because of its wide applicability. It is of use in both
power engineering as well as in communications. The topic of wave transmission will be studied
later in Chapter 17, though of course we have already discussed the propagation of uniform
plane wave, in a highly simplified manner in Chapter 12, Section 12.6. This is another example
of uniform plane wave in cylindrical polar coordinate system, which we solve from fundamentals,
i.e. using Maxwell’s equations in integral form instead of directly using Eq. (12.38). This
problem has been chosen to show the application of Poynting vector to evaluate the energy flow
of the wave, and hence the problem is solved in two stages.

A. TRAVELLING WAVE IN A COAXIAL CABLE

We consider a coaxial cable of concentric, perfectly conducting tubes of radii a and b (a < b),
separated by a dielectric of permittivity e (= e0e r). Let a signal be applied to one end of the
cable, by connecting the conductors to the terminals of a generator, whose emf is a function of
time. We shall now study the behaviour of the charges, currents, and fields in the cable.

Now, if a cable is charged electrostatically, the E field would have been radial. So, we shall
assume tentatively that the E field for the present cable with the time-varying charging is also
radial. If the subsequent derivations are found to be consistent with all the equations, then our
present assumption would be found to be justifiable. The cross-section of the cable and its axial
section are shown in Figure 14.11.

To solve the problem, we consider a closed Gaussian surface S shown in Figure 14.11,
bounded by two parallel planes z and z + dz and a cylinder of radius r (a < r < b). Let the charge
density on the inner conductor be Q coulombs/metre; then by Gauss’ theorem, D at the radius
r (from this Gaussian surface) is

2 2

Q z Q
D

r z r

d
p d p

= = (14.38)

which is same for the static case. Next, let the current in the inner conductor be I, and now we
apply the Ampere’s magnetic circuit law to a contour C shown in Figure 14.11(a), where C is a
circle of radius r in the plane z.

The total current crossing this plane = conduction current I, as there is no contribution
from the displacement current, because D has no component perpendicular to the plane of C.

\ By Ampere’s law, H = 
2

I

rp
(14.39)
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to the contour C1, we get

E B
E r E z r z r

z t
d d d d d⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞− + + = −⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

or
E B

z t

∂ ∂= −
∂ ∂

(14.40)

Similarly applying the Maxwell’s Eq. (12.11) to the rectangular contour C2 which is in the
circumferential plane, we get

H D

z t

∂ ∂= −
∂ ∂

(14.41)

The constitutive relations for this problem are

D =  e0erE and B = m0H (14.42)

Combining Eqs. (14.40) and (14.41), we obtain the same equation as for the uniform plane wave
in Section 12.6, i.e.

2

2
0 r 0 r

1 1D D

z z z

⎡ ⎤⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎛ ⎞ = ⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎝ ⎠⎣ ⎦e e e e

m

m m

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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t z t z
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Figure 14.11 A perfect coaxial cable carrying time-varying current.

Now, we consider a rectangular contour C1 [shown in Figure 14.11(b)], lying in the radial plane,
and having the dimensions dr ¥ dz. Applying the Maxwell’s Eq. (12.10), i.e.

1 1C S

d
d d

dt
Ê ˆ◊ = ◊Á ˜Ë ¯Ú ÚÚ B

E l S

H

a

r

b

(a) (b)

e0er
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S

D
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C2

D

dzz
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or
2 2 2

0 0 r2 2 2 2

1

u

D D D

z t t

⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠
m e e (14.43)

where

u2 = [(m0mr)(e0er)]
-1, mr = 1 in this case; and

c2 = (m0e0)
-1, and \ u2 = 

2

r

c

e
From Eq. (14.38), we have

D = 
2

Q

rp
, where Q varies with z and t.

\ Substituting in Eq. (14.43), the equation becomes

2 2

2 2 2

1

u

Q Q

z t

⎛ ⎞∂ ∂⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
(14.44)

This equation represents, as before, a travelling wave of charge, which is moving with
velocity (± u).

We now consider only the single forward travelling wave, set up in a coaxial cable of
infinite length, when at the source z = 0, the applied potential (= V0) is a function of time, i.e.

V0 = F(t) (14.45)

At any point z on the length of the cable, the potential difference (= V) is

0 r 0 r2

b b b

a a a

D Q dr
V d dr

r
= ⋅ = =∫ ∫ ∫E r

e e pe e

                             
0 r

ln
2

Q b

a

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠pe e
(14.46)

Now, from Section 2.8.2, we remember that the capacitance C per unit length of a coaxial
cable is

0 r2
, and hence

ln

Q
C V

b C
a

= =
⎛ ⎞
⎜ ⎟⎝ ⎠

pe e
(14.47)

\ V satisfies the same equation as Q and also E.
\ The forward travelling voltage wave can be expressed as

V = f(z - ut)

But at z = 0, V = V0 = F(t) = f (- ut)

\ f(z - ut) =
u

z
F t

⎛ ⎞−⎜ ⎟⎝ ⎠
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Hence the general expression for V is

u

z
V F t

⎛ ⎞= −⎜ ⎟⎝ ⎠

                                  \
u

z
Q CF t

⎛ ⎞= −⎜ ⎟⎝ ⎠
(14.48)

and

2 2 u

Q C z
D F t

r r
⎛ ⎞ ⎛ ⎞= = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠p p

                                
0 r2 u

C z
E F t

r

⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠pe e (14.49)

and from Eq. (14.41),

0uu
and

2 u 2 u

CC z z
H F t B F t

r r

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
m

p p
(14.50)

Also, since H = , u
2 u

I z
I CF t

r
⎛ ⎞= −⎜ ⎟⎝ ⎠p

(14.51)

Next, we consider the magnetic flux in the cable.

So, in a length dz of the cable, the total flux = 
b

a

z d zd dF⋅ =∫B r
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z F t dr
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Also,

P.D. u

current
u
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z
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I z
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(14.54)

In power system electrical transients, Z is called the ‘surge impedance’; and in communications,
Z is called the ‘characteristic impedance’. Substituting for m0 and e0, we get

7
0

12
0

4 10
377

8.854 10

pm
e

W
−

−

×
= =

×

which is the wave impedance of free space.

\
p e

W
⎛ ⎞ ⎛ ⎞= × ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠0

1
377 ln

2

b
Z

a
(14.55)

Thus we see that for any given values of z and t, all the electrical quantities, i.e. B, H, D,
E, I are proportional. The whole pattern travels towards z Æ + • with a velocity u. Figure 14.12
explains the waves of  P.D. and the total current in the cable. It shows how the conduction

Figure 14.12 Voltage and current waves in the dielectric of the coaxial cable
carrying time-varying current.

Outer sheath of the dielectric

V

u

Displacement current
in the dielectric

Central conductor
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current is proportional to V and how the displacement currents form the closing links for the
current paths.

B. CALCULATION OF POWER, USING THE POYNTING VECTOR

For the coaxial cable, P.D. at (z = 0) = V0 = F(t), and the electric and the magnetic fields at a
section z are

0 r2 u

C z
F t

r

⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠
E

pe e
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                   u
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H
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— in the circumferential direction
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e e p
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Substituting for C from Eq. (14.47) and in terms of the surge impedance from Eq. (14.54), we get
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which is the same as the one derived for the direct current transmission. But Eq. (14.56) indicates
that S is a travelling wave; and the direction of S is always the same because [F(t - z /u)]2 can
never be negative.

14.5 COMPLEX POYNTING VECTOR

All the electromagnetic quantities representing the energy or the power are quadratic functions
of the field vectors and the source densities. Hence if these quantities (i.e. the field vectors
and the source densities) are sinusoidal functions of time of angular frequency w (= 2p f, f
being the time-domain frequency), then the former quantities must be expected to be the sums
of two components, i.e. one independent of time and the other a sinusoidal function of
frequency 2w.

So we let Ec and Hc be the complex field vectors, i.e.

Ec = ERe + jEIm and Hc = HRe + jHIm (14.58)

where both the real and the imaginary parts can have all the three components (x-, y-, z-), and
ERe, EIm, HRe, HIm are real quantities by themselves.
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This instantaneous value of the Poynting vector alternates with a frequency 2w. The average
value of the Poynting vector is obtained, if the above expression is multiplied by dt, and
integrated over a period of one cycle from 0 to T, where T = 2 p /w, noting that over one time-
period,

the average value of cos2w t = 1/2

the average value of sin2w t = 1/2

and the average value of sin w t cos wt = 0

av

0

1
( )

T

S S t dt
T

⎛ ⎞= ⎜ ⎟⎝ ⎠ ∫
                     = 

1

2
(EReHRe + EImHIm) sin q (14.61)

Expressing it as a vector, we get

Sav = 
1

2
(ERe ¥ HRe + EIm ¥ HIm) (14.62)

Now we consider the vector
S¢ =  Ec  ¥ Hc

* (14.63)

where Hc
* is the complex conjugate of Hc.

\ ΩS¢Ω =  (ERe + jEIm) (HRe - jHIm) sin q
          = (EReHRe + EImHIm) sin q + j(-EReHIm + EImHRe) sin q (14.64)

In terms of the components of these complex vectors, we can express the real sinusoidally
time-varying field vectors E and H as

E = Re(Ece
jwt) = Re[(ERe + jEIm)(cos wt + j sin wt)]

                 = Re[(ERe cos wt - EIm sin w t) + j(ERe sin wt + EIm cos wt)]

                     = (ERe cos wt - EIm sin w t)
and similarly

H = HRe cos wt - HIm sin w t (14.59)

\ The instantaneous value of the Poynting vector S(t) is given by

     S(t) = E(t)H(t) sin q [Figure 14.13(a)]

          = (ERe cos w t - EIm sin wt)(HRe cos wt - HIm sin wt) sin q
\ S(t) = [EReHRe cos2wt + EImHIm sin2wt - (EReHIm + EImHRe) sin wt cos w t)] sin q (14.60)

Figure 14.13(a) Poynting vector.
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\   Sav = 
1

2
Re(S¢)

           = 
1

2
Re(Ec ¥ Hc

*) (14.64a)

This is the definition of the complex Poynting vector.
So expressing S in terms of  the complex vectors,

       S = E ¥ H

          = 
1

2
(Ece

jw t + Ec
*e-jw t) ¥ 

1

2
(Hce

jw t + Hc
*e- jw t)

          = 
1

4
(Ec ¥ Hc

* + Ec
* ¥ Hc) + 

1

4
(Ec ¥ Hce

j 2w t + Ec
*

 ¥ Hc
*e- j2w t)

          = 
1

2
Re(Ec ¥ Hc

*) + 
1

2
Re(Ec ¥ Hce

j 2w t) (14.65)

Hence Eq. (14.64a) follows directly from this equation; and it should be noted that the above
equation is same as Eq. (14.60). The first term of this expression is independent of time and
represents the average value of the Poynting vector. The second term is a sinusoidal vector of
frequency 2w, and its three components show the sinusoidal variations of the three components
of S(t).

We can similarly write down the expressions for energy and power dissipation densities,

                 We = 
1

2
e (E ◊◊◊◊◊ E) = 

1

4
e (Ec ◊◊◊◊◊ Ec

*) + 
1

4
e Re(Ec ◊◊◊◊◊ Ece

j 2w t)

Wm = 
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2
m (H ◊◊◊◊◊ H) = 

1

4
m (Hc ◊◊◊◊◊ Hc

*) + 
1

4
m Re(Hc ◊◊◊◊◊ Hce

j 2w t)

                 PD = s (E ◊◊◊◊◊ E) = 
1

2
s (Ec ◊◊◊◊◊ Ec

*) + 
1

2
s Re(Ec ◊◊◊◊◊ Ece

j 2w t) (14.66)

The first terms in these three equations represent the average values of the electric energy
density, of the magnetic energy density, and of the power dissipation density respectively. The
second term in these equations represents the double frequency variation of the energy density,
which consists of the sum of the three terms corresponding to the three components of the field
vectors. They cancel out when the field vector is a vector of constant length rotating with a
velocity w as discussed in Section 0.9.4., e.g.

   Ec ◊◊◊◊◊ Ec
* = ΩEcΩ2 = 2A2 (say)

Ec ◊◊◊◊◊ Ece
j 2w t = (-A2 + A2) e j 2w t = 0

Another point regarding the complex Poynting vector S¢ is that whilst the real part of
each component of S¢ represents the average value of the corresponding component of S¢, i.e.
the density of the power flow in that direction, the imaginary part of each component of S¢
may be said to represent the density of the reactive power flowing into the corresponding
direction. This point is brought out by taking the divergence of the complex Poynting
vector, i.e.
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\                     Re(— ◊◊◊◊◊ S¢) = 
⎛ ⎞
⎜ ⎟⎝ ⎠

1

2
Re(Ec ¥ Jc

*), and

    Im(— ◊◊◊◊◊ S¢) = 
⎛ ⎞
⎜ ⎟⎝ ⎠

1

2
Im(Ec ¥ Jc

*) - 2w (Wm - We) (14.68)

14.6 GENERAL COMMENTS ABOUT THE SIGNIFICANCE OF
THE POYNTING VECTOR

The Poynting vector matches very well with the concept of  the energy flow, in particular of
wave problems (and also of various electrical machine problems). We have seen in both the wave
problems studied so far, that the E and the H vectors are perpendicular to the direction of
propagation of the waves, and this vector representing the energy flow is directed in the
direction of propagation. In fact the Poynting vector may be regarded as an arrow, which
indicates the direction of propagation at every point.

However there are problems in which difficulties arise. We have already described the
difficulty with the analysis of the ‘charged bar magnet’ (Section 14.4, Figure 14.9). The lines of
E and H vectors cross each other orthogonally in the radial planes, and thus they define a
Poynting vector at right angles to the plane of Figure 14.9. This would imply that with static
fields, we now have an endless source of energy. This picture is totally absurd from physical
considerations. There is another problem in which a parallel plate capacitor and the poles of a
U-shaped magnet are placed at right angles, as shown in Figure 14.13(b). In this problem as well,
the direct application of the Poynting vector would again imply an endless source of energy. In
both these cases, — ◊◊◊◊◊ S = 0, and hence even though S exists, it has no physical meaning.

Figure 14.13(b) U-shaped magnet and parallel plate capacitor.
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What should be clearly understood, is that so far we have nowhere proved that there is an
energy flow of S watts/metre2 at every point. All that has been proved is that: the flux of S into
any closed volume is = the rate of storage of energy + the rate of dissipation of energy in that
volume.

The vector S associated with these two problems has no flux into any of the closed
volumes, and hence there is no storage or dissipation of energy taking place in these systems.
Since we get this ‘negative information’, the vector then has no physical significance. In the
time-varying problems, where there is energy transference, the vector S may have some meaning.
But still it cannot be definitely said that the energy flow is equal to the vector S, because we
have associated the energy transfer with the flux of the vector and not the vector itself. Thus
there can be other vectors which can satisfy the same condition as well; as we shall see now.

14.7 ALTERNATIVE VECTORS ASSOCIATED WITH
ENERGY FLOW

We now define a new vector, say C a function of space, such that its flux out of any volume is
zero. Then, everywhere

div C = — ◊◊◊◊◊ C = 0

Adding this C vectorially to the Poynting vector S, we get a new vector (S + C) such that

— ◊◊◊◊◊ (S + C) = — ◊◊◊◊◊ S + — ◊◊◊◊◊ C = — ◊◊◊◊◊ S (14.69)

\ (S + C) would represent the flow of energy as well as S. Thus we find that the number
of possible ‘Poynting vectors’ is infinite.

14.7.1 Slepian Vector

A very interesting alternative to the Poynting vector is found by taking the vector C as

C = — ¥ (VH) (14.70)

where V is the electric potential of the charges in the field. We know that

— ◊◊◊◊◊ — ¥ (VH) = 0

is a vector identity, and Eq. (14.70) is a suitable choice for C.
Now we expand curl (VH), which from Section 0.7.3, Eq. (0.68), is

— ¥ (VH) = V(— ¥ H) - H ¥ (—V) (14.71)

Now, we write the new vector as S1 which is

S1 = S + curl (VH) = (E ¥ H) + — ¥ (VH)

For E, we substitute from Section 13.5, Eq. (13.49),

E = - 
t

∂
∂
A

 - —V

where A is the magnetic vector potential.
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Substituting in S1 from Eq. (14.71), and the above value of E, we get

S1 = 
⎡ ⎤∂⎛ ⎞− − ∇ × + ∇ × + ∇ ×⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦

V V( ) [( V) ]
t

A
H H H

                      = 
⎡ ⎤∂⎛ ⎞∇ × − ×⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦

V( )
t

A
H H

                      = 
⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞+ − ×⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

V
t t

D A
J H (14.72)

substituting from the Maxwell’s equations.
The use of the vector S1 to describe the flow of energy was suggested and discussed by

Slepian in two papers in 1942, and this vector is known as the ‘Slepian vector’. It is in fact, the
sum of two vectors, the first one being V times the ‘total current’ and having the same direction
as the current, and the second one is perpendicular to H and also to the part of E, which is due
to the changing magnetic field.

In fact, in these papers, Slepian discussed nine different vectors to describe the flow of
energy. Before we talk about some of these other vectors, we shall apply this vector S1 to some
of the problems already explained by the Poynting vector, and try to see the kind of picture
given by this new vector.

14.7.1.1 Steady-state problems

In such problems, there are no quantities varying with time, and hence all the terms containing
the operator (∂/∂t) vanish from the equation of the vector S1, which then reduces to

S1 = VJ (14.73)

This vector explains satisfactorily both the charged magnet as well as the capacitor and the
U-shaped magnet problem of Section 14.6. In these problems, the static electric and magnetic
fields are there, but no currents, and hence S1 = 0. Thus the Slepian picture gives no energy flow,
which is a definite improvement on the meaningless interpretation of the Poynting vector.

We can say from this vector S1 of Eq. (14.73) that in all steady-state problems (i.e. where
there is direct current flow), the energy flow is confined to the conducting material in the region,
e.g. a current-carrying cable. Let us now consider the coaxial cable. If its resistance is negligible,
V is constant throughout the length of the cable, and hence the flow across every section of the
conductor is same. But when the resistance cannot be neglected, V decreases in the direction of
the current flow, and the lost energy is the ohmic loss. However the distribution of energy
between the ‘go’ and the ‘return’ conductor is arbitrary as the zero point of V is arbitrary.

14.7.1.2 Coaxial cable, without resistance, carrying
a time-varying current

In this problem, for the Slepian vector S1, the terms [V(∂D/∂t)] and [H ¥ (∂A/∂t)] have to
be calculated. The directions of the field vectors are all as shown in Figure 14.14. It
should be noted that A has the same direction as I, whether time-varying or not. For the given
problem, both the vectors [V(∂D/∂t)] and [H ¥ (∂A/∂t)] point radially outwards. Accordingly
the longitudinal flow of energy is contained in the term VJ, and hence takes place only
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within the conductors. There is also a radial flow of energy in the dielectric [due to the terms
{V(∂D/∂t)} and {H ¥ (∂A/∂t)}] corresponding to the storage of energy taking place there.

As shown in Figure 14.14, let the radii of the conductors be a, b where a < b, and we
assume the potential difference between the conductors to be V, with its zero value at the radius
r0 = ab , i.e. the geometric mean of the inner and the outer radii. Since the current is time-
varying, (following the derivation of Section 14.4.2), the potential V at any radius r comes out
to be

0 r 0

ln
2 u

C z r
V F t

r

⎛ ⎞ ⎛ ⎞⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠pe e
(14.74)

where V = F(t) at the starting point of the cable where z = 0. Since the knowledge of the vector
potential is also required, from Eq. (13.17) we get A as

0
0 ln

2z
I

r
m

p
⎛ ⎞= − ⎜ ⎟⎝ ⎠

A A i

where the constant of integration has to be adjusted to make A = 0 at r = r0, and substituting the
value of I as it is time-varying now,
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(14.75)

To evaluate the radial component of S1, we get
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from Eqs. (14.74) and (14.49).
The second term [H ¥ (∂A/∂t)] is obtained from Eqs. (14.75) and (14.50) as

              2 ur
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Figure 14.14 Coaxial cable, carrying time-varying current.
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as u2 = 1/(m0e0er).
These two contributions are equal, and hence the Slepian vector S1 for this problem is
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The second term in the above expression gives a radial flow of power such that (the functions
F and F¢ being positive) the radial energy flow is outwards when r lies between a and r0, and
inwards when r lies between r0 and b. The electric and the magnetic energy in the dielectric
appear to be as being supplied by a radial flow from the conductors. So for such a line, we can
connect two wattmeters at different points on the line. Since a wattmeter measures the product of
the current through the line with the P.D. between the conductors, the difference in the readings of
the two meters would give a measure of the outflow of the energy from the cable to the dielectric
in the intervening length of the cable.

Thus it would seem that the picture given by this Slepian vector S1 fits well with our
visualization derived from physical considerations. But the Poynting vector is algebraically
simpler. So we use both the concepts as complementary to solve our problems, and use one, which
is more convenient for a particular problem.

14.7.2 Alternative  Slepian Vectors for Energy Flow

As pointed out earlier in Section 14.7, the Poynting vector S has not been uniquely defined,
since it is the divergence of S, which has the physical significance. We can thus add to S another
vector, which could still represent the energy flow so long as the divergence of S does
not change. As an example, we derived the first Slepian vector S1 [Eq. (14.72)], which was
then applied to some practical problems (Sections 14.7.1.1 to 14.7.1.2) to check the efficacy
of the new vector. We have also stated that in the papers mentioned earlier, Slepian derived
nine such vectors. We shall indicate some of these now, without going into the detailed
derivation. Readers, who are further interested in the subject, are strongly recommended
the papers by Slepian, in particular the paper published in the Journal of Applied Physics,
August, 1942.

The following two vectors are obvious extensions from the Poynting vector, i.e.

S2 = [E ¥ H – ————— ¥ (ME)] (14.79)

S3 = [E ¥ H – ————— ¥ (NH)] (14.80)

where M and N are scalar functions of position, e.g. a, b, (E ◊◊◊◊◊ H), etc. Slepian related the scalar
M, N with the ‘magnetic shell’ which he created for the purpose of distinguishing between the
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displacement and the conduction current. He argued that the shell because of its infinitesimal
thickness would have negligible amount of energy in its volume; but discontinuities would be
produced in the field vectors, and hence a surface distribution of energy has to be assigned to
these discontinuities. The energy in the shell (say, for inclusion of infinitely permeable material)
was produced by bringing in the ‘compensating charges’, presumably from points at infinity, and
this would need the storage of certain amount of energy ascribed to the shell. But this would not
interfere with the system under consideration (according to Slepian), because the system
behaviour was being studied after the shell had already been created.

Another vector suggested was:

4 ( ) ( )
t

∂⎡ ⎤= × + ×⎢ ⎥∂⎣ ⎦
S E H A H

         
t t
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A H
E H A (14.81)

It should be noted that the divergence of this vector  is different from that of the Poynting
vector, the difference in energy being attributed to the compensating charges,
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the second term being the energy associated with the compensating charges.
In Eq. (14.81), it is possible to substitute

V
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and another form of the Slepian vector is obtained from S4, i.e.
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As far as its divergence is concerned, (14.84) is equivalent to
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Another alternate energy vector suggested was:

                    ( ) ( )7 V
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∂ ∂⎛ ⎞ ⎛ ⎞⎡ ⎤= − ∇ × + − − ×⎜ ⎟ ⎜ ⎟⎣ ⎦ ∂ ∂⎝ ⎠ ⎝ ⎠
A

H J D H (14.87)

This vector has the same divergence as the following vector suggested by Slepian:

8
V

V
t t

∂ ∂⎛ ⎞ ⎛ ⎞= − − ×⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
A

S J D H (14.88)

However S1, suggested in Section 14.7.1 with the same divergence as the Poynting vector, is the
most commonly used one.

14.8 MACDONALD VECTOR
Apart from the Slepian vectors, a number of other vectors have been suggested on the grounds of
various objections raised against the Poynting vector. However the Poynting vector has the great
advantage of simplicity and has gained nearly universal acceptance. Sumpner however discussed
the energy flow on the basis of  Huygen’s principle and concluded that the Poynting vector did
not describe the actual movement of energy.

A more serious objection to the Poynting’s theorem was made by Macdonald in 1902,
when he pointed out that the expression for the magnetic field energy in a closed volume had
been derived by Maxwell for static magnetic field only. Also, Maxwell’s volume integration had
to be carried out over all space. Macdonald suggested, as the correct energy flow vector, the
expression

( ) 1

2 t t

⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞× + × + ×⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

A H
E H H A (14.89)

which is very similar to S4 of Slepian vectors. A is the magnetic vector potential or as
Macdonald calls it  the ‘Electrokinetic Momentum’. However Macdonald also overlooked the
fact that the Poynting’s expression for the electric field energy was open to the same objections
as those for the magnetic field energy.

14.9 SILLARS’ VECTOR
This was suggested to Prof. Hammond by Dr. Sillars. At low frequencies, the magnetic field H
can be approximately represented by a scalar potential W, i.e.

H = – —W
\ ( ) ( )

S S

d dW× ⋅ = − × ∇ ⋅∫ ∫E H S E S

                    

[ ]( ) ( )

( )

S

S

S

d

d

d
t

W W

W

W

= ∇ × − ∇ × ⋅

= − ∇ × ⋅

∂⎛ ⎞= ⋅⎜ ⎟∂⎝ ⎠

∫

∫

∫

E E S

E S

B
S
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\ The alternative vector is

t
W ∂⎛ ⎞′′ = ⎜ ⎟∂⎝ ⎠

B
S (14.90)

This expression is also applicable to high frequency problems.

14.10 GENERAL COMMENTS

It would appear that the Poynting’s theorem does not achieve its aim, i.e. it does not give the
insight, as hoped by its author, into the mechanism of energy flow in space. But it does provide
a simple method of calculating the open-circuit energy flow. As we proceed with our study of
electromagnetic problems, we shall show wherever possible the use of the Poynting vector for
evaluating the energy flow for both the low-frequency as well as the high-frequency problems.
The wide use of the Poynting vector in high-frequency problems is quite well known. That it has
also been used extensively for the analysis of low-frequency electrical machines is not so well
known, and we hope to emphasize this point in our subsequent study.

PROBLEMS

14.1 A long straight uniform wire carries a steady current I. If the potential difference across
a length l is V, find the value of the Poynting vector at a distance r from the wire.
Hence show that the energy flowing into the wire is VI per unit time.

14.2 The validity of the Poynting vector S as a measure of energy flow is based on the
equation:

Power requirement of a region = Inward flux of S into the region.

If the region under consideration is a slice of coaxial cable carrying a direct current I,
then this equation reduces to 0 = 0, and yet the integral of S across the cross-section of
the dielectric correctly gives the power flow into the cable. Explain.

14.3 Prove that the Poynting vector in a uniform plane electromagnetic wave in vacuo has a
magnitude E2/(m0C ).

14.4 The radiation energy of the sun, received on the earth’s surface has the mean value of
1.54 kW/m2, and is normal to the direction of the rays. Find the rms values of E and H
in a polarized light beam having the same energy flow as the sunlight.

Ans.: E = 761.6 V/m H = 2.02 amps/m
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15.1 INTRODUCTION

During our study of the Maxwell’s equations in Chapter 12, we found that these equations could
be combined together to produce an operating equation in terms of a single field vector (i.e. the
vector Helmholtz equation), which could be further reduced to two limiting equations. In the
present chapter, we shall consider one of those two limiting cases, i.e. in the conducting media
and at relatively low frequencies, the displacement current term can be neglected, so that the
operating equation of our interest is

—2H - jwms H = 0 (12.39a)

—2E - jwms E = 0 (12.39b)

(assuming sinusoidal time-harmonic variations of the field vectors—though we shall consider
some non-sinusoidal transient problems as well). These problems fall under the general category
of eddy currents and skin effect types. In most of these problems, we can use the above equations
as the starting point, though for the initial few problems, we shall derive the specific operating
equation starting from the Maxwell’s equations for the sake of clarity and a proper insight into
the physics of the problems. In general, we shall evaluate the current distributions as well as the
magnetic field distributions in the conducting bodies, followed by the energy dissipations or the
losses and the energy transfers by both the Poynting vector as well as the current density
distributions in the structures.

15.2 ALTERNATING CURRENT DISTRIBUTION IN A SEMI-
INFINITE CONDUCTING BLOCK (SIMPLEST EXAMPLE
OF THE VECTOR DIFFUSION-TYPE EQUATION)

Alternating current (ac) phenomena at a fixed frequency f = w/2p are being investigated by the
phasor method, in which we can write

J = Re{J} exp ( jwt) (15.1)

Time-Varying Fields
in Conductors
(Magnetic Diffusion)15
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Here {J} stands for a set of three complex numbers, just as J is a set of three time-varying
components. The fourth Maxwell’s equation [i.e. Eq. (12.18)] then takes the form

curl {H} = — ¥ {H} = {J} + jw {D} (15.2)
[i.e. Eq. (12.22)].

Let us consider the relative magnitudes of the last two terms in a region filled with a
material of conductivity s and permittivity e/e0.

Let E have a maximum value Ê  in a certain direction, then J has the maximum value of
s Ê  and D has the maximum value of e Ê  in the same direction.

\ we wer
s

= =
ˆDisplacement current density

ˆConduction current density

E

E
(15.3)

where r = 1/s.
For copper, r = 1.7 ¥ 10-8 W-m and e = e0 = 8.854 ¥ 10-12.
The above ratio Æ 1, when f Æ 1018 Hz (X-rays).
\ For communication frequencies < 106 Hz, it is negligible in copper.
\ For such problems, the displacement current can reasonably be neglected.
We now consider a semi-infinite block of resistivity r and permeability m /m0 with one

plane face taken as x = 0 (Figure 15.1). An alternating magnetizing force H0 is applied at this

surface in the direction Oy, setting up B in the same direction in the material. The variations in
B set up the electric fields and the consequent induced currents in the perpendicular Oz direction
(i.e. normal to the plane of the paper). All the quantities will be phasors, so the notation {J} is
not needed. For simplicity we write B, H, J, E which are all assumed to be complex numbers,
with the real quantity H0 acting as the reference phasor.

The relevant equations are:

div B = — ◊◊◊◊◊ B = 0 (15.4a)

curl E = — ¥ E = - 
∂
∂t

B
(15.4b)

curl H = — ¥ H = J (15.4c)

E = rJ (15.4d)

 B = mH (15.4e)

Figure 15.1 Semi-infinite conducting block subjected to an alternating magnetic field.

y

O

H0 exp ( jw t)

B, H

E, J

x

•
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with B = ix0 + iyBy + iz0 where B varies with x only, the zero divergence of B is automatically
satisfied. Inserting the components into the other equations, and treating all the quantities as
phasors so that the ∂/∂t operator becomes jw,

    zdE

dx
= jwBy (15.5a)

ydH

dx
= Jz (15.5b)

    Ez = rJz (15.5c)

      By = mHy (15.5d)

\ j
rw r r
m

2 2

2 2

y yz z
y

d H d BdE dJ
B

dx dx dx dx

⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

or

j
w m
r

2

2
0y

y

d B
B

dx

⎛ ⎞
− =⎜ ⎟⎝ ⎠ (15.6)

The other quantities Hy, Ez, Jz all obey equations of the same form. The dimensions of Eq. (15.6)
show that the quantity (wm/r) must have the dimensions of (1/length2); we thus write

1/2

d
⎛ ⎞

=⎜ ⎟
⎝ ⎠

r
w m

(15.7)

and obtain

j
2

2 2
0

y
y

d B
B

dx d

⎛ ⎞ ⎛ ⎞− =⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠
(15.8)

The general solution of this equation is

j j
1 2exp expy

x x
B B B

d d

⎛ ⎞ ⎛ ⎞−
= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ (15.9)

where B1 and B2 are unknown constants of integration to be determined.

Boundary conditions to evaluate the unknowns B1 and B2. For a semi-infinite block, B1 must be
zero to keep the value of By finite as x Æ •; also at x = 0, By = B0 = mH0 = B2.

Thus

j
0 expy

x
B B

d

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠ (15.10)

But
j

j
1

2

+
=

So

j
0

(1 )
exp

2
y

x
B B

d

− +⎛ ⎞= ⎜ ⎟⎝ ⎠
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called ‘diffusion’. It will be seen that the magnetic field vector B (as all other field vectors) have
the maximum value at the surface x = 0, and the magnitude decreases exponentially as x
increases, the damping term (factor) being exp {-x/(d 2 )}.

At a depth x = d 2 , known as the ‘depth of penetration’, By = (1/e)B0, i.e. B is (1/e) =
0.368 or 36.8% of the surface value of B (i.e. B0 or BS). The flux is thus mainly confined to the
surface layers of the material. Next we calculate the total flux in the material, i.e. the total flux
per unit length measured perpendicular to the plane of the diagram (= F) is given by

F = 0
0

0 0

exp exp
x

x

x j x jB d
B dx

d dj

∞→∞

=

⎡ ⎤⎛ ⎞ ⎛ ⎞− −
= −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∫

or

⎡ ⎤−⎛ ⎞ ⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

0 exp cos sin
2 2 2

y
x x x

B B j
d d d

(15.11)

In fact, if we include the time-variation term explicitly in the above expression,

w− +⎡ ⎤= ⎢ ⎥
⎣ ⎦

0
(1 )

exp exp( )
2

y
x j

B B j t
d

or

w w
⎡ ⎤−⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
0 exp cos sin

2 2 2
y

x x x
B B t j t

d d d
(15.12)

The first term B0 exp {-x /(d 2 )} represents the amplitude of By as we penetrate into the block
normal to the x = 0 surface, and the term in the bracket indicates the phase of By at each point x
and at the instant of time t. The above expression shows that the vector B is a wave penetrating
into the block moving forward in the x-direction, but as the wave penetrates further in, the
amplitude of the wave is continually getting attenuated (Figure 15.2). Such a phenomenon is

Figure 15.2 By wave diffusing into the conducting block.

y

H0 exp ( jw t)
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= 
j

j
0 02 (1 )1

1
1 2

B d B d⎛ ⎞ −⎛ ⎞− − =⎜ ⎟⎜ ⎟ ∞⎝ ⎠+⎝ ⎠
(15.13)

The term (1 - j)/ 2  has the modulus unity, and shows that the total flux F lags the surface flux
density by 45∞. The multiplying term of B0 in the above equation shows that the magnitude of
the total flux F is the same as if the flux density at the surface (= B0) had the constant value
over the depth d. Thus d gives a measure of the effectiveness of the material as a carrier of the
magnetic flux (or of current). On this basis, Professor Carter in his book, calls ‘d’ as the depth of
penetration. But the more accepted definition of the depth of penetration is now d 2  which we
also have accepted in our present discussion.

In copper, at 50 Hz, r = 1.7 ¥ 10-8 W-m, d 2  = 0.93 cm. In iron, at the same frequency,
taking r = 10-7 W-m and m = 103m0, d 2  = 0.071 cm. Thus there is no point in making the
diameter of the wires, or the thickness of the transformer laminations, greater than about twice
the depth of penetration at the operating frequency. This tendency for the alternating flux or
current to crowd towards the surface of the material is called the ‘skin effect’.

The other vectors may be derived from Eq. (15.10) via Eq. (15.5). Thus,

j j

m m
01

exp
y y

z

dH dB B x
J

dx dx d d

⎛ ⎞ ⎛ ⎞⎛ ⎞ −⎛ ⎞
= = = − ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

and

( ) j
jr w0 expz z

x
E J B d

d

⎛ ⎞−
= = − ⎜ ⎟

⎝ ⎠ (15.14)

since wm /r = 1/d2 and wd = r/(md).
Just as we have plotted By as a function of x in the metal block (Figure 15.2), we shall now

plot Jz (in the metal block) in the complex plane, to show the variations of the current density
vector Jz, both in magnitude and phase (Figure 15.3), i.e.

j j j

m
0

0exp exp exp
2 2

z

B x x x
J J

d d d d

⎛ ⎞ ⎛ ⎞− − −⎛ ⎞ ⎛ ⎞
= − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

                  q−⎛ ⎞= ∠ −⎜ ⎟
⎝ ⎠

0 exp
2

x
J

d

Figure 15.3 Complex plane diagram for Jz at various distances x from the surface of the
semi-infinite metal block.

Imaginary axis

Jz at x = 0
Real axis

Jz at x = 0.523 (= skin depth)

Jz at x = 1.57
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where J0 is the surface current density = 
j

m
0B

d

⎛ ⎞
− ⎜ ⎟
⎝ ⎠

or
jp 0

1
2

2
I adJ

−⎛ ⎞
= ⎜ ⎟⎝ ⎠

\ The voltage drop V per unit length of the conductor is

jrr
p0

1

2 2

I
V J

ad

+⎛ ⎞= = ⎜ ⎟⎝ ⎠ (15.16)

We may thus write

( )j
rw w
p

, where
2 2

V R L I R L
ad

= + = = (15.17)

The skin effect thus increases the resistance of the wire, and in addition causes it to have
inductance. The resistance R0 per unit length, at very low frequencies (and for dc at f = 0) is
r/(pa2).

\
w= =ac

0 0 2 2

R L a

R R d
(15.18)

A more accurate analysis in cylindrical coordinates (which we shall see subsequently) gives this
ratio as [a/(2 2 d) + 1/4]. Thus, this simplified analysis gives a good approximation to the ratio
R/R0, when a/d exceeds about 3.

where
 J0 = the surface current density

q = x/(d 2 ).
In a circular wire of diameter 2a >> (d 2 ), the current-carrying skin can be treated as a

plane. (This, of course, is an approximation, which is justifiable.) Its width is 2pa. Therefore, by
analogy with Eq. (15.13), (Figure 15.4), the total current I is given by

jp 0
1

2
2

I aJ d
−⎛ ⎞= ⎜ ⎟⎝ ⎠ (15.15)

Figure 15.4 A metal wire of circular cross-section of radius a >> d 2 .

a
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denoted by (E ¥ H0) is the ohmic loss associated with the eddy currents. In this case

H* = H = H0 = iyH0
and

jm w m w0 0 0
1

2
z zH d j H d

+⎛ ⎞= = = ⎜ ⎟⎝ ⎠
E E i i

\ The complex Poynting vector S¢ is

jw m +Ê ˆ= ¥ =¢ Á ˜Ë ¯
* 2

0
1

2
x H dS E H i

and the average value is

2 2
0

1
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2 2 2

d
S H′= =S

wm
(15.19)

Substituting for d = /( )r w m ,
2

20 watts/metre
2 2

H
S w mr

⎛ ⎞
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(15.20)

To evaluate this without recourse to the Poynting vector, we consider the induced current
density J,

j j
0 expz

x
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d d
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⎝ ⎠ ⎝ ⎠
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J

The loss is then

 = r
∞
⎛ ⎞
⎜ ⎟⎝ ⎠∫ 2

0

1

2
dxJ (15.21)

(where the factor (1/2) comes in because
the peak values are assumed).

15.2.1 Power Loss Calculation (Using Poynting Vector)

We use the complex Poynting vector:
S¢ = Ec ¥ Hc

*

At the surface x = 0, Hy = H0, and Ez = - E0
 = - B0w d j [from Eq. (15.14)]. See Figure 15.5.

Thus (E ¥ H)0 is normally inwards, with no corresponding outward vector at x Æ •. The power

H0

E0

y

r, m
x

Figure 15.5 Surface field values of the semi-infinite block.
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centre of the plate, so that the plane faces are given by x = ± b. The same field is applied on
both the faces, i.e. B = B0 at x = ± b.

The initial steps of the analysis are similar to those of the semi-infinite block, and the
general solution comes out of the form

j j
1 2exp expy

x x
B B B B

d d
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1/20 0
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d

which is same as the previous Eq. (15.20). The complex Poynting vector thus gives a quicker
solution, partly because one needs only use the values of the field quantities at the surface, not
all through the material.

15.3 PENETRATION OF FLUX AND CURRENT INTO A
PLATE OF FINITE THICKNESS (INDUCTION HEATING)

From the analysis of a semi-infinite block, it is a direct extrapolation to solve for a plate of finite
thickness with two parallel plane faces (Figure 15.6). The origin of the system is taken at the

B0 Jz

–b +b x

B0

Jz

•
O

r, m

Figure 15.6 Plane faced metal block.
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corresponding to Eq. (15.9). The constants B1 and B2 have to be evaluated using the conditions
that By = B0 at x = ± b. This gives

By = 

j j

j j
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exp exp

exp exp

x x

d d
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b b
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which can be expressed as
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(15.22)

If such a plate is to be used as a lamination in a transformer core, then the deciding factor would
be the total amount of magnetic flux, which would be carried by the unit depth of the
lamination. This would be the basis for deciding the minimum thickness of each lamination so
that its central layers are optimally used.

The value of the total flux per unit length (= F) is given by
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Figure 15.7. The next parameter important from the designer’s point of view is the eddy current
loss in the laminations, and so we now calculate the eddy current loss. So we need to evaluate
the current density vector J, i.e.

Jz = -
0 r

1y ydH dB

dx dx

⎛ ⎞⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠m m

and using the value of By obtained in Eq. (15.22), we get

0

0 r

1
sinh

21

2 1
cosh

2

z

x
dB

J
d b

d

m m

È ˘+Ê ˆÊ ˆ
Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Ê ˆ +Ê ˆ Î ˚= ¥Á ˜Á ˜ Ë ¯Ë ¯ È ˘+Ê ˆÊ ˆ
Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

j

j

j

The magnitude of this flux is F , which is

 
2 2 2 2

0 2 2 2 2

sinh cos cosh sin
2

cosh cos sinh sin
B d

a a a a
a a a a

+
F = ¥

+

                           = 2B0d ¥
a a
a a

−
+

cosh 2 cos 2

cosh 2 cos 2

If the flux penetration were complete, then the flux would be

2B0b = F0

\     F  = 0 cosh 2 cos 2

cosh 2 cos 22

a a
a aa

F −⎛ ⎞ ×⎜ ⎟⎝ ⎠ +
(15.24)

The ratio 0/F F  is a measure of the reduction in the effective permeability of the lamination
material due to the presence of the eddy currents in it. This is plotted as a function of (b/d) in

Figure 15.7 Penetration of F as a function of b.
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0.2

0 b /d8

Thickness of lamination = 2b

F/F0
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which can be expressed as

j
j

m m a a a a
0

0 r

sinh cos cosh sin
2 2 2 21

cosh cos sinh sin2
z

x x x x

d d d dB
J

d j

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎛ ⎞ +⎛ ⎞= − ×⎜ ⎟⎜ ⎟ ⎝ ⎠ +⎝ ⎠

and hence the magnitude of Jz is

m m a a a a

2 2 2 2

0
2 2 2 2

0 r

sinh cos cosh sin
2 2 2 2

cosh cos sinh sin
z

x x x x

B d d d d
J

d

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎛ ⎞
= ×⎜ ⎟⎝ ⎠ +

           
0

0 r

2 2
cosh cos

cosh 2 cos 2

x x

d dB

d

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥−⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎛ ⎞ ⎝ ⎠ ⎝ ⎠

= × ⎢ ⎥⎜ ⎟
+⎢ ⎥⎝ ⎠

⎢ ⎥⎣ ⎦

m m a a

\ The eddy current loss (= We) is

                         We = r
+

−
∫ 2
b

z

b

J dx

=
2
0

0 r

2 sinh 2 sin 2

cosh 2 cos 2

B

d

⎛ ⎞ ⎛ ⎞−
⎜ ⎟ ⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

r a a
m m a a

(15.25)

It will be seen that the second term is the square of the term for the flux-linkage as obtained in
Eq. (15.24).

A second application of the results of this problem is in the design and use of induction
furnaces. The term, [(sinh 2a - sin 2a)/(cosh 2a + cos 2a)] is the important parameter for the
users of induction furnaces. The above quantity is a function of a or b/(d 2), say F(a) or
F{b/(d 2 )}. If this function is plotted for a range of b/(d 2 ) or a, it will be seen that for

maximum heating, the sheets should have a thickness 2b � 2.25(d 2 ), i.e. b should be slightly
greater than the skin-depth (d 2 ) (=d ). If the sheets are thicker, the eddy currents will not
penetrate far enough; and if the sheets are thinner, the eddy currents will be smaller.

15.4 ALTERNATING CURRENT FLOW IN A FLAT SHEET

We now look at the problem of an alternating current flowing in a sheet of finite thickness (2b)
(Figure 15.8). In this case, the current flows in the y-direction and hence the current density
vector will have only the y-component, and the magnetic flux density B will have only the
z-component. These field vectors will vary only with x, i.e. ∂/∂y = 0 and ∂/∂z = 0.

\ curl H = J equation will reduce to

∂
− =
∂

z
y

H
J

x
(15.26)
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and curl E = -
∂
∂t

B
reduces to

∂ ∂
= −

∂ ∂
y zE B

x t
(15.27)

Using the constituent relations

B = mH and J = s E (15.28)
we get

m s
∂⎛ ⎞⎛ ⎞ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠0

1 1
and yz z

y

JB B
J

x t x

\
22

2
0 0

1 1
=y yzJ JB

t x t x

⎛ ⎞⎛ ⎞∂ ∂⎛ ⎞ ⎛ ⎞∂
⎜ ⎟− = +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠m m s

(15.29)

Since the current through the block is alternating, we write it as

( )w= ˆ expyJ J j t (15.30)
\ Equation (15.29) becomes

jwm s
2

02

ˆ
ˆJ
J

x

∂
=

∂
(15.31)

Since all the quantities are phasors, we simplify our writing by omitting the peak notation, and
as before

wm s
2

0

1
d= (15.32)

the equation for the current density vector becomes

j
2

2 2
0y

y

J
J

x d

∂ ⎛ ⎞− =⎜ ⎟⎝ ⎠∂
(15.33)

Figure 15.8 Current flow in a flat sheet.
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Its general solution is (i.e. the space variation of J),

j j
1 2exp expy

x x
J J J

d d

⎛ ⎞ ⎛ ⎞−
= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ (15.34)

where J1 and J2 are unknown constants to be determined from the boundary conditions which
are:

(1) at x = 0, Jy = J0 (say); and
(2) x = 0 is the axis of symmetry.

Hence, from these conditions, the two equations are

J0 = J1 + J2 and J1 = J2

\ The solution becomes

Jy =
j j0 (1 ) (1 )

exp exp
2 2 2

J x x

d d

⎡ ⎤+ − +⎧ ⎫ ⎧ ⎫⎛ ⎞ +⎨ ⎬ ⎨ ⎬⎢ ⎥⎜ ⎟⎝ ⎠ ⎩ ⎭ ⎩ ⎭⎣ ⎦

                         = J0 cosh
j(1 )

2

x

d

+⎡ ⎤
⎢ ⎥⎣ ⎦

(15.35)

On the surface x = ± b,

Jy = JS = J0 cosh
j(1 )

2

b

d

+⎡ ⎤
⎢ ⎥⎣ ⎦

\ Expressing the current density vector in terms of the surface value,

j

j
S

(1 )
cosh

2
(1 )

cosh
2

y

x

d
J J

b

d

⎡ ⎤+⎧ ⎫
⎨ ⎬⎢ ⎥
⎩ ⎭⎢ ⎥=

⎢ ⎥+⎧ ⎫
⎨ ⎬⎢ ⎥
⎩ ⎭⎣ ⎦

(15.36)

The total current per unit width of the sheet is

j

j
S2 2 (1 )

tanh
1 2

b

y

b

J d b
I J dx

d

+

−

⎛ ⎞ +⎛ ⎞= = ⎜ ⎟ ⎜ ⎟⎝ ⎠+⎝ ⎠∫ (15.37)

If b/(d 2 ) is large, then tanh [(1 + j)b/(d 2 )] Æ 1. This is true within 1% if b/(d 2 ) > 2.64.
Thus in a sheet of this thickness,

j
S2 2

1

J d
I =

+ (15.38)

We now calculate the impedance of the sheet, which would also give us the loss in an
alternative way. The voltage applied to the sheet can be obtained from the surface electric field.

The voltage per unit length in the y-direction is

SJ
V

s
= (15.39)
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\ The complex impedance per unit area of y- and z-directions is

j j

s
1 (1 )

coth
2 2 2

V b
Z

I d d

+ +⎛ ⎞ ⎡ ⎤
= = ⎢ ⎥⎜ ⎟⎝ ⎠ ⎣ ⎦

(15.40)

Separating the real and the imaginary parts,

j j
j

j

a a a a
a a a as

1 cosh cos sinh sin

sinh cos cosh sin2 2
Z R X

d

+ +⎛ ⎞= + = ×⎜ ⎟⎝ ⎠ +
where

a = 
2

b

d
(15.41)

After further manipulations,
1 sinh 2 sin 2

cosh 2 cos 22 2
R

d

⎛ ⎞+⎛ ⎞= ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠

a a
a as

a a
a as

⎛ ⎞−⎛ ⎞= ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠

1 sinh 2 sin 2

cosh 2 cos 22 2
X

d
(15.42)

This reactance is due to the redistribution of the current inside the sheet, and hence is due to the
‘internal inductance’ of the sheet. The resistance in Eq. (15.42) is due to the alternating current.
The direct current resistance of the sheet is

s
=dc

1

2
R

b
(15.43)

\ The ratio of ac to dc resistance is

a a
a a
+=
−

ac

dc

sinh 2 sin 2

cosh 2 cos 22

R b

R d
(15.44)

When this ratio is plotted as a function of b/(d 2 ), then for large values of a = b/(d 2 ), it tends

to b/(d 2 ) (Figure 15.9), because the current tends to concentrate in the surface layers of b/(d 2 ).
At low values of b/(d 2 ), the expression can be expanded in the ascending powers of a, i.e.

a⎛ ⎞= + ⎜ ⎟⎝ ⎠
4ac

dc

4
1

45

R

R
(15.45)

Figure 15.9 AC resistance of a flat sheet.
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The total current = I; the current density = J; the applied voltage = V; the induced
voltage = e; the frequency of the current = f; or angular frequency = w = 2p f; the external flux
linked per unit length = F.

The current density is a function of the radius only. The alternating current gives rise to
the magnetic flux; and from the Maxwell’s equation,

r

C

H dl =Úv current enclosed by the contour,

p p
=

=

= ∫
0

2 ( ) 2 ( )
r R

r

RH R rdrJ r (15.46)

This equation is true at any instant of time, since all are functions of time.
Differentiating with respect to R,

( )∂ =
∂

RH RJ
R

(15.47)

[At the centre (r Æ 0), H ¥ 2pr = pr2J0. \ H = (J0/2)r Æ as r Æ 0.]

Figure 15.10 A circular conductor of radius a, carrying an alternating current.

r

a

R

dR

B

F

When we consider thin sheets, it is seen that the above expression still holds, i.e. the ac loss for
thin sheets can be evaluated without considering the effects of the magnetic field of the eddy
currents. If the effects of the field of eddy currents are negligible, then the behaviour is said to
be ‘resistance-limited’. For thick sheets, in which the current is confined in the surface layers, the
behaviour is said to be ‘inductance-limited’.

15.5 SKIN EFFECT (OR EDDY CURRENTS) IN AN ISOLATED
CIRCULAR CONDUCTOR

We consider a long conductor, of circular cross-section, carrying an alternating current I, the
current density at any radius r being J, the direction of the current being normal to the plane of
the paper into it (Figure 15.10).



CHAPTER 15 TIME-VARYING FIELDS IN CONDUCTORS (MAGNETIC DIFFUSION) 483

Let F = the flux linking the conductor externally per unit length. Then the total flux
linking with the core of radius R is given by

External flux F + 0 r 1
r a

R

H dr

=

⋅∫ m m

\ Induced voltage per unit length at radius r is

0 r

a

R

e Hdr
t

F
⎡ ⎤∂ ⎢ ⎥≡ = − +

∂ ⎢ ⎥⎣ ⎦
∫m m (15.48)

This creates a certain current density, in addition to the applied voltage. We know that
V = applied voltage per unit length.

\ N N
Total voltage Gradient

V e J+ = r
 (i.e. resistivity ¥ current density)

\ e = rJ - V

Let us assume that F is finite.

\ 0 r

a

R

Hdr J V e
t

F
⎡ ⎤∂ ⎢ ⎥− + = − =

∂ ⎢ ⎥⎣ ⎦
∫m m r (15.49)

Differentiating with respect to R,

[ ]0 r ( ) 0
dJ

H R
t dR

∂ ⎛ ⎞− − = −⎜ ⎟∂ ⎝ ⎠
m m r

or

0 r
H dJ

t dR

∂⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠
m m r (15.50)

Since the current flowing through the conductor is assumed to be sinusoidal, ∂/∂t = jw and
Eq. (15.50) becomes

0 rj dJ
H

dR

⎛ ⎞
=⎜ ⎟

⎝ ⎠

wm m
r

or

l =2 dJ
j H

dR
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l2 = 0 r
2

1

d
=

wm m
r

(15.51)

\ From Eqs. (15.47) and (15.51),

( )l ⎡ ⎤∂⎛ ⎞ ⎛ ⎞= = +⎜ ⎟ ⎜ ⎟⎢ ⎥∂⎝ ⎠ ⎝ ⎠⎣ ⎦
2 1d d dH H

j H RH
dR R R dR dR R
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⎛ ⎞ ⎛ ⎞+ − + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

2
2 2 2

2
1 0

d H dH
R R j R H
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Compare this equation with the Bessel’s equation of the order n, which is

( )
2

2 2 2
2

0
d y dy

x x x n y
dxdx

⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
(15.52)

so that the equation for H can be rewritten as

( )
2

2 3 2 2
2

1 0
d H dH

R R j R H
dRdR

⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
l (15.53)

\ The solution of this equation is

H = AJ1( j3/2lR) + BY1( j3/2lR) (15.54)

where J1( j3/2lR) and Y1( j3/2lR) are Bessel’s functions (of first order) of first and second kind
respectively. It should be noted that the arguments of these Bessel’s functions are complex and
hence they can be expressed as Kelvin functions, i.e. Ber and Bei functions. However we shall
use them as they are and convert them later to polar form. (Note that A and B are unknown
constants of integration, and can be complex.)

From Eq. (15.47), the current density J can now be expressed as

                   J = 
⎛ ⎞ ⎡ ⎤
⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

1
( )

d
RH

R dR

                      = ( ) ( ){ }3/2 3/2
1 1

1 d
RAJ j R RBY j R

R dR
⎛ ⎞ ⎡ ⎤+⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

l l

                     = ( ) ( ) ( ) ( ) ( )3/2 3/2 3/2 3/2
1 13/2

1 l l l l
l

Ê ˆ È ˘¥ +Á ˜ Î ˚Ë ¯
d

j R AJ j R j R BY j R
R d j R

                     = ( ) ( ) ( ) ( )3/2 3/2 3/2 3/2
0 0

1 l l l lÊ ˆ È ˘+Á ˜ Î ˚Ë ¯
j R AJ j R j R BY j R

R

\             J = ( ) ( ) ( ) ( )3/2 3/2 3/2 3/2
0 0l l l lÈ ˘+Î ˚j AJ j R j BY j R

Note that j3/2 implies a phase shift.
The Bessel’s function of the second kind Yn(x) Æ • as x Æ 0.

But H Æ 0 as R Æ 0. \ B = 0.

\ H = AJ1( j3/2lR), J = ( j3/2l) AJ0( j3/2lR)

However in tubular conductors, the general solution for the finite value of B is valid.

Now, to evaluate A, if the total current is I, then at R = a, Hdr I=Úv ; or

2paHa = I = 2paAJ1( j3/2la)

\ A = ( )p l3/2
12

I

aJ j a
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\ H = 
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( )

l

p l
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J j RI

a J j a
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j I J j R

a J j a
(15.55)

Expressing the Bessel’s functions in polar form

H = 1 1

1 1

( ) exp { ( )}

2 ( ) exp { ( )}

l q l
p l q l

È ˘Ê ˆ
Í ˙Á ˜Ë ¯ Î ˚

M R j RI

a M a j a

      J = 
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1 1
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l l q l
p l q l

È ˘ È ˘Í ˙ Í ˙Í ˙ Î ˚Î ˚

j I M R j R

a M a j a
(15.56)

We now plot the amplitude M0 (lR) as a function of (lR) = x (Figure 15.11). From the curve, it
will be seen that for sufficiently high l (i.e. the reciprocal of skin-depth/ 2 ), at the outer radii,
the current density increases.

Figure 15.11 Current density amplitude as a function of radius R of the conductor.

J

1

M0(x)

x = lR
la
(R = a)

\ At higher frequencies ( f ), most of the current will be located in the outermost shells.
The current density at the centre of the wire is minimum, and increases monotonically with
radius. Furthermore, if ‘(la)’ is increased, the discrepancy of the current density at the centre and
the outer radius increases and vice versa.

Next, we consider the phase of the current density vector. The terms affecting the phase are
(Figure 15.12)

j3/2 Æ p⎛ ⎞
⎜ ⎟⎝ ⎠

3
4

 + q0(lR) - q1(la) = phase of J - phase of I (15.57)

Note: For large values of x(= lR), x > 45

q0(x) = 40 ... x - 5.06/x - 22½∞; q1(x) = 40 ... x + 15.19/x + 67½∞.

When l Æ 0 (l = wm0mr /r), i.e. at low frequencies, all the current densities (at different
radii) are in phase. At sufficiently high frequencies, in the current density at any radius, there are
different phase reversals.
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(Note: We have already seen that the skin current density leads the resultant total current by
45∞—true for high frequencies as well.) Note further that at high frequencies, a (very very) small
change in r is sufficient to cause the phase change by 45∞ between two shells.

15.5.1 Loss Calculation and the Effective Resistance in the
Circular Conductor

We now calculate the effective resistances for various values of l .

3/2
0 0

1 1

( ) exp { ( )}( )

2 ( ) exp { ( )}

M R j Rj I
J

a M a j a

⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

l q ll
p l q l

   at radius R (15.58)

\ ΩJΩ = 
l l
p l

⎡ ⎤ ⎡ ⎤
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⎣ ⎦⎣ ⎦
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I M R

a M a
where

ΩIΩ = amplitude of the current (15.59)

\ The total ohmic loss per unit length =

( ) ( )
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p l lr
p p l

resistance (area)2 (current density)2

per unit length (15.60)

i.e. the loss is proportional to the (rms current)2.
This is to be integrated within the limits 0 to a, thus, the loss

22
2
02 2

1 0

( )
(4 ) ( )

a
I

rM r dr
a M a

= ∫
rl

l
p l

(15.61)

Figure 15.12 Phase variations in J as a function of R.
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We note that, when l = 0, i.e. working under dc conditions, resistance per unit length

Rdc = 
r

p 2a

\ DC losses = 
r

p

⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

2

2 2

I

a
(15.62)

\ Multiplying factor (for AC due to l π 0)

l l
l
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= ⎢ ⎥
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(15.63)

2
2
1 0at 0, ( ) and ( ) 1

2
a

M a M r
ll l l

⎡ ⎤⎛ ⎞⎢ ⎥= → →⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦
We refer to Lommel’s integral,

∫
0

a

rJ0(kr)J0(lr)dr = 
2 2

a

k l

⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠

[(kJ0(la)J1(ka) - lJ0(ka)J1(la)] (15.64)

In this expression, let k = j3/2l, l = (-j)-3/2l = j-3/2l .
On substituting and expressing the integral in the polar form:
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noting that j3 = - j      and      j -3 = j.

l∫ 2
0

0

( )
a

rM r dr

= - 1 0 1 0 0 1[exp {(3 /4) ( ) ( )}] exp[ {(3 /4) ( ) ( )}] [ ( ) ( )]
2

p q l q l p q l q l l l
l

Ê ˆ
+ - - - + - ¥Á ˜Ë ¯

a
j a a j a a M a M a

j
noting that j3/2 = exp {j(3p/4)}  and  j-3/2 = exp {- j(3p /4)}

= - l
⎛ ⎞
⎜ ⎟⎝ ⎠

a
[sin {(3p /4) + q1(la) - q0(la)}][M0(la) M1(la)]

= - l
⎛ ⎞
⎜ ⎟⎝ ⎠

a
 [sin {- (p/4) + q1(la) - q0(la)}][M0(la) M1(la)]

\ From Eq. (15.63), the multiplying factor

1/2
0 0 r

1 0
1

( )
[sin {( /4) ( ) ( )}] and

2 ( )
M aa

a a a a
M a
⎡ ⎤ ⎛ ⎞⎛ ⎞= − + − = ⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎝ ⎠

l wm ml p q l q l ll r (15.65)

The multiplying factor increases with resistance.
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15.6 SKIN EFFECT IN PLATED CONDUCTORS

In radio frequency and higher frequency transmissions, the resonant cavities and waveguides are
often silver-plated to utilize the low resistivity of silver, and thus reduce the ohmic losses in
these devices. It is of interest to determine the variation of the loss with the thickness of the
plated coating. Another type of practical application is that of tinned copper wires. We can study
the effects of such coatings on the resistance of such wires.

So once again, we consider a semi-infinite block of metal of resistivity r2, coated with a
second metal layer of resistivity r1 and thickness a (Figure 15.13). The flow of an alternating

current of frequency w = 2p f is in the z-direction, and is uniform in the y-direction, i.e. the only
variation is in the x-direction. The flow of the current would induce a magnetic field, which
would be directed in the y-direction, and also be a function of x. Let the current densities be Jz1

and Jz2 in the two media respectively, and as derived in Section 15.2, the equations satisfied by
these current density vectors come out to be

⎛ ⎞ ⎛ ⎞
− = − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

2 2
1 2

1 22 2 2 2
1 2

0 and 0z z
z z

d J d Jj j
J J

dx d dx d
(15.66)

where

d1 = 
r r

wm wm
⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1/2 1/2
1 2

2
1 2

and d (15.67)

The general solutions will be

1 1 1 2 2 2
1 1 2 2

exp exp and exp expz z
x j x j x j x j

J A B J A B
d d d d

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

remembering that Jz1 and Jz2 are both phasors (i.e. complex vectors with only one component
i.e. in the z-direction only).

Since the current density cannot become infinite as x Æ •,

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2 2 1 1 1
2 1 1

exp and exp expz z
x j x j x j

J B J A B
d d d

(15.68)

The other boundary conditions are at x = 0,

Ez1 = Ez2 and Hy1 = Hy2

Figure 15.13 Semi-infinite metal block with a surface coating of thickness a.

Jz1

Jz2

y

x

(1) r1

(2) r2

a
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\ From Eqs. (15.48)

Ez1 = r1Jz1 = r1(A1 + B1) = r2B2 = (r2Jz2 = Ez2) (15.69)

and

Hy1 = 1 1 1 1

1 1 1 1

1 r r
wm wm wm

Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ= =Á ˜ Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯
z z jdE dJ

j dx j dx j d

                      = ( ) ( ) ( )r
wm

⎛ ⎞− = − = −⎜ ⎟
⎝ ⎠

1 2 2
1 1 2 2

2 2

jd d
A B B B

j dj j
(15.70)

We shall now express the current densities in terms of the surface value of Jz2 on the
surface plane x = 0, i.e.

at x = 0, Jz2 = B2 = J02 (15.71)

Hence from Eqs. (15.69), (15.70), and (15.71), we get

          Jz1 = J02 m
⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

2
2

1 1

d

d
 ¥ 2 2 1 1

1 1 1

cosh sinh cos
2 2 2

x x x
d d

d d d

⎡⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭⎣
m m

 1 1 2 2
1 1 1

cosh sinh sin
2 2 2

x x x
j d d

d d d

⎤⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎥− −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎥⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎦
m m

          Jz2 =
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞− ⎢ ⎥−⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

02
2 2 2

exp cos sin
2 2 2

x x x
J j

d d d
(15.72)

It should be noted that there is now a discontinuity in current density at the interface plane
between the two metals. So if say a brass bar is coated with silver, then the silver part would
carry a larger share of current than if it had been brass in its place.

So now we calculate the total current in each of the two metals for a width, say, W,

\   I2 = ( )
∞ ∞ ⎡ ⎤ ⎛ ⎞− += = −⎢ ⎥ ⎜ ⎟

⎢ ⎥ ⎝ ⎠⎣ ⎦
∫ ∫ 02 2

2 02
20 0

(1 )
exp 1

2 2
z

J Wdj x
W J dx J W dx j

d

and

             I1 = ( ) ( )02 2
1 1 1 1 1

1 10

2 2
2

z
J Wd

W J dx P d j Q d
d

∞
⎡ ⎤= − − −⎢ ⎥⎣ ⎦∫ m m

m
where

P = ( )m
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥× +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

2 2
1 1 1 1

2 sinh cos cosh sin
2 2 2 2

a a a a
d

d d d d

     + ( )m
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥× +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

1 1
1 1 1 1

2 cosh cos sinh sin
2 2 2 2

a a a a
d

d d d d
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Q = ( )m
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥× −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

2 2
1 1 1 1

2 sinh cos cosh sin
2 2 2 2

a a a a
d

d d d d

   + ( )m
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥× −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

1 1
1 1 1 1

2 cosh cos sinh sin
2 2 2 2

a a a a
d

d d d d

\ The total current, I = I1 + I2

= ( )
m

⎛ ⎞
−⎜ ⎟⎜ ⎟⎝ ⎠

02 2

1 12

J Wd
P jQ

d
 = ( ) a

m

⎛ ⎞
+ ∠ −⎜ ⎟⎜ ⎟⎝ ⎠

1/22 202 2

1 12

J Wd
P Q

d

where

a = tan-1 ⎛ ⎞
⎜ ⎟⎝ ⎠

Q
P

(15.73)

We now calculate the power loss in a rectangular section of the plated conductor, of width
W in the y-direction and l in the z-direction.

\ The loss in the metal 2, for the rectangular section:

P2 = 
2 2

2 2 2 02
2

0 0

2
exp

x

z

x

x
Wl J dx WlJ dx

d

→∞ ∞

=

⎛ ⎞
= ⎜ ⎟⎜ ⎟⎝ ⎠

∫ ∫r r

                       = 
2

2 2 02

2

Wld Jr
(15.74)

And for the conductor 1,

P1 = r
→∞

=
∫ 2

1 1

0

x

z

x

Wl J dx

    = ( ) ( )r m m
m

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎡ ⎤× +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎣ ⎦⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2 2 2 2
1 02 2

2 2 1 12 3
1 1 1 1

2 2 sinh cosh
2 2 2 2

WlJ d a a
d d

d d d

+ ( ) ( )m m
⎛ ⎞ ⎛ ⎞⎡ ⎤− ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎝ ⎠

2 2

2 2 1 1
1 1

2 2 sin cos
2 2

a a
d d

d d
 + m m

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

2
1 2 1 2

1

sinh
2

a
d d

d
(15.75)

\ The total power PT = P1 + P2

                           = ( )
2 2

1 02 2

2 3
1 12 2

WlJ d
U

d

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

r
m

where

     U = ( ) ( )2 2

2 2 1 1
1

1
2 2 sinh

2 2

a
d d

d

⎡ ⎛ ⎞⎛ ⎞ ⎧ ⎫⎢ + ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎩ ⎭⎝ ⎠ ⎢ ⎝ ⎠⎣
m m

( ) ( )2 2

2 2 1 1 1 2 1 2
1 1

2 2 sin cosh
2 2

a a
d d d d

d d

⎤⎛ ⎞ ⎛ ⎞⎧ ⎫ ⎥+ − +⎜ ⎟ ⎜ ⎟⎨ ⎬ ⎜ ⎟ ⎜ ⎟⎩ ⎭ ⎥⎝ ⎠ ⎝ ⎠⎦
m m m m (15.76)
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\ The equivalent resistance of the composite bar is

Req = 
r⎛ ⎞ ⎛ ⎞

= ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠
T 1
2 2 2

1 2

P l U

P QWdI
(15.77)

We now express this equivalent resistance in terms of the resistance of a homogeneous bar
of the plating metal, i.e. metal 1,

\ R1 = 
eq1

2 2
11

and
2

Rl U
R P QWd

=
+

r
(15.78)

And, if we do a similar comparison with the metal 2, then

m
m

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

eq 1 1
2 2

2 2 2

R d U
R d P Q

(15.79)

We now compare the resistance of a silver-plated brass bar with that of a solid bar of the
same dimensions, as shown in the Figure 15.14. It is seen that if the silver plate thickness

Figure 15.14 Resistance ratio for a silver-plated brass block.

2.0

R
R1

r1(silver) = 1.60 * 10–8 W-m
r2(brass) = 7.0 * 10–8 W-m

1.5

1.0

0.5
0 1 2 3 4 /( 2)a d

Solid silver

Composite conductor

exceeds 1.2 times the skin-depth (d1 2 ), then the resistance of the composite bar is nearly the

same as that of pure silver. The surprising point to be noted is that, there is a dip in this curve
from [a/(d1 2 )] = 1.2 to 2.6, when for this thickness, the total resistance of the composite bar
and hence its I2R current loss as well, are less than those for a pure silver bar.

We can similarly analyze other composite metal bars, such as copper–lead, and so on.

15.7 MAGNETIC DIFFUSION AS AN ELECTRICAL
TRANSIENT

So far all the problems we have considered are of the type in which the currents have been
induced in the conducting media as a consequence of imposing a steady sinusoidally varying
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(with time, i.e. time-harmonic) magnetic field on it, or by forcing a similar alternating current on
the medium. Also in the present problem under consideration, the material medium is at rest, and
we study the diffusion of the magnetic field and the associated induced eddy currents in the
conducting medium, when the forcing magnetic field is suddenly switched on as a step-function
of time. We devise a model such that we have simplified the geometry with only one component
of the magnetic field existing, and one orthogonal component of the electric field and hence the
current as well are present in the model, so that the analysis is a simple one (from the
mathematical viewpoint). Thus we have an electromagnet of an infinitely permeable, non-
conducting magnetic material with an air-gap of length w (Figure 15.15), excited through an
N-turn winding by a constant-current source of current I, which can be turned on or off by the
switch S. In the gap is a slab of non-magnetic conducting material of dimensions l ¥ w ¥ b
(l being the length, w the width, and b the thickness) as shown in Figure 15.15, with constant
conductivity s (or resistivity r = 1/s). The dimensions w and l are large compared with the
thickness b, and hence the edge effects (i.e. fringing) can be neglected. The coordinate system
for the problem is as defined in Figure 15.15(b). Initially it is assumed that the switch S is

I S

N turns

m

l

w

Non-conducting
magnetic material

Slab with constant m0, s, and
perfectly conducting ends
(as shown by hatching)

(a)

b

(b)

b

m0      r

B0
z

x

B0

Figure 15.15 (a) System devised to study magnetic diffusion as an electrical transient;
    (b) coordinate system for the one-dimensional diffusion model.

•

ƒ

closed, and hence there is no current in the winding and hence no magnetic flux in the magnet.
At the instant t = 0, the switch S is opened, and now we shall study the time variations of the
flux.

The boundary conditions on opening the switch are:
Outside the block, in the gap of the magnet, for t > 0, z < 0, z > b,

B = ixB0
where

B0 = 
m0 NI

w
(15.80)
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It should be noted that only the x-component of B exists in the air-gap of the magnet, and it
varies with z only.

Inside the block (of thickness b), the displacement currents can be neglected. The relevant
Maxwell’s equations are

curl H = — ¥ H = J
and

      curl E = — ¥ E = - 
∂
∂t
B

Since B has x-component only and is a function of z only,

div B = — ◊◊◊◊◊ B = 0
is automatically satisfied.

The constituent relations are:

E = rJ or J = s E
and

B = m0H
From the curl H equation,

iy 
∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

xH
z

= ix0 + iyJy + iz0

or

sm
∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠0

1x x
y y

H B
J E

z z

\ E can have y-component only.
\ From the curl E equation,

∂ ∂⎛ ⎞ ∂ ∂⎛ ⎞− = − =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
ory yx x

x x

E EB B
z t z t

i i

Combining the above two equations,

m s
⎛ ⎞ ∂∂ ∂⎛ ⎞ = =⎜ ⎟⎜ ⎟ ⎜ ⎟ ∂ ∂∂⎝ ⎠ ⎝ ⎠

2

2
0

1 yx xEB B
z tz

(15.81)

As soon as the switch S is opened, at that instant,

at t = 0+, Bx = 0 (inside the conducting block). (15.82)

The distribution of Bx at t = 0+ is shown diagrammatically in the air-gap of the magnet in
Figure 15.16.

This condition follows from the equation: — ¥ E = - ∂
∂t
B

or
1

C S C

d d d
t s

∂Ê ˆ◊ = - ◊ = ◊Á ˜∂Ë ¯Ú ÚÚ ÚE l B S J lv v (15.83)

which is essentially the Stokes’ theorem.
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block) is established in zero time. This mathematical simplification implies that at this instant,
the time-derivative of B will be infinite. In the contour C of the Stokes’ theorem equation, if C
includes z = 0 or z = b, then it indicates an infinite current density, but actually a finite surface
current is necessary to terminate the B0 field. In a real situation, the flux density B0 is established
rapidly but in a finite time. This idealization will be better understood when we discuss the
solution at the completion of this problem.

It should also be understood that after a sufficient long time, all transient currents in the
slab will die out, and then Bx will become uniform throughout the block, i.e.

{as t Æ •, Bx Æ B0 and then (∂Bx /∂t) = 0 for the steady-state conditions.} (15.84)

So to solve Eq. (15.81), we use the method of separation of variables, and assume a
solution of the form

Bx = B(z) B(t) + C0 (15.85)

Substituting in Eq. (15.81),

am s
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

2

2
0

1 ( ) 1 ( )
( ) ( )

d B z dB t
B z B t dtd z

(a being an arbitrary constant at this stage).

\ B(z) = ( ) ( )m sa m sa+1 0 2 0sin cosC z C z

and
B(t) = exp (– a t)

\ The solution will have the general form

Bx = ( ) ( )1 0 2 0 0sin cos exp ( )C z C z t C⎡ ⎤+ − +⎢ ⎥⎣ ⎦m sa m sa a (15.86)

where C1, C2, C0, and a are constants to be determined from the boundary conditions.
For the necessary initial condition of Bx at t = 0+, from z = 0, C2 = 0, and C0 = B0.

\ Bx = ( )a m sa− +1 0 0exp ( ) sinC t z B (15.87)

This equation must satisfy the initial conditions of Bx over the range z = 0 to z = b, as shown in
the rectangular distribution represented diagrammatically in Figure 15.16, i.e.

The implication of the ideal Bx distribution as shown by Eq. (15.82) and as shown in
Figure 15.16 is that the external flux density in the air-gap (i.e. external to the conducting

Figure 15.16 Distribution of Bx at t = 0+ in the conducting slab.

B

B0

z = 0 z = b z
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for 0 < z < b,  0 = 
p∞

=

⎛ ⎞ +⎜ ⎟⎝ ⎠∑ 0
1

sinn
n

n z
a B

b
(15.88)

\ pm s a =0 n
n
b

  or  
pa

m s
=

2 2

2
0

n
n

b
(15.89)

The above equation has been obtained by expanding the rectangular distribution in a ‘Fourier
sine series’. So to evaluate an, multiplying both sides of the series expansion by sin (mp z/b), and
integrating over the limits of the periodicity 0 to b, i.e.

p p p
∞

=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠∑∫ ∫0

0 1

sin sin sin
b

n

n

m z n z m z
B dz a dz

b b b
(15.90)

All the right-hand terms for which m π n vanish, leaving:

p p⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∫ ∫2
0

0 0

sin sin
b b

n
n z n z

a dz B dz
b b

\ an = - p
⎛ ⎞
⎜ ⎟⎝ ⎠

4
n

B0 for n = 1, 3, 5, ...

                   = 0  for n = 2, 4, 6, ... (15.91)

\ { }0
1,3,5,...

4
1 exp ( ) sinx n

n

n z
B B t

n b

∞

=

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ pap (15.92)

Note that each space harmonic damps at different rate, the higher harmonics damping faster.
We now define the fundamental time constant t as

t = 
m s

a p
=

2
0

2
1

1 b
, n = 1 (15.93)

\
2

0
1,3,5,

4
1 exp sinx

n

n t n z
B B

n b

∞

=

⎡ ⎤⎧ ⎫⎛ ⎞−⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥= − ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭⎣ ⎦
∑

…

p
p t (15.94)

The fundamental time constant, which is the longest time-constant of the series, is called the
‘diffusion time-constant’ of the system.

We now plot the flux density distribution as a function of z in the thickness of the block
b at different instants of time (Figure 15.17). It will be noted that, at t = 0, the flux is completely
eliminated from the slab. With the progress of time, the flux diffuses into the slab. Because the
higher harmonics damp out faster,

at t = 0.1t, only 3 terms are needed for Bx calculation;
at t = 0.3t, only 2 terms are required; and
for t > t, only the fundamental term is significant.

This shows why the fundamental diffusion time t is the controlling time constant in the diffusion
process. Also, the field is nearly completely diffused in the material in time, t > 3t.
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Next, we consider the behaviour of the current density inside the slab during the transient
diffusion process. The current density is given by

2
0

0 0 1,3,5,

1
4 exp cosx

y
n

B B n t n z
J

z b b

∞

=

⎡ ⎤⎧ ⎫⎛ ⎞∂ −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥= = − ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎪ ⎪⎝ ⎠⎩ ⎭⎣ ⎦
∑

"

p
m m t (15.95)

The space distribution of current density Jy is shown in the Figure 15.18. Note from this
equation, that at t = 0, this series does not converge at z = 0 and z = b. This shows that at t = 0,
the magnetic field is completely excluded from the slab, and to terminate the external magnetic
field, a surface current density is required—which implies an infinite volume current density—
thus at t = 0, there are impulses of Jy at z = 0 and z = b. As the time progresses, the currents
diffuse in the slab and decay. At the surface of the slab (i.e. z = 0 and z = b) the current density
decays continually, but at an interior point, the current density increases from zero to some
maximum value and then decays back to zero.

Conservation of current requires that the current flows down one side of the block and
return on the opposite side. Hence in Figure 15.18, the current distribution graphs show an odd
symmetry (or skew symmetry) about z = b/2. Note also that a one-dimensional solution implies
perfectly conducting end-plates on the slab to provide a return path for the currents.

Notes:

1. It is a point to be noted that for such electromagnetic phenomena, occurring outside
the slab, which have characteristic times much shorter than the diffusion time t, the
properties of the slab can be approximated by assuming its s Æ •. This is a valid
assumption, used in calculating the sub-transient component of the end-winding
reactances in large turbogenerators, i.e. the time-duration is so short that only the air-

Figure 15.17 Bx as a function of z, with the time t as a parameter.
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Figure 15.18 Current distribution in one-dimension diffusion.

region flux has been established and the flux has been excluded from the interior of
the block (which in the case of the turbogenerator end-region is the clamping plate on
the core-end-surface).

2. On the other hand, for those phenomena which have characteristic times much longer
than the diffusion time t, the perturbations due to the diffusion effects can be
neglected for field calculations. These two limiting cases are analogous to the constant
current and the constant flux conditions of the lumped parameter systems.

Some examples of diffusion time constants (t = m0mrsb2/p2) are:

1. A slab of copper 1 cm thick, s = 5.9 ¥ 107 mhos/m; t = 1 ms
2. Seeded combustion gas, 1 metre thick, s = 40 mhos/m; t = 10 ms
3. Silicon-iron (4%), 1 cm thick, s = 1.7 ¥ 106 mhos/m, mr = 5000, t = 100 ms

We see that even though the conductivity of Si-Fe is much lower than that of copper, its
diffusion time is much higher because of high relative permeability. This high diffusion time
constant of Si–Fe makes the laminations of the iron cores necessary in all alternating current
equipment, such as generators, motors, and transformers.

15.8 MAGNETIC DIFFUSION AS A RESULT OF RELATIVE
MOTION OF THE CONDUCTING MEDIUM

So far we have considered the phenomenon of the magnetic diffusion caused by changes in the
magnetic field with time, i.e. either due to a transient change in the field or due to a change in
the field in a regular periodic manner with time (time-harmonic fields). In all these cases, it has
been assumed that there has been no relative motion between the conducting body and the
source field. However, it is also possible to produce the diffusion effect by a relative
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displacement between the source field and the conducting body (taking place in a finite time).
Such continuous displacements can be produced either by a moving conducting body or by a
travelling magnetic field pattern or by a combination of both. Before we study specific examples
of such a phenomenon, we shall extend the operating equation [i.e. Eq. (12.39)] to include the
effects of the relative motion. This can be done by either of the two ways.

Maxwell’s equation of electromagnetic induction (or Faraday’s law of induction) which has
been used to derive Eq. (12.39), does not include the effects of the moving media, even though
we have generalized this equation [i.e. Eq. (12.10) in integral form, or Eq. (12.17) in differential
form] to include such effects in Chapter 10, Sections 10.3 to 10.4. So now we use this
generalized equation along with other relevant equations to derive the generalized diffusion
equation. For this purpose, our relevant Maxwell’s equations are

— ◊◊◊◊◊ B = 0 (12.16)

— ¥ H = J (12.18¢)

— ¥ E = - 
∂⎛ ⎞
⎜ ⎟∂⎝ ⎠t

B
 + — ¥ (v ¥ B) (10.29¢)

Here Eq. (12.18¢) is the Ampere’s law Eq. (12.18) in which the displacement current term (∂D/∂t)
has been neglected; and Eq. (10.29¢) is the differential form of the generalized electromagnetic
induction Eq. (10.29), which was written in the integral form. (And v is the velocity of the
moving medium.)

The relevant constituent relations for this phenomenon are

B = mH (12.13)

E = rJ or J = s E (12.14)

Rewriting Eq. (12.17¢) with Eq. (12.14), we get

— ¥ H = s E

and doing a curl operation on this equation, we get

1
( )=

t
∂⎛ ⎞ ⎛ ⎞∇ × ∇ × ∇ × = − + ∇ × ×⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

B
H E v Bs

from Eq. (10.29¢).
Converting this equation to a single variable (i.e. B) equation by using Eq. (12.13), we get

1
( )

t
∂⎛ ⎞ ⎛ ⎞∇ × ∇ × = − + ∇ × ×⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

B
B v Bms (15.96)

The left-hand side of this equation can be expressed as

ms ms
⎛ ⎞ ⎛ ⎞ ⎡ ⎤− ∇ × ∇ × = − ∇ ∇⋅ − ∇⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎝ ⎠ ⎝ ⎠

21 1
( )B B B —vector identity

and using Eq. (12.16) which makes the first term of this equation to vanish, we get

21
( )

t
∂⎛ ⎞ ⎛ ⎞− ∇ + = ∇ × ×⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

B
B v Bms (15.97)
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This equation describes the distribution of the magnetic field in the conducting medium. It
includes both the effects of the time-varying magnetic field and the material motion, and can be
used for solving a variety of practical engineering problems. This equation is also of great
importance in determining the magnetic field origins in the liquid core of the earth, and in this
context it is sometimes referred to as the ‘Bullard’s equation’. This equation can also be derived
in an alternative manner, using the restricted equation for the electromagnetic induction, i.e.
Eq. (12.18) and then replacing the constituent relation (12.14) by a more general form in which
the effects of relative motion are included. We shall see later in Chapter 20, when we deal with
moving coordinate systems (Electromagnetism and Special Relativity), that the current density
vector J can be expressed as

J = s (E + v ¥ B) (15.98)

This equation along with the other constituent relation

B = mH (12.13)
and the relevant Maxwell’s equations

— ◊ B = 0 (12.16)

— ¥ H = J (12.18¢)

— ¥ E = 
∂⎛ ⎞− ⎜ ⎟∂⎝ ⎠t

B
(12.17)

would give us the same result (as we have seen in the earlier part of this section).
We now start with Eq. (12.17), and obtain

s
⎡ ⎤ ∂⎛ ⎞ ⎛ ⎞∇ × = ∇ × − × = −⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎣ ⎦

1
t
B

E J v B

by using Eq. (15.98).
Or

s
∂⎛ ⎞ ∇ × + = ∇ × ×⎜ ⎟ ∂⎝ ⎠

1
( )

t
B

J v B

or

ms
∂⎛ ⎞ ∇ × ∇ × + = ∇ × ×⎜ ⎟ ∂⎝ ⎠

1
( )

t
B

B v B

by using Eq. (12.18¢).
And, as before, the operator identity gives us

— ¥ — ¥ B = [—(— ◊◊◊◊◊ B) - —2B] = - —2B [from Eq. (12.16)].

\ The above equation reduces to

21
( )

t
∂⎛ ⎞− ∇ + = ∇ × ×⎜ ⎟ ∂⎝ ⎠

B
B v Bms (15.97¢)

which is same as Eq. (15.97), i.e. the ‘general equation for magnetic diffusion’ which includes
both the effects of time-varying magnetic fields as well as material motion.



500 ELECTROMAGNETISM: THEORY AND APPLICATIONS

There are again two limiting cases:

1. When the material motion is absent, the equation simplifies to

ms
∂⎛ ⎞ ∇ =⎜ ⎟ ∂⎝ ⎠

21
t
B

B (15.99)

which is really the vector diffusion equation of (12.39) in which the time-variation
operator (∂/∂t) has been kept in the general form, and not restricted to the time-
harmonic variation. In fact, it is this equation, which we have been solving in the
problems discussed in Sections 15.2 to 15.6.

2. The second limiting case, which is also of considerable importance, is also obtained
when there is only motion under steady-state conditions, i.e. the magnetic field vector
is not time-varying. We shall look at some situations consistent with this condition.
The equation for this limiting condition is

ms
⎛ ⎞− ∇⎜ ⎟⎝ ⎠

21
B  = — ¥ (v ¥ B) (15.99¢)

However some of the most important engineering examples are those of the time-varying
excitation in presence of material motion. The induction motors are examples of interaction of
this type. Now we shall have a look at some of these problems in a simplified manner.

15.9 STEADY-STATE MAGNETIC FIELD IN A FIXED FRAME

This type of steady-state (non-time-varying) diffusion problem is relevant to magneto-
hydrodynamic (MHD) generators. The system consists of a continuous strip of material of
constants, s, e0, m0, sliding with constant velocity v between a parallel pair of highly conducting
electrodes. The dimensions and the coordinate system are as shown in Figure 15.19.

The sliding strip is assumed to make perfect contacts with the electrodes. The system is
excited by current sources at the end z = l, so that the total current to the electrodes is I amps.

Figure 15.19 Geometry for diffusion in presence of steady motion only.
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We intend to determine the B distribution in the system, and the effects of the system parameters
on this distribution.

Once again, l/b and w/b are assumed to be large enough so that the edge and the end
effects can be neglected. The flux density B can be taken to be one-dimensional, i.e. only Bx

exists, since the current flow is in the y-direction:

B = ixBx, J = iyJy,      and hence E = iyEy (15.100)

and hence the field quantities vary as a function of z only, and there is no variation with respect
to x or y.

Also, the constant velocity of the strip is

v = izvz (15.101)

From the — ¥ E Eq. (10.29¢), which now simplifies to — ¥ E = — ¥ (v ¥ B), we get
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(15.102)

And from the — ¥ H Eq. (12.18¢):

m
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From Eq. (15.103),
2
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v 0x x

z
d B dB

dzdz
(15.104)

The total derivative has replaced the partial derivative, since Bx is a function of z only. Thus the
above Eq. (15.104) is the equivalent of Eq. (15.99) for this problem.

The relevant boundary conditions for the problem are:

At z = 0, Bx = 0; and at z = l, Bx = 
m0I
w

(15.105)

When the velocity vz is a finite constant, the solution of Bx is of the form

Bx = C exp (az) (15.106)

Substituting in Eq. (15.104), we get

a 2 - m0s vza = 0
The solutions of this equation are

a = m0s vz and a = 0
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\ The general solution for Bx is

Bx = C0 + C1 exp (m 0s vzz)

Using the boundary conditions of (15.105),

0 = C0 + C1, from the z = 0 condition Æ C0 = - C1, and
m0I
w

 = C0 + C1 exp (m 0s vzl)

\ C1 = 
m m s −⎛ ⎞ −⎡ ⎤⎜ ⎟ ⎣ ⎦⎝ ⎠

10
0exp ( v ) 1z

I
l

w
We write

m0s vzl = Rm (15.107)

which is dimensionless and defined as the ‘magnetic Reynold’s number’.

\ Bx = 

m

0
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exp 1

exp ( ) 1

R z
lI

w R

⎛ ⎞ −⎜ ⎟⎛ ⎞ ⎝ ⎠
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(15.108)

and the current density distribution is

m
m

0 m
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R z
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ldB I
J

dz wl R

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎝ ⎠= =⎜ ⎟ ⎜ ⎟ −⎝ ⎠ ⎝ ⎠m (15.109)

When Rm Æ 0, i.e. the velocity vz is made zero, these two distributions become

0 andx y
I z I

B J
w l wl

m⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠

which can also be obtained by directly putting vz = 0 in the equations (15.104).
We now plot Bx and Jy as functions of position z in the slab for different values of the

magnetic Reynold’s number Rm (Figure 15.20). It is seen that at vz = 0, the distributions of B and
J in the slab are linear, and as Rm keeps on increasing these distributions become more and more
nonlinear due to the higher exponential variations with Rm and velocity. It should also be noted
that the direction of motion and the direction of diffusion (of B and J) are opposite. The
magnitude of Rm is an indicator of the relative effectiveness of the two processes. A large Rm

produces a slow diffusion. The magnetic Reynold’s number can be taken as proportional to the
ratio of the ‘diffusion time constant’ [defined earlier in the Section 15.7, Eq. (15.93)] to the time
taken by a sample of the material to traverse the length of the electrodes.

Remembering
2

0
2

or d
lm st t

p
= (15.93)

and the time required by a sample of material to traverse the length l with a velocity vz is
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It should be noted that there are other ways of defining Rm as well, which we shall use in other
problems.

15.10 SINUSOIDALLY TIME-VARYING MAGNETIC FIELD IN
PRESENCE OF MOTION

Now we consider a problem in which we introduce both the characteristic dynamical times into
a single system, i.e. a sheet of conducting metal of conductivity s is moving to the right with a
constant velocity v in the z-direction (Figure 15.21). The sheet is assumed to move in the air-gap
of an infinitely permeable magnetic circuit, so that the problem can be considered as a one-
dimensional problem. B is uniform in the x- and y-directions, with variations in the z-direction,
and has only one component, i.e.

0
ˆRe exp ( ) at 0y B j t z⎡ ⎤= =⎣ ⎦B i w (15.111)

We consider an ideal distribution of this type, without going into the device of its generation,
just as we had assumed ideal field distributions in the problems described in Sections 15.2 and
15.3. Since there are no variations in the x- and the y-directions, the operators

0
x y
∂ ∂= =
∂ ∂

(a)

Figure 15.20 B and J distributions in the system of Figure 15.19 as functions of z and Rm:
(a) Bx distribution and (b) Jy distribution.
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and the one-dimensional magnetic field in the moving sheet then satisfies Eq. (15.97), which in
this case simplifies from

21
( )

t
∂⎛ ⎞ ⎛ ⎞− ∇ + = ∇ × ×⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

B
B v Bms (15.97)

to
2

2

1
vy y yB B B

t zz

⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎜ ⎟ = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ∂ ∂∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ms (15.112)

and the currents in the slab would flow in the x-direction, which would be given by the
curl H = J equation, which in this case simplifies to

1 y
x

B
J

zm
∂⎛ ⎞⎛ ⎞= − ⎜ ⎟⎜ ⎟ ∂⎝ ⎠ ⎝ ⎠

(15.113)

It should be noted that the direction of B (the y-direction) is at right angles to the direction of
motion (the z-direction), which is also the direction in which the variations take place.

Since the excitation is sinusoidal with time, we can assume the solution of the equation to
be of the form

ˆRe ( ) exp ( )y yB B z j t⎡ ⎤= ⎣ ⎦w (15.114)

where w the angular frequency is the same as that of the source excitation. Substituting this
expression in Eq. (15.112), we get

ms wms
∂ ⎛ ⎞∂− − =⎜ ⎟⎜ ⎟∂∂ ⎝ ⎠

2

2

ˆ ˆ
ˆv 0y

y

B By
j B

zz
(15.115)

The solution of this equation will be of the form

= −ˆ ( ) exp ( )yB z jkz

Figure 15.21 A thin slab of conductor moving in the +z-direction in the air-gap
of a magnetic circuit.
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Then, this gives (also called the ‘dispersion equation’):

– k2 + jkms v - jwms = 0 (15.116)

\
1/22v ( v) 4

2

j j
k

⎡ ⎤± − −⎣ ⎦=
ms ms wms

or normalizing this by using the length l,

1/22 2v ( v ) 4

2

j l l j l
kl

⎡ ⎤± − −⎣ ⎦=
ms ms wms

We write the magnetic Reynold’s number as Rm = ms vl, and the skin-depth as d 2 , where
d2 = 1/wms.

\

1/22
m m 2

2 2 2

jR R l
kl j j

d

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥= ± + ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
(15.117)

so that the solution (15.114) takes the form

0
ˆ( , ) Re exp { ( )}yB z t B j t kz⎡ ⎤= −⎣ ⎦w (15.118)

which is that of a travelling waveform in which the wave number k is complex (in the complex
variable sense). Since k is complex, it means that there is a real part of the exponent exp (-jkz) =
exp (-kiz) exp (-jkrz), where k can be expressed as k = kr + jki Æ exp (-kiz) shows the attenuating
nature of the wave as it progresses in the z-direction—similar to what we have seen in the
problem dealt with in Section 15.2 (when Rm is made zero, or v = 0, such that Rm = 0). The
attenuation of the dispersion wave (as it is called), then depends wholly on the skin-depth
(= d 2 ). In the present problem, the attenuation of the wave is a function of both the skin-depth
as well as the magnetic Reynold’s number Rm. We shall now have a look at the complex nature
of k (the wave number) in the present problem. Equation (15.117) shows that k has two values,
which we denote by k+ and k-, then both these can be expressed as

andr i r ik k jk k k jk+ + + − − −= + = +

On separating the real and the imaginary parts of k+ and k-, we find that:

for z > 0, By = ( ) ( )0
ˆRe exp expi rB k z j t k z+ +⎡ ⎤− ⋅ −⎢ ⎥⎣ ⎦

w
and

for z < 0, By = ( ) ( )0
ˆRe exp expi rB k z j t k z− −⎡ ⎤− ⋅ +⎢ ⎥⎣ ⎦

w (15.119)

There are two diffusion waves propagating respectively in the +z and –z directions starting from
z = 0, with phase velocities w /kr

+ and w /kr
– respectively, both of which are modified by the

material motion. It should be noted that on separating the real and the imaginary parts of k+ and
k-, we get

and 0r r i ik k k k− + − += − > > (15.120)

Thus the spatial rate of attenuation of the wave travelling (or dispersing) to the right is lessened
due to the motion of the slab also to the right, whereas the wave travelling to the left gets
attenuated faster as a consequence of the slab motion in the opposite direction.
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The practical problem from which this simplified system has been derived, is from the solid
rotor surface of a large turbogenerator in which the three-phase currents of the distributed stator
winding produce the travelling (or the rotating) current sheet which travels at the synchronous
speed of wS = 2pf or wS = 2p nS revs/sec for a two-pole machine, or more generally wS = 2p nSp
for a (2p)-pole machine (nS, being the number of rotations per second). Hence the current sheet
can be expressed as

the travelling current sheet = izRe[A exp { j(wSt - k1y)}], A real, (15.121a)

where the wave number k1 = (2p /l), l being = pDR, where DR is the diameter of the rotor of the
machine. The conducting block is moving at the speed v = nSpDR, in the direction (-y), opposite
to that of the travelling current sheet; i.e.

v = - iyv = - iy(nSpDR) (15.121b)

A practical application of the magnetic diffusion phenomenon discussed in this section, is
that the device shown in Figure 15.21 can be used to measure the velocity of the material. A
mechanism based on this phenomenon, for measuring the velocity of the material, has the
advantage that it (the mechanism) does not require any mechanical or electrical contact with the
moving medium.

15.11 TRAVELLING WAVE DIFFUSION IN MOVING MEDIUM
This problem and the next two are of great practical importance in solving both the operational
as well as the design problems of electrical machines (i.e. large induction motors and turbo-
generators). However we shall solve here the basic idealized problems (which have closed-form
solutions), which can then be extrapolated to match the detailed boundary conditions of the
actual practical problems.

The first problem we consider is that of a travelling wave of a surface current sheet (which
in an alternating current machine is produced by a uniformly distributed three-phase winding),
imposed on a semi-infinite conducting medium (which represents in developed Cartesian
geometry, a solid rotor of large ac machines). It (the medium) is subjected to a travelling mmf
wave, or preferably a travelling current sheet wave [A exp { j(wSt - ky)}], the direction of the
current flow being in the z-direction, and the sheet lying in the y-z plane on the x = 0 surface of
the conducting block (Figure 15.22).

Figure 15.22 Moving conducting medium, subjected to a travelling current sheet.
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This model now simulates (in a highly simplified and idealized manner in Cartesian geometry),
the problem of a turbogenerator rotor travelling at synchronous speed in one direction, and the
negative sequence current sheet travelling at the same synchronous speed in the opposite
direction. (In our present analysis, we have taken the current sheet to travel in the forward
(or positive) direction, and the rotor block to travel in the opposite (negative or backward)
direction; though in an actual turbogenerator, the two travel in the opposite senses. However the
final results in loss calculations are not affected by either convention.)

In this case, it will be seen that the components of the magnetic field vector B as well as
the induced current density vector J in the rotor material, would satisfy the same operating
equation, which we have derived earlier as

2 ( )
t

⎡ ⎤∂⎛ ⎞∇ = − ∇ × ×⎢ ⎥⎜ ⎟∂⎝ ⎠⎣ ⎦

B
B v Bms (15.97)

It will also be seen that this problem is no longer a simple one-dimensional problem of the types,
which we have been discussing so far in this chapter. The field vectors vary with more than one
space variable, as well as the magnetic field vector (i.e. one of the dependent variable vectors)
has more than one component. Hence, this being the first problem of relatively more complex
nature, we shall, instead of substituting and using directly Eq. (15.97), derive the scalar
components of this equation directly from the first principles, i.e. the generalized relevant
equations of Maxwell, which for this problem are

— ¥ H = J (15.122a)

— ¥ E = - 
t
∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

B
 + — ¥ (v ¥ B) (15.122b)

— ◊◊◊◊◊ B = 0 (15.122c)

and the relevant constituent relations are

s E = J (15.123a)

B = mH (15.123b)
and the velocity of the moving block is

v = iy(-v) (15.124)

In the medium under consideration, only Jz exists, and there is no variation in the z-direction,
i.e. ∂/∂z = 0.

\ From Eq. (15.123a),

J = izJz = s E = izsEz or Jz = sEz (15.125)
and from Eq. (15.122a),

— ¥ H = ix0 + iy0 + iz
y x

H H
x y

∂⎛ ⎞∂−⎜ ⎟∂ ∂⎝ ⎠
= izJz

\ y x
H H
x y

∂ ∂
−

∂ ∂ = Jz

or

y x
z

B B
E

x y

∂ ∂
− =

∂ ∂
ms (15.126)
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and hence from Eq. (15.122b),

B = ixBx + iyBy = m(ixHx + iyHy), Hz = 0

\ (v ¥ B) = - iz[(- v)(Bx)] = izvBx (15.127)

\ From Eq. (15.122b),

     — ¥ E = z z
x y

E E
y x

∂ ∂⎛ ⎞ ⎛ ⎞+ −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
i i

= - (v ) (v )yx
x y x x y x

BB
B B

t t y x

⎡ ⎤∂⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎡ ⎤ ⎡ ⎤+ + + −⎢ ⎥⎜ ⎟⎜ ⎟ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
i i i i

This equation gives the following two scalar equations:

∂ ∂ ∂⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
vz x xE B B

y t y
and

∂⎛ ⎞∂ ∂⎛ ⎞ ⎛ ⎞− = − −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠
vyz x

BE B
x t x

(15.128)

On substituting from Eq. (15.126), these equations become:

ms
⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎜ ⎟− = − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

2 2

2

1
vy x x xB B B B

x y t yy
and

ms
⎛ ⎞∂ ∂⎛ ⎞∂ ∂⎛ ⎞⎛ ⎞ ⎜ ⎟− + = − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

2 2

2

1
vy yx xB BB B

x y t xx

Equation (15.122c) becomes

0yx
BB

x y

∂∂
+ =

∂ ∂ (15.129)

which combined with the previous equations gives

ms ms∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ = −⎜ ⎟ ⎜ ⎟∂ ∂∂ ∂ ⎝ ⎠ ⎝ ⎠

2 2

2 2
vx x x xB B B B

t yx y
and

ms ms
∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞

+ = −⎜ ⎟ ⎜ ⎟∂ ∂∂ ∂ ⎝ ⎠ ⎝ ⎠

2 2

2 2
vy y y yB B B B

t yx y
(15.130)

To obtain a similar equation in Ez and/or Jz, we differentiate the first equation of (15.128)
partially with respect to y, and the second one (again partially) with respect to x, and get

⎛ ⎞ ⎛ ⎞∂ ∂ ∂
= − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂∂ ∂⎝ ⎠ ⎝ ⎠

2 2 2

2 2
vz x xE B B

y ty y
,
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and
⎛ ⎞⎛ ⎞ ⎛ ⎞∂∂ ∂⎜ ⎟− = − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

22 2

2 2
vyz xBB B

x tx x

Subtracting the second equation from the first,

2 2

2 2

yz z x BE E B
t y xx y

∂⎛ ⎞∂ ∂ ∂∂⎛ ⎞+ = − −⎜ ⎟⎜ ⎟∂ ∂ ∂∂ ∂ ⎝ ⎠ ⎝ ⎠

⎡ ⎤∂⎛ ⎞∂ ∂⎛ ⎞+ + −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂∂ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

2

2
v yx

BB
x yy

       ( )ms
∂⎛ ⎞∂∂ ∂⎛ ⎞ ⎛ ⎞= − − + −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

v yx
z

BB
E

t y y x

                           v ( )z
z

E
E

t y
∂⎛ ⎞ ∂⎛ ⎞= + + −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

ms ms

or
2 2

2 2
vz z z zE E E E

t yx y

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ∂ ∂∂ ∂ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
ms ms (15.131)

and hence for Jz,
2 2

2 2
vz z z zJ J J J

t yx y

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ∂ ∂∂ ∂ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
ms ms (15.132)

Since the induced fields in the block are due to a travelling field source, the solutions for the
magnetic field and the current density vectors would take the form:

1
ˆ ˆRe ( ) ( ) exp ( )x x y y SB x B x j t k y⎡ ⎤= + −⎡ ⎤⎣ ⎦⎣ ⎦B i i w

                      1
ˆRe ( ) exp ( )z z SJ x j t k y⎡ ⎤= −⎡ ⎤⎣ ⎦⎣ ⎦J i w (15.133)

Substituting for Bx in Eq. (15.130),

a− =
2

2
12

ˆ
ˆ 0x

x
d B

B
dx

(15.134)

where

( )1 1 1 12
1

1 v 1Sk j k k jS
k

⎛ ⎞
= + + = +⎜ ⎟⎜ ⎟⎝ ⎠

msa w

                       ( )12
1

vSS k
k

⎛ ⎞
= +⎜ ⎟⎜ ⎟⎝ ⎠

ms w (15.135)

The solution of Eq. (15.134) is

1 1 2 1
ˆ ˆ ˆexp ( ) exp ( )xB B x B x= − + +a a (15.136)

where a1 has been defined to have a positive real part. The x-dimension of the block is assumed
to be quite large compared to the wavelength of the travelling current sheet, (i.e. 2p /k1), and
hence for the first boundary condition:
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1. As x Æ •, Bx Æ 0 \ B2 = 0, and hence:

    1 1
ˆ ˆ exp ( )xB B x= −a (15.137)

2. The second boundary condition is: on x = 0, ˆ
yB = m0A

where A will be determined by the amplitude of the imposed current sheet. We also assume that
the air-gap between the applied current sheet and the surface of the conducting block is quite
small, and the lower surface of the current sheet is bounded by a highly permeable region. Hence
to apply this boundary condition, we use Eq. (15.129) from which we get

a⎛ ⎞∂⎛ ⎞ ⎛ ⎞= = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎝ ⎠
1

1
1 1

ˆ1ˆ ˆx
y

B
B B

jk x jk

\ On x = 0, ˆ
yB = m0A, and hence:

ma
⎛ ⎞= − ⎜ ⎟
⎝ ⎠

1
1 0

1

ˆ jk
B A

\ 1
0 0 1 1

1
Re exp ( ) exp [( )]x y S

jk
A A x j t k y

⎡ ⎤⎛ ⎞= − + − −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

B i im m a wa (15.138)

The induced currents in the moving block are obtained by using Eq. (15.122a), i.e.

1
0

1ˆ exp ( ) y x
z z z z S z

B B
J J j t k y

dx y

∂⎛ ⎞∂⎛ ⎞= = − = −⎡ ⎤ ⎜ ⎟⎜ ⎟⎣ ⎦ ∂⎝ ⎠ ⎝ ⎠
J i i iw m

                 

2
1

1 1 1
1

exp ( ) exp [ ( )]z S
k

A x j t k y
⎛ ⎞

= − + − −⎜ ⎟⎜ ⎟⎝ ⎠
i a a wa

                 1 1 1
1

( v ) exp ( ) exp [ ( )]
ms w a wa

Ê ˆ= + - -Á ˜Ë ¯z S Sj k A x j t k yi (15.139)

J is, in fact, the real part of the above expression.
If a1 is expressed as a complex number of the form

1 1 1 12
1

1 ( v ) (1 )
msa w

È ˘Ê ˆ
= + = + + = +Í ˙Á ˜Ë ¯Í ˙Î ˚

SC jD k j k k jS
k

then

C = ( ) ( )1/2 1/2
2 21 11 1 , 1 1

2 2

k k
S D S

⎛ ⎞ ⎛ ⎞
+ + = + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
(15.140)

This shows that the term exp (-a1x) can be expressed as exp (–Cx) ◊◊◊◊◊ exp (–Dx), which implies
that these Bx, By, Jz vectors, apart from travelling in the +y-direction in the conducting block,
they also diffuse (i.e. or disperse or travel with attenuation) in the +x-direction, which means that
the wavelength of the diffusing pattern in the x-direction is (2p /D) and the pattern is being
attenuated by a damping factor which is exp (-Cx), where C and D are given by Eq. (15.140). It
will be noticed that both C and D are functions of S, i.e. (ms /k1

2)(wS + vk1), and the magnetic
diffusion time will be a function of the wavelength of the diffusion wave which is a function of
(ms /k1

2); whereas the rate of change with respect to time of Bx for an observer moving with the
velocity v of the slab (or the block) is
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1
ˆv ( v )x S xB j k B

t y
∂ ∂⎛ ⎞− → +⎜ ⎟∂ ∂⎝ ⎠

w (15.141)

i.e. (wS + vk1) is the frequency of the magnetic flux density for an observer moving with the
conducting block.

\ magnetic diffusion time
period of excitation in the frame of the moving medium

S ∝

i.e. ( )12
1

vSS k
k

⎛ ⎞
∝ +⎜ ⎟⎜ ⎟⎝ ⎠

ms w (15.142)

The phase velocity of the travelling wave is w /k, and S is zero when v = wS /k1 and is in the
direction of travelling current sheet (i.e. the +ve y-direction). Under this condition, there is no
interaction between the conducting block and the travelling current sheet, which means that no
currents are induced and the magnetic flux density completely penetrates the medium. When
v = 0, the situation is similar to that of the skin effect described in Section 15.2. However we are,
at present, considering the situation when the conducting block is moving in the direction
opposite to that of the exciting (travelling) current sheet.

Now if the velocity of the current sheet is = wS/k1 in the +y-direction and the conducting
block is moving in the -y-direction with the velocity v whose magnitude is same as that of the
exciting current sheet, i.e. v = wS/k1, then the equations for the magnetic flux density B (15.138)
and the current density J (15.139) in the block reduce to the form

1
0 1

1

exp ( ) exp [ ( )]

2
exp ( ) exp [ ( )]

x y S

S
z S

jk
A x j t k y

j A x j t k y

⎡ ⎤= − + − −⎢ ⎥⎣ ⎦

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

B i i

J i

m a wa

w ms a wa
where

1/2

1 2
1

2
1 Sk j

k

⎛ ⎞
= +⎜ ⎟⎜ ⎟⎝ ⎠

w msa (15.143)

These expressions will be considered in the subsequent sections of this chapter where they
will be used as the basis for the equivalence of different approaches of loss calculations in
turbogenerator rotors.

The results of the analysis of the present system (with some modifications, i.e. the
conducting block and the travelling current sheet both travelling in the same +y-direction) are
also usable in other important practical applications, such as tracked transportation schemes with
levitation. This is because the induced currents in the conducting block produce time average
forces in the x- and y-directions. The force in the x-direction makes it possible to levitate the
block on the magnetic field, and the force in the y-direction can be used for accelerating the
propulsion of the slab in that direction.

Note further that when wS is zero, then S becomes proportional to v [Eq. (15.142)], and in
this limit S is a magnetic Reynold’s number based on the wavelength of the current sheet. This
indicates that a large magnetic Reynold’s number implies that the induced field effects are
significant.
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15.12 TRAVELLING CURRENT SHEET IMPOSED ON A
STATIONARY CONDUCTING MEDIUM

The geometry of the present problem is same as that of the problem discussed in the previous
Section 15.11, the only differences being that the conducting block is now stationary (as shown
in Figure 15.23), and the velocity of the travelling current sheet is twice that of its velocity in
the previous problem. The travelling current sheet is

= Re[iz A exp {j(w2t - k2y)}

In the present problem, w2 = 2wS, of the previous problem and the wavelengths of both the
current sheets are the same. Since the conducting block is not moving, i.e. v = 0, the operating
equation which would be satisfied by the magnetic flux density B and the induced current
density J would be of the form

ms ∂⎛ ⎞∇ = ⎜ ⎟∂⎝ ⎠
2

t
B

B (15.144)

As in the previous case, J will have only one component, i.e. Jz, and B will have the components
Bx and By; and there will be no variations in the z-direction, i.e. ∂/∂z = 0. Hence, we can derive
by a process similar to that of the previous section (Section 15.11), that the equations satisfied
by Bx, By, and Jz would be:

ms∂ ∂ ∂⎛ ⎞+ = ⎜ ⎟∂∂ ∂ ⎝ ⎠

2 2

2 2
x x xB B B

tx y
(15.145a)

ms
∂ ∂ ∂⎛ ⎞

+ = ⎜ ⎟∂∂ ∂ ⎝ ⎠

2 2

2 2

y y yB B B

tx y
(15.145b)

ms
∂ ∂ ∂⎛ ⎞

+ = ⎜ ⎟∂∂ ∂ ⎝ ⎠

2 2

2 2
z z zJ J J

tx y
(15.145c)

Figure 15.23 Stationary conducting medium, subjected to a travelling current sheet.
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The solutions of B and J can be written in the form:

2 2
ˆ ˆRe[ ( ) ( )] exp [ ( )]x x y yB x B x j t k y= + −B i i w

                       2 2
ˆRe[ ( )] exp [ ( )]z zJ x j t k y= −J i w (15.146)

B also satisfies the equation
∂∂

+ =
∂ ∂

0yx
BB

x y
(15.147)

As before, substituting from Eq. (15.146) in Eq. (15.145), we get

a∂
− =

∂

2
2
22

ˆ
ˆ 0x

x
B

B
x

where

( )
1/2

1/22
2 2 2 22

2

2
2 2

2

1 1k j k jS
k

S
k

⎛ ⎞
= + = +⎜ ⎟⎜ ⎟⎝ ⎠

=

w msa

w ms (15.148)

The solution of the above equation is of the form

a a= + −3 2 4 2
ˆ ˆ ˆexp ( ) exp ( )xB B x B x (15.149)

The relevant boundary conditions in this problem are:

1. On x = 0, ˆ
yB = m0A, neglecting the air-gap dimensions; and

2. as x Æ •, B Æ 0.

\ a= = −3 4 2
ˆ ˆ ˆ0 and exp ( )xB B B x (15.150)

From Eq. (15.147),
a∂⎛ ⎞⎛ ⎞ ⎛ ⎞= = −⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎝ ⎠

2

2 2

1ˆ ˆx
y x

B
B B

jk x jk
using Eq. (15.150).

And using By at x = 0 as = m0A, we get

[ ]exp ( ) exp ( )2
0 0 2 2 2

2
m m a wa

È ˘Ê ˆ= - + - -Í ˙Á ˜Ë ¯Î ˚
x y

jk
A A x j t k yB i i (15.151)

             J 2 2

2
2

2 2 2 2
2

2
2 2 2

2

ˆ exp [ ( )]

exp ( ) exp [ ( )]

exp ( ) exp [ ( )]

z z z z

y yzx x
z

z

z

J J j t k y

H BH B
x y x y

k
A A x j t k y

j A x j t k y

= = −

⎡ ⎤ ⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂⎛ ⎞⎛ ⎞ ⎛ ⎞= − = −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎡ ⎤⎛ ⎞
= − + − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

i i

i
i

i

i

w

m

a a wa

w sm a wa (15.152)
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In this case, w2 = 2wS, and k2 = k1 = k, then the expressions for the magnetic flux density and the
eddy current density distributions in the conducting block become

0 2
2

exp ( ) exp [ (2 )]x y S
jk

A x j t ky
⎡ ⎤⎛ ⎞= − + − −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
B i i m a wa (15.153a)

                j j
w sm a wa 2

2

2
exp ( ) exp [ (2 )]S

z SA x t kyJ i
⎛ ⎞= − − −⎜ ⎟⎝ ⎠ (15.153b)

where

( )
1/2

1/2
2 2

2

2
1 1Sk j k jS

k

⎡ ⎤⎛ ⎞= + = +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

w msa (15.153c)

Note: For the current sheets of these two problems, w 2 = 2wS but k2 = k1 = k (i.e. the same wave
number), because the wavelength l is same for both the current sheet waves.

It should be further noted that Eqs. (15.153) are same as Eqs. (15.143) except that these
wave patterns are travelling at a speed 2wS with respect to a stationary conducting block;
whereas in the problem of Eqs. (15.143), the wave patterns of these field distributions were
travelling in the forward (i.e. +y-direction) direction with a speed wS with respect to a fixed frame
of reference, and the conducting block was also travelling at the same speed but in the opposite
direction (i.e. -y-direction) with respect to the same fixed frame of reference. Furthermore, since
a2 of this equation is same as the a of Eq. (15.143), the diffusion (or the dispersion) of these
field distributions in the x-direction (i.e. in the direction normal to the plane of the applied
current sheet) in the conducting block, would be identical with that of the previous problem. So,
since the variations with respect to x- and y-variables are same for both the sets of equations, the
induced current and the magnetic field distributions are identical and hence the eddy current
losses (as will be shown later) and also the forces come out to be the same.

15.13 STATIONARY, PULSATING, SINUSOIDALLY
DISTRIBUTED CURRENT SHEET IMPOSED ON
STATIONARY CONDUCTING BLOCK

The geometry of this problem is also the same as the two problems discussed in Sections 15.11
and 15.12, i.e. a semi-infinite conducting block of permeability m and conductivity s is
subjected to a current sheet on the surface x = 0 (Figure 15.24). This current sheet is not a

Figure 15.24 Stationary conducting block, subjected to a pulsating current sheet.
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travelling current sheet as in the previous two problems, but is a stationary, pulsating
(i.e. alternating and fixed spatially) sheet extending over the x = 0 surface. The wavelength of
this current sheet is same as the wavelength of the travelling current sheets of those problems
(k3 = k2 = k1 = k).

Once again, B and J in the conducting block will be of similar form to what was derived
in Section 15.10 or 15.11, and hence we shall not go into the derivation of the operating
equations starting from the fundamental Maxwell’s equations. These field vectors satisfy the
vector diffusion equation of the form

ms ∂⎛ ⎞∇ = ⎜ ⎟∂⎝ ⎠
2

t
B

B (15.144)

as v = 0 in this case as well.
And the pulsating current sheet is = izA cos k3y exp ( jw3t). (15.144¢)
The frequency of this current sheet is same as that of Section 15.12, i.e. w3 = w2 = 2wS.
As before, the current density vector J will have only the z-component Jz, and the magnetic

flux density vector will have only Bx and By components, and these will have no variations in
the z-direction [i.e. (∂/∂z) = 0]. The equations satisfied by these components would be same as the
equations in (15.145) which we rewrite here for convenience:

ms∂ ∂ ∂⎛ ⎞+ = ⎜ ⎟∂∂ ∂ ⎝ ⎠

2 2

2 2
x x xB B B

tx y
(15.145a)

ms
∂ ∂ ∂⎛ ⎞

+ = ⎜ ⎟∂∂ ∂ ⎝ ⎠

2 2

2 2

y y yB B B

tx y
(15.145b)

ms
∂ ∂ ∂⎛ ⎞+ = ⎜ ⎟∂∂ ∂ ⎝ ⎠

2 2

2 2
z z zJ J J

tx y
(15.145c)

The solutions for B and J for this problem would be of similar form to those of Section 15.12,
but not the same, as the source is now a pulsating current sheet. Hence,

3 3 3

3 3

ˆ ˆ[ ( ) sin ( ) cos ] exp ( )

ˆ[ ( ) cos ] exp ( )

x x y y

z x

B x k y B x k y j t

J x k y j t

= +

=

B i i

J i

w

w
(15.154)

B in this problem also satisfies the same zero divergence equation, i.e.

∂∂
+ =

∂ ∂
0yx

BB
x y

(15.147)

Hence substituting for Bx from Eq. (15.154) into the equation of (15.145), we get

a− =
∂

2
2
32

ˆ
ˆ 0x

x
d B

B
x

where

( )w msa

w ms

1/2
1/23

3 3 3 32
3

3
3 2

3

1 1k j k jS
k

S
k

⎛ ⎞
= + = +⎜ ⎟⎝ ⎠

=
(15.155)
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The expression for ˆ
xB  will take the form

a a= + −5 3 6 3
ˆ ˆ ˆexp ( ) exp ( )xB B x B x

The boundary conditions at x = 0 and x Æ • are also same as before, i.e.

1. On x = 0, ˆ
yB = m0 A, neglecting the air-gap dimensions; and

2. as x Æ •, B Æ 0.

\ a= = −5 6 3
ˆ ˆ ˆ0 and exp ( )xB B B x (15.156)

And from Eq. (15.147),

a⎛ ⎞∂⎛ ⎞ ⎛ ⎞= = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎝ ⎠
3

3 3

ˆ1ˆ ˆx
y x

B
B B

jk x jk

and from the boundary condition (1), By at x = 0 as = m0A.

\ 0 3
3 0 3 3 3

3
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        j j
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3 0
3 3 3

3
cos exp ( ) exp ( )z A k y x t
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J i (15.157)

When k3 = k, and w3 = 2wS, and since we are considering a conducting block, m = m0, then
a3 = a2 = a1 = a.

So Eqs. (15.157) become
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Since the exp (- ax) term is same as in the previous problem (of Section 15.12), the dispersion
of the field vectors in the x-direction (i.e. the radial direction in the turbogenerator rotor) is
similar to those of the last problem.

15.14 LOSS CALCULATIONS IN THE CONDUCTING BLOCK

The three configurations, which we have considered in Sections 15.11 to 15.13, have given us
the magnetic flux density B and the induced (eddy) current density J in the conducting block,
under three different excitation systems. We shall now look into the losses in the block due to
these excitations. The losses can be calculated by using the complex Poynting vector or the loss
distribution using the formula (J ◊◊◊◊◊ J*/s). Since in the practical problem (which occurs in the
turbogenerator rotors and some other large ac rotating machines), the loss distribution patterns



CHAPTER 15 TIME-VARYING FIELDS IN CONDUCTORS (MAGNETIC DIFFUSION) 517

are as important as the total losses, we shall, in the present analysis, use the (relatively more
cumbersome) loss distribution formula, instead of the Poynting vector which calculates the total
loss from the knowledge of the surface values of the field vectors.

So, for convenience, we rewrite the B and the J expressions from the three analyses, which
we have completed just now. From Section 15.11, where the excitation is due to a travelling
current sheet wave which is moving in the +y-direction at a velocity (wS/k) and the conducting
block moving in the -y-direction with a velocity of same magnitude, we get from Eqs. (15.143).

0 exp[( ) exp ( )]

2
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x y S

S
z S

jk
A x j t ky
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w sma (15.143)

From Section 15.12, where the excitation is due to a travelling current sheet wave moving
with a velocity (2wS/k) in the +y-direction and a stationary conducting block, we get from
Eqs. (15.153),

0 2
2

exp ( ) exp (2 )x y S
jk

A x j t ky
⎡ ⎤⎛ ⎞= − + − −⎢ ⎥⎜ ⎟
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                  j j
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From Section 15.13, where the excitation is due to a pulsating current sheet which is alternating
with an angular frequency (2wS) and has the same wavelength as (1/k) as that of the travelling
waves of the current sheets of the earlier two sections, and a stationary conducting block, we
have the expressions for the field vectors as given in Eqs. (15.158) as
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Loss calculations. Since the time-averaging over one time-period of a sinusoidal wave pattern
introduces merely a factor of ½ in both the travelling as well as the pulsating current sheet wave
problems, we need to consider only the amplitude parts of these expressions for the induced
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(or eddy) current distribution vectors. It is also seen that both the current distributions due to the
travelling current sheets as obtained in the two sets of equations (15.143) and (15.153) have the
same amplitudes, and hence it follows that the total losses as well as the loss distributions would
be same in either of these two cases. So now, for comparison, we need to consider only two cases
instead of the three, i.e. one due to a travelling current sheet and the other due to a pulsating
current sheet. So we shall now use the suffix ‘tr’ (i.e. Jtr) to indicate the induced current density
obtained either from Eqs. (15.143) or (15.153), and ‘pl’ (i.e. Jpl) to indicate the induced current
density produced by the pulsating current sheet of Eqs. (15.158). So we have got the following
two expressions:

j j
w m s aa

0
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2ˆ exp ( ) exp ( )S
z A x kyJ i
⎛ ⎞= − − −⎜ ⎟⎝ ⎠ (15.159)

                     j
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0
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Since a is complex, we have

( )

( )

1/2
1/20

2

1/21/24 2 2 2 2
0

1/21/24 2 2 2 2
0

2
1 (1 ) , then

1
4

2

1
4

2

S

S

S

k j k jS a jb
k

a k k

b k k

⎛ ⎞= + = + = +⎜ ⎟
⎝ ⎠

⎡ ⎤= + +⎢ ⎥⎣ ⎦

⎡ ⎤= + −⎢ ⎥⎣ ⎦

w m sa

w m s

w m s

( )
j j j

w m s

w m s
0

tr 1/24 2 2 2
0

2
exp ( )( ) exp [ ( )]

4

S
z

S

A
ax b a bx ky

k
J i

⎡ ⎤
⎢ ⎥= − − + − +⎢ ⎥

+⎢ ⎥⎣ ⎦

(15.161a)

    ( )
j j j

w m s

w m s
0

pl 1/24 2 2 2
0

2
exp ( )( ) [exp {( )} cos ]

4

S
z

S

A
ax b a bx ky

k
J i

⎡ ⎤
⎢ ⎥= − − + −⎢ ⎥

+⎢ ⎥⎣ ⎦

(15.161b)

\ The loss density at any point is given by
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where the asterisk (*) denotes the complex conjugate of the quantity. Let us also denote
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then
2

2 2
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When we consider our model in these three problems to represent an idealized and simplified
section of a turbogenerator rotor (under the specified operating conditions), the y-direction
corresponds to the peripheral direction of the rotor, the z-direction corresponds to the axial
direction of the machine, and the x-direction as the radial direction. So we shall now calculate
the time-averaged loss over one pole-pitch length in the peripheral direction, i.e. in the
y-direction from y = 0 to y = pDR/2 [DR being the rotor diameter of (say) a two-pole machine].

\ p p
l p= = =

R R

2 2 2
k

D D

In the axial direction, we shall take unit length (as there is no z-variation, and the rotor is long
enough to justify the neglect of the end effects and which have to be considered separately), and
as the z-directed currents penetrate the rotor radially (i.e. the x-direction), we are justified in
integrating over the radial distance from x = 0 (the rotor surface) to x Æ • (i.e. towards the shaft
centre-line).
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The bar “–” indicates the time-averaged value of the losses per time-period which introduces the
factor of (½) in each of the above expressions. We find that:
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The above expression shows the equivalence relationship between the results due to these two
(different) excitations imposed on the same system, and thus provides the mathematical and
physical justifications for using the stationary current sheet approach to solve the problems with
travelling current sheet excitations as well as with moving conducting media.

15.15 EDDY CURRENT LOSSES AND SATURATION EFFECTS
IN IRON

The eddy current losses (or the induced current losses) calculated on the basis of the constant
relative permeability in ferromagnetic media have been found to be too small when they are
compared with the measured values. This is quite a complicated problem, which has been
investigated by a number of workers, like, MacLean, McConnel, and Agarwal. When the iron is
in the form of thin sheets, i.e. laminations in transformers and ac rotating machines, the domain
structure becomes one of the most important factors. This aspect plays an important role in the
anisotropic, cold-rolled, and grain-oriented (CRGO) steel laminations used in power transformers.
The anomaly between the calculated eddy current losses (under assumed constant m) and the
measured losses was found to be (by Brailsford) ranging between 3 to 10 times. This loss was
named as the ‘anomalous eddy current loss’, and the anomaly factor was found to be a function
of the domain size, frequency and Bmax.

Whilst the domain effects are important in thin sheets, in solid iron and steel the deciding
factor is the shape of the B–H relationship. In the present discussion, we shall emphasize the
underlying principle of how to deal with the saturation effects of B, rather than the detailed
results. First we consider a semi-infinite slab of iron (Figure 15.25), on whose x = 0 surface an
alternating magnetizing force Hs sin w t is applied (directed in the +ve y-direction). At this stage
we make a drastic simplifying assumption regarding the B–H characteristic of the saturated
material, i.e. that the B–H curve is a step-function as indicated in Figure 15.26. Hence under the
steady-state conditions, the flux density then can have only two values, i.e. either +Bs or -Bs.

Figure 15.25 Penetration of flux in a semi-infinite iron block.
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When a sinusoidally time-varying magnetizing field Hs sin w t is imposed on the surface of the
block, then during the positive half-cycle, the influence of the positive magnetic field penetrates
into the material. Thus a wave of magnetic flux moves into the medium, and at the wave-front
there is a change from +Bs to -Bs. And this wave is followed by one of opposite sign, and such
a process keeps on repeating with the time-period of the alternating field.

In the semi-infinite block under consideration, at an instant of time t, let the distance of
the wavefront from the surface of the material be X, and hence its velocity is (dX /dt). This
transition surface where the flux density changes from Bs to -Bs has been called the ‘separating
surface’ by Agarwal in his analysis. Now the rate of change of flux (= F) per unit width in the
z-direction is

F ⎛ ⎞= ⎜ ⎟⎝ ⎠
s2

d dX
B

dt dt
(15.168)

Beyond this distance X, at this moment, there are no time-varying effects, because the wave has
not penetrated so far. Hence there are no induced currents for x > X. Hence applying the
Faraday’s law (Maxwell’s curl E equation) to a rectangular circuit, which encloses the wavefront,
we have

s s2 and 2z z
dX dX

E B J B
dt dt

sÊ ˆ Ê ˆ= - = -Á ˜ Á ˜Ë ¯ Ë ¯ (15.169)

\ The total current per unit width in the y-direction is
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Figure 15.26 Step-function B–H characteristic of the material.
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where t = 0 is the instant of start of a positive half-cycle. The maximum depth of penetration
occurs when sin (wt/2) = 1 or t = p /w.

\         d s = ws
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Comparing this with the skin-depth of the linear theory, i.e.

d l = wm m s
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0 r

2
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it should be noted that in the nonlinear case, the permeability m0mr has been replaced by the ratio
Bs/Hs.

The velocity of the wavefront is [from Eq. (15.171)]:
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It is also observed that the current density throughout the depth X is independent of the
variable x.

\ The instantaneous power loss per unit surface area is = s
2
z

X
J .

\ The energy lost per half-cycle = 
p w

s

=

=

= ∫
/

2
1

0

1
t

z

t

W J Xdt

Substituting from Eqs. (15.169), (15.171), and (15.174),
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We now plot E(t) [or J(t)], X(t), and H(t) as a function of t (Figure 15.27).

Figure 15.27 Plots of wave-shapes of E (or J ), X and H in a thick saturated block of iron.
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By a Fourier series analysis of H and E wave-shapes, the fundamental components come
out to be

H1s = - jHs and E1s = pd s
⎛ ⎞
⎜ ⎟
⎝ ⎠

s

s

8
3

H
 (cos w t + 2 sin wt) (15.176)

Comparing this with the loss calculated on the basis of constant m it is seen that this loss is
70% higher than the linear B–H characteristic. This analysis holds for sheets whose half-
thickness d (the thickness being 2d) is > ds. For a detailed analysis of the losses in thin sheets,
interested readers are recommended to read the papers by Agarwal, and by Lim & Hammond.

15.16 PROXIMITY LOSS

The non-uniform distribution of current in an isolated conductor caused by the passage of an
alternating current in the medium has been called the ‘skin effect’ due to the tendency of the
current to concentrate near the surface layers of the conducting body. If a second conductor
is present in the vicinity of the first conductor, both carrying alternating currents of same
frequency, then the alternating current in the second conductor causes a further change in the
current distribution in the first conductor. This phenomenon is known as the ‘proximity effect’.
Essentially both are electromagnetic induction phenomenon, and the distinction between them
is, though clear, rather artificial. Since the proximity effect and the skin effect are really two
facets of the same phenomenon, it is not always possible to analyze the two effects separately.
Also the analysis of the combined proximity and skin effects is often quite complicated. For
example, an analytical solution does exist for determining the proximity effects in a circular
coaxial cable in which the inner and the outer conductors are carrying currents in the opposite
directions (Figure 15.28). But the solution is quite involved, and is obtained as a function of
complex Bessel’s functions or Ber and Bei functions. However, in general, the influence of the

Figure 15.28 Proximity effect in a coaxial cable.
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Because of the symmetry of the problem, J and H would vary in the y-direction only (inside the
sheets). Since the coordinate axes are as shown in Figure 15.29, the operational equation for J and
H inside either sheet is obtained as

wms− =
2

2
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z
d J

j J
dy

and using the skin-depth notation d2 = (wms)-1, the equation for Jz becomes:
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It should be noted that J would have only the z-component, and H only the x-component.
Its solution is of the form
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Also, because of the symmetry of the problem, we need consider the current distribution in one
of the two sheets. Let us consider the sheet with the current in the + z-direction. The H field in
the sheet is given by the equation

wms = − z
x

dJ
j H

dy

proximity effect is small compared with the skin effect. We shall, however, consider a highly
idealized problem to illustrate this effect so as to gain some insight into this problem. We
consider two conducting sheets of conductivity s, permeability m, and thickness b. The currents
in the two sheets are equal in magnitude but opposite in direction, and their frequency is w =
2p f; and the sheets are so large that their finite size effects can be neglected. Since these sheets
are large in size, we can assume them to be of infinite size, and hence the magnetic field on
either side of each sheet is independent of the distance from the sheet (Figure 15.29). This
follows from the problem discussed in the Chapter 7, Section 7.10.9.

Figure 15.29 Two parallel strip conductors of thickness b carrying the same alternating
current in opposite directions: (a) sectional view in the plane x = 0 and (b) isometric view.
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\ Hx(y) = - 1 2
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On y = b, Hx(b) = 0 [see Section 7.10.9, Eq. (7.68)].

\ This condition gives: 2 1

2
exp

Ê ˆ
= Á ˜

Ë ¯

j b
J J

d
(15.180)

\ 1
( ) ( )
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J y J
d d d
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Expressing J1 in terms of its value at y = 0, i.e. Jz(0), we get
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z z
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d d
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(15.182)

Noting that 1

2

+
=

j
j , we get

        Jz(y) = Jz(0) ¥ 
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(15.183)

This above ratio has been plotted as a function of (y/b), in Figure 15.30. It should be noted that
if the second strip were not present, the current distribution would have been symmetrical about
the line y = b/2. This analysis is based on the assumption of infinitely large sheets. If the finite
dimensions of the sheets are taken into account, then the proximity effects become more
pronounced when the sheets are nearer to each other. In general, the proximity effect tends to
increase the resistance of the conductors and decrease the internal inductance.
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Figure 15.30 Current distribution in the strips of Figure 15.29.
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15.17 UNILATERAL AND BILATERAL INDUCTION HEATING
OF FLAT PLATES

Induction heating of flat metal plates is an industrial problem. There are other shapes of objects
which are also heated by the method of induction, but most of possible shapes of objects can be
reduced in theoretical and technical consideration to flat or cylindrical shape. The problem of
heat treatment and induction heating has to be solved in the best possible way, which means
optimizing the heating parameters for the electrothermal process, i.e. the three points for
consideration are: (i) high heating rate, (ii) minimum electrical energy consumption, and
(iii) requisite temperature distribution in the plate or medium. The frequency range used is usually
50 Hz to 3 MHz.

In industry, the objects are heated by induction either unilaterally or bilaterally, i.e. the
suitably shaped heating inductor is applied to one side of the heated plate or object, or two
inductors are applied to both the sides of the plate. The inductors are the source of the
electromagnetic energy and can be represented (for the purpose of analysis) by a suitably directed
current-sheet or its associated electric field (= E) or the magnetic field (= H). The induced field
so generated in the heated plate is characterized by three vectors, i.e. the electric field E (or the
induced current-density vector J), the associated magnetic field H (or B), and the Poynting vector
(as a basis for the energy transfer from the inducing source).

In the present analysis, the object is a flat metal plate extending to infinity (for the purpose
of analysis) both along its length and width (in the y- and z- directions respectively) and of finite
thickness b (in the x-direction) The material characteristics of the plate are its electrical
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conductivity s 
1

or resistivity r
s

Ê ˆ=Á ˜Ë ¯  and magnetic permability m = m0 mr (mr being the relative

permeability), both being assumed constants. Three different types of heating arrangements are
considered here. First, the object is heated unilaterally (i.e. from one side only) by the inductor
placed parallel to one of the faces. In the other two cases, the plate is heated bilaterally by means
of two inductors placed on two sides of the plate. The two inductors are so positioned that the
induced currents on the two faces of the plate are in the same direction and have the same phase.
This is the case of bilateral heating with compatible currents. In the final arrangement, the current
in one of the inductors is reversed so that the induced currents on the two faces of the plate are
in opposite directions. In this case we have bilateral heating with inverse currents. The three
arrangements are shown in Figure 15.31 (a), (b) and (c).

S0

(a) (b) (c)

b b b

P PP

y

x
z

H0

E0

H0

b x

E0

S0

E0

H0 H0

S0

E0

b x b x

S0

E0

H0

S0

Inductors (with the current directions)

x x x

Figure 15.31 Induction heating systems of flat plate: (a) unilateral heating, (b) bilateral heating
with compatible currents, and (c) bilateral heating with inverse currents.

The currents fed into the inductors are I0ejw t, in the y-direction, so that the exciting E field
on the surface of the plate is iyEoe

jw t, w = 2p f, f being the frequency of the supply current within
the range of the frequency used for induction heating (i.e. 50 Hz to 3 MHz). The associated
magnetic field on the surface would be izH0ejw t. For the simplicity of analysis, the problem is
reduced to a one-dimensional one so that the uniform current sheet extends to infinity in y- and
z-directions, and the only variation of the fields is in the x-direction. So we shall now discuss the
behaviour of these field vectors E, H and S (the Poynting vector = E ¥ H) for these three systems,
starting first with the unilateral heating system, because the other two arrangements can be
considered as due to suitably modified superposition of the unilateral system applied to both the
sides of the heated plate of finite thickness.
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15.17.1 Unilateral Induction Heating of a Plate [Figure 15.31(a]

The characteristics of a heated flat metal plate of finite thickness would be known by determining
the distribution of the electromagnetic field inside it, i.e. E, J, H and S in the plate. The geometry
and the physics of the problem have been defined in Section 15.17. From Section 15.2, we know
that when such an alternating magnetic or electric field is applied on the flat face of a semi-
infinite metal block, the induced field in it is a travelling field, with its amplitude in the same
direction as the inducing field, diffusing in the metal block in a direction normal to the plane on
which the inducing field has been applied. By diffusion, we mean that the amplitude of the
induced field gets attenuated as the field progresses inside [as seen in Eq. (15.12)]. In the present
problem, the situation is somewhat different because now the conducting metal plate has finite
thickness and it does not extend to infinity. So when the diffused field reaches the end surface of
the plate (i.e. x = b), the field re-enters the air-space which has zero conductivity and the field in
this region will become a plane uniform wave travelling with constant amplitude in this region
and the fields on the two sides of this plane of discontinuity x = b would satisfy the continuity
conditions of B and E (or H and J). In this sense, this problem is more complex than that of the
semi-infinite metal block as it is now a composite problem involving diffusion as well as uniform
plane wave. (As such it should be studied after Chapter 17, though of course we have been briefly
introduced to uniform plane waves in Chapter 12, Section 12.6.) So for a proper rigorous analysis
of this problem, we start with Maxwell’s equations though we could have written down the
diffusion equation directly.

As mentioned earlier this is a simplified one-dimensional problem with variations in the
x-direction only.

Hence 0 and 0.
y z

∂ ∂
= =

∂ ∂  The relevant Maxwell’s equations are

curl
t

∂
= — ¥ = -

∂
B

E E (15.4b)

curl = — ¥ =H H J (15.4c)

and the constitutive relations are

m e s s r= = = =, and ( 1/ )B H D E J E (15.4f)

The inductor current sheet is assumed to be in the y-direction, i.e.

JS = iyJSoe
jwt (15.184a)

where
JSo = surface current density (per unit width)

w = the angular frequency of the alternating current = 2pf
Hence the inducing E field will be

Ei = iyE0ejwt (15.184b)

and the associated magnetic field on the surface of the plate will be

Hi = izH0e
jwt (15.184c)

Hence, Eqs. (15.4b) and (15.4c) reduce to
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∂ ∂
i i i i
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0 0z
x y z y y

H
J

x

∂Ê ˆ+ - + =Á ˜Ë ¯∂
i i i i

inside the plate.
Differentiating these equations w.r.t. x  (which in this case is equivalent to taking curl again),

2

2

y z z
y y

E B H
J E

x xx
w wm wm wms

∂ ∂ ∂
= - = - = + = +

∂ ∂∂
j j j j
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∂∂
- = = - = -

∂∂
j j

from the constitutive relations (15.4f) and 
t

w∂
=

∂
j

Now, 2

1
, 2d

d
wms =  being the depth of penetration of the metal.

We substitute 2 2(or )j kwms b=

\
1

2
k

d

+
=

j
(18.184d)

\ The equations for E and H become:

2 2
2 2

2 2
0 and 0y z

y z

E H
k E k H

x x

∂ ∂
+ = =

∂ ∂
(15.185)

In the air-space beyond the thickness of the plate (thickness = b and so the air-space is x > b),
Eq. (15.4b) is replaced by

t

∂
— ¥ =

∂
D

H (15.4b¢)

and so the operating equation for H or E in this region will be

22
2 2 2 2

2 2
and yz

z y

EH
H E

x x
w me w me

∂∂
= =

∂ ∂
j j

Substituting 2 2 2
1 , we getk w me- = j

2 2
2 2
1 12 2

0 and 0y z
y z

E H
k E k H

x x

∂ ∂
+ = + =

∂ ∂
(15.186)

Since both E and H have one component only, we drop the suffices y and z and use the suffix 1
for the air-space to differentiate it from the plate.

So, the solutions for Eqs. (15.185) are
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exp ( ) exp ( )H A kx B kx= - +
and

1 1
( )

H

xs s
∂

= — ¥ = -
∂

E H (15.187)

{ exp ( ) exp ( )}
k

A kx B kx
s

= - -

in the metal plate (i.e. 0 < x < b).
In the air-space behind the metal plate (i.e. x > b)

1 1 1exp ( ) exp ( )H C k x D k x x b= - + >

1
1

1

we
∂

= -
∂
H

E
j x

(15.188)

1
1 1{ exp ( ) exp ( )}

k
C k x D k x

we
= - -

j

Here A, B, C, D are the constants of integration to be determined from the boundary conditions
and the interface continuity conditions:

(i) for x Æ •, H1, E1 Æ 0;
(ii) for x = 0, H = H0;

(iii) 1 1for , and
b bb bx b H H E E

+ +- -= = =

From the boundary condition (i), D = 0. It should be noted that the term containing D, in fact,
represents the reflected wave which cannot exist in this case as the air-space extends to infinity.
From (ii),

H0 = A + B (15.189)
From (iii),

A exp (–kb) + B exp (kb) = C exp (–k1b) (15.190a)
and

1
1{ exp ( ) exp ( )} exp ( )

kk
A kb B kb C k b

js we
- - = - (15.190b)

From Eqs. (15.190a) and (15.190b),

1

exp ( ) exp ( )

exp ( ) exp ( )

A kb B kb k j

A kb B kb k

we
s

- + =
- - (15.191)

R.H.S of this equation
1

jj k j

k j

wmswe we
s s w me

= =

1
2

2

j
j f

ew p er
s

+
= =

Since the frequency range of induction heating is 50 Hz to 3 MHz, and for metals
e = e0 = 8.854 ¥ 1012 and r ranges from 1.75 ¥ 10–6 W-cm for copper to approximately
140 ¥ 10–6 W-cm for molten cost-iron,

¸
Ô
Ô
Ô
˝
Ô
Ô
Ǫ̂
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the R.H.S. of Eq. (15.191) 1010 0-� �

\ B = –A exp(–2kb)

and hence

0 0
1 exp ( 2 )

,
1 exp( 2 ) 1 exp ( 2 )

kb
A H B H

kb kb

-
= = -

- - - - (15.192)

and from Eq. (15.190b) C = 0

Hence the intensity of the magnetic field behind the metal plate is zero, i.e. the magnetic
field (and the associated electric field) does not penetrate through the metal plate for the range of
industrial frequencies and the types of metals used in induction heating processes. The metal plate
behaves like a magnetic screen.

By substituting for A and B in Eqs. (15.187), the field parameters inside the metal plate come
out to be

0
exp ( ) exp ( ) exp ( 2 )

1 exp ( 2 )

kx kx kb
H H

kb

- - -
=

- -

0
sinh{ ( )}

sinh( )

k b x
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-
= (15.193a)

0
cosh{ ( )}

sinh( )

k k b x
E H

kbs
-

= (15.193b)

0
cosh{ ( )}

sinh( )

k b x
J H k

kb

-
= (15.193c)

J being the current density inside the plate.
The power density inside the plate would be

21

2
P Jr=

2 2 2
0

2

1 cosh { ( )}

2 sinh ( )

H k k b x

kbs
-= (15.193d)

For graphical representation of these quantities, we normalize them with respect to the surface

values and take their moduli, remembering that k is complex, i.e. (1 ) /( 2)j d= + . So, we get
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and
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From the above expression, we can calculate total power per unit cross-sectional area along the
total width b of the plate, i.e.
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From this expression, it is seen that the total heating power of the plate is a function of H0, the

electrical parameters of the plate (i.e. s), and also the ratio 
2

b

d

Ê ˆ
Á ˜Ë ¯ , i.e. (thickness of the plate)/

(depth of penetration of the eddy currents). The following quantity reduces to

2 2
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2 2
.
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b b

bd d
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(15.195a)

When the thickness of the plate b becomes infinite (i.e. much larger) relative to the depth of

penetration ( 2)d= , then l Æ 1, and

the heating power in the plate 
2
0

2

H

ds
= (15.196)

The variations of the heating power produced in the plate can be seen by studying the changes
in l as a function of the ratio of the thickness of the plate (= b) to its depth of penetration

( 2).d=  The function l is near minimum when ,
22

b

d

p
=  i.e. 0.92l �  and the heating power

also reaches its minimum value which is 92% of the power defined by Eq. (15.196).

When we are considering the heating of a thick plate, we can let b Æ •  (at least
theoretically). The expressions for H and E simplify considerably, and the expressions become

0 exp ( ),H H kx= -

0 0exp ( ), exp ( )
k

E H kx J kH kx
s

= - = -
(15.197)
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where k is now
1

.
2d

=

This is the case of the semi-infinite block which is discussed in detail in Section 15.2.

For the plate of finite thickness b, when 
0 0 0

, and
H E P

H E P  are plotted as functions of

x

b
 using 

2

b

d
 as the parameter, it will be seen that H for all values of ,

2

b

d
 become zero when

x = b, i.e. the plate acts as a screen preventing the leakage of magnetic field beyond its thickness.
The magnetic field inside the plate is not uniform and has an exponential decay. The other
quantities E and P decay near exponentially but have finite values at the other surface (x = b) of
the plate.

15.17.2 Bilateral Induction Heating of the Flat Plate

The flat plate can be heated bilaterally in two different ways as shown in Figures 15.31(b) and (c),
i.e. by means of currents induced on both the sides of a plate, in the same direction
(= compatibly), or in opposite directions (= inversely). First we consider the case of compatible
currents as shown in Figure 15.31(b). In that case the induced E fields on the two surfaces of the

plate 0E ¢  and 0E ¢¢  are equal in amplitude, phase and direction. But their associated magnetic

fields 0H ¢  and 0H ¢¢  will have opposite directions and equal amplitude and phase (why ?).
Inside the plate, the induced current will have the same direction as the electric field.

At a point (say) x from the left surface of the plate [Figure 15.31b], the electric field intensities
will be E¢ and E¢¢, and the magnetic field intensities H¢ and H¢¢, so that the resulting fields will be

H = H¢ – H¢¢ and E = E¢ + E¢¢

Each field can be evaluated as in the previous section (Section 15.17.1), and hence
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\ The magnetic field at a point A (= x) will be
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Similarly the electric field
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and the current density
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-
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Heating power density inside the plate is also given by

2
2 2

0 2

1 1 cosh { ( / 2 )}
( )

2 2 sinh ( / 2)

k b x
P J H k

k bs s
-= = (15.201)

As in Section (15.17.1), we normalize these quantities with respect to the surface values and take
their moduli (k being complex as before),
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The fields have the maximum value on the two surfaces and decrease exponentially inside from
both the surfaces, so that each component has a minimum at x = b/2. The magnetic inensity
H = 0 at x = b/2.

The total heating power per unit cross-sectional area and along the whole width b is
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So, now the equivalent l is:

sinh sin
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cosh cos
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d d
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l
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(15.204)

Next we consider a flat plate being heated inductively by two current sheets on two sides, the
currents flowing in opposite directions [i.e. inversely, as shown in Figure [15.31(c)]. In this case

the electric field intensities 0E ¢  and 0E ¢¢  on the surfaces, will be of equal magnitude but of

opposite directions whereas the magnetic field intensities 0H ¢  and 0H ¢¢  will have the same
magnitude and direction. So at any point inside the plate, the resultant field intensities will be

andH H H E E E= + = -¢ ¢¢ ¢ ¢¢
As before,

0 0
sinh{ ( )} sinh( )

and
sinh( ) sinh( )

k b x kx
H H H H

kb kb

-
= =¢ ¢¢

Hence the magnetic field at any point A(= x) in the plate is

0
sinh{ ( )} sinh( )

sinh( )

k b x kx
H H

kb

- +
=

0
cosh{ ( / 2 )}

cosh( / 2)

k b x
H

kb

-
= (15.205)

And similarly the electric field

0
sinh{ ( / 2 )}

cosh( / 2)

k k b x
E H

kbs
-

= (15.206)

and the current density

0
sinh{ ( / 2 )}

cosh( / 2)

k b x
J H k

kb

-
= (15.207)

In this arrangement, the heating power density in the plate

 
2

2
0 2

1 sinh { ( / 2 )}
( )

2 cosh ( / 2)

k b x
P H k

kbs
-= (15.208)

As for the previous bilateral heating arrangement, normalizing these quantities with respect to
their surface values and taking their moduli,

0

2 2
cosh cos

2 2

cosh cos
2 2

b x b x
H d d
H b b

d d

È ˘- -Ê ˆ Ê ˆ+Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙=
Í ˙Ê ˆ Ê ˆ+Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

(15.209a)
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0 0

2 2
cosh cos

2 2

cosh cos
2 2

b x b x
E J d d
E J b b

d d

È ˘- -Ê ˆ Ê ˆ-Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙= =
Í ˙Ê ˆ Ê ˆ+Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

(15.209b)

and  0

2 2
cosh cos

2 2

cosh cos
2 2

b x b x
P d d
P b b

d d

- -Ê ˆ Ê ˆ-Á ˜ Á ˜Ë ¯ Ë ¯
=

Ê ˆ Ê ˆ+Á ˜ Á ˜Ë ¯ Ë ¯

(15.209c)

As before, the fields have maximum values on the two surfaces of the plate, and decrease
exponentially inside from both the surfaces, so that each component has a minimum at the centre
x = b/2. The electric field intensity E and the current density J are zero at x = b/2.

Again, the total heating power per unit cross-sectional area and along the whole width b is

2
2

0 2
0 0

1 sinh { ( / 2 )}
( )

2 cosh ( / 2)

b b

T
k b x

P Pdx H k dx
kbs

-
= =Ú Ú
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b bd

d d

s

- -Ï ¸ Ï ¸-Ì ˝ Ì ˝
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Ê ˆ Ê ˆ+Á ˜ Á ˜Ë ¯ Ë ¯
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b b

H d d

b bd

d d

s

Ê ˆ Ê ˆ-Á ˜ Á ˜Ë ¯ Ë ¯
=

Ê ˆ Ê ˆ+Á ˜ Á ˜Ë ¯ Ë ¯

(15.210)

And the corresponding l in this case is

sinh sin
2 2

cosh cos
2 2

b b

d d
b b

d d

l

Ê ˆ Ê ˆ-Á ˜ Á ˜Ë ¯ Ë ¯
=

Ê ˆ Ê ˆ+Á ˜ Á ˜Ë ¯ Ë ¯

(15.211)

In all the three cases, i.e. (15.195a), (15.204) and (15.211), l can be plotted as a function

of ,
2

b

d

Ê ˆ
Á ˜Ë ¯  to find the optimum value for the heating power in the plate, i.e. to maximize the eddy

current losses in the plate. It should be noted that for these two types of bilateral induction heating,
the magnetic field distribution in the plate with compatible currents [Eq. (15.198)], and the electric
field or current density distribution [Eq. (15.206), Eq. (15.207)] for inverse currents are similar or
nearly the same, both fields becoming zero at the central line (= x = b/2) of the plate. Similarly
the electric field or current density distribution for compatible excitation current and the magnetic
field distribution for inverse currents are same. However the loss distribution patterns for the two cases
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are significantly different. For the inverse current system, the concentration of eddy currents nearer
the two surfaces is much greater and the penetration into the depth is much less compared with
the compatible current arrangement. So when the heating is to be restricted nearer the surfaces of
the plate, the inverse current arrangement would be preferable.

Note: The inverse  current system is the one which has been discussed is detail in Section 15.3,
where the problem has been defined in terms of the applied magnetic fields on the two
surfaces of the plate and the direction of this field is along the y-axis. In the present problem
the magnetic field is directed along the z-axis.

15.18 EDDY CURRENTS AND SKIN EFFECT IN TUBULAR
 CONDUCTORS

It has been shown in Section 15.2 that when the depth of penetration is small compared with the
curvature of the conducting surface, i.e. Eqs. (15.15) to (15.18) in Section 15.2, then the analysis
for the plane surface can be applied to that of a tubular conductor. This is in general true for high
frequency currents in tubular conductors. But if this is not true, then the problem has to be solved
by using the cylindrical polar coordinate system. Before starting to solve the problem in this
coordinate system, it is worth recapitulating the main points of the results for circular conductors
(i.e. of circular cross-section) as derived in Section 15.2 in the equations mentioned above.

When the radius of a of the circular conductor, or the radial thickness (i.e. a – b) of a tubular

conductor (of outer radius a and  inner radius b) is much greater than the depth of penetration 2d
[d = (wms)-1/2], then the ac resistance and the reactance of the conductor come out to be

ac
1

2 2
R L

a d
w

p s
= = (15.212)

per unit axial length and the complete circumferential width (= 2pa). Hence if a unit square is
considered in the f–z plane,  then the ac resistance and reactance will be

ac1 1
1

2
R L

d
w

s
= = (15.213)

It should be noted that the reactance (or the inductance) is due to the circumferential flux lying in
the inside skin of the conductor where the alternating magnetic flux has penetrated starting from
the outer surface.

Now, we consider the problem of the tabular conductor. In passing, it is mentioned that the
problem of the isolated circular conductor has been solved in Section 15.5. The present problem
does reduce to the problem of the circular conductor, when the inner radius b of the tube reduces
to zero (i.e. b Æ 0). Without going through all the intermediate steps, we can write down the

equation for the current density ( orz z zJ J=J i i  to simplify the notations since only the
z-component of the current in the axial direction of the conductor exists) as:

2d

dt
ms = —

J
J (15.214)
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Since we are considering the steady state alternating current of angular frequency �, i.e.
Jej� t, the above equation further simplifies to

��� � �
2

2

1d J dJ
j J

r drdr
(15.215)

as there is variation only in the r-direction and no variation in �-direction due to symmetry about
the axis of the conductors as well as in the z-direction (= the direction of current flow).

Substituting 2 1
,d

���
�  the above equation is nothing but the modified Bessel’s equation of

zero order [cf. Eq. (4.44)]

i.e.

22

2

1
0

d J dJ j
J

r dr ddr

� �� � �� �� 	 (15.215a)

and its solution is of the form

1/ 2 1 / 2

0 02 2

j j
J C I r D K r

d d

� � � �� � � �� � � �� �	 
 	 
� � � � �  �� � � �� � � �
(15.216)

To evaluate C and D, the relevant boundary conditions are:

(i) On the outer boundary r = a, the current density J is equal to the surface current
density J0. Hence

0 0 0
a a

J C I j D K j
d d

� � � �� �� � � �
� 	 � 	

(15.217)

(ii) On the inner boundary r = b, there can be no magnetic field inside the cavity. This
follows from the solution of the problem discussed in Section 7.10.3 [i.e. Eq. (7.58)].
There it is seen that the magnetic field in a circular cavity of a current-carrying circular
conductor is uniform and is a function of the distance between the axis of the
conductor and the axis of the circular cavity. Hence it follows that if the cavity is
co-axial with the conductor, the magnetic field inside the cavity will be zero. Hence, at
r = b, B = 0

or
1

( ) 0
dB

dt�


 � � � �J

or 0
dJ

dr
�

� 1 1 0
b b

C I j D K j
d d


 � 
 �� ��  � 
� � � �

(15.218)

�

1 0

1

0 1 1 0

b
K j J

d
C

a b b a
J j K j I j K j

d d d d

� �
� �
� ��

� � � � � � � �	� � � � � � � �
� � � � � � � �

(15.219)
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(15.220)
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If the conductor is a solid cylinder instead of a tube, then b � 0 and D = 0 because

0
r

K j
d

� �� �� �
� 	

 as r � 0. Hence the current distribution in the conductor is obtained as:
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r
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d
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a
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(15.221)

Since these modified Bessel’s functions have complex arguments, they can be expressed as
Kelvin’s ber, bei, ker and kei functions (for the purpose of computations).

Thus,

� �0 0 0ber beiI j x x j x� � (15.222a)
and

� �0 0 0ker keiK j x x j x� � (15.222b)

This problem has been solved in detail in Section 15.5, where the Bessel functions with complex
arguments have been expressed in polar form, and hence any further discussion of the above
solution is not repeated here.
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The analysis of the flux distribution in a cylindrical conductor (as well as in a tubular conductor
with radial thickness greater than the “depth of penetration”) carrying an alternating current has
been discussed in Sections 15.2 and 15.18, and it is obvious that the magnetic flux loops are in
the circumferential direction and inside the outer surface of the cylindrical as well as the tubular
conductor. Hence the inductance caused by this alternating flux (as well as the effective ac
resistance) can be considered as the “internal self-inductance” of the conductor (and also the
internal resistance).

The ac inductance of the cylindrical (as well as tubular) wire as derived in Eq. (15.213) of
Section 15.18 [deduced from Eq. (15.212) or Eq. (15.17) of Section 15.2] is effectively the
inductance per unit axial length and the unit circumferential width, and can be denoted as Li1 and
Ri1. These will now be expressed as:
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1
1

1

2
i

i
R

L
d wws

= = (15.223)

It should be noted that at high frequencies Li1 is negligible, compared with the external
inductance of the wire (i.e. the inductance L being L >> Li).

To evaluate the total Li and Ri in practical problems such as cylindrical conductors in
parallel wire transmission line problems, it is preferable to use energy expressions instead of
using the flux linkage concept. The reason is that the presence of a second conductor in the
vicinity of the first conductor produces a proximity effect which destroys the axial symmetry of
the magnetic flux about the axis of each conductor. On the other hand the total current in the
skin of the cylindrical conductor can be evaluated, with comparative ease. The expressions to
be used are:

2 2 2 2
1 1andi i s i i sR I R J ds L I L J ds= =Ú Ú (15.224)

where Js is the current across the unit arc length in the cylindrical skin of the conductor. The
above expressions can be used for each of the two conductors, whatever may be the radius of each
conductor. If the conductors are of equal diameter, the total inductance and resistance will be
twice that obtained from the above formula. When the conductors are of equal diameter, the total
inductance and resistance will be twice that obtained from the above formula. When the
conductors are of unequal radii, Ri and Li have to be evaluated separately by taking into account
the relevant limits of integration. For such two-dimensional problems, the solution is most
conveniently obtained by using conjugate functions and the method has been discussed in detail
in Sections 4.4–4.4.3 and Section 17.18. A brief description of the important aspects of the results
follows.

Since the equipotentials and the lines of force (or current flow lines) are orthogonal. We use
the complex potential function W, and write

W = U + jV and W = f(z), z = x + jy (15.225)

U = U(x, y), V = V(x, y) (15.225a)

so that U + jV = f(x + jy) (15.226)

and V – jU = j f(x + jy) = F(x + jy) (15.226b)

\ Differentiating W with respect to x and y respectively

( ) ( )
W U V z

j f z f z
x x x x

∂ ∂ ∂ ∂
= + = =¢ ¢
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(15.227a)

( ) ( )
W U V z

j f z jf z
y y y y

∂ ∂ ∂ ∂= + = =¢ ¢
∂ ∂ ∂ ∂ (15.227b)

and hence,

and
V U V U

x y y x

∂ ∂ ∂ ∂= - =
∂ ∂ ∂ ∂

(15.228)
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Thus, the two families of curves U(x, y) = constant and V(x, y) = constant intersect each other
orthogonally. In such a case either set can be chosen to represent equipotentials in which case the
chosen function becomes the potential function. The other set which is orthogonal to this then
represents the lines of force (i.e. also called the stream function).

\ from
dW V V U U dW jdV

j j z
dz y x x y dx jdy

Ê ˆ∂ ∂ ∂ ∂ += + = - =Á ˜∂ ∂ ∂ ∂ Ë + ¯
(15.229)

Regardless of whether U or V is the potential function, the absolute value of
dW

dz
 at any point

gives the magnitude of the electric field intensity at that point. From Eq. (15.229), it follows that

or
dW U V dW V U

dz n s dz dn s

∂ ∂ ∂ ∂= = = = -
∂ ∂ ∂

(15.230)

(where dn is an element of length in the direction of maximum increase of potential, and ds the
element of length obtained by rotating dn through p/2 radians in the counterclockwise sense),
according as U or V is the potential function.

For example, if V is the potential function, then the flux through any section of an
equipotential surface between the curves U1 and U2 is given by

e e e∂ ∂
= - = = -

∂ ∂Ú Ú
2 2

1 1

2 1Flux ( )

U U

U U

V U
ds ds U U

n s
(15.231)

Thus the capacitance of two closed equipotential surfaces at V1 and V2 can be expressed as

2 1 1 2

[ ]Q U
C

V V V V

e= =
- - (15.231)

where the increment in U is expressed as [U]. The inductance can then the evaluated using the
relationship.

LC = me (15.232)

To evaluate the internal inductance due to eddy current skin effect, the integral in
Eq. (15.224) has to be evaluated. From Section 17.18, Eq. (17.236) the tangential component of B

on the U = U1 cylinder is 
V

s

∂
∂ . The mmf applied to a surface element gives mJS = B.

Hence,
2

2
S 2 2

1 1V V
J ds ds dV

s sm m
∂ ∂È ˘= =Í ˙∂ ∂Î ˚Ú Ú Úv v v (15.233)

V

s

∂
∂  is known (for a given configuration)  from the conjugate function relationship stated in

Eq. (15.230), and hence the above integral can be suitably evaluated.
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PROBLEMS

15.1 A pair of perfectly conducting plates holds a conducting block of rectangular cross-
section, as shown in the figure below. The metal block and the plates extend a long
way to the right. A current excitation i(t) = Re{I exp ( jw t)} is applied uniformly to the
plates along their left edge. Find the magnetic flux density in the region between the
plates and the current density in the block.

d1

Depth D into the paper (D >> d1)

O–b

i(t) V m, e0, r

x

L

R

Find the equivalent reactance as seen at the current source. Using the equivalent circuit
shown here, find the values of L and R.

Hint: Solve as a one-dimensional problem in x dimension.

Ans.:
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Re exp exp
2 2

z
I x x
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D d d
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where d = 
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⎛ ⎞
⎜ ⎟⎝ ⎠
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.
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15.2 What will be the magnetic flux density and the current density in the above block if it
extends over a length l in the x-direction?

Ans.:

( )
sinhˆ

sinh

z

x l
I dB

D l

d

m
j

j

−

=

cosh ( )ˆ

sinh
y

x lI dJ
D d

l
d

j
j

j

−
=

Note: exp ( jw t) is implicit in these expressions.

15.3 A copper conductor of strip form has a length and breadth which are both much greater
than its thickness 2b. A coordinate system is taken with its centre at the origin at the
centre of all three dimensions of the strip, the axes of x, y and z being in the direction
of the thickness, the breadth and the length respectively. The strip carries a current in
the z-direction, the density being represented by a phasor J. Neglecting edge effects,
prove that (by solving the equation for H or B),

( )
0

11
sinh

2 2
y

x
H H J d

d

jj +⎛ ⎞−= = ⎜ ⎟⎝ ⎠

where J0 is the value of the current at the centre, and d is the skin-depth.

15.4 An alternating current flows longitudinally in a copper conductor of thickness 2b and
resistivity r, the length and the width of the conductor being great compared with b.
Prove that the ratio of the maximum to the minimum current density is

⎡ ⎤⎛ ⎞
+⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

1/2
1 2 2

cosh cos
2

b b
d d

where d = 
r

m w
⎛ ⎞
⎜ ⎟
⎝ ⎠

1/2

0
.

15.5 From the analysis of the current distribution in a semi-infinite conducting block, at
radio frequencies, prove that the ratio of ac resistance to the zero-frequency resistance
(i.e. dc resistance or Rdc) of conductors of any shape of cross-section is equal to the
inverse ratio of the areas. Derive this expression for (i) a conductor of circular cross-
section of radius a, (ii) a rectangular bar a ¥ b.

Hint: Use the one-dimensional skin-depth d.

15.6 An iron plate is bounded by the parallel planes x = ± b. The plate extends to + • in the
z-direction and is wide enough in the ± y-directions so that the edge effects can be
ignored (which simplifies it to a one-dimensional problem). Wire is wound uniformly
round the plate such that the layers of wire are parallel to the y-axis. An alternating
current is sent through the wire, thus producing a magnetizing intensity izH0 cos w t on
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the surfaces of the plate (i.e. H has only z-component on the two surfaces). Show that
the H field inside the plate at a distance x from its centre is given by:

               0
cosh 2 cos 2

. cos ( )
cosh 2 cos 2z

mx mx
H t

mb mb
+= +
+

H i w b

          
sinh ( ) sin ( ) sinh ( ) sin ( )

tan
cosh ( ) cos ( ) cosh ( ) cos ( )

m b x m b x m b x m b x
m b x m b x m b x m b x

− + − − − +=
+ − + − +

b

where m2 = 2

1 1
, i.e. ,

2 2 2
m d

d d
= =wms

 being the depth of penetration of iron of

permeability m(= m0mr) and conductivity s. Discuss the limiting cases of mb small and
mb large.

15.7 When there are time-varying currents in a conducting medium, the magnetic vector
potential A satisfies the equation

t
∂= −
∂
A

E

Show, hence, that A satisfies the equation —2A = ms
t
∂
∂
A

(a)

Show, now, the solution of A is of the form given by Eq. (13.7.2) of Problem 13.7, i.e.

A = — ¥ W = — ¥ (uW1 + u ¥ —W2)

is such that W, W1 and W2 all satisfy the above equation (a). Also show that now W1

and W2 both contribute to the B field.
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16.1 INTRODUCTION

The relaxation of charge (in good or slightly conducting media) is the mechanism by which the
motion has an effect on the electric field distributions in electric field systems. We shall discuss
this phenomenon in this chapter by considering a number of examples. Initially we shall
consider systems in which the conducting medium is at rest. In such problems, the relaxation
time is of fundamental importance for determining the volume and the surface charge densities,
which result from the initial conditions and excitations. Subsequently we shall look at the effect
of steady motion on the relaxation of the free charges, and study the effects of the ‘electric
Reynold’s number’, based on the material velocity.

The field equations of relevance for the charge relaxation are

                                 curl E = — ¥ E = 0 (16.1)

                                  div D = — ◊◊◊◊◊ D = rfc (16.2)

r r∂ ∂
+ = ∇ ⋅ + =

∂ ∂
fc fcdiv 0
t t

J J (16.3)

Thus we consider two of the Maxwell’s Eqs. (16.1) and (16.2). Equation (16.1) is the restricted
form of the Faraday’s law because here we are considering the electric field of free charges with
which there is no associated time-varying magnetic field. The third equation (16.3) is the
continuity equation (based on the conservation of charge) which is a consequence of the
Maxwell’s equations. The relevant constituent relations are

D = eE (16.4)

and we restrict ourselves to the situations in which the conduction of free charge can be
accounted for by a constitutive law of the form

J = sE + rfcv (16.5)

in which we have combined the ‘Ohm’s law’ with the field transformation arising out of motion.
This law describes the conduction process in a wide range of solids, liquids and gases, but does
not apply for all general situations.

Charge Relaxation16
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As we analyze and study the subject of charge relaxation, we shall notice that this subject has
some significant similarity with the magnetic diffusion, which we studied in Chapter 15. We now
start with the equation of continuity [i.e. Eq. (16.3)] and the constituent relation given by
Eq. (16.5)

fc
fc( ) 0

t
∂

∇ ⋅ + + =
∂

E v
rs r (16.6)

Expressing rfc in terms of E by using Eqs. (16.2) and (16.4), we get

( ) [ ( )] [ ( )] 0
t

∂⎛ ⎞∇ ⋅ + ∇ ⋅ ∇ ⋅ + ∇ ⋅ =⎜ ⎟∂⎝ ⎠
E v E Es e e (16.7)

When the velocity v is given, Eq. (16.7) involves only the electric field intensity E. Also, it is a
scalar equation and hence, in general, it will not uniquely define the three components of E.
However from Eq. (16.1), we can define a scalar potential f such that

E = - grad f = - —f (16.8)
Then Eq. (16.7) becomes

( ) [ ( ) ] [ ( )]
t

∂⎛ ⎞∇ ⋅ ∇ + ∇ ⋅ ∇ ⋅ ∇ = − ∇ ⋅ ∇⎜ ⎟∂⎝ ⎠
vs f e f e f (16.9)

Physically this equation is an account of the conservation of the free charge in the system. The
first term represents the flow of free charges into a small volume due to conduction. The second
term is a consequence of the convection of the medium giving rise to the transport of the free
charges into a given region. The term on the right-hand-side of the equation is the rate of
increase of the local free-charge density. In the subsequent sections, we shall consider the effect
of motion on the fields (i.e. when there is motion, the velocity is defined). However there are
models (in problems of electromechanical couplings) in which the velocity v is not known till
the fields are known.

16.2 CHARGE RELAXATION AS AN ELECTRICAL
TRANSIENT

Initially we shall consider some problems dealing with the charge relaxation in stationary
systems (i.e. when there is no motion, v = 0). Also, we start with simpler systems in which the
conductivity and the permittivity of each medium are uniform. Hence the changes in s and e
occur only at the interface surfaces. It should also be appreciated that unless there is a free-
charge source in the medium, there will be no steady-state volume free-charge density.

16.2.1 Charge Density in a Conducting Medium (or More Generally,
Media with Uniform Properties)

Since v = 0 , the system equations are
r∂

∇ ⋅ + =
∂

fc 0
t

J (16.3)

— ◊◊◊◊◊ D = rfc (16.2)

D = eE (16.4)

 J = s E (16.10)
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Combining these four equations, we get the operational equation in rfc as

r s re
∂ ⎛ ⎞+ =⎜ ⎟∂ ⎝ ⎠

fc
fc 0

t
(16.11)

which can also be obtained from Eq. (16.9) or Eq. (16.7) by putting v = 0 and substituting for
E or f in terms of the charge density rfc. A general solution of Eq. (16.11) is

rfc(x, y, z, t) = r0(x, y, z, 0) exp 
t⎛ ⎞−⎜ ⎟⎝ ⎠t (16.12)

where
et s= (16.13)

Equations (16.12) and (16.13) imply that given an initial charge density r0 at the instant t = 0,
the free-charge density at each point in space decays to zero exponentially with the ‘relaxation
time t ’. It should be understood that Eq. (16.11) has been derived without using Eq. (16.1), and
hence these conclusions do not depend on the field equations being quasi-static. However in any
physical situation, the uniformly conducting medium is of finite extent, and the conservation of
charge requires that those charges which are initially distributed throughout the volume relax to
the surfaces that bound the volume. We give below the relaxation time for some typical
conductors and insulators (Table 16.1).

Table 16.1 Relaxation time for conductors and insulators

Material s (mho/metre) e t (seconds)

Silver 6.17 ¥ 107 e0 1.43 ¥ 10-19

Copper 5.80 ¥ 107 e0 1.52 ¥ 10-19

Aluminium 3.72 ¥ 107 e0 2.38 ¥ 10-19

Mercury 1.06 ¥ 106 e0 8.35 ¥ 10-18

Sea water 4 80e0 1.77 ¥ 10-4

Water 4 ¥ 10-6 80e0 6.40 ¥ 10-4

CCl4 4 ¥ 10-16 2.24e0 4.95 ¥ 104

For the conductors, the relaxation time is extremely small, and there are insulators for which the
relaxation time can be measured in minutes and hours.

16.2.1.1 Example 1

A sphere of radius Ri is made up of uniformly conducting material, and is placed concentrically
in another perfectly conducting spherical shell of radius Ro. The annular space between the
spheres is filled with an isotropic insulating material. A free-charge density r0 is distributed
uniformly throughout a spherical region of radius R(R < Ri) at the centre of the conducting
sphere, at the instant of time t = 0.

\ rfc at t = 0 = r0 = 
p 3(4/3)

Q

R
(16.14)

where Q is the total charge in the central sphere of radius R.
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\ The transient charge density as given by Eq. (16.12) is

rfc = r0 t
⎛ ⎞−⎜ ⎟⎝ ⎠

exp
t

for r < R

                                 = 0               for r > R (16.15)

where t = e /s, with e and s being the permittivity and the conductivity respectively of the
medium.

The problem has radial symmetry, i.e. the only variation is along r. Hence, using Eq. (16.2)
in the spherical coordinate system, we obtain the equation for the electric field intensity Er

as, i.e.

( ) r
e t

⎛ ⎞⎛ ⎞ ⎛ ⎞= −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
2 0

2

1
expr

d t
r E

drr

\ Er = 2
exp

4

Q r t
RR

⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠tep
for r < R (16.16)

The total charge within the radius r = R is Q t
⎛ ⎞−⎜ ⎟⎝ ⎠

exp
t

, and by Gauss,

Er = tep
⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠2

exp
4

Q t

r
for R < r < Ri (16.17)

Since the total charge on the sphere must be conserved, the electric field outside the conducting
sphere (in the insulating medium) is

Er = 
e p 2

04

Q

r
for Ri < r < Ro (16.18)

Hence from these electric field intensities, we can find the amount of free charge on the interface

S n n
+ Eq. (16.18) Eq. (16.17)

(approaching from the insulating annulus) (approaching from the conducting sphere)
i ir R r R

D D
→ → −

= −r

   0
2 2 2

0

exp 1 exp
4 4 4i i i

Q Q t Q t

R R R

⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎛ ⎞= − − = − −⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠

e e
t te p ep p

(16.19)

The surface charge on the outer shell (r = Ro) is however constant. Equation (16.19) shows that
the initial free-charge density relaxes to the outer surface of the conducting sphere. In the steady-
state condition, there is no electric field within the sphere, as the field is shielded out of the
sphere by the surface charge at r = Ri.

The current density is

Jr = sEr 
s

tep
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦2

exp
4

Q r t
RR

for r < R

and

                                   = 
s

tep
⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠2

exp
4

Q t

r
for R < r < Ri (16.20)

It is this current, which accounts for the conduction of free charge to the surface of the sphere.
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It should be noted that there is a conduction current in the region R < r < Ri even though there
is no free-charge density in this part of the conducting sphere during the transient.

16.2.1.2 Example 2: Relaxation time of space charge in a partly
filled tank

It is generally believed that when the conductivity of the medium is constant, the relaxation time
is independent of the size and the shape of the container in which the charged medium (being
liquid or fluid) is enclosed. Asano in his studies of the relaxation of petroleum products found
that when an open surface of charged medium exists within a conducting container, the
relaxation time is a function of the shape. He also found that the ratio of the new relaxation time
to the conventional relaxation time has a maximum value of 2, which is independent of the
different permittivities of the two media. We give below the simplified one-dimensional analysis
of Asano’s problem (as derived by him). When charge is generated or introduced in dielectric
liquids like hydrocarbons, the charge creates an electric field, which can cause an ignition
hazard, and hence extensive studies have been undertaken in this field. In hydrocarbons, the
charge relaxation process obeys the exponential charge relaxation law when the conductivity is
high, and the hyperbolic law when s is relatively low. For the former, a constant conductivity,
and for the latter a constant mobility are assumed. The hyperbolic law applies when s for the
liquid is less than 1 pS/m. For the present problem under discussion, a constant s and an
exponential charge decay will hold.

A simplified model of a tank, which partly contains a hydrocarbon (charge) liquid, is
shown in Figure 16.1. The model contains two regions: a liquid phase, and a vapour phase.

Let the charge density in the liquid be rfc, conductivity s, and permittivity e (= e0er). The
free space parameters are e0 and s Æ 0. We assume that there is no surface charge on the
interface between the liquid and the vapour.

The same three equations hold for this problem as well, i.e.

— ¥ E = 0 (16.1)

  — ◊◊◊◊◊ D = rfc (16.2)

— ◊◊◊◊◊ J = - 
r∂
∂

fc

t
(16.3)

Figure 16.1 Simplified one-dimensional model of a tank containing charged liquid.

E1
(1) a

x
z

y

e0
s Æ 0

b(2)
e = (e0er)

s
rfc

E2

Vapour phase

Liquid phase



550 ELECTROMAGNETISM: THEORY AND APPLICATIONS

and the constituent relations are

J = s E and D = eE (16.21)

From Eq. (16.1), it follows
E = - —f (16.22)

where f is a scalar potential.
\ For the hydrocarbon, from Eqs. (16.22) and (16.2), we get

—2f = - 
r
e
fc (16.23)

and for the vapour phase

—2f = 0 i.e. Laplace’s equation (16.24)

For the region (1), solving the one-dimensional Laplace’s equation

f= = −1
1 1

d
E C

dx
and integrating the above again

f1 = C1x + C2 (16.25)

where C1 and C2 are the constants of integration.
For the liquid region with the space charge,

fc
2 1

2
fc

2 1 22

x
E D

x
D x D

= −

= − + +

r
e

rf e
(16.26)

where D1 and D2 are constants of integration.

Boundary conditions. 1. Since both the bottom and the top electrodes are grounded, they are
at zero potential.

\ D2 = 0 and C2 = -C1(a + b)

Hence the potentials for each region are

f1 = C1(x - a - b)

  f2 = -
r

e

2
fc

2
x

 + D1x

2. On the interface x = b, both the potentials must be same, and as there is no surface
charge on this plane, the normal component of the electric flux density must be continuous.

\ - C1a = -
r

e

2
fc

2
b

 + D1b      and      - e0C1 = e 
r

e
⎛ ⎞
⎜ ⎟
⎝ ⎠

fcb
 - D1

\ C1 = 

fc

0

2
b

a
b

⎛ ⎞− ⎜ ⎟
⎝ ⎠

+

r
e
e
e
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and

fc 0

1
0

2
2

b a
b

D
a
b
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=
+

r e
e e

e
e

Hence the potentials in each region come out to be
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1
0
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a b x

a
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+
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ef e

e

                                
rf e
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+

r e
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(16.27)

and the corresponding E fields are

fc

1
0

2
x

b

a
b

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥+⎢ ⎥⎣ ⎦

E i

r
e
e
e

and

fc fc 0

2
0

2
2

x

x b a
b

a
b

⎛ ⎞ ⎛ ⎞⎡ ⎤− +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥=
⎢ ⎥+⎢ ⎥
⎢ ⎥⎣ ⎦

E i

r r e
e e e

e
e

(16.28)

Solution in charge decay. The enclosed control volume in the system is shown in Figure 16.1,
and the surface area normal to the x-direction is taken as S. It should be noted that J1 in the
region (1)-free space is zero, because the conductivity is zero. Hence from Eq. (16.3), by
integration with respect to x, we get

2 fc fc

0

( )
b

d d
J S Sdx Sb

dt dt
= − = −∫ r r

Also
J2 = - s E2 at x = 0

\ sSE2 = 
d
dt

(rfcSb) (16.29)

Combining Eq. (16.29) with (16.28) for x = 0, we get

fc fc 0

0

2
2

0

d a
dt b

a
b

⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ =

+

r sr e
e e

e
e

(16.30)
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whose solution is obtained directly as

r r t
⎛ ⎞= −⎜ ⎟
⎝ ⎠

fc 0
1

exp
t

(16.31)

where r0 is the initial charge density, and t1—the new relaxation time which is given by

0

1
0

2 +

2

a
b

a
b
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⎜ ⎟⎢ ⎥⎝ ⎠⎛ ⎞ ⎢ ⎥= ⎜ ⎟ ⎢ ⎥⎝ ⎠ +⎢ ⎥

⎢ ⎥⎣ ⎦

e
eet s e

e

(16.32)

Note that (e /s) = t, which is our conventional relaxation time. Writing a + b = d and
(b/d) = h, then

1 r

r

2 [ (1 )]
2 (1 )

h h
h h

+ −=
+ −

t e
t e (16.33)

So we see that the maximum value of this ratio (t1/t) is 2 and is independent of either er or s.
We can similarly solve the composite Laplacian and Poissonian field problem for the

potential distribution in two or even three dimensions.

16.2.2 Media with Non-uniform Properties

In such a medium (at rest) in which the conductivity and permittivity are functions of space,
a steady-state volume charge density can exist. The interface between two dissimilar media is a
‘special case’ of this type and the interface gradients of e and s are ‘singularities’ and hence the
surface charges accumulate on the surfaces of the uniformly conducting media.

When s and e are functions of position in a stationary medium, the potential equation
(16.9) becomes

( ) [ ( )] 0
t

∂∇ ⋅ ∇ + ∇ ⋅ ∇ =
∂

s f e f (16.34)

which cannot take the simplified form of Eq. (16.11), because s and e are no longer constants
and they vary with the coordinate directions. We again consider a simple one-dimensional
example of this type.

16.2.2.1 Example 1: A model with non-uniform properties

A material of non-uniform properties (i.e. s and e are functions of space coordinates) is bound by
two plane parallel electrodes [Figure 16.2(a)]. An external current source drives a current through
this material in the x-direction. For simplicity, we also assume s and e to be functions of x only.
Physically such a system is created when the two electrodes with temperature difference are
placed in an organic liquid. In the present one-dimensional problem, Eq. (16.34) becomes

( ) 0x xE E
x t

∂ ∂⎡ ⎤+ =⎢ ⎥∂ ∂⎣ ⎦
s e (16.35)

where (grad f)x = - Ex. Integrating the above equation with respect to x

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠t

(eEx) + s Ex = f(t) (16.36)
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The physical interpretation of the above equation is that the sum of the displacement current and
the conduction current is same all over the y–z planes. The function f(t) is the current density
[i(t)/A] where A is the surface area of the electrodes. Hence Eq. (16.36) becomes

( )
( )x x

i t
E E

t A
∂⎛ ⎞ + =⎜ ⎟∂⎝ ⎠

e s (16.37)

Let us consider a sinusoidal time-varying driving current

     ˆ( ) Re exp ( )i t I j t⎡ ⎤= ⎣ ⎦w

ˆ( ) Re ( ) exp ( )x xE t E x j t⎡ ⎤∴ = ⎣ ⎦w (16.38)
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+we s
(16.39)

Next we find the charge density from Eq. (16.2), which in this case becomes
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er we swe s (16.40)

For this problem, let us assume that the conductivity varies linearly with respect to x
(Figure 16.2b), and er is constant, then

ss s ⎛ ⎞= + ⎜ ⎟
⎝ ⎠

1
0( )x x

l
(16.41)

Hence
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(16.42)

Ex and rfc distributions are shown in the Figures 16.2(c) and (d) respectively. Ex is roughly
inversely proportional to x, and the charge density is inversely proportional to x2. It should be
noted that the free charge accumulation is maximum, when w = 0, i.e. the current is constant. The
charge accumulation due to a non-uniform conductivity occurs in oil-immersed HVDC cables
used for transmission of power.
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16.3 CHARGE RELAXATION WHEN THERE IS STEADY
MOTION

The next aspect of charge relaxation, which we shall look at, is the effect of material motion on
relaxation. Now the material properties of the media (i.e. s and e) are taken as constant in the
bulk of the material, and change only at the interface surfaces. We again start with the general
operational equation (16.9), which is

— ◊◊◊◊◊ (s—f) + — ◊◊◊◊◊ [v— ◊◊◊◊◊ (e—f)] = - 
∂⎛ ⎞

⎜ ⎟∂⎝ ⎠t
[— ◊◊◊◊◊ (e—f)] (16.9)

To express the above equation in terms of the free-charge density, we use the equations

E = - —f and — ◊◊◊◊◊ D = — ◊◊◊◊◊ (eE) = rfc, and obtain

rs r re
∂⎛ ⎞⎛ ⎞ ∇ ⋅ ⎜ ⎟⎜ ⎟ ∂⎝ ⎠ ⎝ ⎠

fc
fc fc + ( ) +  = 0

t
v (16.43)

The important case of this type is that of incompressible medium in which the material density
remains constant, and the net flux of the material in a given region is zero, which means that, for
the incompressible material, the divergence of the velocity must be zero (analogy to div B = 0).
Hence

div v = 0 (16.44)

Hence expanding the second term of Eq. (16.43)

— ◊◊◊◊◊ (rfcv) = v ◊◊◊◊◊ (—rfc) + rfc (— ◊◊◊◊◊ v)

                                       = v ◊◊◊◊◊ (—rfc), for incompressible medium (16.45)

Figure 16.2 (a) A partially conducting material, bounded by plane electrodes; (b) s distribution
between the electrodes; (c) Ex distribution; and (d) rfc distribution.
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Equation (16.43) can be rewritten as (for this case)

fc
fc fc( ) = 0

t
∂⎛ ⎞ ⎛ ⎞+ + ⋅ ∇⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠⎝ ⎠

v
r s r re (16.46)

This equation gives the same relaxation condition as Eq. (16.11), except that the charge
relaxation now occurs with respect to the frame of the moving medium, i.e. the material motion
transports the free charge as it relaxes with the time-constant (e /s). We shall now describe a
device in which the charge is transported from a region of one potential to a region of another.
The time required for a given initial distribution of charge to relax (with respect to the medium)
is (e/s ), and the time necessary for transporting the charge over a distance l with velocity v is
(l/v). Thus the electric Reynold’s number Re:

e s e
s= = >>e

/ v
1

/v
R

l l
(16.47)

must be much greater than unity, if the convection is to compete with the relaxation process in
deciding the location of the volume charge density.

16.3.1 Van-de-Graff Generator

This is used for generating high voltage dc power by transporting free charge against an electric
field. A highly simplified model is shown in Figure 16.3. Essentially it consists of a continuous
belt made of slightly conducting material, and driven by rollers at constant velocity which is

v = izv

The electrode at z = 0 feeds positive ions on to the surface of the belt, and the electrode at
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Figure 16.3 Section of a Van-de-Graff generator.
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z = l removes the positive charges. For our analysis, we consider these two electrodes under
open-circuited condition. The belt material has constant s and e. The positive ions put on the
belt are immobile.

The simplifying assumptions for the analysis are:

1. We consider only the portion of the belt that carries charge from

z = 0 to z = l

2. E and J have z-component only, i.e.

E = izEz and J = izJz (16.48)

3. All variables are functions of z alone.
4. For this one-dimensional model, the effect of the applied positive ions and the induced

charges in the belt can be represented by an effective free-charge density rfc(z) which
also is a function of z only.

5. The boundary condition at z = 0 is: rfc = r0 (16.49)
6. The system is operating in steady state.

With s constant, the constituent relation for the transport of free charges is Eq. (16.5), i.e.

J = sE + rfcv (16.5)

Gauss’ theorem [Eq. (16.2)] gives

e r⎛ ⎞ =⎜ ⎟
⎝ ⎠

fc
zdE

dz
(16.50)

For this problem, the open-circuit operation implies that

J = 0 (16.51)

Differentiating Eq. (16.5) with respect to z, and substituting from Eq. (16.50) to eliminate Ez, we
get

r s re
⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠

fc
fcv 0

d
dz

(16.52)

The general solution of this equation is

rfc = C1 exp [- (s/e)(z /v)] (16.53)

Using the boundary condition at z = 0 to evaluate C1, we get

r r −⎛ ⎞= ⎜ ⎟
⎝ ⎠

fc 0
e

exp
z

R l
where

e
v

R
l

= e
s (16.54)

\ From Eq. (16.5),

r rs s
−⎛ ⎞⎛ ⎞ ⎛ ⎞= − = − ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

fc 0
e

v v
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z
E

R l
(16.55)
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and hence the open-circuit (o.c.) voltage is

1 2 2
e

o.c. 0
e

0

1
1 exp

z

z

z

R l
V E dz

R

=

=

⎛ ⎞ ⎡ ⎤⎛ ⎞= − = − −⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎝ ⎠⎣ ⎦⎝ ⎠
∫ r

e (16.56)

16.4 CHARGE RELAXATION WITH MOTION AND
SINUSOIDAL EXCITATION

We now consider a problem of charge relaxation, when it is associated with motion and
sinusoidal excitation. This example shows the distinguishing features of relaxation and magnetic
diffusion, and also an application of the phenomenon to measure the velocity of a moving
medium.

A slightly conducting thin slab (of characteristic properties s, e) is moving to the right
with a constant velocity v (as shown in Figure 16.4) between two plane parallel electrodes,

Figure 16.4 (a) A slightly conducting thin slab, moving to the right with constant velocity v
through electric fields imposed and constrained as shown in (b); (c) conduction currents

normal to the surfaces produce a surface charge accumulation as shown.
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which are sub-divided into three sections with different terminations as shown in Figure 16.4(b).
In the section to the left, the electrodes are excited by a sinusoidally varying potential.

Since the slab is insulated from the electrodes by the air-gaps between them, the charge
would relax to the surface so as to prevent the externally imposed field from entering it. Hence
as the slab leaves the exciter region of the electrodes at z = 0, there would be a sinusoidally
varying surface-charge density (± r0) on the upper and the lower surfaces of the slab respectively.
As the slab passes through the region 0 < z < l, the surface charges, which had been induced
in the exciter region, tend to relax, and by the time they reach the detector region [the right
section of the electrode in Figure 16.4(b)], the surface-charge densities get considerably
attenuated. The charges, which remain on the surface by this time, induce image charges on the
electrodes, which result a current through the resistance R, thereby generating an output signal
V0. Because of the charge relaxation, this output signal can be used as a measure of the velocity
of the block.

There is no charge inside the moving slab, except on its surfaces as the normal conduction
current leads to an accumulation of charges on the surface, which is convected by the motion of
the slab. Hence, the conduction current on the upper surface of the block is

r rs ∂ ∂⎛ ⎞ ⎛ ⎞= = +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
su suvE
t z

(16.57)

where the surface-charge density rsu is given by the equation

rsu = e0Eu - eE (16.58)

Similarly for the lower surface of the block

s svl lE
t z

∂ ∂⎛ ⎞ ⎛ ⎞− = +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
r rs (16.59)

where
rsl = eE - e0El (16.60)

In general, the electric field in the slab and in the air-gaps above and below it, must satisfy the
electric field equations with rfc = 0. To simplify the problem, we assume a simple one-
dimensional model, assuming E = ixE(z, t), and

d (Eu + E + El) = 0 (16.61)

because the integral of the field along a line joining the plates must be zero.
This one-dimensional model ignores the effect of the z-component of E which does exist

and can be evaluated from the condition — ¥ E = 0. At z = 0, we assume that the exciter has
induced the surface charges

rsl = - rsu = r0 sin w t (16.62)

\ From Eq. (16.61),

E = - (Eu + El) = - 2Eu (16.63)
(from symmetry considerations Eu = El)

and from Eq. (16.58),
r

e e= −
+

su

0

2
2

E (16.64)
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On substituting for E in Eq. (16.57),

r r s re e
∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

su su
su

0

2
v 0

2t z
(16.65)

Similarly the corresponding equation for the lower surface can be derived (rsu = -rsl and
Eu = El).

We assume the steady-state solution of the form

su suˆRe ( ) exp ( )z j t= ⎡ ⎤⎣ ⎦r r w (16.66)

and substituting in Eq. (16.65), gives

su
su

0

ˆ 2
0

( 2 ) v v
j

z
∂⎛ ⎞ ⎡ ⎤+ + =⎜ ⎟ ⎢ ⎥∂ +⎣ ⎦⎝ ⎠

r s w re e (16.67)

The solution to this equation is

su 0
e

( , ) exp sin
v

z z
z t t

R l
⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠

r r w

where
0

e
( 2 ) v

2
R

l
+

=
e e

s (16.68)

where Re is the electric Reynold’s number, and gives a measure of the exponential damping
effect, similar to that shown in Figure 15.2 of Section 15.2. Thus the relaxing charge appears as
a damped wave propagating to the right with a phase velocity v and an attenuating factor whose
exponent is (-1/Rel). It should be noted that the relaxation wave propagates by virtue of the
material movement (as distinct from the case of magnetic diffusion where the propagating wave
existed even in stationary medium), and the attenuation was determined by the combination of
the material properties and the velocity of the material.

16.5 TRAVELLING WAVE CHARGE RELAXATION IN A
MOVING CONDUCTOR

The physical configuration of the problem is shown in Figure 16.5. This is a slightly conducting,
semi-infinite block moving to the right with a velocity v, just below a segmented electrode,
which supports a travelling wave of potential given by

ˆRe exp { ( )}V V j t kz⎡ ⎤= −⎣ ⎦w (16.69)

The conducting material [region (2)] has the material characteristics e and s which are constant
and uniform, and moves to the right with constant velocity v = izv. For this material, there is
no bulk free-charge inside. The surface charges exist on the interface plane x = 0 and its
distribution is determined by the motion of the medium and the velocity of the travelling wave
of potential.

Since there is no free charge either in region (1) or in region (2), the operational equation
for the potential distribution for both the regions will be Laplacian, i.e.

f ff ∂ ∂∇ = + =
∂

2 2
2

2 2
0

dx y
(16.70)
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As can be seen from Figure 16.5, the problem would be two-dimensional, and hence there would
be no variation in the y-direction (i.e. ∂/∂y ∫ 0). To match the condition of the source potential
as given by Eq. (16.69), we assume the potential to be of the form

ˆRe exp { ( )}t kzf f wj⎡ ⎤= −⎣ ⎦ (16.71)

in both the regions (1) and (2).
In the region (1), the potential function will take the form

1
ˆ sinh ( ) cosh ( )A kx B kx= +f (16.72)

where A and B are arbitrary constants to be determined by the boundary conditions.
In the region (2), the potential function will take the form

2
ˆ exp ( )C kxf = + (16.73)

This assumes that k is +ve, since the potential will not go to infinity as x Æ (–•).
We need three boundary conditions to evaluate the three unknowns A, B, and C.

Boundary conditions

1. At x = b, V = Re ˆ exp { ( )}V j t kz⎡ ⎤−⎣ ⎦w (16.69)

2. At x = 0, 1 2
ˆ ˆ(0) (0)=f f (16.74)

3. At x = 0, rS0 = e0E1x - eE2x = -e0
1 2

x x

∂ ∂⎛ ⎞ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

f f
e (16.75)

(conservation of the charge on the interface surface).
This condition, expressed in terms of the conduction current normal to the interface gives

an increase in the surface charge (measured in a frame moving with the material) as

2 1 2
0v

x t z x x

⎡ ⎤⎡ ⎤∂ ∂ ∂∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− = + − +⎢ ⎥⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

f f fs e e (16.76)

Figure 16.5 A semi-infinite block of slightly conducting material moving to the right with a
constant velocity v = izv.
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For the assumed travelling wave solution of Eq. (16.71), this becomes

( )f f fs w e e
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂− = − − +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

2 1 2
0

ˆ ˆ ˆ
vj k

x x x
(16.77)

\ Using the boundary condition equations of (16.69), (16.74), and (16.77), we get

A sinh (kb) + B cosh (kb)  = V̂
               B - C        = 0

   AjS - C
0

1 jS
⎡ ⎤⎛ ⎞+⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

e
e  = 0 (16.78)

where S = the normalized frequency measured in the moving frame of the material, normalized
to the relaxation time

= (w - kv)
e
s

0 (16.79)

Evaluating the unknowns, we obtain

[ ]1
0

Re 1 sinh ( ) cosh ( ) exp { ( )}
V

S kx S kx t kz
D

ef wej j j
⎡ ⎤⎛ ⎞⎛ ⎞= + + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦

       [ ]2

ˆ
Re exp ( ) exp{ ( )}

V
S kz t kz

D
f wj j

⎛ ⎞
= −⎜ ⎟⎝ ⎠

(16.80)

where

0
1 sinh ( ) cosh ( )D S kb S kb

e
ej j

⎡ ⎤⎧ ⎫⎛ ⎞= + +⎢ ⎥⎨ ⎬⎜ ⎟⎝ ⎠⎢ ⎥⎩ ⎭⎣ ⎦
(16.81)

For the range of values of S, there are two limiting cases:

1. S = 0, i.e.

f1 = Re { }sinh ( )ˆ exp ( )
sinh ( )

kx
V t kz

kb
wj

⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎣ ⎦⎣ ⎦
                   f2 = 0 (16.82)

i.e. the medium behaves as perfectly conducting, and there is no penetration of the E-field in the
moving medium.

2. When S Æ • (i.e. very large),

f1 = Re { }0

0

sinh ( ) cosh ( )
ˆ exp ( )

sinh ( ) cosh ( )

kx kx

V j t kz

kb kb

⎛ ⎞⎡ ⎤+ ⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥ ⎡ ⎤× −⎣ ⎦⎢ ⎥⎛ ⎞+⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

e
e

w
e
e

          f2 = Re
{ }w
e
e

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎛ ⎞+⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦0

exp ( ) exp ( )ˆ

sinh ( ) cosh ( )

kx j t kz
V

kb kb

(16.83)
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In this case, the electric field completely penetrates the moving medium, i.e. the moving block
behaves like a perfectly insulating material with no free charges at the surface, as can be seen by
putting x = 0 in the above equations. The reason is that in this high frequency limit, one time-
period of the excitation is not sufficient time for appreciable free-charge to relax to the surface.
Since the magnitude of the parameter S depends directly on both the frequency w of the imposed
travelling wave excitation as well as on the velocity v of the medium, the insulating behaviour
of the medium (i.e. the field penetration in the block) can be obtained by controlling either of
these parameters, i.e. either increasing the frequency w of the imposed excitation or increasing
the velocity v of the moving block.

16.6 SOME COMMENTS ON THE CHARGE DECAY IN
CONDUCTING MEDIA

Recently, a number of investigators have raised questions about the validity of the relaxation
equation [Eqs. (16.11) and (16.12)] for the conductors. It has been argued that for good
conductors, this equation gives too small a value of the relaxation time t, which can be
practically correct. It has been argued that the cause for this discrepancy is the assumption of
constant conductivity (=s) under the conditions of varying electric field. A more correct
approach would be to take the ‘mobility’ (i.e. the magnitude of the drift velocity v per unit
electric field) as constant instead, i.e.

v
(mobility)

E
=m

(In this section m stands for the mobility of the charges, and should not be confused with the
notation for the magnetic permeability used elsewhere in this book). The electrical conductivity
is the sum of the electron and hole contributions

s = neme + peme

where n and p are the concentrations of the electrons and holes in the medium (and e the
electron charge).

We have merely stated this point here (in a textbook of this level) as a matter of interest
and do not intend to pursue the subject in depth, which is really the domain of specialists.

PROBLEMS
16.1 Calculate the relaxation time for ethyl alcohol, for which er = 26 and s = 3 ¥ 10–4 mho/m.

Ans.: t ≈  10–6 sec.
16.2 In the problem of Section 16.2.2.1 (media with non-uniform properties), if the

permittivity e varied linearly with x, along with the conductivity, then

2 2
1 1( ) , ( )x x x x

l l
= + = +e se e s s [referring to Figure 16.2(a)]

Show that the free charge density is given by

( ) ( )

2 2 2
21

fc 2
ˆ

x j
l l lI l

a jj

⎛ ⎞ ⎛ ⎞⎡ ⎤+ +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥= − +
⎢ ⎥++⎢ ⎥
⎢ ⎥⎣ ⎦

e e s ee w
r

we swe s

Write down the expression for the free charge density, when the permittivity e (x)
changes linearly with x, while keeping the conductivity s constant.
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17.1 INTRODUCTION

One of the most brilliant achievements of Maxwell’s theory of electromagnetism was the
prediction of the existence of electromagnetic waves. This was confirmed experimentally twenty
years later by the work of the German physicist ‘Heinrich Hertz (1857–Jan 1894) who made this
very significant discovery in the short-span of his life of 37 years. Hertz was a very bright
student who started studying engineering but changed over to physics at the University of
Berlin under Hermann von Helmholtz and Gustav R. Kirchhoff, who were of the mechanistic
school of thought (i.e. action at a distance) on the continent as against the field concept
propounded by Maxwell in Britain. Up to mid-1880s, Hertz with his mechanistic background,
found the field theory and the vector approach from the Scottish/English schools rather baffling.
Yet Hertz got convinced of the reality of the electric and the magnetic wave radiation. His
first experiment, with a circular loop of wire with a tiny gap between the ends detecting a
spark from a discharge in a nearby induction coil, with no physical contact between the two,
was the first properly understood transmission and reception of electromagnetic radiation
through air.

In the present chapter, we shall start our study with the simplest type of wave, i.e. the
uniform plane wave, and then develop the subject matter further. Initially we shall deal with the
presence of these waves in free space, and then consider other types of media, such as,
conductors, dielectrics, etc. At this stage of our study, we shall not deal with the sources of the
electromagnetic waves, till Chapter 19.

Our starting point would be, as in the case of the eddy currents and the magnetic diffusion,
the Maxwell’s equations, the only difference being that now we ignore the conduction current
term of Eq. (12.11) or (12.18) from Chapter 12 (we shall make this simplifying assumption for all
loss-less ideal media). Thus our operating equation would be the first limiting case of the vector
Helmholtz equation, i.e. Eqs. (12.38) which are

—2H + b2H = 0 (12.38a)

—2E + b2E = 0 (12.38b)

Electromagnetic
Waves17
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where b w m e w m e= = =2 2 2 2
0 0 0 0/c , c 1/ , in free space. Sometimes in place of b we use the

notation k, which is also called the wave number of the wave.

17.2 UNIFORM PLANE ELECTROMAGNETIC WAVE IN FREE
SPACE

In fact, we have already met with and discussed the nature and the behaviour of these waves
earlier in Chapter 12, Section 12.6. For that analysis, we had simplified the associated
mathematics very significantly by rotating the coordinate system such that the E vector
coincided with the x-axis. This adjustment maintained the complete generality of the problem
and simplified the analysis considerably. However such simplification is not always possible.
There are configurations and considerations when it is not possible to fiddle with the coordinate
system to simplify the problem. So now, we keep our analysis general and make no simplifying
arrangements at the start of our problem (as we had done in Section 12.6). As before, we start
with the Maxwell’s equations, neglecting the conduction current J; i.e.

∂∇ × = − ∇ ⋅ =
∂

, 0
t
B

E B (17.1)

∂∇ × = − ∇ ⋅ =
∂

, 0
t
D

H D (there is no charge in the medium) (17.2)

and the constituent relations, relevant to our present problem

B = m0m rH = mH and D = e0erE = eE (17.3)

As we have seen in Section 12.3, these equations reduce to

me
⎛ ⎞∂∇ = ⎜ ⎟⎜ ⎟∂⎝ ⎠

2
2

2t

H
H (17.4a)

me
⎛ ⎞∂∇ = ⎜ ⎟⎜ ⎟∂⎝ ⎠

2
2

2t

E
E (17.4b)

which are wave equations.
We now define the uniform plane electromagnetic waves (in words):

These are waves in which the field vectors E and H have constant values of magnitude and
phase on planes perpendicular to the direction of propagation.

Let us assume the direction of propagation to be the +z-axis of our coordinate system. Then,
by definition, E and H will have constant values on all planes perpendicular to the z-axis.

\
∂ ∂ ∂ ∂= = = =
∂ ∂ ∂ ∂

0
x y x y
E E H H

(17.5a)

Note that, so far, we have imposed no constraints on the vectors E and H. However it will come
out later that these vectors E and H can have no components in the z-direction, i.e.

Ez = 0, Hz = 0 (17.5b)
(At this stage we impose no such condition.)
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\ The wave equations derived from the Maxwell’s equations reduce to

me
⎛ ⎞∂ ∂∇ ≡ = ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

2 2
2

2 2z t

H H
H (17.6)

which implies

me me me
⎛ ⎞ ⎛ ⎞⎛ ⎞ ∂ ∂ ∂ ∂∂ ∂ ⎜ ⎟= = = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

2 2 2 22 2

2 2 2 2 2 2
, , andy y z zx x H H H HH H

z t z t z t
(17.7)

and

me
⎛ ⎞∂ ∂∇ ≡ = ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

2 2
2

2 2z t

E E
E (17.8)

which implies

me me me
⎛ ⎞ ⎛ ⎞⎛ ⎞ ∂ ∂ ∂ ∂∂ ∂ ⎜ ⎟= = = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

2 2 2 22 2

2 2 2 2 2 2
, , andy y z zx x E E E EE E

z t z t z t
(17.9)

i.e. six similar equations which will reduce to four similar equations.
To start with, we solve for Hx :. The expression for the solution is of the form

Hx: = f1(z - ut) + f2(z + ut) (17.10)
where u is independent of t.

Proof. Let
(z - ut) = m, (z + ut) = n (17.11)

then
∂ ∂ ∂ ∂= = = − = +
∂ ∂ ∂ ∂

1, 1, u, u
m n m n
z z t t

(17.12)

\ 1 2 1 2∂ ∂ ∂ ∂ ∂∂ ∂Ê ˆ Ê ˆ Ê ˆ Ê ˆÊ ˆ Ê ˆ= + = +Á ˜ Á ˜Á ˜ Á ˜ Á ˜ Á ˜∂ ∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯Ë ¯ Ë ¯ Ë ¯ Ë ¯
xH f f f fm n

z m z n z m n (17.13)

and

                 
2 2 2

1 2 1 2
2 2 2

Ê ˆ Ê ˆ∂ ∂ ∂ ∂ ∂∂ Ê ˆÊ ˆ= + = +Á ˜ Á ˜ Á ˜ Á ˜∂ ∂ ∂Ë ¯ Ë ¯∂ ∂ ∂Ë ¯ Ë ¯
xH f f f f

z m nz m n
(17.14)

and

1 2 1 2u u
∂ ∂ ∂ ∂ ∂∂ ∂Ê ˆ Ê ˆ Ê ˆ Ê ˆÊ ˆ Ê ˆ= + = - +Á ˜ Á ˜Á ˜ Á ˜ Á ˜ Á ˜∂ ∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯Ë ¯ Ë ¯ Ë ¯ Ë ¯

xH f f f fm n
t m t n t m n

(17.15)

and hence

                    
∂
∂

2

2
xH

t

1 2u u
È ˘ È ˘∂ ∂∂ ∂ ∂ ∂Ê ˆ Ê ˆÊ ˆ Ê ˆ Ê ˆ Ê ˆ= - +Í ˙ Í ˙Á ˜ Á ˜ Á ˜ Á ˜Á ˜ Á ˜∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯ Ë ¯ Ë ¯Ë ¯ Ë ¯Î ˚ Î ˚

f fm n
m m t n n t

                            

2 2 2 2
2 2 21 2 1 2

2 2 2 2
u u u

f f f f

m n m n

È ˘Ê ˆ Ê ˆ Ê ˆ Ê ˆ∂ ∂ ∂ ∂
= + = +Í ˙Á ˜ Á ˜ Á ˜ Á ˜∂ ∂ ∂ ∂Ë ¯ Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚

(17.16)

\ From Eqs. (17.14) and (17.16), we obtain
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⎛ ⎞∂ ∂⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

2 2

2 2 2

1

u
x xH H

z t
(17.17)

which is same as Eq. (17.7) for Hx when

me
= 1

u (17.18)

Thus each term, i.e.
f1(z - ut) or f2(z + ut) (17.19)

is a solution of the H and E equation.
The sum of the two terms is a general solution.
Let us consider the first part of the solution, i.e.

Hx: = f1(z - ut) (17.20)

which is the equation of a wave travelling in the +z-direction. The diagram (Figure17.1) shows
Hx: at t = 0 and t = 1, i.e. after 1 second, it will have the same distribution as it had at t = 0, i.e.
the same solution in x- and y-coordinates, but it will be shifted by a distance u along the z-axis
in the positive direction.

x

y
u

z

F1 (z – u)  at  t = 1

F1(z)  at  t = 0

Figure 17.1 A travelling wave pattern.

Thus the wave Hx: = f1(z - ut) moves a distance u along the z-axis in one second.

\ Its velocity = 
m m e e

=
0 r 0 r

1
u  = velocity of light [in free space (= c)].

Similarly it can be proved that Hx: = f2(z + ut) is a wave moving with velocity u in the
(-z)-direction. In general, f2 is not same as f1, and hence the two waves need not necessarily have
the same shape. In some cases, only one of these waves may be present, i.e. an isolated
transmitting aerial. In other cases, the outgoing wave may be reflected back, thus producing two
waves travelling in opposite directions at a point.

The most common type of wave is the ‘sinusoidal wave’, and examples of this type are:
light waves, radio waves, etc. By solving the wave equation of the other components of E and H,
we obtain relations of the same form. The E and H waves cannot be independent of one another
because of the curl equations of Maxwell, i.e.

— ¥ E = - m0mr
∂⎛ ⎞

⎜ ⎟∂⎝ ⎠t
H

and — ¥ H = e0er 
∂⎛ ⎞

⎜ ⎟∂⎝ ⎠t
D

Hence, to find the relationship between the components of E and H, we rewrite the equations for
the scalar components of the field vectors from the above two equations; rewriting in the form:
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m
∂∂ ∂⎛ ⎞− = − ⎜ ⎟∂ ∂ ∂⎝ ⎠

yz xEE H
y z t (17.21a)

m
∂⎛ ⎞∂∂ − = − ⎜ ⎟∂ ∂ ∂⎝ ⎠

yzx
HEE

z x t (17.21b)

m
∂ ∂∂ ⎛ ⎞− = − ⎜ ⎟∂ ∂ ∂⎝ ⎠

y zxE HE
x y t (17.21c)

                                e
∂∂ ∂⎛ ⎞− = ⎜ ⎟∂ ∂ ∂⎝ ⎠

yz xHH E
y z t (17.22a)

                                e
∂⎛ ⎞∂∂ − = ⎜ ⎟∂ ∂ ∂⎝ ⎠

yzx
EHH

z x t (17.22b)

                               e
∂ ∂∂ ⎛ ⎞− = ⎜ ⎟∂ ∂ ∂⎝ ⎠

y zxH EH
x y t (17.22c)

But for plane waves, we have defined ∂E /∂x = 0 = ∂E /∂y, i.e.

∂ ∂∂ ∂ ∂ ∂
= = = = = =

∂ ∂ ∂ ∂ ∂ ∂
0y yz z x x

E EE E E E
x y x y x y

(17.23)

and similarly for H, i.e.

∂ ∂∂ ∂ ∂ ∂
= = = = = =

∂ ∂ ∂ ∂ ∂ ∂
0y yz z x x

H HH H H H
x y x y x y

(17.24)

Substituting from Eqs. (17.23) and (17.24) in Eqs. (17.21) and (17.22), we obtain

Hz = 0 and Ez = 0 (17.25)
and

 m
∂ ∂⎛ ⎞= ⎜ ⎟∂ ∂⎝ ⎠

y xE H
z t

(17.26a)

 m
∂⎛ ⎞∂ = − ⎜ ⎟∂ ∂⎝ ⎠

yx
HE

z t
(17.26b)

  e
∂ ∂⎛ ⎞= − ⎜ ⎟∂ ∂⎝ ⎠

y xH E
z t

(17.27a)

e
∂⎛ ⎞∂ = ⎜ ⎟∂ ∂⎝ ⎠

yx
EH

z t
(17.27b)

But from Eq. (17.20), we have Hx: = f1(z - ut).

\ 1
∂ ¢=
∂

xH
f

z
(z - ut), where f1′ is the derivative of f1 with respect to (z - ut).
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But

e e 1
1

and ( u )y yx E EH
z t

z t t
f

∂ ∂⎛ ⎞∂ ⎛ ⎞ ′= ∴ = −⎜ ⎟⎜ ⎟∂ ∂ ∂ ⎝ ⎠⎝ ⎠

\ Integrating with respect to time,

e e
⎛ ⎞ ⎛ ⎞= − − = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

1 :
1 1

( u )
u uy xE f z t H

But u = me1/

\ Ey = -
m
e Hx:, and similarly Ex = 

m
e Hy (17.28)

\ m
e=

E

H
(17.29)

where E and H are perpendicular to each other, and also perpendicular to the direction of
propagation. The rotation from the electric field vector E to the magnetizing intensity vector H

is right-handed about the direction of propagation. The ratio of ΩEΩ/ΩHΩ ( )m e= /  at any point
in space is known as the ‘characteristic or wave impedance of the material’. In free space,

ΩEΩ = 
m
e

0

0
 ΩHΩ = Z0 ΩHΩ (17.30)

where Z0 = characteristic impedance of free space. Its units: The unit of E is volts/metre, of H is
amp-turn/metre, and hence the unit of Z is volts/amp or ohms (W).

In free space, the velocity

u0 = (m0e0)
-½ = c = 2.998 ¥ 108 metres/sec (17.31)

i.e. the velocity of light.
The most common forms of electrical waves vary sinusoidally with time and position. If the

frequency is = f Hz, and the wavelength = l, then the frequency of repetition of the wave
pattern is

f = 
l
u

or fl = u (17.32)

The angular frequency w is

w = 2p f = 
p
l

2 u
(17.33)

\ 2
u

=w p
l

 = b (or sometimes k) (17.34)

where b is the wave number of the wave.
So we can now write the general expressions for both the electric and the associated

magnetic wave, i.e.

p p
l l

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= − + +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
F B

2 2
sin (u ) sin (u )x x xE E t z E t z
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                    w w
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= − + +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

F Bsin sin
u ux x
z z

E t E t

                     = EFx sin (w t - bz) + EBx sin (w t + bz) (17.35)
Similarly,

Hx = HFx sin (w t - bz) + HBx sin (w t + bz) (17.36)
where

EFx = amplitude of the x-component of the forward travelling E wave

EBx = amplitude of the x-component of the backward travelling E wave

Similarly for the H wave.
Usually the exponential equation and the complex j notation are used, i.e.

Ex = EFx exp [ j(w t - bz)] + EBx exp [ j(w t + bz)] (17.37a)

and

Hx = HFx exp [ j(w t - bz)] + HBx exp [ j(w t + bz)] (17.37b)

It should be noted that the forward and the backward travelling waves involve a sign change in
their corresponding characteristic equations, i.e.

m m
e e= = −F F F F :,x y y xE H E H (17.38a)

and

m m
e e= − =B B B B :,x y y xE H E H (17.38b)

\ The relations of Eqs. (17.28) and (17.29) also hold for both the forward-going and the
backward-going waves, i.e.

m
e

= − = =F F

F F

x x

y x

E E
Z

H H (17.39a)

m
e− = = =BB

B B

yx

y x

EE
Z

H H (17.39b)

i.e. E and H are perpendicular to one another in each travelling wave, and the ratio of E to H is
same in both the waves.

The vector (E ¥ H), i.e. the Poynting vector for the wave follows the direction of
propagation of the wave in each case.

So next, we consider the energy relations for the electromagnetic wave.
\ Stored energy in the electric field/unit volume = We

( )e e⎛ ⎞= = +⎜ ⎟⎝ ⎠

2
2 2

2 2 x yE E
E

(17.40)

and, the stored energy in the magnetic field/unit volume = Wm
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( )m m⎛ ⎞= = +⎜ ⎟⎝ ⎠

2
2 2

2 2 x yH H
H

(17.41)

But, Eq. (17.40) = Eq. (17.41), i.e.

( ) ( )e m⎛ ⎞ ⎛ ⎞+ = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
2 2 2 2

2 2x y x yE E H H (17.42)

\ The energy density at each point, at each instant, is equally divided between the
electric and the magnetic energy.

Poynting vector for the forward wave = EFxHFy - EFyHFx

= ( ) ( )⎛ ⎞ + = +⎜ ⎟⎝ ⎠
2 2 2 2
F F F F

1
x y x yE E Z H H

Z
(17.43)

Similarly for the backward travelling wave,
the corresponding Poynting vector = EBxHBy - EByHBx

= ( ) ( )⎛ ⎞ + = +⎜ ⎟⎝ ⎠
2 2 2 2
B B B B

1
x y x yE E Z H H

Z
(17.44)

When a forward travelling wave and a backward travelling wave are of equal amplitude and of
same phase, the combination produces a pattern which is stationary in space and does not travel
with time; i.e. from Eqs. (17.35), if EBx = EFx, then we have

Ex = EFx[sin(w t - bz) + sin (w t + bz)]

= 2EFx[sin(bz) cos (w t)] (17.45)

This is a sinusoidal wave fixed in space, with its amplitude fluctuating at the frequency
f (= w /2p).

For bz = (2p /l)z, sin (bz) = sin [(2p /l)z]. This will be zero, when z = a multiple of (l /2).
\ Ex = 0 at these points for all instants of time.

These are the NODES in the electric field (Figure 17.2).

Figure 17.2 Standing wave patterns.

z z z

O

x

EFx + EBx

E

O

H

x

O

HFy + HBy

x

y y y



CHAPTER 17 ELECTROMAGNETIC WAVES 571

The associated magnetic field is Hy or By, and hence the corresponding standing magnetic
field (wave) will be

Hy = - 2HFy [cos (bz) sin (w t)] (17.46)

Its nodes are half-way through the nodes of the E field. So we see that the standing waves are
produced by the mutual interference of two waves of the same periodicity.

17.2.1 Some General Comments on Uniform Plane Waves

Maxwell’s equations do not impose any limits on the frequency of the electromagnetic waves.
Uptill now the spectrum that has been studied experimentally, ranges from the long radio waves
(at frequencies of about 104 Hz and wavelengths about 3 ¥ 104 metres) to the very high energy
gamma rays (of frequencies 1024 Hz and higher, and of wavelengths of the order of 3 ¥ 10-16

metres and shorter) noticed in cosmic radiation. The known spectrum thus covers a range of
greater than 20 orders of magnitude. Radio, light, heat waves, X-rays, and gamma rays are all
electromagnetic, though their sources, detectors as well as their modes of interaction with matter,
vary widely as the frequency changes. A fundamental identity of all these types of waves is
demonstrated by the fact that in free space, they are all transverse waves with a common velocity
of propagation c (i.e. the velocity of light).

We have also seen from our analysis in Section 12.2 that (for example) a plane
electromagnetic wave propagating in the positive z-direction, E is independent of x and y
[Eq. (17.5)]

∂
∴ ∇ ⋅ = =

∂
0zE

z
E (17.47)

i.e. the z-component of E cannot be a function of z, and this was found to be equal to zero [i.e.
Eq. (17.5a)]; and the same argument applies to the H field. (Note that at present, our interest is
in the uniform plane ‘wave’ and not in the ‘uniform field’.)

Thus a plane electromagnetic wave propagating in free space is therefore ‘transverse’, since
it has no longitudinal components. A uniform plane wave is also called a ‘plane-polarized wave’.
So now we define the term ‘plane of polarization of a wave’.

The plane of polarization is the plane containing the direction of propagation and the
E vector (though originally it used to be the H vector). A plane polarized wave is also called
‘linearly polarized’. Since the E vector is the reference vector, ‘vertical polarization’ would mean
that the E vector is in the vertical direction, and the ‘horizontal polarization’ means that the
E vector is in the horizontal direction (Figure 17.3). Also, without any loss of generality, we can
assume a wave to be plane polarized with its E vector along the direction of the x-axis. This is

Figure 17.3 (a) Vertically polarized and (b) horizontally polarized wave representation.
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E

H
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because any plane-polarized wave can be considered to be the sum of two waves that are plane-
polarized in perpendicular directions, and in phase. This is shown in Figure 17.4.

Figure 17.4 Resolution of E into two orthogonal components.

x

E

Ex

Ey

z

y

We can also add two plane-polarized waves (orthogonal space wise) that differ in phase, i.e.

1 2cos and cos
u ux y
z z

E E t E E t
⎡ ⎤⎛ ⎞ ⎛ ⎞= − = − +⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦

w w y (17.48)

For these two waves at z = 0,

Ex = E1 cos w t and Ey = E2 cos (w t + y) (17.49)

The equations of (17.49) are the parametric equations of an ellipse. For this combination, the
maxima of Ex and Ey do not occur at the same time, and their sum E describes an ellipse about
the z-axis. Such a resultant wave is called an ‘elliptically polarized wave’.

If Ex and Ey have equal amplitudes, but are 90∞ out of phase, i.e. E1 = E2, and y = p/2, then:

Ex
2 + Ey

2 = E1
2 (17.50)

i.e. the ellipse has degenerated into a circle, and the wave is said to be circularly polarized.
The polarization is said to be right-handed or left-handed depending on whether the

vectors E and H rotate clockwise or counterclockwise for an observer looking at the source.
In discussing the propagation of waves, we use the term wave-front, which we shall explain

formally. When a wave is progressing, let us consider a surface S, separating region 1
(in Figure 17.5) which has been affected by the disturbance, from the region 2 which has not
been affected. In this, we neglect any superimposed magnetic field, say, like the earth’s magnetic
field. When we say that the velocity of propagation of the wave is c, we mean that the position
of the surface S, after a further time d t has shifted to a position S¢ which lies a distance cd t along
the normal to S in the region which was originally region 2 and this region covered by cd t now
lies in the region 1. So when we say that the plane wave is a transverse wave with the vectors E
and H at right angles to the direction of propagation, it implies that E and H are coplanar with
the wave-front surface S.

So far, when we talked about the electromagnetic waves, we have been referring to E and H
waves, which are related by the equation
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0Z=E H

where Z0 = 377 W = m e0 0/ , and is the characteristic impedance of free space. However, if
instead of referring to the H as the magnetic wave, we were to use the B, then the relationship
between E and B would be B = m0H in free space,

0

0

c
Z

m
Ê ˆ

= =Á ˜Ë ¯
E H B (17.51)

17.3 THE E AND H VECTORS IN LINEAR, ISOTROPIC,
HOMOGENEOUS AND STATIONARY MEDIA (LIH MEDIA)

We start by defining these terms:
A medium is homogeneous if its properties do not vary from point to point. A medium is

isotropic if its properties are same in all directions from any given point. A medium is linear and
isotropic if

D = eE, H = m
B

, J = s E (17.52)

where e, m, and s are constants independent of E and H, and independent of direction.
The wave equations for such media follow from Eqs. (12.32) and (12.35), which give us

 ms me
⎛ ⎞∂ ∂⎛ ⎞∇ − − =⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

2
2

2
0

t t

E E
E (12.35)

and

ms me
⎛ ⎞∂ ∂⎛ ⎞∇ − − =⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

2
2

2
0

t t

H H
H (12.32)

assuming charge-free region.
We also assume that the plane wave is propagating in positive direction of the z-axis.

Hence (∂/∂x) = 0 and (∂/∂y) = 0. Then the equation for the divergence of D becomes:

e e
∂⎛ ⎞∇ ⋅ = ∇ ⋅ = ⎜ ⎟∂⎝ ⎠

( ) zE
z

D E  = 0 (no free charge) (17.53)

Figure 17.5 Wave-front progressing.
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\
∂
∂

2

2
zE

z
 = 0 (17.54)

Then the wave equation for E [i.e. Eq. (12.35)] becomes:

⎛ ⎞∂
⎜ ⎟⎜ ⎟∂⎝ ⎠

2

2z
(ixEx + iyEy) - m s e

⎛ ⎞∂ ∂+⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

2

2t t
(ixEx + iyEy + izEz) = 0 (12.35)

\ The longitudinal component of E, i.e. Ez would satisfy the equation

e s
⎛ ⎞∂ ∂⎛ ⎞+ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂∂ ⎝ ⎠⎝ ⎠

2

2
0z zE E

tt
(17.55)

So, if Ez exists, it will be of the form:

Ez = a + b 
s
e

−⎛ ⎞
⎜ ⎟⎝ ⎠

exp
t

(17.56)

a and b being the constants of integration [a form which is consistent with the requirements of
Eq. (17.53)]. Thus Ez would decrease exponentially with time, and there is no Ez wave. If s = 0,
then Ez would be of the form a + bt, and again there is no Ez wave. Hence, for waves, we can say:
Ez = 0.

Note: We would come to the same conclusion even if the charge density rC was not zero.

Thus, for plane electromagnetic waves, the E vector is transverse in LIH media. We can
similarly prove that the H vector is also a transverse wave.

Hence, the plane electromagnetic waves are transverse in any LIH and stationary medium.
We shall now have a look at their relative orientation. Without any loss of generality, we can
assume a plane-polarized wave with the E vector in the x–z plane, i.e. parallel to the x-axis, and
sinusoidally varying with time. Hence

E = ixEOx exp [ j(w t - kz)] (17.57)

where k is in general complex. Then from the Maxwell’s equation

— ¥ E = - 
∂⎛ ⎞

⎜ ⎟∂⎝ ⎠t
B

we get
ix0 + iy (- jkEOx) + iz0 = - jwm (ixHx + iyHy)

\ Hx = 0 and H = iyHy = iy wm
⎛ ⎞
⎜ ⎟⎝ ⎠

k
EOx exp [ j(w t - kz)] (17.58)

wm∴ =
k

E
H

(17.59)

Hence the E and H vectors in a plane-polarized wave in a LIH medium are (1) orthogonal (i.e.
mutually perpendicular), (2) so oriented that their vector product (E ¥ H) points in the direction
of propagation, and (3) not necessarily in phase because the wave number k can be complex, and
hence the waves can get attenuated as they propagate.
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17.4 PROPAGATION OF PLANE ELECTROMAGNETIC WAVES
IN PERFECT LOSS-LESS NON-CONDUCTORS
(INSULATORS OR DIELECTRICS)

In loss-less dielectrics, s = 0, and as a rule, rC = 0. Hence the wave equations (12.35) and (12.32)
reduce to

me
⎛ ⎞∂∇ − =⎜ ⎟⎜ ⎟∂⎝ ⎠

2
2

2
0

t

E
E (17.60a)

and

me
⎛ ⎞∂∇ − =⎜ ⎟⎜ ⎟∂⎝ ⎠

2
2

2
0

t

H
H (17.60b)

E and H vectors are then of the same form as in Section 17.3, i.e.

E = ixEOx exp [ j(w t - bz)] (17.61)

Since s = 0, we shall see that the wave number b will not be complex. From Eq. (17.61), the
H wave comes out to be (as in Section 17.3):

H = iy
b

wm
⎛ ⎞
⎜ ⎟⎝ ⎠

EOx exp [ j(w t - bz)] (17.62)

Substituting for E and H from Eqs. (17.61) and (17.62) in Eq. (17.60), we find

- b2 + w2me = 0 (17.63)

\ The wave number, b = w wme =
u

(17.64)

is real, and hence there is no attenuation of either of the two waves. The phase velocity

r r

1 c
u = = =w

b me m e (17.65)

\ The phase velocity of the waves in the non-conductors is less than that in free space,
and the ‘index of refraction’, n is

m e= = r r
c
u

n (17.66)

In a non-magnetic medium, mr = 1, and

e= rn (17.67)

Note that, in general, n and e r are both functions of frequency.
In the non-conductors, the E and H vectors are in phase, and the electric and the magnetic

energy densities are equal, i.e.

e m=2 21 1
2 2

E H

\ The total instantaneous energy density = eE2 = mH2

The average total energy density = eE2
rms = mH2

rms



576 ELECTROMAGNETISM: THEORY AND APPLICATIONS

The average value of the Poynting vector:

e
m

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
2

O O O
1 1
2 2z x x z xE H ES i i

        2 2 2
r ms r ms(u ) watts/metrez zE E= =i i

e em
(17.68)

The average value of the Poynting vector is thus equal to the phase velocity u multiplied by the
average energy density.

17.5 PROPAGATION OF PLANE ELECTROMAGNETIC WAVES
IN CONDUCTING MEDIA

For a conducting medium s π 0, the wave equations (12.35) and (12.32) for a wave travelling
along the z-axis, with rC = 0, have to be solved, i.e.

ms me
⎛ ⎞∂ ∂⎛ ⎞∇ − − =⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

2
2

2
0

t t

E E
E (12.35)

ms me
⎛ ⎞∂ ∂⎛ ⎞∇ − − =⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

2
2

2
0

t t

H H
H (12.32)

The solutions of E and H vectors with sinusoidal time variations come out to be:

E = ixEOx exp [ j(w t - kz)] (17.69)

H = iy w m
⎛ ⎞
⎜ ⎟⎝ ⎠

k
EOx exp [ j (w t - kz)] = iyHOy exp [ j(w t - kz)] (17.70)

By substituting, we get
- k2 + w2me - jwms = 0

or

k2 sw me wms w me we

w m es sw m m e e we we

p m e s w p
we ll

⎡ ⎤⎛ ⎞= − = −⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦

⎛ ⎞⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎝ ⎠

⎛ ⎞ ⎡ ⎤⎛ ⎞= − =⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎝ ⎠⎣ ⎦⎝ ⎠

2 2

2
2 r r

0 r 0 r 2

2
r r

2
00

1

1 1
c

4 2
1 ,

c

j j

j j

j

(17.71)
where l0 is the wavelength in free space.

As k2 is complex, we write
k = kr - jki (17.72)

\      kr = 
m ep s

l w e

⎡ ⎤⎛ ⎞⎛ ⎞ ⎢ ⎥+ +⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

1/21/22
r r

2 2
0

2
1 1

2
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and

     ki = 
m ep s

l w e

⎡ ⎤⎛ ⎞⎛ ⎞ ⎢ ⎥+ −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

1/21/22
r r

2 2
0

2
1 1

2 (17.73)

The real part of the wave number k, i.e. kr is (2p /l), where l is the wavelength in the medium.
The imaginary part ki is the reciprocal of the distance d over which the amplitude is attenuated
by a factor of e. The quantity d = 1/ki is called the ‘attenuation distance’.

The phase velocity is

u
rk

= w
(17.74)

corresponding to an index of refraction

l l
w p l

⎛ ⎞⎛ ⎞= = = =⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠
0 0c c

u 2r rn k k (17.75)

and following Eq. (17.59):

                 
wm=
k

E
H

1/4
2

1
2 2

1 exp tan i

r

k
j

k

−
−

⎡ ⎤⎛ ⎞ ⎡ ⎤⎛ ⎞= +⎢ ⎥⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎝ ⎠⎢ ⎥ ⎣ ⎦⎝ ⎠⎣ ⎦

m s
e w e

(17.76)

the quantity [tan-1 (ki/kr)] denotes the phase of E with respect to H.
The expressions for E and H vectors are

E = ixEOx exp [ j(w t - krz) - kiz]
and

H = iyHOy 
1exp ( tan i

r i
r

k
j t k z k z

k
−⎡ ⎤⎛ ⎞− − −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
w (17.77)

where

m s
e w e

−⎛ ⎞
= +⎜ ⎟⎜ ⎟⎝ ⎠
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2 2
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E
H

(17.78)

The ratio of the electric energy to the magnetic energy is

e s
m w e

−⎛ ⎞
= +⎜ ⎟⎜ ⎟⎝ ⎠

1/22 2

2 2 2

(1/2)
1

(1/2)

E

H
(17.79)

17.6 PROPAGATION OF PLANE ELECTROMAGNETIC WAVES
IN GOOD CONDUCTORS

In Section 17.5, we studied the propagation of electromagnetic waves in conductors. So now to
define what we mean by ‘good’ conductors, we start at the values of kr and ki for conducting
media as obtained in Eqs. (17.73). In good conductors, the ratio we /s [as we have already
mentioned in Chapter 12, Section 12.5, Eqs. (12.37) and (12.39)] is much smaller than unity, i.e.



578 ELECTROMAGNETISM: THEORY AND APPLICATIONS

we
s ≤ 1

(say)
50

(17.80)

which means that the conduction current density (J = s E) must be at least 50 times greater
than the displacement current density (∂D/∂t). So we define ‘good conductors’ as those for which
the above condition is satisfied. Hence copper is a good conductor for frequencies up to about
2 ¥ 1016 Hz or to the ultraviolet.

For good conductors, Eq. (17.71) simplifies to

k2 = - jwms (17.81)
and

\ k = (1 )
2

wmswms
Ê ˆ

- = -Á ˜
Ë ¯

j j (17.82)

Hence, now    kr = ki = 
wms

2

\ d = 
2

2
2

d
l

w ms p= = (17.83)

And, from Eq. (17.59), for the plane-polarized waves

wm wm p
s exp

4k
E
H

j⎛ ⎞= = ⎜ ⎟⎝ ⎠ (17.84)

\ In good conductors, the E vector leads the H vector by p /4, whereas for the non-
conductors (i.e. dielectrics) we found that E and H are in phase. The reason for this difference is
due to the fact that for good conductors, the H vector is from the conduction current, and for
loss-less dielectrics, the H vector is produced by the displacement currents. Hence we can write
the expressions for E and H for good conductors, similar to Eqs. (17.69) and (17.70), i.e.

w
⎡ ⎤⎛ ⎞

= − −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

O exp
2 2

x x
z z

E j t
d d

E i (17.85a)

⎡ ⎤⎛ ⎞⎛ ⎞= − − −⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠ ⎢ ⎥⎝ ⎠⎣ ⎦

1/2

O exp
42 2

y x
z z

E j t
d d

s pwwmH i (17.85b)

or, if we write in terms of cosine functions:

w
⎛ ⎞ ⎛ ⎞

= − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

O exp cos
2 2

x x
z z

E t
d d

E i (17.86a)
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O exp cos
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y y
z z

H t
d d
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⎝ ⎠ ⎝ ⎠
i

pw (17.86b)
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These results are similar to those, which we have obtained for good conductors in
Chapter 15, Section 15.2. The distributions for E and H would be same as discussed there. The

quantity d derived here is the ‘skin depth (d 2 )’ of the above-mentioned section.
The amplitude of the wave is attenuated by a factor of (1/e) = 0.368 in one radian length

(l /2p), and by a factor of (1/e)2p �  2 ¥ 10-3 in one wavelength l, whereas the Poynting vector
(E ¥ H) is attenuated by (1/e)2 = 0.135 in (l /2p), and by (1/e)4p �  4 ¥ 10-6 in one wavelength
l. The attenuation is so rapid that the wave is barely noticeable. Table 17.1 shows the skin-
depth for various conductors at different frequencies. It should be noted that the attenuation in
iron is much larger compared with that in silver, even though iron is a poor conductor compared
with silver because of the fact that iron’s permeability is much higher.

Table 17.1 Skin-depth for conductors (mm)

Conductor s (mho/m) m r Skin-depth [(d 2 ) mm]
60 Hz     500 Hz      104 Hz     106 Hz

Silver 6.15 ¥ 107 1.00 8.48 2.94 0.66 0.066
Copper 5.8  ¥ 107 1.00 8.63 2.99 0.68 0.068
Aluminium 3.54 ¥ 107 1.00 10.1 3.81 0.85 0.085
Iron 1.0  ¥ 107 1000 0.65 0.22 0.05 0.005

The phase velocity

2
u

2rk
= = =w wl w

p ms (17.87)

is proportional to the square root of the frequency.
The ratio of the electric to the magnetic energy density is

e we
sm

= ≤
2

2

(1/2) 1
50(1/2)

E

H
(17.88)

and so most of the energy is in the magnetic form. This is a consequence of the medium being
‘good’ conductor which causes E /J to be small. Hence the electric field intensity is weak, but
the current density, and hence H is relatively larger.

17.7 REFLECTION AND REFRACTION OF PLANE
ELECTROMAGNETIC WAVES

So far we have studied the propagation of the electromagnetic waves in different types of infinite
continuous media. We shall now study the effects of discontinuity in the medium of propagation.
We shall investigate again the behaviour of these waves in different combinations of different
types of media, i.e. dielectrics, conductors (including good conductors) and combinations of
these. We remind ourselves that the dielectrics are non-conductors, and they may be either
magnetic or non-magnetic; we shall restrict ourselves to non-magnetic dielectrics.

We assume an ideally thin, infinitely plane interface between the two linear, isotropic and
homogeneous (LIH) media. An incident wave along ni would, in general, give rise to a reflected
wave along nr, and a transmitted wave along nt. These three waves, combined together, satisfy
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the continuity conditions for the tangential components of E and H, and for the normal
components of D and B at the interface (Figure 17.6). During the initial stages of our study, we
shall exclude the total reflection from the dielectric, and we assume the media to extend to
infinity on both the sides of the interface.

Figure 17.6 An electromagnetic wave in medium 1, incident on the interface between
media 1 and 2, giving rise to both the reflected wave in the medium 1 and the

transmitted wave in the medium 2.

Interface plane

Plane of incidence

Medium 1

Medium 2

q t

nt

n i

q i

qr

nr

For the present study we shall classify our analysis not by the different types of media
discontinuities but by the way by which the incident wave hits the interface surface of
discontinuity, i.e. (1) the incident wave meeting the interface normally; and (2) the incident
wave meeting the interface obliquely, in which case, the interference pattern produced in the first
medium, by the combination of the incident and the reflected waves would be stationary in one
direction and travelling in an orthogonal direction. The properties of such patterns are of great
practical importance in design and study of waveguides.

So before we start our study of reflection and refraction of waves, we shall remind ourselves
of the facts that when a wave meets a discontinuity in the media of propagation, then, in general,
it (the incident wave) produces a transmitted wave in the second medium and a reflected wave
which travels back in the first medium, the exact directions of propagation being decided upon
by the interface continuity conditions. We shall now consider waves incident normally on
different types of interface surfaces, starting first with a perfectly conducting surface. However,
before we start discussing each case separately, we shall state, in general terms, some
fundamental points about the laws of electromagnetic reflection and refraction, and some basic
points regarding the techniques of solving such problems.
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17.8 THE LAWS OF REFLECTION AND SNELL’S LAW OF
REFRACTION

Referring to Figure 17.6, we consider the electromagnetic wave incident on the interface, to be
both plane and plane-polarized, so that its electric field intensity is of the form

E1i = E0i exp [ jw i(t - ni ◊◊◊◊◊ r/u1)] (17.89)

where u1 is the phase velocity of the wave in the medium 1. The time t = 0, and the origin
r = 0 can be chosen arbitrarily. We, however, choose the origin at a convenient point on
the interface plane. The above equation defines a plane wave for all values of t and r, but
we shall use it only for medium 1, and when we consider normal incidence, then ni ◊◊◊◊◊ r = z
(+ve z-direction). The reflected and the refracted waves from the plane interface are also plane
and plane-polarized (obeying the same laws at all points on the interface), and are of the form

Er = E0r exp [ jwr(t - nr ◊◊◊◊◊ r/u1)] (17.90a)
and

Et = E0t exp [ jwt(t - nt ◊◊◊◊◊ r/u2)] (17.90b)

where u2 is the phase velocity of the wave in the medium 2. It should be noted that so far no
assumptions have been made about the amplitudes, phases, frequencies, and the directions of the
reflected and the refracted waves. The amplitudes E0r, E0t can be complex if required.

The characteristics of the reflected and the transmitted waves are obtained from the
interface continuity conditions that the tangential components of E and H must be continuous
across the interface, i.e. the sum of the tangential components of Ei and Er must equal that of
Et on the interface (z = 0). Similar condition holds for H. These conditions must hold for all
instants of time and at all points on the interface (z = 0),

\ w i = w r = w t (17.91)

i.e. all the three waves must be of same frequency.
Also, since these conditions hold at all the points on the interface,

⋅⋅ ⋅∴ = = t ii i r i

1 1 2u u u
n rn r n r

(17.92)

where ri is any point on the interface.
From the first two terms of the above equation

(ni - nr) ◊◊◊◊◊ ri = 0 (17.93)

Since ri lies on the interface, the vector (ni - nr) must be normal to the interface plane z = 0, i.e.
referring to the Figure 17.6,

q i = q r (17.94)

which means that the angle of reflection equals the angle of incidence. Since (ni - nr) is parallel
to n (the normal to the interface), the three vectors ni, nr and n are coplanar. These are the laws
of reflection of the waves.

The plane containing these three vectors is called the ‘plane of incidence’.
Going back to Eq. (17.92), we get

⎛ ⎞− ⋅ =⎜ ⎟
⎝ ⎠

ti
i

1 2
0

u u
nn

r (17.95)
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\ The vector in the brackets must be normal to the interface plane z = 0, and hence ni, nt

and n are coplanar, and hence all the four normal vectors ni, nt, nr and n must lie in the plane of
incidence. Furthermore, the tangential components of (ni/u1) and (nt/u2) must be equal, i.e.

ti

1 2

sinsin
u u

=
qq

(17.96)

or since the wave number b = w /u, the above equality can be expressed as

b1(sin q i) = b2(sin qt )
or

m eq b
q b m e

= = = r1 r1t 1 1

i 2 2 r2 r2

sin
sin

n
n

(17.97)

where n is the index of refraction. This is the ‘Snell’s law of refraction’. Thus the quantity
‘b sin q’ is conserved across the interface. The above laws are general, and apply to any two
media. They hold true for total reflection as well.

17.9 NORMAL INCIDENCE OF PLANE WAVES AT A
PERFECTLY CONDUCTING BOUNDARY

We consider a plane-polarized, plane wave, incident normally on a perfectly conducting sheet.
The direction of propagation is along the z-axis. The single frequency, uniform wave hits the
plane, perfect conductor at z = 0. Now, there must be a reflected wave in addition to the incident
wave, the reason being that a single travelling wave cannot satisfy the boundary condition on
the perfect conducting surface on which the E field must be zero at all instants of time. (Also no
energy can pass through the perfect conductor.) And hence all the energy from the incident wave
must be returned by the reflected wave. Hence the incident and the reflected waves would be of
equal amplitude, and together they form a standing wave pattern, whose properties we shall
study now.

In our standard mathematical notations, the incident waves of E and H representing
sinusoidal plane waves, moving towards z Æ + • are given by

w w+ + + + ++
⎛ ⎞ ⎛ ⎞= = − = = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

ˆ ˆcos , cos
c cx y
z z

E E E t B B B t

where

+
+ =

ˆ
ˆ

c
E

B (17.98)

Expressed as phasors, these are

ˆ ˆ{ } exp and { } exp
c c
w w

+ + ++
- -Ê ˆ Ê ˆ= =Á ˜ Á ˜Ë ¯ Ë ¯x y

j z j z
E E B B

As before, we write b (= the wave number) for (w /c), and omit { } for the phasors on the
understanding that all quantities are phasors. Thus

b b +
+ + + + + ++

⎛ ⎞
= = − = = − =⎜ ⎟⎜ ⎟⎝ ⎠

ˆ
ˆ ˆ ˆexp ( ), exp ( ),

cx y
E

E E E j z B B B j z B (17.99)
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This wave approaches the perfectly conducting boundary occupying the plane z = 0 from the
negative side (Figure 17.7). E and B are both tangential to the interface. At the surface of the
perfect conductor, the electric force is zero at all time, and hence there must be a reflected wave
E– such that E+ + E– = 0 at z = 0.

B or H y

E x

z

E

O

Figure 17.7 Incident E wave meeting z = 0 perfectly conducting surface, normally.

Direction of propagation

Figure 17.8 Standing wave patterns for E and B.

E+ + E–

x

z

yB+ + B–

b− +∴ = − ˆ exp ( )E E j z (17.100a)

and the associated magnetic vector B- will have the same direction as B+ (to give the propagation
towards z Æ - •) so that

b− += ˆ exp ( )B B j z (17.100b)
The total field is therefore

  b b b+ − + ++ = − − = −ˆ ˆ[exp ( ) exp ( )] 2 sinE E E j z j z jE z (17.101a)

b b b+ − + ++ = − + =ˆ ˆ[exp ( ) exp ( )] 2 cosB B B j z j z jB z (17.101b)

i.e. the travelling wave pattern has thus been replaced by a stationary pattern called a standing
wave. It is such that z = 0 is always a zero or a node in the E-pattern, and a maximum or an
anti-node in the B-pattern. Note that E+ + E- and B+ + B- are in space-quadrature; also that the
power flow in the z-direction is zero (Figure 17.8).

If we need the H wave, this can be obtained either from the B wave or the E wave using
the characteristic impedance of the medium, i.e.
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(17.102)

This is a standing wave pattern, similar to the B wave. Thus E and H patterns are mutually
perpendicular in space (i.e. in space quadrature), and related in magnitude by Z0; and they are in
time-quadrature.

For the standing wave pattern of the E vector, E = 0 on the conductor surface (z = 0) at all
t, and also for the values of bz = - np, where n is an integer.

\ Successive nodes (or zeroes) are located at

p l
b= − = −

2
n n

z (17.103)

where l is the wavelength of the pattern.
H has maxima at the conductor surface and at all points where E = 0, i.e. z = - nl/2.
Zeroes of H and maxima of E are at points where

bz = 
p− +(2 1)

2
n

or z = 
p

b
− +(2 1)

2
n

 = 
l− +(2 1)

4
n

(17.104)

\ At an instant of time, occurring twice in each cycle, all the energy is in the magnetic
field, and then 90∞ later all the energy is in the electric field.

The average value of the Poynting vector (E ¥ H) is zero at each cross-sectional plane.
\ On the average, as much energy is carried by the reflected wave as is brought by the

incident wave.
The wave produces a surface current sheet on the interface—which is a perfect conductor.

S
0

2 x
x y

E
J H

Z
+= = (17.105)

The current is in the +ve x-direction and the unit of its magnitude [given above in Eq. (17.105)]
is amps/metre width in the y-direction.

17.10 REFLECTION FROM A DIELECTRIC (WITH NORMAL
INCIDENCE)

We next consider the discontinuity due to two dielectrics, both being loss-less, of characteristic
properties m1(= m0mr1), e1(= e0er1) and m2(= m0mr2), e2(= e0er2) respectively. A wave is incident
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on the interface z = 0 normally from the region 1, the direction of propagation being the
+z-direction (Figure 17.9). The resultant pattern would be:

Medium 1

m1, e1

Medium 2

m2, e2

x
Ex+

Hy+
y

Figure 17.9 A plane wave incident on a dielectric interface.

z

in the medium 1: incident and reflected waves;
and

in the medium 2: transmitted wave only.
In the medium 1, the incident waves are

 E1+(z) = ixE10+ exp [ j (w t - b1z)] (17.106a)

H1+(z) = iyH10+ exp [ j (w t - b1z)]

              = iy
+⎛ ⎞

⎜ ⎟
⎝ ⎠

10

1

E

Z  exp [ j (w t - b1z)]  (17.106b)

where b1 = w m e1 1 , Z1 = m e1 1/ , and both the waves are travelling in the +z-direction.

The reflected waves, travelling in the -z-direction, in the medium 1 are

E1-(z) = ixE10- exp [ j (w t + b1z)] (17.107a)

H1-(z) = iyH10- exp [ j (w t + b1z)]

= iy
−⎛ ⎞

⎜ ⎟
⎝ ⎠

10

1

E

Z  exp [ j (w t + b1z)] (17.107b)

Also the transmitted waves would travel in the +z-direction, in the medium 2:

E2+(z) = ixE20+ exp [ j (w t - b2z)] (17.108a)

H2+(z) = iyH20+ exp [ j (w t - b2z)]

= iy
+⎛ ⎞

⎜ ⎟
⎝ ⎠

20

2

E

Z  exp [ j (w t - b2z)] (17.108b)

where

   b2 = w m e2 2 , Z2 = 
m
e

2

2

The unknowns in these equations are E10- and E20+, and the known specified quantity is E10+.
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The boundary conditions on the interface are:
On the plane z = 0,
(1) tangential E is continuous, i.e.

E t1 = E t2 Æ Ex1 = Ex2
and

(2) tangential H is continuous (as there is no surface current sheet), i.e.

Ht1 = Ht2 Æ Hy1 = Hy2

From the boundary conditions, we get

+ + − +
−⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

2 2 1
20 10 10 10

2 1 2 1

2
and

Z Z Z
E E E E

Z Z Z Z
(17.109)

The solution of the problem is:
In the medium 1:

b b w+
⎡ ⎤−⎛ ⎞= − +⎢ ⎥⎜ ⎟+⎝ ⎠⎣ ⎦

2 1
1 10 1 1

2 1
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E j z j z j t

Z Z
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10 2 1
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1 2 1
exp ( ) exp ( ) exp ( )b b w+ È ˘-Ê ˆ Ê ˆ= - -Í ˙Á ˜Á ˜ +Ë ¯Ë ¯ Î ˚

x
E Z Z

j z j z j t
Z Z Z

H i (17.110b)

b w+
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b w+
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Z Z
H i (17.110d)

It should be noted that, in general, any discontinuity at a boundary will cause a reflected wave.
In the present problem, the fraction of the incident wave, that is reflected, is
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E

                             = rE (the reflection coefficient) (17.111)

The above equation indicates that at the interface between two infinite dielectrics, the reflections
can be eliminated only if Z2 = Z1. The fraction of the incident wave that is transmitted into the
medium 2 is

                
+

+
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+
2 2

1 2 1

2 Z
Z Z

E
E

 = tE (the transmission coefficient) = 1 + rE (17.112)

Next we have a look at the energy associated with each wave.
\ The Poynting vector associated with the incident radiation is

q + +
+ + += = =

2 2
1 10

1 av 1 1
1 1

cosz z z

E

Z Z

E
S i E H i i (17.113)
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q being the time-phase angle between E and H vectors of the incident waves. For the present
case, Ex and Hy are in time-phase, and hence q = 0.

The Poynting vector associated with the reflected radiation is

+
−

⎡ ⎤ −⎛ ⎞⎢ ⎥= − ⎜ ⎟+⎢ ⎥ ⎝ ⎠⎣ ⎦

2 2
10 2 1
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S i (17.114)

and q = 180∞ for this wave travelling in the -z-direction.
\ The total Sav in the medium 1 = S1+av + S1-av
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In the medium 2:
The average value of the Poynting vector for the transmitted wave:
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\ There is no energy dissipation in the dielectrics at the interface.

17.11 THREE DIELECTRICS (NORMAL INCIDENCE)

The same method as discussed in Section 17.10 holds for any number of dielectrics. We consider
three media as shown in Figure 17.10. A uniform plane wave: Ei = ixE1+ exp [ j (w t - b1z)] is
incident from z = -• on the first interface between the media 1 and 2. There would be
transmitted and reflected waves at each interface for both E and H vectors, which would be
mutually perpendicular, so that the resulting pattern would be given by the equations as stated
below:

Ex1 = ix [E1+ exp (-jb1z) + E1- exp ( jb1z)] exp ( jw t) (17.117a)
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Hy1 = iy ( ) ( )1 1
1 1

1 1
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Ex2 = ix [E2+ exp (-jb2z) + E2- exp ( jb2z)] exp ( jw t) (17.117c)

Hy2 = iy ( ) ( )2 2
2 2
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E E
j z j z

Z Z
exp ( jw t) (17.117d)

Ex3 = ixE3+ exp (- jb3z) exp ( jw t) (17.117e)

Hy3 = iy
+⎛ ⎞

⎜ ⎟
⎝ ⎠

3

3

E
Z  exp (- jb3z) exp ( jw t) (17.117f)

The unknowns are E1-, E2+, E2-, and E3+.

The boundary conditions at the two interfaces give:

(1) On z = 0, Ex1 = Ex2 and Hy1 = Hy2, from which we get

E1+ + E1- = E2+ + E2- and E1+ - E1- = 
⎛ ⎞
⎜ ⎟
⎝ ⎠

1

2

Z
Z

(E2+ - E2-)

where

Z1 = 
m
e

1

1
and Z2 = 

m
e

2

2

(2) On z = l, Ex2 = Ex3 and Hy2 = Hy3, from which we get

E2+ exp (- jb2l) + E2- exp (+ jb2l) = E3+ exp (- jb3l)
and

E2+ exp (- jb2l) - E2- exp (+ jb2l) =
⎛ ⎞
⎜ ⎟
⎝ ⎠

2

3

Z
Z

E3+ exp (- jb3l)

where
w pb w m e l

w pb w m e l

= = =

= = =

2 2 2
2 2

3 3 3
3 3

2
u

2
u

Figure 17.10 Plane wave in three dielectrics.
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From these equations, the four unknowns come out to be:

( ) ( ) ( )b+
−

⎡ ⎤−⎛ ⎞⎛ ⎞= − + + −⎢ ⎥⎜ ⎟⎜ ⎟ +⎝ ⎠ ⎝ ⎠⎣ ⎦
3 21

1 2 1 2 1 2
3 2

exp 2
Z ZE

E Z Z Z Z j l
K Z Z

(17.118a)

            +
+ = 1 2

2
2E Z

E
K

(17.118b)

            ( )b+
−

−⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟ +⎝ ⎠ ⎝ ⎠
3 21 2

2 2
3 2

2
exp 2

Z ZE Z
E j l

K Z Z
(17.118c)

            ( )b b+
+

⎡ ⎤ ⎡ ⎤= − −⎢ ⎥ ⎣ ⎦+⎣ ⎦
1 2 3

3 2 3
3 2

4
exp

( )
E Z Z

E j l
K Z Z

(17.118d)

where

( ) ( ) ( )b
⎡ ⎤−⎛ ⎞= + + − −⎢ ⎥⎜ ⎟+⎝ ⎠⎣ ⎦

3 2
2 1 2 1 2

3 2
exp 2

Z Z
K Z Z Z Z j l

Z Z
(17.118e)

Let us consider a special case of a slab of dielectric in a homogeneous medium of infinite
extent, like a sheet of glass or polystyrene in free space (or air), then e1 = e3 and Z3 = Z1, and
therefore, from Eqs. (17.118),

( ) ( )
( ) ( ) ( )

2 2
2 1 21

2 2
1 2 1 2 1 2

1 exp 2

exp 2

Z Z j lE
E Z Z Z Z j l

−

+

⎡ ⎤− − −⎣ ⎦=
− − + −

b

b
(17.119)

i.e. the reflections will be eliminated, if Z2 = Z1, or

exp (- j2b2l) = 1 or 2b2l = 2np

Since b2 = w /u2 = (2p f )/( fl2), the required thickness of the slab = l, must be:

lp
b= = 2

2 2

nn
l

where l2 is the wavelength in the medium 2, and n is an integer, i.e. all the reflections are
eliminated when the thickness of the dielectric plate is one-half the wavelength or its multiple.

Going back to the general case of three dielectrics again, from the first equation of
(17.118), the required condition for no reflections gets complicated by the presence of the
phase angle term exp (- j2b2l) in part of the numerator. So in this case a double constraint is
required, i.e.

exp (- j2b2l) = ± 1, which implies that:

2b2l = 2np or 2b2l = (2n + 1)p

so that l = (2n + 1)l2/4 (in the latter case) (17.120)

i.e. l has to be a quarter wavelength [or (3/4)l2, (5/4)l2, ...) and the modified ratio then becomes

 2 21 1
2 1 3 2 1 3

1 2
( ) ( )

E K
Z Z Z Z Z Z

E K
−

+
= = − + (17.121)
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where

K1 = (Z2 - Z1) - (Z2 + Z1)
−⎛ ⎞

⎜ ⎟+⎝ ⎠
3 2

3 2

Z Z
Z Z

K2 = (Z2 + Z1) - (Z2 - Z1)
−⎛ ⎞

⎜ ⎟+⎝ ⎠
3 2

3 2

Z Z
Z Z

so that for the condition of no reflection,

=2 1 3Z Z Z (17.122)

Thus, for no reflections, the required conditions are:

(1) the thickness l of the second medium must be a quarter wavelength as measured in that
medium.

(2) the characteristic impedance of the second medium must be equal to the geometric
mean of the characteristic impedances of the other two media.

It should be noted that when the reflections are eliminated, the whole energy is transmitted,
since we are considering loss-less media. A practical application of this technique is in the
reduction of radar reflections. But the limitation of this method is that it eliminates, though
completely, one frequency only. Another application of this technique is in optics, where the
camera lenses are coated with one-quarter wavelength thick coatings to eliminate certain colour
lights.

17.12 THREE REGION PROBLEM WITH A THIN
CONDUCTING LAYER (WITH NORMAL INCIDENCE)

This configuration will be shown to be another way of eliminating reflections, but here we shall
not transmit all the energy as in the previous arrangement, and instead absorb it. We consider the
general problem as follows.

A plane-polarized and plane electromagnetic wave is incident normally on a perfectly
conducting surface. A thin conducting sheet is placed at a distance l from this surface and
parallel to it (Figure 17.11). This sheet is so thin that it can be assumed to be a plane, and its
surface resistivity is rS W/metre2. The surface of the perfect conductor lies on the plane z = l as
shown in the coordinate system of the figure.

Figure 17.11 A plane wave normally incident on a thin conducting sheet, placed in
front of a perfectly conducting plane.

Medium 1 (m0, e0)

S

E

O

x

z = l
z

s       •
Medium 2
 (m0, e0)

Thin conducting sheet of
surface resistivity rS

Medium 3 (Perfect conductor)
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The incident wave is = E i+ = ixE1+ exp [ j (w t - bz)]
where b = w /u = 2p /l, l = wavelength, and f = w /(2p) = frequency of repetition = u/l = c/l,
since it is free space in this problem.

Across the conducting sheet (of finite surface resistivity), the wave will be partly reflected
and partly transmitted.

\ In both the regions 1 and 2, there will be both the reflected and the transmitted waves.
But there will be no transmission through the perfectly conducting surface z = l (of the region 3).
The electric and the magnetic waves in the two regions would be:

E1x = ix [E1+ exp (- jbz) + E1- exp (+ jbz)] exp ( jw t) (17.123a)

E2x = ix [E2+ exp (- jbz) + E2- exp (+ jbz)] exp ( jw t) (17.123b)

H1y = iy [H1+ exp (- jbz) + H1- exp (+ jbz)] exp ( jw t) (17.123c)

H2y = iy [H2+ exp (- jbz) + H2- exp (+ jbz)] exp ( jw t) (17.123d)

The relationships between E and H are given by:

m e+ − + −

+ − + −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = = − = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

1 1 2 2
0 0 0

1 1 2 2
/

E E E E
Z

H H H H

                                       (∵ Z1 = Z2 = Z0)
Hence,

1+ 1
1

0 0
= exp (  ) exp (  ) exp ( )b b w-È ˘Ê ˆ Ê ˆ- - +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

y y
E E

j z j z j t
Z Z

H i (17.124a)

2+ 2
2

0 0
= exp (  ) exp (  ) exp ( )b b w-È ˘Ê ˆ Ê ˆ- - +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

y y
E E

j z j z j t
Z Z

H i (17.124b)

The unknowns at this stage are: E1-, E2+, E2-. To evaluate these, the requisite boundary conditions are:

(1) On the perfectly conducting surface z = l, E2x = 0
(2) On the conducting sheet z = 0

(a) E1x = E2x and (b) 
C

d◊Ú H lv  = enclosed current (Figure 17.12), or — ¥ H = J;

\ (H1y - H2y)Dw = SI
w

⎛ ⎞
⎜ ⎟
⎝ ⎠

Dw

where (IS/w) is the current in the conductor [in the x-direction perpendicular to the plane of the
paper (Figure 17.12)] per unit width.

\ (H1y - H2y) = 1

S

xE
r

The three relevant equations obtained are:

E2x = 0 = E2+ exp (– jbl) + E2- exp (+ jb l) (17.125a)

E1+ + E1- = E2+ + E2- (17.125b)

r
+ − + − + −+⎛ ⎞ ⎛ ⎞− − − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
1 1 2 2 1 1

0 0 0 0 S

E E E E E E
Z Z Z Z (17.125c)
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From Eqs. (17.125a and b), we get

1 1
2 1 exp ( 2 )

E E
E

j lb
+ -

+
+

= - -
and

1 1
2 exp ( 2 )

1 exp ( 2 )
E E

E j l
j l

bb
+ -

-
+È ˘= - -Í ˙- -Î ˚

Substituting these values for E2+ and E2- in Eq. (17.125c),

1 1
1 1 1 exp ( 2 )b

+ -
+ -

+
- - - -

E E
E E

j l
1 1 0

1 1
S

exp ( 2 ) ( )
1 exp ( 2 )

bb r
+ -

+ -
+È ˘ Ê ˆ- - = +Á ˜Í ˙- - Ë ¯Î ˚

E E Z
j l E E

j l

Solving this equation for E1-,

1 0 S
1

S 0

[exp ( 2 ) ( 2 ) ]
2 [1 exp ( 2 )]

aE j l Z Z
E

Z j l
+

−
− − −

=
+ − −

b r
r b

To eliminate reflections, E1- = 0, i.e. [exp (– j2b l)(Z0
 - 2rS) - Z0)] = 0.

This is possible, only if exp (– j2b l) is real [i.e. = cos (2b l) - j sin (2b l)].

\ sin (2bl) = 0, i.e. (2bl) = ± p; or l = p /(2b) = (p /2){l /(2p)} = l /4.

\ l must be = l /4, or more generally = (2n + 1)l /4, and (Z0
 - 2rS) - Z0 = 0, or rS = Z0.

Thus all the incident power is absorbed by the conducting sheet only if the sheet has a surface
resistivity equal to Z0, and is placed one-quarter wavelength from a perfectly conducting plane.

17.13 OBLIQUE INCIDENCE OF PLANE WAVES
So far we have considered a number of problems where the plane wave meets the interface
of discontinuity normally, in which case the transmitted wave does not change its direction of
propagation. We have seen in Section 17.8 that when the incident wave meets the interface
of discontinuity, then the transmitted wave in the medium 2 changes its direction, i.e. the angle
that the direction of propagation of the transmitted wave makes with the normal to the interface
is different from the angle made by the direction of propagation of the incident wave with the
same normal to the interface; thus, referring to Figure 17.6, q i π qt.

y
C

H2y Dw

x
O

z

Figure 17.12 A closed contour C in the plane z = 0 (view of the y-z plane). Induced currents
are in the x-direction into the plane of the paper.

H1y
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Figure 17.13 Coordinate system used for reflection and refraction of waves.

Medium 1
(m1, e1)

x

y

z

Medium 2
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Interface plane of discontinuity

O

A≤
P

A

A≤

P¢¢

OA = x i = (x sin q i + z cos qi), AP = x, OP = z,
OA¢ = x t, OA≤ = x t

q i = – AOP  = angle of incidence
q r = – A¢OP = angle of reflection, q i = qt

q t = – A≤OP = angle of transmission
Arrows on the four rays indicate the unit vectors in the corresponding directions, i.e.

on OA—ni; on OA¢—nr; on OA≤—nt, and
on OP—n (the normal to the interface of discontinuity).

When the incident wave is normal to the interface, the mathematical representation of the
orientation of the E and H vectors can always be simplified by a suitable choice of the
coordinate system. But this is not so for the oblique incidence of the waves. For this purpose, we
have to carefully define the plane of incidence (which we have already done before, but for
convenience and clarity, we recapitulate here).

The plane of incidence is defined by a normal to the surface on which the wave impinges
and a ray following the direction of propagation.

Following the notation of the direction vectors of the incident, the transmitted and the reflected
waves as ni, nt, nr and n (= normal to the interface), these were all proved to be coplanar, and the
plane containing these vectors is being defined as the plane of incidence. We also remember that
the E and H vectors in a plane electromagnetic wave are perpendicular to the direction of
propagation and to each other. The E vector of the incident wave can then be oriented in any
direction perpendicular to the vector ni. It is a normal practice to consider two orientations of the
E vector, i.e. either E is parallel to the plane of incidence or E is normal to the plane of
incidence. In fact any incident wave can be resolved into these two components. So we shall
discuss the behaviour of the waves with these two orientations separately in different sections.
However now the direction of propagation is no longer along a coordinate axis direction, and
hence the equations for the three waves (i.e. the incident, the reflected and the transmitted) will
now be somewhat more complicated, and the expressions for the exponents longer. Hence, if we
choose an arbitrary point (x, z) on the direction of propagation of the wave, the equations for the
waves can be written as (with respect to Figure 17.13, and following the results of Section 17.8)
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Ei = E0i exp [ j{w t - b1(x sin q i + z cos q i)}] (17.126a)

  Er = E0r exp [ j{w t - b1(- x sin qr + z cos qr)}] (17.126b)

Et = E0t exp [ j{w t - b2(x sin qt + z cos qt)}] (17.126c)

17.13.1 Oblique Incidence: Incident Wave Polarized with Its E
Vector Normal to the Plane of Incidence

The E and H vectors of the incident wave are oriented as shown in Figure 17.14. Both the media
are assumed to be isotropic and loss-less; and hence the E vectors of the reflected as well as the
transmitted waves would also be normal to the plane of incidence as shown in the figure. The
three waves can be written as

Figure 17.14 The incident, reflected and transmitted waves, when the incident wave has its E
wave polarized normal to the plane of incidence.

(Note: All angles and lengths follow the same relationships as defined in Figure 17.13.)
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Medium 1
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Ei = E0i exp [ j{w t - b1(x sin q i + z cos q i)}] (17.126a)

  Er = E0r exp [ j{w t - b1(- x sin qr + z cos qr)}] (17.126b)

Et = E0t exp [ j{w t - b2(x sin qt + z cos qt)}] (17.126c)

where in terms of the lengths of the rays xi, xr, xt, these are E0i exp [ j (w t - b1xi)], E0r exp [ j (w t
- b1xr)], and E0t exp [ j (w t - b2xt)] respectively.

We now evaluate E0r and E0t in terms of the known E0i from the continuity conditions on
the interface z = 0. The other unknowns H0r and H0t can then be obtained from the characteristic
impedance relations between E and H vectors.

The interface continuity conditions to be used for evaluating the unknowns are:

1. The tangential E is continuous across z = 0.
2. The tangential H is continuous across z = 0, since there is no surface current on the

interface.
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\ These conditions have to be met for all x and at all t.

\ E0i + E0r = E0t (17.127)

(since E vector is parallel to the interface plane, as can be seen from Figure 17.7)

and
H0i cos qi + H0r cos qr = H0t cos qt (17.128)

Now,
m m wm
e m e w m e

= = = =0i 1 1 1
1

0i 1 1 1 1 1

E
Z

H

                                
wm
b= 1

1
Similarly,

wm wm
b b= =0r 0t1 2

0r 1 0t 2
and

E E
H H

(17.129)

So Eq. (17.128) becomes

b bq qm m
⎛ ⎞ ⎛ ⎞− =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1 2
0i 0r i 0t t

1 2
( ) cos cosE E E (17.130)

Now,
wb w m e w m m e e w m e m e ⎛ ⎞= = = = ⎜ ⎟⎝ ⎠

1 1 1 0 r1 0 r1 0 0 r1 r1 1c
n

and similarly b2 =
w⎛ ⎞

⎜ ⎟⎝ ⎠c
n2, and hence Eq. (17.130) becomes
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0i 0r i 0t t

1 2
cos cos

n n
E E E (17.131)

Hence, combining Eqs. (17.131) and (17.127), we get
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1 20r
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(17.132a)
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(17.132b)

where the subscript N indicates that E0i is normal to the plane of incidence. These equations
[(17.132a and b)] are two of the ‘Fresnel’s equations’. The other two will be deduced in the next
section. The Fresnel’s equations state the ratios of the amplitudes of the incident, reflected and
the transmitted waves. They apply to any two media, and we shall find that they are valid even
for total reflection.
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17.13.2 Oblique Incidence: Incident Wave Polarized with Its E
Vector Parallel to the Plane of Incidence

In this case the E vectors of all the three waves would lie in the plane of incidence as shown in
Figure 17.15, and the H vectors would be normal to this plane and parallel to the interface plane
of discontinuity between the dielectrics. We have again to use the similar interface continuity
conditions, i.e. the continuity of tangential E and tangential H on the plane z = 0.

Figure 17.15 The incident, reflected, and transmitted waves, when the incident wave has its E
wave polarized in the plane of incidence.

(Note: All the angles and the lengths follow the same relationships as in Figures 17.13 and
17.14. All subsequent similar figures in this chapter follow the same conventions as in these

three diagrams, unless otherwise specifically stated.)
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and
(E0i + E0r) cos qi = E0t cos qt (17.134)

Solving these two equations, as in the previous section, with the used substitutions for b in terms
of the indices of refraction,
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where the subscript P stands for E0i being parallel to the plane of incidence. The four equations
(17.132) and (17.135) are known as the ‘Fresnel’s equations’. When qi = qt = 0, we get the normal
incidence of the incident wave, and the plane of incidence becomes indeterminate, and the pairs
of equations (17.132) and (17.135) become identical; i.e.

1 2

1 20r
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1 2

n n

E
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⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
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(17.136b)

17.14 REFLECTION AND REFRACTION AT THE INTERFACE
BETWEEN TWO NON-MAGNETIC DIELECTRICS
(LOSS-LESS)

When we have an interface between two non-magnetic dielectrics, then mr1 = mr2 = 1, and then the
equation for the Snell’s law of refraction [Eq. (17.97)] becomes

q e
q e

= =t 1 r1

i 2 r2

sin
sin

n
n

(17.137)

It should be noted that the index of refraction [Eq. (17.66)] would always be a number equal to
or greater than unity. Also, the larger angle is in the medium with the lower index of refraction.

Considering a wave polarized with its E vector normal to the plane of incidence, the
Fresnel’s equations are:

q q
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(17.138a)
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(17.138b)

It is seen that (E0t/E0i)N is always real and positive. This means that at the interface, the
transmitted wave is always in phase with the incident wave. On the other hand (E0r /E0i)N can be
either positive or negative depending on the value of (n1/n2). If, for example, (n1/n2) > 1, then
qt > q i, and cos q i > cos qt. On the other hand, if (n1/n2) < 1, then qt < qi, and cos qi < cos qt.
Hence the reflected wave is either in phase with the incident wave at the interface of discontinuity if
n1 > n2, or is 180∞ out of phase if n1 < n2. Both these types of reflections are shown in Figure 17.16.
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Next we consider the incident wave polarized with its E vector parallel to the plane of
incidence. In this case, the Fresnel’s equations become

  

q q

q q
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i t

20r

0i 1P
i t
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n
nE

E n
n
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(17.139a)
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(17.139b)

The second ratio (called the transmission coefficient) is again positive, which means that the
incident Ei wave and the transmitted Et wave are in phase (similar to the previous case, when E
was normal to the plane of incidence).

But the reflection ratio (for E0r) can be either positive or negative, i.e. Er and Ei can be
either in phase or 180∞ out of phase (Figure 17.17).

Figure 17.16 The relative phases, at the interface, of E in the transmitted and the reflected
waves for n2 > n1 and n2 < n1 with E1oi normal to the plane of incidence.
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The E0r will be in-phase with E0i at the interface, if

q q⎛ ⎞ − >⎜ ⎟
⎝ ⎠

1
t i

2
cos cos 0

n
n

(17.140)

But
q
q= t1

2 i

sin
sin

n
n

(Snell’s law)

\ if sin qt cos qt - sin qi cos qi > 0

or sin 2qt - sin 2qi > 0

or if sin (qt - qi) cos (qt + qi) > 0 (17.141)

this inequality is satisfied,

either if qt > qi and (qt + qi) < p /2
or if qt < qi and (qt + qi) > p /2 (17.142)

Thus the phase of the reflected wave does not depend only on the ratio of the refractive
indices, i.e. (n1/n2); it also depends on both qt and qi. The ratio (E0r /E0i) can be either positive or
negative, both for n2 > n1 and for n2 < n1, as seen in Eq. (17.142).

These ratios have been plotted, i.e. the reflected and the transmitted ratios for both the
orientations (E vector normal to the plane of incidence, and then parallel to the plane of
incidence) in Figure 17.18.

17.15 BREWSTER ANGLE AND TOTAL REFLECTION

From the discussion of Section 17.14, it is seen that in the polarization of the E vector parallel
to the plane of incidence, there is an angle of incidence, called the ‘Brewster angle’, for which
there is no reflected wave. This is seen from Eq. (17.141), when

Figure 17.17 Graphs of Ei, Er, Et at normal incidence of the air-glass interface.
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Figure 17.18 The ratios (E0t/E0i) and (E0r/E0i) as functions of the angle of incidence q i for
n1/n2 = 1.0/1.5, for (a) E vector normal to the plane of incidence; and for

(b) E vector parallel to the plane of incidence.
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sin (q t - q i) cos (q t + q i) = 0

this gives the condition, which happens (i.e. no reflected wave) either when q i = q t = 0 or when
q t + q i = p /2.

The first condition is wrong because this has been derived from the inequality (n1/n2)
cos q i - cos q t > 0 being multiplied by sin q i which is zero when qi = 0.

\ The condition for zero reflection is

q i + q t  = p
2

(17.143)

This means that the conditions of continuity are satisfied by only two waves (for this situation),
i.e. the incident wave and the transmitted wave as there is no reflected wave. This also implies
that for this incident angle (= q iB), there would be a reflected wave only if the incident wave is
polarized with its E vector normal to the plane of incidence. For this purpose, this angle of
incidence (which is usually called the Brewster’s angle) is also called the ‘Polarizing angle’,
since an unpolarized wave incident on an interface at this angle is reflected as a polarized wave
with its E vector normal to the plane of incidence. This angle is diagrammatically shown in
Figure 17.19.

We shall now derive the expression for the Brewster’s angle in terms of the media
parameters. We start from the expression for the reflection ratio for the case of polarization with
the E vector parallel to the plane of incidence, i.e. Eq. (17.139), which is
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Figure 17.19 Brewster angle for air to glass and for glass to air.
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(17.139a)

and considering the more general expression of Section 17.13.2 (which imposes no constraint on
the permeability of the media), i.e. Eq. (17.135) which states:
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(17.135a)
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Since n1 = m er1 r1  and n2 = m er2 r2 , substituting in the above equation, and multiplying the

above equation by m e0 0 , we get

m e m e
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m e m e
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The required condition for no reflection is
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⎝ ⎠ ⎝ ⎠ ⎝ ⎠
(17.144)

From the Snell’s law [Eq. (17.97)],

sin qt = 
m eq qm e
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1 1
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2 2
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Simplifying Eq. (17.144), and substituting for qt ,

(m1e2) cos2q i = (m2e1) 21 1
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and

cos2q i = e1
2 2 1 1

2 2
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1/2
1 2 1 2 2 1

i iB
1 2 2 1 1

( )
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( )
− −⎡ ⎤∴ = =⎢ ⎥−⎣ ⎦

e m e m eq qe m e m e (17.145c)

This q iB is the Brewster’s angle. For loss-less, non-magnetic dielectrics, m1 = m2 = m0, this angle
becomes
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q iB = tan-1 e
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(17.146)

We shall now derive the Brewster’s angle from the impedance considerations. This is
the condition of ‘perfect matching’. For this derivation, we refer to the equations of the
Section 17.13.2 and Figure 17.15 of the same section. From that figure, the components of
characteristic impedances from the incident and the transmitted waves are obtained as

i 0i i
i 0i i
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q q (17.147a)
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q q (17.147b)

For perfect matching,

Z iz = Z tz (17.148)

or

Z0i cos q i = Z0t cos qt (17.149)

We have

Z0i = 
m
e

1

1
and Z0t = 

m
e

2

2

\ From Eq. (17.149), we obtain
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From the Snell’s law [Eq. (17.97)],
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\ Substituting in the above, and squaring and cross-multiplying

( m1e2)(1 – sin2q i) = m2e1
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which is the same as Eq. (17.145a).
Next we write the reflection coefficient ratio of Eq. (17.135) in terms of the characteristic

impedances, i.e.
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This is a more useful form to derive the condition for perfect matching from impedance
considerations.

The Brewster’s angle corresponding to the parallel magnetic field (i.e. parallel to the plane
of incidence), can also be similarly obtained, this being useful in radio wave reflections.

Before we go on to discuss the next topic of total reflection, we shall define the energy
flow across the present interface. The average energy flow (or flux) per unit area in the incident
wave is given by the average value of the Poynting vector as shown in Eq. (17.68). Hence,
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where ni, nr, and nt are the unit vectors in the directions of incidence, reflection, and transmission
respectively.

The coefficients of energy reflection R and energy transmission T are defined as the ratios
of the average energy fluxes per unit time and per unit area at the interface, i.e.
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where n is the unit vector normal to the interface.
If we consider the interface between two loss-less, non-magnetic dielectrics, then from the

Fresnel’s equations, we have
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As we are considering loss-less dielectrics, in both the cases, R + T = 1, as all the energy would
be conserved.

At the Brewster’s angle q iB [defined by Eq. (17.146)],

RP = 0 and TP = 1

17.15.1 Total Reflection

According to the Snell’s law,

t 1 1 1

i 2 2 2

sin
sin

n
n

= =
q m e
q m e (17.154)

If (m1e1) > (m2e2), then sin qt can be > 1, for a real value of sin q i (which is apparently a
mathematically absurd result). The critical angle of incidence for which sin qt = 1, and qt = p/2,
is

q = 2
ic

1
sin

n
n

(17.155)

Experimentally it has been observed that when q i ≥ q ic, the wave starting in the medium 1 and
incident on the interface, is totally reflected back in the medium 1 (Figure 17.20). This
phenomenon is called the ‘total reflection’, and does not depend on the orientation of the E
vector of the incident wave. For the light, propagating in glass with an index of refraction of 1.6,
the critical angle of incidence is 38.7∞. It should be noted that the Snell’s law, the laws of
reflection and refraction, and the Fresnel’s equations are all applicable to the total reflection (by
disregarding the fact that sin qt > 1 for the time being, and writing as) i.e.
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(17.156)

where n1 > n2.
Let us consider the incident wave

E0i exp [ j{w t - b1(x sin q i + z cos q i)}]

And the transmitted wave

E0t exp [ j{w t - b2 (x sin q t + z cos q t)}]

So now the question is: what does it mean if sin q t > 1?

Let b sin q t = g, then b cos q t = b 2
t1 sin q−  = ± ja

\ The transmitted wave becomes

E0t exp [ j(w t - g2x) exp (±a z)]

which means that the wave is travelling only in the x-direction (i.e. along the interface of the
discontinuity), i.e. a surface wave, decreasing [or increasing for exp (+a z)] exponentially in the
z-direction—normal to the plane z = 0. To understand this expression, we consider, in a more
rigorous manner the expressions for the reflected and the transmitted waves when the E vector is
normal to the plane of incidence, i.e.

E i = iyE0i exp [ j{w t - b1(x sin q i + z cos q i)}]

   E r = iyE0r exp [ j{w t - b1(-x sin q r + z cos q r)}]

 E t = iyE0t exp [ j{w t - b2 (x sin q t + z cos q t)}]

Figure 17.20 Total reflection.
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From the Fresnel’s equations (17.132),
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For non-magnetic, loss-less dielectrics,

m1 = m2 = m0 and cos q t = - j
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Substituting in Eqs. (17.132) and simplifying,

q q

q q

2
2 2

i i
10r

20i N
2 2

i i
1

cos sin

cos sin

n
j

nE
E

n
j

n

⎛ ⎞+ − ⎜ ⎟⎝ ⎠⎛ ⎞ =⎜ ⎟⎝ ⎠ ⎛ ⎞− − ⎜ ⎟⎝ ⎠

q

q q

0t i

20i N
2 2

i i
1

2 cos

cos sin

E
E

n
j

n

⎛ ⎞ =⎜ ⎟⎝ ⎠ ⎛ ⎞− − ⎜ ⎟⎝ ⎠
Rationalizing, we get
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On further simplifying, these expressions finally reduce to:
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and
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(17.157b)

It should be noted that the amplitude of the reflected wave is equal to the amplitude of the
incident wave, so that the coefficient of reflection R is equal to unity. The energy is totally
reflected, and the net flux of energy through the interface is zero.

From the above equations, it is also seen that the transmitted wave E0t is not zero, though
the net flux of the energy across the interface is zero. The medium 2 can be equated to a pure
inductance, the average power to which is zero (the power flow being oscillatory, oscillating one
way and then the other), but there is still a current (reactive type) through the inductance.

The transmitted wave is

2
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(17.158)

which travels unattenuated parallel to the interface. Its wavelength in the x-direction (parallel to
the interface) is

l l
l q q= =0 1

1 i isin sinx n
(17.159)

where lx is the distance along the x-axis between two neighbouring equiphase points in the
incident wave.

This result that the wave travels unattenuated parallel to the interface is quite remarkable.
The question as to whether the transmitted wave extends to the other side of the interface cannot
be answered on the basis of the present discussion, which is based on the assumption that the
incident wave extends to infinity. In reality, what happens is that the incident ray, instead of
being reflected abruptly at the interface, penetrates into the medium 2, where it is bent back into
the medium 1. The transmitted wave is damped exponentially in the direction normal to the
interface (the z-direction), in such a way that its amplitude reduces by a factor e over a distance,
which is

2
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2 sin 1

z

n
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l
d

p q

=
⎡ ⎤⎛ ⎞⎢ ⎥−⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

(17.160)
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It should be noted that the critical angle qc [= sin-1 (n2/n1)] is somewhat larger than the Brewster
angle q iB [= tan-1 (n2/n1)]. For the glass-air interface, where the refractive index of the glass is 1.6,
qc = 38.7∞ and q iB = 32∞.

17.15.2 Reflection and Refraction, and Fresnel’s Equations in Total
Reflection

It is impossible to satisfy the continuity conditions of the tangential E and H at the interface of
discontinuity, with only the incident and the reflected waves. So we are forced to conclude that
there would be some sort of transmitted wave, of a rather special nature, since it is not observable
under ordinary conditions. It must, of course, satisfy the general wave equation for the non-
magnetic dielectrics, i.e.

m e
⎛ ⎞∂ ∂ ∂

+ = ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

2 2 2
t t t

0 22 2 2

E E E

x z t
(17.161)

(In our coordinate system, for the configurations we have been considering, there is no variation
in the y-direction, i.e. ∂/∂y = 0). The incident wave has been defined as

Ei = E0i exp [ j{w t - b1(x sin q i + z cos q i)}] (17.162)

The reflected wave can be written as

E r = E0r exp [ j(w t - b1x x + b1zz)] (17.163)

where E0r, b1x, b1z are unknown constants. The reflected wave would have the same angular
frequency w as the incident wave. Let the transmitted wave be written as

Et = (ixE0tx + iyE0ty + izE0tz) exp [ j(w t - b2x x + b2zz)] (17.164)

where E0tx, E0ty, E0tz, b2x, b2z are also unknown constants. Again there is no variation along the
y-direction. The H vectors are represented similarly in which the letter E is replaced by H, and
the origin of the coordinate system is chosen on the interface plane z = 0, as shown in
Figure 17.6.

First, we evaluate the wave numbers. On the interface z = 0, the exponents must be equal
for Ei and Er.

\ b1x = b1 sin q i = 
p
l

⎛ ⎞
⎜ ⎟
⎝ ⎠

1

0

2 n
sin q i (17.165)

To evaluate b1z, substituting in the wave equation in the medium 1,

pb b m e w l
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(17.166)

\
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2
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\ b1z =
p
l

⎛ ⎞
⎜ ⎟
⎝ ⎠

1

0

2 n
cos q i = b1 cos q i (17.167)

\ Er = E0r exp [ j{w t - b1(x sin q i - z cos q i)}] (17.168a)
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which is a plane wave reflected from the interface at an angle equal to the angle of incidence.

FOR THE TRANSMITTED WAVE

Again equating the exponents of the incident and the transmitted waves on the interface z = 0,
we have

b 2x = b1 sin q i = 
p
l

⎛ ⎞
⎜ ⎟
⎝ ⎠

1

0

2 n
sin q i (17.168b)

To evaluate b2z, using the wave equation (17.161) for Et
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(17.169)

\ The transmitted wave is
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(17.170)

The sign before the z-term of the exponent is -ve, because E cannot become infinite as
z Æ •.

Note that
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(17.171)

Next we evaluate the amplitudes of E and H in the reflected and the transmitted waves. We take
the incident E wave normal to the plane of incidence. Hence the reflected and the transmitted E
waves will also be normal to the plane of incidence, i.e.

Ei = iyE0i exp [ j(w t - b1ni ◊◊◊◊◊ r)] (17.172a)

Er = iyE0r exp [ j(w t - b1nr ◊◊◊◊◊ r)] (17.172b)

Et = iyE0t exp [ j(w t - b 2x x - b 2zz)] (17.172c)

writing the exponents in a more compact form, ni and nr being the unit vectors along the ray of
incidence and the ray of reflection respectively; and b2x and b2z are now known quantities.

For the H vector, H is now in the plane of incidence in the incident and the reflected
waves, and will have both x- and z-components, i.e.

Hi = H0i(ix cos q i + iz sin q i) exp [ j(w t - b1ni ◊◊◊◊◊ r)] (17.173a)
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Hr = H0r(- ix cos q i + iz sin q i) exp [ j(w t - b1nr ◊◊◊◊◊ r)] (17.173b)

For the transmitted wave, the amplitude expression is kept more general,

Ht = (ixH0tx + iyH0ty + izH0tz) exp [ j(w t - b2x x - b2zz)] (17.174)

Applying the boundary condition of continuous tangential E on the interface z = 0, we get

E0i + E0r = E0t (17.175)

The continuity of the tangential H on z = 0 requires

H0ty = 0 and (H0i - H0r)cos q i = H0tx, which is

   
e
m

0

0
 n1(E0i - E0r)cos q i = H0tx (17.176)

Continuity of normal B (or of H, since the media are non-magnetic) at the interface z = 0, gives

e
m

0

0
n1(E0i + E0r)sin q i = H0tz (17.177)

So we have three equations, i.e. (17.175) to (17.177) to evaluate four unknowns E0r, E0t, H0tx,
H0tz. Hence we choose one of the Maxwell’s equations and apply it to the transmitted wave, i.e.

— ◊◊◊◊◊ Bt = m0— ◊◊◊◊◊ Ht = 0
\  b2xH0tx + b2zH0tz = 0 (17.178)

\ Solving these equations, we get
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(17.179b)

Thus for the transmitted wave, H0tx is imaginary and H0tz is real, and hence the two components
are 90∞ out of phase; thus this wave rotates in the plane of incidence.

If the Poynting vector was evaluated, it will be seen that the z-component of S
_

av is zero.
Thus the behaviour of the wave patterns during the phenomenon of total reflection explains how
an optical fibre is capable of guiding a wave, while offering low radiative losses.

17.16 REFLECTION AND REFRACTION AT THE SURFACE
OF A GOOD CONDUCTOR

We have seen that the wave number of a good conductor (in Section 17.6) is
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where d (or d 2 ) is the skin-depth. Since the index of refraction n2 is complex and very large,
the application of the Snell’s law
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leads to a very small value of sin qt. Thus,
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Though cos qt is complex, but because n2 >> n1, the imaginary part is negligible, and

cos qt �  1 Æ qt �  0 Æ sin qt �  0 (17.181)

Thus we can justifiably say that the wave penetrates the conductor normally, whatever the angle
of incidence might be. Hence the concept of the skin-depth applies to an electromagnetic wave
incident at any angle to the surface of a good conductor. For all values of q i, the transmitted
wave is a plane wave propagating along the normal to the surface, with enormous damping
which is the characteristic of these waves in good conductors.

When the incident wave has its E vector normal to the plane of incidence, the Fresnel’s
equations are
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The first ratio of Eq. (17.182) implied that Er of the reflected wave is in the opposite direction to
that of E0i. The transmitted wave is a weak wave with a high degree of attenuation. For the
reflected wave, there is a slight loss of intensity, whereas in the case of total reflection there was
no loss of intensity and the reflection coefficient in that case was equal to unity.

When the E wave is parallel to the plane of incidence, the behaviour pattern is similar to
that of the previous case, i.e.

�0r 0t

0i 0iP P

1 and 1
E E
E E

⎛ ⎞ ⎛ ⎞− <<⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ (17.183)

The wave components are shown diagrammatically in Figure 17.21.
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17.17 OBLIQUE INCIDENCE OF UNIFORM PLANE WAVES
ON A PERFECTLY CONDUCTING SURFACE

We shall close this chapter by considering this limiting boundary condition problem, which will
serve as an introduction to the study of wave guiding in the next chapter. As in a number of
previous problems, in this problem also, we shall study two cases, i.e.

1. Incident E wave polarized in the plane of incidence
2. Incident E wave polarized normal to the plane of incidence.

Note: In the next section, we shall establish the geometrical basis of the exponents of the
expressions for the obliquely travelling waves (i.e. waves not travelling along the coordinate
directions). In fact, this part of the analysis explains the physical basis of the mathematical
expressions used from Sections 17.13 onwards.

Figure 17.21 The incident, reflected and transmitted waves across the interface between a
dielectric and a good conductor: (a) The incident wave with the E vector normal to the plane of

incidence; (b) the incident wave with its E vector parallel to the plane of incidence. The
coefficient of reflection is approximately unity in both the cases. The tangential E of the

incident and the reflected waves nearly cancel each other on the interface.
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17.17.1 Oblique Incidence of Uniform Plane E.M. Waves on a
Perfectly Conducting Surface: E Wave Parallel to the
Plane of Incidence

As before, we consider a ray normal to the wave-front, making an angle q i with the normal to the
interface. The plane of incidence is the x-z plane (Figure 17.22).

Since energy cannot pass through a perfect conductor, only a reflected wave exists, whose
ray makes an angle, say, qr with the normal to the interface.

The electric and the magnetic field vectors lie perpendicular to the respective directions of
propagation (being the property of uniform plane waves). The E vector lies in the plane of the
paper [Figure 17.22(b)], which is also the plane of incidence in that diagram; and the H vector is
normal to the plane of the paper.

Figure 17.22 The incident and the reflected waves, for oblique incidence (with the E vector
in the plane of incidence) on the perfectly conducting interface (s Æ •): (a) Isometric view;

(b) view along the plane of incidence (z-x plane).
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Let us say that a wave is now approaching in a direction PO making an angle qi with the
normal to the interface. Ei lies in the plane z-x, and will be at right angles to PO as shown.
Bi will be parallel to Oy. Let the point P on the ray of the wave be the point (- x, 0, - z), then
(as shown in the figure), PM is parallel to the x-axis and MN perpendicular to PO.

\ PO = PN + NO = z cos qi + x sin qi (= l) (17.184)

Hence the factor exp (-jbz) (for the normally incident waves) is replaced by exp [-jb(z cos q i

+ x sin q i)], since z in the case of the normally incident wave and (z cos q i + x sin q i), in this case,
measures the distance along the line of wave propagation; and

Ei = E0i+ exp j [w t - b (z cos q i + x sin q i)] (17.185)

with which is associated the H wave

Hi = H0i+ exp j [w t - b (z cos q i + x sin q i)] (17.186)

in the direction shown in Figure 17.15 and Figure 17.22(b).
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These waves, i.e. represented by Eqs. (17.185) and (17.186), could be described as a train
of waves of amplitude

E0i+ exp (-jbx sin q i),       H0i+ exp (- jbx sin q i)

moving towards the interface z = 0, with a velocity c sec q i. By comparing with the case of
normal incidence (Section 17.9), these waves give rise to the reflected waves along OP¢, where

OP¢ = l¢ = (z cos qr - x sin qr) (17.187)

\ The reflected waves are

 Er = E0r exp (+ jb l¢) = E0r- exp j [w t + b (-x sin qr + z cos qr)] (17.188a)

Hr = H0r exp (+ jb l¢) = H0r- exp j [w t + b (-x sin qr + z cos qr)] (17.188b)

\ The resultant wave pattern due to the combination of the incident and the reflected
wave is

              Ex = [E0i+ cos qi exp {- jb (x sin qi + z cos qi)}

                    -E0r- cos qr exp {jb (-x sin qr + z cos qr)}] exp ( jw t) (17.189a)

              Ez = [–E0i+ sin qi exp {-jb (x sin qi + z cos qi)}

                    -E0r- sin qr exp {jb (-x sin qr + z cos qr)}] exp ( jw t) (17.189b)

It should be noted that since E lies in the plane of incidence, it has two components, i.e. x- and
z-, whilst H will be along the y-axis. Hence,

               Hy = [H0i+ exp {- jb (x sin qi + z cos qi)}

+ H0r- exp {jb (-x sin qr + z cos qr)}] exp ( jw t) (17.190)

Now we apply the boundary conditions on the interface of the perfect conductor (i.e. z = 0
plane):
No tangential E on z = 0, i.e. Ex = 0, for all x

\ (Ex)z = 0 = 0 = E0i+ cos qi exp (- jbx sin q i) - E0r- cos qr exp (-jbx sin qr)

\ qr = q i Æ angle of reflection = angle of incidence, and E0i+ = E0r-, i.e. the amplitudes
of the incident and the reflected waves are the same. Also, the characteristic impedance
relationship gives

+ −

−
= = 0r0i

0
0i+ 0r

EE
Z

H H
(for free space)

\ Substituting in Eqs. (17.189) and (17.190), we get

Ex = ix [- 2 jE0i+ cos q i sin (bz cos q i) exp j(wt - bx sin q i)] (17.191a)

Ez = iz [- 2E0i+ sin q i cos (bz cos q i) exp j(wt - bx sin q i)] (17.191b)

Hy = ( )b q w b q+⎡ ⎤⎛ ⎞ −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

0i
i i

0
2 cos cos exp ( sin )y

E
z j t x

Z
i (17.191c)
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These equations represent travelling waves with respect to the x-direction, but standing waves
with respect to z-direction.

On the perfectly conducting plane z = 0, Ex = 0 at all instants of time; and also in parallel
planes at distances (nd) in front of the perfect conductor surface z = 0, where

p l
b q q m e q

= = = =
i i 0 0 i

1
cos 2 cos 2 cos

z d
f

(17.192)
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2
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z z
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⎩ ⎭
∵ p pb b q pl b q

The alternating amplitude of Ex is maximum in the planes which are odd multiples of
(d/2) in front of the conducting interface z = 0.

Hy and Ez are maximum, when Ex = 0, i.e. z = 0, and (nd), n being integers.

Hy and Ez are zero, when Ex = maximum, i.e. z = odd multiple of (d/2).

Also Hy and Ez are 90∞ (= p /2) out of phase with Ex.

It should also be noted that the distance between the successive maxima and the zero,
measured normal to the interface plane becomes greater as the incidence becomes more oblique,
i.e. as q i increases.

17.17.2 Oblique Incidence of Uniform Plane E.M. Waves on a
Perfectly Conducting Surface: E Vector Normal to the
Plane of Incidence

As before in the previous section, we consider again a wave approaching in a direction PO which
makes an angle q i with the normal to the interface of discontinuity. The E vector is now parallel
to Oy (the origin of the coordinate system being on the interface plane as shown in
Figure 17.23); and hence in Figure 17.23(b) it is normal to the plane of the paper, but B or H
will lie in the plane of incidence (Ozx), and will be at right angles to PO, as shown. Let P be the
point (- x, 0, - z), then PM is parallel to the x-axis and MN is perpendicular to PO, and hence:

PO = PN + NO = z cos q i + x sin q i (= l) (17.193)

Hence, comparing with the normal incidence problem, the factor exp (- jbz) is now replaced by
exp [- jb (z cos q i + x sin q i)], since z in the previous case (Section 17.9) and (z cos q i + x sin qi)
in the present case measure distances along the line of propagation; and

Ei = E0i exp [- jb (z cos qi + x sin q i)]

= E0i+ exp j [w t - b (z cos q i + x sin q i)] (17.194)

with which is associated the H wave;

Hi = H0i exp [- jb (z cos q i + x sin q i)]

= H0i+ exp j [w t - b (z cos q i + x sin q i)] (17.195)

in the directions shown in Figure 17.23.
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The previous two equations, i.e. (17.194) and (17.195) could also be described as a train of
waves of amplitude E0i exp (- jbx sin q i) and H0i exp (- jbx sin q i) moving towards the boundary
interface z = 0 with a velocity (c sec q i). By the Section 17.9, these give rise to reflected waves
in which the signs of E0i (but not H0i) and of z are changed, i.e.

Er = - E0i exp [ jb (z cos qi - x sin q i)] (17.196a)

Hr = - H0i exp [ jb (z cos qi - x sin q i)] (17.196b)

We have written down the expressions for the reflected waves, based on physical arguments.
However, alternatively, the same results can be obtained by using formal mathematics based on
the Maxwell’s equations, which we indicate below.

The ray OP, in Figure 17.23, is normal to the wave-front, and makes an angle qi with the
normal to the interface of the conducting region, i.e. the plane z = 0. Since there is no energy
penetration through a perfect conductor, only the reflected wave exists, which, say, makes an
angle qr with the normal to the interface plane.

Figure 17.23 The incident and the reflected waves, for oblique incidence, with E vector normal
to the plane of incidence, on a perfectly conducting interface (s Æ •): (a) Isometric view; and

(b) view along the plane of incidence.
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Both E and H are normal to the direction of propagation, E being normal to the plane of
the paper, and H lying in the plane of the paper [referring to Figure 17.23(b)].

Ei and Er are the incident and the reflected electric waves respectively, and Hi and Hr are
the incident and the reflected magnetic waves respectively. (E ¥ H) would give the direction of
propagation for each wave.

We consider the incident wave first. On the ray, at a point P, the length OP—along the
direction of propagation,

OP = l = (x sin q i + z cos q i) [(Figure 17.23(b)]

Ei = iyE0i exp (– jbl) = iyE0i exp [– jb (x sin q i + z cos q i)]

= iyE0i+ exp [ j{wt – b (x sin q i + z cos q i)}] (17.197)

To find the corresponding H field, we use the Maxwell’s equation,
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\   
∂⎛ ⎞

− ⎜ ⎟∂⎝ ⎠

yE

z
 = - jwm0ix Hx and

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

yE

x
 = - jwm0Hz

Now b = w m e0 0

\
b

w m0

e
m

= =0

0 0

1
Z

\ Hix = w m0

1 yE

zj

∂⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

                
i

0i i i
0

cos
exp [ ( sin cos )]

j
E j x z

j

⎡ ⎤⎛ ⎞= − − +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

b q b q qw m

               
0i

i i i
0

cos exp [ ( sin cos )]
Z
E

j x z
⎛ ⎞= − − +⎜ ⎟
⎝ ⎠

q b q q (17.198)

         Hiz = wm0

1 yE

xj

∂⎛ ⎞⎛ ⎞− ⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

=
b q

wm
⎛ ⎞
⎜ ⎟
⎝ ⎠

i

0

sinj
j

E0i exp [- jb(x sin qi + z cos qi )]

= 
⎛ ⎞
⎜ ⎟
⎝ ⎠

0i

0

E
Z

sin qi exp [- jb (x sin qi + z cos qi )] (17.199)
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Next, we derive the expressions for the reflected wave,

Er = iyE0r exp (- jb l¢), where l¢ = OP¢ = (- x sin qr + z cos qr),

where the -ve sign is due to qr being measured in the sense opposite to that of q i.

\ Er = iyE0r exp [ jb (- x sin qr + z cos qr)] (17.200)

and the corresponding H vector:

               Hrx = wm0

1 yE

zj

∂⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

= 
b q

wm0

⎛ ⎞
⎜ ⎟
⎝ ⎠

rcosj
j

E0r exp [ jb(- x sin q r + z cos q r)]

= 
⎛ ⎞
⎜ ⎟
⎝ ⎠

0r

0

E
Z

cos qr exp [ jb(- x sin qr + z cos qr)] (17.201)

               Hrz = wm0

1 yE

xj

∂⎛ ⎞⎛ ⎞− ⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

      = – 
b q
wm0

−⎛ ⎞
⎜ ⎟
⎝ ⎠

rsinj
j

E0r exp  [ jb (- x sin qr + z cos qr)]

                     = 
⎛ ⎞
⎜ ⎟
⎝ ⎠

0r

0

E
Z

sin qr exp [ jb (- x sin qr + z cos qr )] (17.202)

\ Combining the incident and the reflected waves, the resultant is obtained as

Ey = E0i exp [- jb(x sin q i + z cos q i)] + E0r exp [ jb (- x sin qr + z cos qr)] (17.203a)

Hx = - ⎛ ⎞
⎜ ⎟
⎝ ⎠

0i

0

E
Z

exp [- jb(x sin q i + z cos q i)] cos q i

+ 
⎛ ⎞
⎜ ⎟
⎝ ⎠

0r

0

E
Z

exp [ jb(- x sin qr + z cos qr )] cos qr (17.203b)

Hz =
⎛ ⎞
⎜ ⎟
⎝ ⎠

0i

0

E
Z

exp [- jb(x sin qi + z cos qi)] sin q i

+ 
⎛ ⎞
⎜ ⎟
⎝ ⎠

0r

0

E
Z

exp [ jb(- x sin qr + z cos qr)]sin qr (17.203c)

Now we apply the boundary condition on the reflecting plane z = 0 which is that there is no
tangential E on the perfectly conducting surface, i.e.
for z = 0, Ey = 0

         = E0i exp [- jb (x sin qi)] + E0r exp [- jb (x sin qr)], for all x (and t)

\ qi = qr and E0r = - E0i

\ The resultant field components are
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Ey = - j2E0i sin (bz cos q i) exp (- jbx sin qi)

= - j2E0i+ sin (bz cos q i) exp j(w t - bx sin q i) (17.204a)

Hx = - 2
⎛ ⎞
⎜ ⎟
⎝ ⎠

0i

0

E
Z

cos qi cos (bz cos q i) exp (- jbx sin q i)

= - 2 +⎛ ⎞
⎜ ⎟
⎝ ⎠

0i

0

E
Z

cos qi cos (bz cos qi) exp j(w t - bx sin q i) (17.204b)

Hz = - 2 j
⎛ ⎞
⎜ ⎟
⎝ ⎠

0i

0

E
Z

sin qi sin (bz cos q i) exp (- jbx sin q i)

= - 2 j +⎛ ⎞
⎜ ⎟
⎝ ⎠

0i

0

E
Z

sin q i sin (bz cos qi) exp j(w t - bx sin q i) (17.204c)

\ These are travelling waves in the x-direction, but standing patterns in the z-direction.
On the plane z = 0 (i.e. the interface between the perfect conductor and the free space),

Ey = 0, Hz = 0, i.e. no tangential E field and no normal H field; and only the tangential H
(i.e. Hx) field exists.

\ There will be circulating currents (i.e. eddy currents) in the y-direction, i.e. Jy, on this
plane.

\ On the plane z = 0, there will be zeroes of Ey and Hz; and maxima of Hx. These values
will be repeated at intervals of z = d, such that sin (bd cos q i) = 0 = sin p or sin np, where
n = all integers.

\ dn = 
( )

p b p m eb q m e q
= = 0 0

i 0 0 i

, 2
cos 2 cos

n n
f

f

\ d1 = 
p

b qicos
(17.205)

Also, Ey and Hz will have maxima, and Hx be zero at odd multiples of (d1/2) in front of the
interface z = 0.

Hence d1 = distance between successive zeroes and successive maxima; and (d1/2) =
distance between successive zero and maximum.

Also, since d1 = p/(b cos qi), d1 depends on q i—the angle of incidence of the wave on the
reflecting surface. As qi increases to (p /2), cos q i Æ 0, and hence d1 increases. A pattern of E
wave crests (maxima) and zeroes is shown in Figure 17.24.

The standing wave pattern in the z-direction has been produced by the interaction between
the incident wave and the reflected wave. Physically what has happened is when a positive crest
of the incident E wave meets the reflecting surface (z = 0), it changes to a negative crest, and
vice versa. The H and the E waves behave like water waves approaching a wall; and where the
crests of the incident and the reflected waves coincide, at those points there is doubling of
amplitudes. On the boundary (i.e. z = 0), whilst the resulting Ey is zero, the Hx has doubled
because for Hx the positive crest is reflected as positive crest, and on the other hand Hz behaves
like Ey wave. Thus, there are planes like A1A1¢, AA¢ (referring to Figure 17.24) which are in the
same condition as the reflecting surface z = 0, i.e. on all these planes Ey and Hz are both zeroes
and Hx maximum. The wave pattern is stationary in the z-direction, but gliding or travelling
along the x-direction. Thus, we have now ‘guided’ the wave along the x-direction.



CHAPTER 17 ELECTROMAGNETIC WAVES 621

If l is the wavelength of the incident wave (in the direction of its propagation), where
l = 2p /b, then the wavelength of the standing wave pattern in the z-direction (= lz) is given by

p ll b q q= = =1
i i

2
2

cos cosz d (17.206)

and the wavelength of the guided wave along the x-direction (= lx) is given by

Figure 17.24 Resultant E wave pattern, when the incident E wave, normal to the plane of
incidence, meets a perfectly conducting surface obliquely.
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ll l q= =
isinx g (also Figure 17.25) (17.207)

Figure 17.25 An obliquely propagating plane wave, meeting a perfectly conducting surface,
and its guided wave parameters.

l

lz

z

x

Obliquely propagating wave-front:

Ei = iyE0i+ exp [ jb (x sin q t + z cos q i) exp ( jw t)

lz = l/cos q i; l x = l /sin q i

bz = b cos q i; bx = b sin q i

The wave-front has travelled a distance c or u in one second.

vz = w /bz = w /(b cos q i) = flz = fl /(cos q i)

vx = w /bx = w /(b sin q i) = flx = fl/(sin q i)

= = =

∵

w pb p m e l0 0
2

2
v

( v = c, in free space )

f

lx

q i vz

vx Phase
front

q i

c

Since the E vector is zero on every z = (nd) (n being integers) plane away from the reflecting
surface, if we put a conducting sheet (say) along the z = d1 plane, then its presence will not
affect the wave pattern between the planes z = 0 and z = - d1; and we would now have a region
between these two planes, where the waves are now ‘guided’ to travel along the x-direction (this
technique forms the basis for the design of ‘waveguides’).

From the wavelengths obtained in Eqs. (17.205) and (17.206), the corresponding wave-
numbers are

bz = the wave-number for the standing wave pattern = b cos qi (17.208a)

bx = the wave-number for the guided wave pattern   = b sin qi (17.208b)

\ bz
2 + bx

2 = b 2 (17.209a)
and

2 2 2

1 1 1

z x

+ =
l l l (17.209b)

Generalizing the position of the second conducting sheet (i.e. instead of keeping it along the
plane z = - d1), it can be placed on any of the zero-field planes without altering the wave pattern
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between the planes z = 0 and z = (md1) where m is an integer. Such an operation is called an
‘m-mode operation’, whereas m = 1 is called ‘mode 1 operation’, for which,

p l
b q q= =1

i i

2
2

cos cos
d

\ cos q1 = 
l

12d
, and, in general, for mode m operation,

lq =
1

cos
2m
m
d

(17.210)

and, for this mode, the wavelength of the guided wave is

l ll l q
l

= = =
⎡ ⎤⎛ ⎞⎢ ⎥− ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

1/22

1

( )
sin

1
2

g gm
m m

d

(17.211)

\ The velocity of the guided wave (along the x-direction) is

ll
l

= = =
⎡ ⎤⎛ ⎞⎢ ⎥− ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

1/22

1

v v

1
2

g g x
f

f

m
d

(17.212)

where

fl = the velocity of the incident wave
= c, in free space
= v, in general, in any medium

The phase coefficient of the guided wave is

p p p lb b l l l
⎡ ⎤⎛ ⎞⎛ ⎞ ⎢ ⎥= = = = − ⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

1/22

1

2 2 2
1

2x g
x g

m
d

        = b sin qm (17.213)

So, for the wave to propagate in this direction, bx (or bg) must be real, i.e. Egx exp [ j (w t - bx x)].
\ As l is increased (or f is decreased), a point is reached at which bx is zero, i.e. bx =

bg = 0. If l is increased still further, bg becomes an imaginary quantity, and then there is no
wave motion between the conducting plates; i.e. the frequency (= fc) at which bg is zero, is called
the ‘cut-off frequency’ of the system. This gives

lb ⎛ ⎞= − =⎜ ⎟
⎝ ⎠

2

1
0 or 1 0

2
c

g
m

d

\ lc = 12d
m

(17.214)

\ fc = l =
1

v v
2c

m
d

(17.215)

Given the order of the mode, m, the spacing d1 and the velocity (to be general, in a dielectric) v,
the cut-off frequency can be found.
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\ The phase velocity of the guided wave expressed in terms of the cut-off frequency is
given as

vg = 
l

=
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎢ ⎥− −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

1/2 1/22 2 2

1 1

v v

v
1 1

2 2
m m
d d f

                       = =
⎡ ⎤⎛ ⎞⎢ ⎥− ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

1/22

v
v

1

x

cf
f

(17.216)

\ lx  or  lg = 
1/22

v

1

x

c

f
f
f

=
⎡ ⎤⎛ ⎞⎢ ⎥− ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

l
(17.217)

when m = 1, there is the longest wavelength and the lowest frequency. This is usable for a given
guide frequency and is the mode most commonly used in rectangular waveguides, which are
made by introducing two more parallel conducting plates at right angles to the direction of the
E vector, and parallel to the z-axis. This is the basic structure of the rectangular waveguides
(which we shall study in some further details in Chapter 18).

If f is >> fc, then vg ¥ v, and the wave-fronts in the guides are almost normal to the sides.
Also, note that the phase velocity of the guided wave vg > v [Eq. (17.26)] which in free

space is the velocity of light (v = c). Thus though the ‘wave-front’ can travel at speeds greater
than the velocity of light, any information can only pass down the guide at the speed with which
any individual wave-front progresses in the x-direction, i.e. v sin q i, which is < v. To understand
this point, it should be noted that the energy propagates in a direction normal to the wave-front
with the velocity c or v (to be more general). For the guided wave travelling in the x-direction,
the information or the energy will travel at a speed

p q q⎛ ⎞− =⎜ ⎟⎝ ⎠
i iv cos v sin

2

This is the ‘group velocity’ of the wave, i.e.

⎡ ⎤⎛ ⎞⎢ ⎥= − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

1/22

grv 1 cf
f

(17.218)

this is due to the zigzag motion of the wave-front.
We shall now evaluate the Poynting vector for the resultant guided wave, i.e. from

Eqs. (17.204), Ey with Hz gives a Poynting vector in the x-direction

av 0i i i
1

Re { 2 sin ( cos ) exp ( sin )}
2xS j E z j x+

⎡⎛ ⎞= − −⎢⎜ ⎟⎝ ⎠ ⎢⎣
b q b q

                
0i+

i i i
0

2 sin sin ( cos ) exp ( sin )
E

j z j x
Z

⎤⎧ ⎫⎛ ⎞⎪ ⎪⎥× − −⎜ ⎟⎨ ⎬⎜ ⎟ ⎥⎪ ⎪⎝ ⎠⎩ ⎭⎦
q b q b q
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                    = 2
⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

2
0i+

0

E
Z

sin q i  sin2 (bz cos q i) (17.219)

From the same equations, Ey with Hx would give a Poynting vector in the z-direction,

              av 0i i i
1

Re 2 sin ( cos ) exp ( sin )
2xS j E z j x+

⎛ ⎞= − −⎡ ⎤⎜ ⎟ ⎣ ⎦⎝ ⎠
b q b q

          
0i+

i i i
0

2 cos cos ( cos ) exp ( sin )
E

z j x
Z

⎡ ⎤⎛ ⎞
× − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

q b q b q

                   = 0, on averaging (17.220)

Thus it is seen that the energy flow is entirely parallel to the interface plane z = 0, along the
x-axis.

In the system we have studied, it is seen that the E wave is at right angles to the direction
of propagation (i.e. transverse to the direction of propagation) whereas the H wave has both the
transverse and the longitudinal components. Hence this type of wave is called the TE wave
(Transverse Electric); or some authors refer to it as the H wave. There are other modes of
operation, such as TM (Transverse Magnetic) in which the magnetic field has only the transverse
component whilst the E wave has both the transverse and the longitudinal components. There is
also the TEM wave in which both the electric and the magnetic fields are transverse to the
direction of propagation. Also, when the parallel conducting plates are positioned for mode 1
operation (i.e. in two successive zero planes), the pattern obtained is denoted as TE 1 mode. Higher
modes are also possible. All these aspects are the subject matter of our study in Chapter 18.

17.18 PLANE WAVES ON CYLINDRICAL CONDUCTORS

So far we have seen that the plane waves can be propagated in free space and infinite dielectric
media with plane faces. However plane waves can also be propagated along the z-direction (say,
this direction being the direction of the axis) along a set of conductors, so long as all the sections
of the conductor set normal to the z-axis are identical, i.e. the conductors are circular cylindrical,

for example. Initially we assume the conductors to be perfect ( or 0)s rÆ • Æ  and the medium
to be loss-less. It follows from our study of skin effect and eddy currents in Chapter 15 that on
perfect conductors the currents flow in ‘infinitely thin surface layers’ with no fields inside and
there would be no energy dissipation. This problem can be posed in a number of ways.

In this case, the vector potential A as well as the Hertz vector Ze would have only the
z-component, i.e. parallel to the direction of the currents. The solution of the propagation equation
for the Hertz vector would yield both a scalar and a vector potential (Section 13.9). By a suitable
choice of the constraint equation, the scalar potential can be eliminated (i.e. Eq. 13.117), in which
case the vector potential becomes normal to z-direction.

It is also possible to obtain the same result more directly by solving the scalar wave
propagation equation, which is

2 2 2 2

2 2 2 2

W W W W

x y z t
me

Ê ˆ Ê ˆ∂ ∂ ∂ ∂
+ + -Á ˜ Á ˜∂ ∂ ∂ ∂Ë ¯ Ë ¯ (17.221)

(for the loss-less dielectric medium)
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It should be noted that even though the equation is written in Cartesian coordinate system,
the cylindrical coordinate values can be obtained easily since x = r cos �� and y = r sin �. The
solution to the above equation can be obtained by dividing the equation into two bracketted parts
and setting each bracket to zero, i.e.

   
2 2

2 2
0

W W

x y

� �� �
� �

(17.222a)

and

��
� �

� �
� �

2 2

2 2
0

W W

z t
(17.222b)

The first equation is a two-dimensional Laplace’s equation in x and y and the second equation is
a one-dimensional wave equation in z and t.

The solution to the two-dimensional Laplace’s equation can be written in terms of conjugate
functions of complex variables. So if V1 and V2 [where V1 = V1(x, y) and V2 = V2(x, y)] are the
solutions of Eq. (17.222a), then W1 and W2 are the complex potential functions so that

1 1 1 1 2 2 2 2( ) and ( )W U jV F x jy W U jV F x jy� � � � � � � � (17.223)

where 1j � � .

Differentiating Wi with respect to x and y gives

� � �
� � � �� �� � � � � �� �� � � �	 


( ) ( ) ( )i i i
i i i

W U V z
F x jy F z F z

x x x x
j

(17.224)and

( ) ( ) ( )� � �
� �� � � �� � � � � �� 	� � � �
 �

i i i
i i i

W U V z
j jF x jy F z jF z

y y y y

In the above two equations, z = x + jy and this z is not to be confused with the space variable
z of Eqs. (17.221) and (17.222b).

From these two equations, equating the real and imaginary parts separately, we get

andi i i iV U V U

x y y x

� � � �
� � �

� � � �
(17.225)

i.e. the two sets (or families) of curves U(x, y) = constant and V(x, y) = constant intersect each
other orthogonally. So one set may be chosen to be equipotential (so that this will be the
potential function), and the other set would represent the lines of force (known as the stream
function). From these the electric field intensity and the electric flux can be obtained as

i i i i

i i i

U U V V
dx dy j dx dy

x y x ydW dU jdV

dz dx jdy dx jdy

� � � �� �� � �� �� 	� � � ��

 


� �

( ) ( )
V V

dx jdy j dx jdy
y x

dx jdy
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�
�
��
�
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�
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V V U U
j j

y x x y

∂ ∂ ∂ ∂
= + = -

∂ ∂ ∂ ∂ (17.226)

by substituting from Eqs. (17.225).
Irrespective of whether Ui or Vi is the potential function, the magnitude of the electric field

at a point would be given by .
W

z

∂
∂

Let
dn be an element of length in the direction of maximum increase of potential, and
ds be the element of length obtained by rotating dn counterclockwise through p/2 radians,

then

ori i i iU V V UdW dW

dz n s dz n s

∂ ∂ ∂ ∂
= = = = -

∂ ∂ ∂ ∂
(17.227)

depending on whether U or V is the potential function.
If V is the potential function, then the flux through any section of an equipotential surface

is given by

2 2

1 1

2 1Flux ( )

U U

U U

V U
ds ds U U

n s
e e e∂ ∂= - = = -

∂ ∂Ú Ú (17.228)

Hence the capacitance per unit length is given by

2 1 2 1

| | | |Q U
C

V V V V

e= =
- - (17.229)

The solutions to the one-dimensional wave Eq. (17.222b) can be written as

( ) ( )1 2andf z t f z tme me- + (17.230)

Hence the solution to the scalar wave propagation Eq. (17.221) can be expressed as

( ) ( )1 1 2 2( , ) ( , )W V x y f z t V x y f z tme me= - + + (17.231)
(z being the space variable here)

where V1 and V2 are the solutions of the two-dimensional Laplace’s Eq. (17.222a) and W1 and W2

are the complex potential functions related to V1 and V2 by Eqs. (17.223).

At this stage, we define a new two-dimensional vector operator 2—  which is

2 x yx y

∂ ∂
— = +

∂ ∂
i i (17.232)

so that

2 x y
V V

V
x y

∂ ∂
— = +

∂ ∂
i i (17.233)
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then

2 2 2 2andz zV U U V- ¥ — = — ¥ — = —i i

(17.234)
and [ ] [ ]2 2{ ( )} { ( )}zU f z U f z— ¥ — = ¥ — ¢i

from Eq. (17.225).
From Eqs. (13.77) and (13.78), the vector potential for a transverse electric field can be

written as

( )zW= — ¥A i

( ) ( )2 1 1 2 2 2( , ) ( , )z zV x y f z t V x y f z tme me= - ¥ — - - ¥ — +i i

( ) ( )2 1 1 2 2 2( , ) ( , )U x y f z t U x y f z tme me= — - + — + (17.235)

Obviously the first term above represents waves travelling in the +ve z-direction and the
second term is for the waves travelling in the –ve z-direction.

From the vector potential, the magnetic and the electric fields would be derived as:

 ( )2 ( , )V x y f z t me= — ¥ = — ¢ ∓B A (17.236)

( )2
1

( , )U x y f z t
t

me
me

∂
= - = ± — ¢

∂
A

E ∓ (17.237)

The +ve wave takes the upper sign in the above two equations. Combining Eqs. (17.234),
(17.236) and (17.237), we get

zme = ¥∓E i B (17.238)

In a particular system, let it be assumed that the current goes out on one set of conducting
cylinders and returns on another set. Equation (17.237) shows that all the members of one set would
have the same potential at one value of z (the space variable) and hence for any other value of
z. The relation between the total current and the charge (per unit length) in either set
[of members, n in number (say)] can be found by using Gauss’ theorem, as

1 1

n n

n i i i
i i

Q E ds H ds Ie me me
= =

= = =Â ÂÚ Úv v (17.239)

If L is the self-inductance per unit length, C the capacitance per unit length and S is the area
outside the conductors in a plane of constant z, then

2 2 2 2
2

2 2 2 2 2
S S

LI B E Q
dS dS I

C C

e me
m

= = = =ÚÚ ÚÚ (17.240)

Hence L and C are related as

2

1

v
LC me= = (17.241)

Thus, LC is the reciprocal of the square of the electromagnetic wave velocity in the medium
outside the conductors.

¸
Ô
˝
Ǫ̂
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So far we have started from the vector potential and evaluated E and B. We now consider
the inverse problem which is that E and B are specified either at a point in space as a function
of time or as a function of space variable z at a given instant of time.

First we consider the case where E and B are specified in the plane z = 0 as functions of time.
Then A for any z can be written down from Eq. (17.235). Thus,

( ) ( ) ( ) ( )2
1

( , )
2

U x y f t z f t z g t z g t zme me me meÈ ˘= — - + + - - - +Î ˚A (17.242)

If U and V are given by Eqs. (17.223), then the fields at z = 0 can be obtained from A as:

0 2
0

( , ) ( )z
z

U x y f t
t=

=

∂Ê ˆ= - = - — ¢Á ˜Ë ¯∂
A

E

(17.243)

0 0 2( ) ( , ) ( )z z V x y g tme= == — ¥ = - — ¢B A

On the other hand, when E and B are given as functions of z at t = 0, A can again be written from
Eq. (17.235) as:

( ) ( ) ( ) ( )2
1

( , )
2

U x y f z t f z t g z t g z tme me me meÈ ˘= — + - - - + - -Î ˚A (17.244)

As before, if U and V are given by Eq. (17.223), then from A at t = 0, the fields can be
expressed as

( ) ( )0 2 0 2( , ) , ( , )t tU x y f z V x y g zme me me= == - — = - —¢ ¢E B (17.245)

17.18.1 Propagation in a Medium of Finite Conductivity (Intrinsic
Impedance)

So far the dielectric medium of propagation was assumed to be loss-less. Now we consider a

medium of finite conductivity ( )s=  or finite resistivity 
1

.r
s

Ê ˆ= =Á ˜Ë ¯  In such a medium, the scalar

wave propagation Eq. (17.221) modifies to

2 2 2 2

2 2 2 2
0

W W W W W

tx y z t
ms me

Ê ˆ Ê ˆ∂ ∂ ∂ ∂ ∂
+ + - - =Á ˜ Á ˜∂∂ ∂ ∂ ∂Ë ¯ Ë ¯

(17.246)

In this equation, when the second bracket is equated to zero, the solution is no longer a simple

one-dimensional wave propagation due to the presence of the term .
W

t
ms ∂

∂
 Writing its solution

as
W = ZT, where Z = Z(z), T = T(t) (17.247)

the equation becomes

separation constant
Z T T

K
Z T T

ms me¢¢ ¢ ¢¢
= + = ¨ (17.248)

The solution is exponential in form and it can take either of the two forms, i.e.

¸
ÔÔ
˝
Ô
Ǫ̂
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(i) If the separation constant is real, the solution will be harmonic is space and will be a
‘transient’ state solution;

(ii) If the separation constant is imaginary, the solution will have harmonics in time and it
will be a ‘steady-state’ behaviour solution.

We now consider the steady-state solutions in which the time-variation is given by exp(jwt).

The function ( )f z t me-  of Eq. (17.230) is now replaced by exp ( )z j tw± G + where

2 2( ) ( )wm s we a bG = + = +j j j (17.249)

17.18.2 Solution of Propagation Equation in Cylindrical
Coordinates

In Section 17.18, we solved for the special type of cylindrical waves moving in the z-direction
obtained by setting the terms of the two parts of the scalar wave equation (17.221) to separately
equal to zero, i.e.

2 2 2 2

2 2 2 2
0

W W W W

x y z t
me

Ê ˆ Ê ˆ∂ ∂ ∂ ∂
+ + - =Á ˜ Á ˜∂ ∂ ∂ ∂Ë ¯ Ë ¯

(17.221)

The above equation was reduced to two equations by equating each bracket (shown above) to zero
separately, i.e.

2 2 2 2

2 2 2 2
0 and 0

W W W W

x y z t
me

Ê ˆ∂ ∂ ∂ ∂
+ = - =Á ˜∂ ∂ ∂ ∂Ë ¯

(17.222)

But this is not the only way to solve Eq. (17.221). On the other hand, the first equation of (17.222)

can be equated to 2
mnb± , the second equation to 2

mnb∓  and the time variation can be assumed to
be of the sinusoidal variation type, i.e. exp(jwt) so that the second equation would then become

2
2 2

2 mn
W

W
z

w me b∂
+ =

∂
∓ (17.259)

We can write 2 2w me b=  and scalar function W can be considered as W = UZ, where U = U(x, y)
and Z = Z(z).

Then Eqs. (17.222) reduce to the form

2
2 2 2 2
2 2

0 and ( ) 0mnmn

d Z
U U Z

dz
b b b— ± = + =∓ (17.260)

where
2 2

2
2 2 2x y

∂ ∂— ∫ +
∂ ∂

If now instead of Cartesian coordinate system, a cylindrical coordinate system (r, f, z) is used and
the substitution

2 2 2 2 2 2andmn mn mn mnk kb b b b= - ¢ = + (17.261)
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then the solution for W will be of the forms:

{ }{ ( ) ( )} cos( )mn mnjk z jk z
m mn m mn mW A e B e CJ r DY r mb b f d-= + + + (17.262)

{ }{ ( ) ( )} cos( )mn mnjk z jk z
m mn m mn mW Ae Be CI r DK r mb b f d

¢ ¢-= + + + (17.263)

When C, D, kmn, k¢
mn are all real, both these equations represent waves propagating only in the

z-direction. If 2 2
mnb b>  so that kmn is imaginary, Eq. (17.262) represents a wave exponentially

damped in the z-direction. If C is real and D is complex, then Eq. (17.262) has a radial
propagation component. If z is absent (i.e. no z variation) and kmn = 0 and k¢

mn = 0, then
Eqs. (17.262) and (17.263) represent cylindrical wavefronts.

Defining transverse electric and transverse magnetic waves as those whose electric and
magnetic fields, respectively, are normal to the direction of propagation (which is z-direction in
the present case), then

2 2 2
2te te tm tm tm

tm 2
r

r z
W W W W W

W
r r r z r z z

f ff f b
f f

È ˘Ê ˆ∂ ∂ ∂ ∂ ∂
= - - + + +Í ˙Á ˜∂ ∂ ∂ ∂ ∂ ∂ ∂Ë ¯Í ˙Î ˚

i
A i i i i (17.264)

2 2 2 2
2 2te te te tm tm

te 2r z r
W W W W W

W
r z r z r rz

f f
bf b f b

f f
Ê ˆ∂ ∂ ∂ ∂ ∂

= + + + + +Á ˜∂ ∂ ∂ ∂ ∂ ∂∂Ë ¯
B i i i i i (17.265)

where
2 2 2( )

2

wma w e s we
È ˘Ï ¸Ê ˆ= + -Ì ˝Í ˙Á ˜Ë ¯ Ó ˛Î ˚

(17.250)

2 2 2( )
2

wmb w e s we
È ˘Ï ¸Ê ˆ= + +Ì ˝Í ˙Á ˜Ë ¯ Ó ˛Î ˚

Here G = the propagation constant

a = the attenuation constant

b = the phase constant or wave number.

The expression for A now becomes

zW= — ¥A i

w= ± ¥ — G +∓2 ( , ) exp ( )z V x y z j ti (17.251)

 2 ( , ) exp ( )U x y z j tw= — G +∓ ∓

Hence the B and the E fields will be:

= — ¥B A

2real part ( , ) exp( )V x y z j tw= G— G +∓ ∓

2 ( , ){exp( )}{ cos( ) sin( )}V x y z t z t za a w b b w b= — -∓ ∓ ∓ ∓ (17.252)

t

∂
= -

∂
A

E

2real part ( , ) exp( )U x y z tw w= - — G +∓j j
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2 ( , ) {exp( )}{sin( )}U x y z t zw a w b= — ∓ ∓ (17.253)
and

( )zjwG = ¥∓E i B (17.254)
or

z jwG ¥ = ±i E B

From the above Eqs. (17.251), (17.252) and (17.253), it is obvious that these fields are not plane
waves, but are attenuated (or damped) waves and their amplitudes are exponentially attenuated by
the factor e–a z

 as the waves progress in the z-direction.
If now, we define
R = the resistance per unit length between the conductors, and
C = the capacitance per unit length,

then CR
ere
s

= = (17.255)

(Ref: Problem 4.31 in Electromagnetism: Problems with Solutions, 2nd Edition, 2008)

The shunt admittance Y and the series impedance ZL are given by

21
, where L

j
Y j C Z j L

R L j L

s we mew w
e w

+ G
= + = = = (17.256)

Hence the characteristic impedance of the line will be

L
c

Z j L V LE j
Z

Y I B C

w wme
= = = = =

G G
(17.257)

When the conductors consist of two infinite parallel planes 1 metre apart, then since an infinite
tubular section of 1 m2 running in the z-direction has C per unit length as equal to e, the
characteristic impedance will be

c
j j

Z
s j j

wm wm
we a b

Ê ˆ
= =Á ˜Ë + ¯ + (17.258)

PROBLEMS

17.1 For a uniform plane wave in air the magnetic field is given by

H = iz 2 exp [ j{wt – pz/(20)}]

Calculate (i) the wavelength, (ii) the frequency, and (iii) the value of E at 1/(15) msec,
z = 5 m.

Ans.: 40 m, 7.5 MHz, ix (– 533) V/m

17.2 A 5 GHz plane wave is propagating in a large block of polystyrene (e r = 2.5), the
amplitude of the electric field being 10 mV/m. Find

(i) the velocity of propagation,
(ii) the wavelength, and

(iii) the amplitude of the magnetic field intensity.

Ans.: 1.896 ¥ 108 m/sec, 3.79 cm, 41.9 mA/m
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17.3 The amplitude of the electric field component of a sinusoidal plane wave in free space
is 20 V/m. Calculate the power per square metre carried by the wave.

Ans.: 0.53 W/m2

17.4 A plane, linearly-polarized wave Ei, Hi, in free space, as described by the equations

Ei = ixE0 exp [ j(w t – bz)], Hi = iyH0 exp [ j(w t – bz)]

is incident on the plane surface (z = 0) of a semi-infinite block of loss-less dielectric of
permittivity er, and gives rise to a transmitted wave Et, Ht, and a reflected wave Er, Hr.
This surface is coated with a thin layer of resistive material, of resistivity rS, such that
the thickness of this layer can be neglected. Show that the ratio of the amplitude of the
reflected wave to that of the incident wave will be

r

r

⎛ ⎞− +⎜ ⎟
⎝ ⎠=
⎛ ⎞+ +⎜ ⎟
⎝ ⎠

0
S r

0
S r

1 1
1

1 1
1

Z
Z

Z
Z

where Z0 = 
m
e

0

0
, Zr = 

m
e

0

r
.

What will be this ratio, if this layer of resistive material is removed from the incident
surface?

17.5 A slab of solid dielectric material is coated on one side with a perfectly conducting
sheet. A uniform, plane, sinusoidal wave is directed towards the uncoated side at normal
incidence. Show that, if the frequency is such that the thickness of the slab is half a
wavelength, the wave reflected from the dielectric surface will be equal in amplitude to
the incident wave and opposite in phase. Calculate this frequency for a loss-less
dielectric of permittivity 2.5 and thickness 5 cm.

Ans.: (i) Necessary condition is kbd = p, where d = 
⎛ ⎞
⎜ ⎟⎝ ⎠

1
2

wavelength, and velocity in

the dielectric medium (2) = c/k, k = 2.5
(ii) For d = 5 cm, f = 1900 MHz.

17.6 A plane wave of angular frequency w in free space (m0, e0) is incident normally on a
half-space of a very good conductor (m0, e0, s). Show that the ratio of the reflected to
the incident time-averaged Poynting vector is approximately

RS = 1 – 2bd

where b = w m e0 0  and d = wms
2

.

17.7 A time-harmonic, plane wave is incident normally on a planar resistive sheet which is
the plane interface z = 0 separating the half-space z < 0 (medium 1) from another half-
space z > 0 (medium 2). Let the media 1 and 2 be characterized by the constitute
parameters m1, e1 and m2, e2 respectively. A thin planar layer of resistive material is
sandwiched between the half-space. The thickness of the layer is assumed to be very
small compared with a wavelength so that it can be approximated by a sheet of zero
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thickness, and can be assumed to occupy the z = 0 plane. The surface current density JS

on the resistor sheet and the E field tangential to it are related as follows:

JS = sSEt = r
t

S

E

where
sS = surface conductivity = 1/rS

rS = surface resistivity.

Show that the ratios of the reflected E wave and the transmitted E wave to the incident
wave are

r
2r 1

i
2r 1

,xo
E

xo

E Z Z
Z ZE

−= =
+

r

and
t

2r
i

2r 1

2
,xo

E
xo

E Z
Z ZE

= =
+

t

where

2r S 2

1 1 1
Z Z

= +r

x

0

y
zE i

x

Medium 1
m1, e1

Hi
y

Resistive sheet of zero thickness

Medium 2
m2, e2

Z1, Z2 = characteristic impedances of the media 1 and 2 respectively and the suffix o
represents the amplitude of the corresponding wave. Hence show that the power
dissipated in the resistive sheet per unit square area is

2i 2

S2
xo E

E
= t

r
The subscripts i and t have been made into superscripts here to eliminate confusion by
overcrowding of suffices.
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18.1 INTRODUCTION

In Chapter 17, we considered the propagation of electromagnetic waves, without referring to their
sources or their destinations, and one of our conclusions was that they (the waves) are capable of
transporting energy. In fact, the electromagnetic waves are used to transport energy from one
place to another. An example of such application is the antenna of a television (or broadcasting)
station, radiating the energy carrying information signals to all possible receivers in the vicinity.
Naturally, a large portion of the energy of such waves is lost. Another and an important
application is in the transmission of electromagnetic energy from a source to a single receiver. In
such cases, it is desirable to minimize the transmission losses to the particular receiver. Since the
electromagnetic waves propagating through free space are not the most suitable type for this
purpose, it is necessary to design and devise some system to guide the energy of the wave along
a desired route. All such systems can logically be called ‘guides’ of the electromagnetic waves,
and the waves propagating along these guides are called the ‘guided electromagnetic waves’. In
Section 17.17.2, we were introduced to the basic concepts underlying the techniques of ‘guiding’
the electromagnetic waves.

Of the many such practical examples of ‘guiding energy transfer’, we shall quote only a
few, starting with the first one which is also applicable at low (i.e. power frequency of 50 or
60 Hz) frequency. At these low frequencies, the electrical energy, which is the output of either a
thermal or hydroelectric power station, is guided to various receivers by means of power
transmission lines. Theoretically speaking, the power stations could radiate all that energy, and
allow the consumers to hunt for as much of it, as per their requirement, from air. But such a
method would be extremely uneconomical and possibly practically impossible.

At the higher end of the frequency spectrum, when a private message has to be sent from
one person in one city to another person in another city (may even be in a different country), it
would be very uneconomical and not the most efficient way of using a very powerful transmitter,
creating electromagnetic waves all over the interlinked countries between the two cities. Instead
the electromagnetic waves are propagated along the telephone lines, or optical fibres, and radio
links with suitable signal amplifiers for regenerating the strength of the signals, thus compen-
sating for the losses taking place during the transmission.

Waveguides18
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Another example is that of the transmission of extremely high (electromagnetic) pulses from
a radar transmitter to its antenna. These energy pulses are sent through suitably designed
conducting metal tubes (e.g. of rectangular or circular cross-sections), so that by guiding the
waves to suitable paths, the energy losses are kept to a minimum. Such devices (i.e. these tubular
pieces) are referred to as ‘waveguides’. There are many varieties of waveguides for electro-
magnetic waves.

Though the types of electromagnetic waves propagating along the transmission lines and
through the waveguides have some significant differences, they have some important features of
similarity and there are underlying conceptual similarities in both.

In the transmission lines, the electromagnetic waves have both the E and the H vectors
transverse to the direction of propagation, and are generally referred to as TEM (= Transverse
Electromagnetic) waves. It should be noted that the coaxial cable problem discussed in
Chapter 14, Section 14.4.2, was of the TEM wave type. However, in the transmission lines, E and
H are not constants in a transverse plane, and hence the TEM waves along the transmission lines
are not uniform. The most common types of transmission lines are the two-wire line, the coaxial
cable, and the stripline.

The waveguides can be either metal tubes of rectangular or circular cross-section, or
dielectric rods of different cross-sections. The electromagnetic waves propagating through them
are not of the TEM type. Also, only the waves having a wavelength smaller than a certain criti-
cal wavelength, can propagate through the wave guides, the critical wavelength being a function
of the transverse dimensions of the guides. The waveguides are used at very high frequencies.

18.2 TRANSMISSION LINES

The transmission lines, most often met with in practice, are made up of two (very nearly) parallel,
cylindrical conductors. Since the conductor shapes can never be perfect, an exact rigorous
analysis would be rather difficult. Hence, instead of treating the lines as a boundary value
problem, the theory of travelling waves in lines (and also in cables) can be developed from the
circuit standpoint. The lines are represented as a complicated combination of resistors, capacitors,
and inductors. So, instead of the electric and the magnetic field intensities at all points where the
fields of the lines exist, we consider the unknown voltage between the two lines and the current
through them.

18.2.1 Transmission Lines with Negligible Losses (Loss-less Lines)

We consider the cable as a pair of conductors, in which each length dz has the inductance Ldz,
and between the conductors in each length dz is the capacitance Cdz (Figure 18.1). So, at a
point A on the line (where its voltage is V ),

The charge in the capacitor is = CVdz

And the current in the capacitor = the rate of increase of the charge

                              = C
∂⎛ ⎞

⎜ ⎟∂⎝ ⎠
V
t

d z

\ Equating the inflowing and the outflowing currents at the point A (referring to
Figure 18.1), we have
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L zd L zd
V

A

I

C zd
I + dI

B

Figure 18.1 Circuit element representation of the transmission line.

I = C 
∂⎛ ⎞

⎜ ⎟∂⎝ ⎠
V
t

dz + (I + dI )

or

dI + C
∂⎛ ⎞

⎜ ⎟∂⎝ ⎠
V
t

dz = 0

or, in the limit

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

I
z

 + C
∂⎛ ⎞

⎜ ⎟∂⎝ ⎠
V
t

 = 0 (18.1)

Next, considering the potentials along the line,

Potential at the point A - Potential at the point B = Ldz
∂⎛ ⎞

⎜ ⎟∂⎝ ⎠t
(I + dI ) = -d V

or

Ldz
∂⎛ ⎞

⎜ ⎟∂⎝ ⎠
I
t

 = -dV, neglecting higher order terms.

In the limit,
∂ ∂⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

V I
L

z t
 = 0 (18.2)

Eliminating I between Eqs. (18.1) and (18.2), we get

2 2

2 2 2

1

u

V V

z t

⎛ ⎞ ⎛ ⎞∂ ∂⎛ ⎞=⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠
, where u2 = 

1
LC

(18.3)

which is the usual one-dimensional wave equation.
It should be noted that L and C are related by the second equation of (18.3) and as the

velocity of the wave u depends on the permittivity of the dielectric medium, the inductance and
the capacitance are not so independent as the mode of deriving them would appear to be. From
the earlier chapters, we have obtained that for the unit length of two parallel wires, their (L and
C ) expressions are

0 0 r2
ln and

2
ln

b
L C

a b
a

m pe e
p

−⎛ ⎞ ⎛ ⎞= =⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎛ ⎞
⎜ ⎟⎝ ⎠

neglecting the internal flux for the inductance.
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The solution for the wave equation for the voltage V can be taken as

 V = f (z - ut)
and hence from Eq. (18.1),

     I = uCf (z - ut)

\ We can write I = 
c

V
Z

,        (Zc = characteristic impedance)

where

                                       c
1

u
L

Z
C C

= = (18.4)

The value of the surge impedance Z for the air-cored cable is about 500 W and 30 W for a
coaxial cable with solid insulation.

We shall now consider the behaviour of a line under two sets of different conditions:

1. Transient shock condition. This condition is obtained when a switch in the line is
closed suddenly. Sudden switching and lightening are the two main sources, which cause the
transient behaviour of the circuits. This is equivalent to the application of a unit step function to
the line. This function is a wave which suddenly rises from V = 0 to V = 1 at the time t = 0, and
then remains constant at that value thereafter (Figure 18.2). Any other types of shocks can be

V

t = 0

A

t A¢

B

R

B¢

Figure 18.2 A unit-step function of voltage applied to the end AA¢ of a transmission line whose
other end BB¢ has been terminated by a resistance R.

built up by a successive superimposition of the unit steps. Let a voltage step of the type
mentioned be applied to the terminals AA¢ of a cable, whose other end BB¢ is terminated by a
resistance R as shown in Figure 18.2.

(1) The first effect of this step function is that a voltage wave of magnitude V and a current
(V/Zc) travel along the cable from A to B with a velocity u [Figure 18.3(a)].

(2) On reaching B, a reflected wave of voltage V ¢ and a current (V ¢/Zc) starts travelling
from B to A. The magnitude of V ¢ is determined by R such that (voltage/current) at
BB¢ = R. At this stage:

Potential drop across BB¢ = V + V ¢, and

the current flowing out at B = 
′

−
c c

V V
Z Z

\
′+
′−

c

V V
V V

Z

 = R
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and hence

V ¢ = 
−⎛ ⎞

⎜ ⎟+⎝ ⎠
c

c

R Z
V

R Z
[(Figure 18.3(b)] (18.5)

There are three limiting cases of this stage, i.e.

(a) O.C. (open circuit) termination R Æ •; \ V ¢ =  V and I¢= I
(b) S.C. (short circuit) termination R = 0; \ V ¢ = -V and I¢= I
(c) Matched termination, R = Zc; \ V ¢ =  0 and I¢= 0, i.e. no reflected wave.

(3) The reflected wave on reaching AA¢, meets the generator impedance, which produces
the unit function p.d.: this is ideally a zero impedance, but in fact negligibly small
impedance. Hence this returning wave meets a S.C. condition at AA¢. Thus for the next
stage, a wave -V ¢ travels from A to B, as shown in Figure 18.3(c).

(4) On reaching B, it is reflected back according to (2), and the reflected wave is

− −⎛ ⎞ ⎛ ⎞′= − −⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

2
c c

c c

R Z R Z
V V

R Z R Z

as shown in Figure 18.3(d).

(a)

(b)

(c)

(d)

V u

B
A

u

V

V¢

u

V

V¢

u

V

Figure 18.3 Repeated reflections on the transmission line.
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With the passage of time, the cycle repeats the process. The voltage waveform at any point
in the cable is thus obtained, starting from t = 0, and adding up the voltages associated with the
waves that have arrived at that point, up to the instant of time under consideration. If T is the
period of time required by the waves to traverse the length AB of the cable, then starting from
t = 0 to t = T, there will be no voltage at these points on AB (Figure 18.4), i.e.

Vi = 0  from t = 0 to t = T

Vi = V (1 + a), where a = [(R - Zc)/(R + Zc)], from t = T to t = 3T

Vi = V (1 - a2),  from t = 3T to t = 5T

Vi = V (1 + a3),  from t = 5T to t = 7T

Vi = V (1 - a4),  from t = 7T to t = 9T

and so on. This is all shown in Figure 18.4.

V

V
i

0 T 2T 3T 4T 5T 6T 7T
t

Figure 18.4 The voltage wave at any point on the cable AB.

2. Steady-state A.C. operation. In this condition, we replace the (∂/∂t) operator in
Eqs. (18.1) and (18.2) by the operator ( jw), so that these two equations become:

z
I∂

∂
 + jwCV = 0 and

V
z

∂
∂

 + jwLI = 0 (18.6)

Combining these two equations,

2

2

V

z

∂
∂

 + w2LCV = 0 or
2

2

V

z

∂
∂

 + b2V = 0 (18.7a)

where

b2 = w2LC = 
p 2

2

(2 )

u

f
(18.7b)

(Note: if l = wavelength of the line, then fl = u and b = 2p /l.)
The solution of Eq. (18.7a) can be written as

V = A exp ( jbz) + B exp (- jbz) (18.8)

The factor exp (- jbz) represents a phase lag, which increases with z; and thus represents a wave
travelling to z Æ +•.
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Similarly, exp ( jbz) represents a wave travelling to z Æ -•.
Since the modulus of exp (± jbz) is unity, it means that the amplitudes of these waves

remain unchanged as they travel.
However the more convenient form of the solution of Eqs. (18.7) is

V = A¢ cos (bz) + B ¢ sin (bz) (18.9)

\ From the second equation of (18.6),

I = - 
jw
1

L
⎛ ⎞
⎜ ⎟⎝ ⎠ b [- A¢ sin (bz) + B ¢ cos (bz)]

                          = 
c

j
Z

Ê ˆ
Á ˜Ë ¯

[- A¢ sin (bz) + B ¢ cos (bz)] (18.10)

For convenience, we rearrange the coordinate system, and place the origin at the receiving end,
i.e. B is z = 0 and A is z = - l, where l = the length of the section AB of the cable. Further, we
use the suffices S and R respectively to denote the quantities at the sending end (z = - l) and the
receiving end (z = 0), i.e.

at the sending end (z = - l), the quantities are VS, IS; and

at the receiving end (z = 0), the quantities are VR, IR.

Evaluating the unknowns A¢ and B ¢ from the conditions at z = 0, from Eqs. (18.9) and (18.10),

VR = A¢ + 0 and IR = 
cZ
j⎛ ⎞

⎜ ⎟⎝ ⎠ (- 0 + B ¢)

\ A¢ = VR and B¢ = c RZ I
j

 = - jZcIR

\ V = VR cos (bz) - jZcIR sin (bz) (18.11a)
and

I = IR cos (bz) - j
⎛ ⎞
⎜ ⎟
⎝ ⎠

R

c

V
Z

 sin (bz) (18.11b)

And, at the sending end (z = - l),

VS = VR cos (bl) + jZcIR sin (bl) (18.12a)

   IS = IR cos (b l) + j
⎛ ⎞
⎜ ⎟
⎝ ⎠

R

c

V
Z

 sin (b l) (18.12b)

We consider the case, when the receiving end is open-circuited. Then, IR = 0.

\ V = VR cos (bz)      and      I = - j
⎛ ⎞
⎜ ⎟
⎝ ⎠

R

c

V
Z

 sin (bz)

This above shows the standing wave patterns for both V and I, and both of them oscillate in
unison. The wave shapes are shown in Figure 18.5. The conditions at the sending end depend on
the length of the line, and the wavelength of the wave. One case of interest is when l = l/4, i.e.
quarter wave line,

p l pb l
⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

2
4 2

l
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VS

IS

P

Receiving
end

Figure 18.5 Standing wave patterns for V and I for an O.C. transmission line.

\ From Eqs. (18.12),

VS = jZcIR, IS = j
⎛ ⎞
⎜ ⎟
⎝ ⎠

R

c

V
Z

If we write VS = ZSIS       and       VR = ZRIR,       then, we get

=
2
c

S
R

Z
Z

Z (18.13)

\ If the receiving end is short-circuited, i.e. ZR = 0, then ZS Æ •; i.e. the sending end
appears to be open-circuited, and vice versa. Thus the quarter wavelength line can be used as an
‘impedance transformer’ to alter the apparent value of the impedance across a pair of terminals.

When a line is used for communication with high frequency currents, the standing waves of
the type shown above are highly undesirable. This is because a detector (say, at a point P) will
receive no signals. Such a state can be avoided, if the line is terminated with matched load, i.e.  a
pure resistance of magnitude equal to Zc.

\ VR = ZcIR, and Eqs. (18.11) become

 V = VR[cos (bz) - j sin (bz)] = VR exp (-bz) (18.14a)

 I = IR[cos (bz) - j sin (bz)]  = IR exp (-bz) (18.14b)

which are travelling waves [as exp ( jwt) is implicit in these expressions] moving to z Æ + •, and
thus the reflected waves are eliminated.

Again, expressing the voltage and the current equations of (18.11) in terms of impedances,
we have

                            V = IR[ZL cos (bz) - jZc sin (bz)] (18.15a)

I = 
⎛ ⎞
⎜ ⎟
⎝ ⎠

R

c

I
Z

[Zc cos (bz) - jZL sin (bz)] (18.15b)

where the terminating resistance R has now been replaced by a more general load impedance
ZL, so that ZR = ZL.

Is

Vs
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Hence the impedance of the line (terminated by ZL), at a distance z from the sending
end, is

b
b

−⎡ ⎤= = ⎢ ⎥−⎣ ⎦
L c

c
c L

tan ( )( )
( )

( ) tan ( )
Z jZ zV z

Z z Z
I z Z jZ z

(18.16)

When the line is open-circuited, ZL Æ •; and

\ Z(z) = b
c

tan ( )
jZ

z
(18.17)

and when the line is short-circuited, ZL = 0; and

Z(z) = - jZc tan (bz) (18.18)

We notice that, in both the cases (i.e. O.C. and S.C.) the impedance of the line is purely
imaginary, and hence they may replace any capacitor or inductor coil.

The reflection coefficient G is now given by

G = 
−
+

L c

L c

Z Z
Z Z

(the voltage reflection coefficient)* (18.19)

We can rewrite the voltage equation of (18.15) in terms of the reflection coefficient as

  V(z) = 
⎛ ⎞
⎜ ⎟⎝ ⎠

1
2

IR[(ZL - Zc) exp (bz) + (ZL + Zc) exp (-bz)]

     = 
⎛ ⎞
⎜ ⎟⎝ ⎠

1
2

IR [(ZL + Zc) exp (bz){(G + exp (-2bz)}] (18.20)

Since exp ( 2 )zb-  = 1, the ratio of the maximum to the minimum amplitude of the voltage
along the line is

max

min

1

1

V
s

V

G
G

+
= =

− (18.21)

This ratio is known as the ‘voltage standing wave ratio’, which is abbreviated to VSWR. The
above equation shows the range of s to be 1 £ s £ •.

18.2.2 Lossy Transmission Lines

As before in the previous Section 18.2.1, we consider the transmission line cable as a pair of
conductors of circular cross-section, which is characterized by the following parameters per unit
length: resistance R (taking both the conductors into account), inductance L, capacitance C, and
conductance G. The circuit representation of a section of this line is shown in Figure 18.6.

Considering the voltage and the current relations along the line, as shown in Figure 18.6
[similar to Eqs. (18.1) and (18.2) of the last section]:

V(z, t) - Rdz I(z, t) - Ldz 
∂⎛ ⎞

⎜ ⎟∂⎝ ⎠t
I(z, t) = V(z, t) + dV(z, t)

and

I(z, t) - Gdz [V(z, t) + dV(z, t)] - Cd z 
∂⎛ ⎞

⎜ ⎟∂⎝ ⎠t
[V(z, t) + dV(z, t)] = I(z, t) + d I(z, t)

*As distinct from the coefficients of energy reflection RP and RN of Chapter 17, p. 567.
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V z t( , )

R zd L zd

I( , )z t

C zd
G zd Z

L

I I( , ) +z t (z, t)d

z l= –

z l=

dz
z = 0

Figure 18.6 Circuit representation of a section of a lossy transmission line.

Simplifying and ignoring (d z)2 and higher degree terms,

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠z

V(z, t) + RI(z, t) + L 
∂⎛ ⎞

⎜ ⎟∂⎝ ⎠t
I(z, t) = 0 (18.22a)

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠z

I(z, t) + GV(z, t) + C 
∂⎛ ⎞

⎜ ⎟∂⎝ ⎠t
V(z, t) = 0 (18.22b)

The most important case for practical problems is when V(z, t) and I(z, t) vary sinusoidally with
time. So we can write:

I(z, t) = Re[I(z) exp ( jw t)]       and       V(z, t) = Re[V(z) exp ( jw t)] (18.23)

where I(z) and V(z) are complex amplitudes of the current and the voltage along the line. Hence
Eqs. (18.22) become:

 
⎛ ⎞
⎜ ⎟⎝ ⎠

d
dz

V(z) + (R + jwL)I(z) = 0 (18.24a)

⎛ ⎞
⎜ ⎟⎝ ⎠

d
dz

I(z) + (G + jwC )V(z) = 0 (18.24b)

Differentiating the first equation with respect to z and combining with the second; and doing the
vice versa, we get

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

2

2

d

dz
V(z) + (R + jwL)(G + jwC )V(z) = 0 (18.25a)

  
⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

2

2

d

dz
I(z) + (R + jwL)(G + jwC )I(z) = 0 (18.25b)
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both of which are complex one-dimensional wave equations.

Let (R + jwL)(G + jwC ) = g 2 = (a + jb)2 (18.26)

which gives

( ) 1/2
21

( ) ( )
2

R j L G j C RG LC
⎛ ⎞ ⎡ ⎤= + + + −⎜ ⎟ ⎣ ⎦⎝ ⎠

a w w w (18.27a)

( ) 1/2
21

( ) ( )
2

R j L G j C RG LC
⎛ ⎞ ⎡ ⎤= + + − −⎜ ⎟ ⎣ ⎦⎝ ⎠

b w w w (18.27b)

where

g is the complex propagation constant

a is the attenuation constant

b is the phase constant.

Equations (18.25) then become
⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

2

2

d

dz
V(z) + g 2V(z) = 0 (18.28a)

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

2

2

d

dz
I(z) + g 2I(z) = 0 (18.28b)

The solution of both these equations is the same, i.e.

V(z) = V1 exp (-g z) + V2 exp (g z) (18.29a)

I(z) = I1 exp (-g z) + I2 exp (g z) (18.29b)

where V1, V2, I1, and I2 are unknown constants to be determined, but they are not all independent.
These solutions appear as the sum of two waves, one travelling in the +ve z-direction and the
other one in the -ve z-direction. Substituting from the above equations in Eqs. (18.24), we get

-gV1 exp (-g z) + g V2 exp (g z) + (R + jwL)[I1 exp (-g z) + I2 exp (g z)] = 0

This equation can be satisfied only if the coefficients of exp (-g z) and exp (g z) cancel out
separately for all z, i.e.

                           
w w

g w
+ += = =

+
1

c
1

V R j L R j L
Z

I G j C (18.30a)

  
w w

g w
+ += − = − = −

+
2

c
2

V R j L R j L
Z

I G j C (18.30b)

where Zc is the characteristic impedance of the line.
If now we consider the transmission line to be terminated at the receiving end by a load

impedance ZL (= ZR) which is located at z = 0 [i.e. the origin of the coordinate system being
located at the receiving end where the load impedance is connected, and the –ve z-direction is
towards the sending end, where the voltage source is connected (Figure 18.6), the length of this
section of this line under consideration being l], then at z = 0,
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ZL (= ZR) = 
=

+⎡ ⎤ =⎢ ⎥ +⎣ ⎦
1 2

1 20

( )
( )

z

V VV z
I z I I

                                
−⎛ ⎞= ⎜ ⎟+⎝ ⎠

1 2
c

1 2

I I
Z

I I

From this equation, the reflection coefficient (= GR) is obtained as

G
−

= =
+

R c2
R

1 R c

Z ZV
V Z Z

(18.31a)

and
−

=
+

c R2

1 c R

Z ZI
I Z Z

(18.31b)

Expressing the solutions of Eqs. (18.29) in hyperbolic function form, we have

V = A1 cosh (g z) + B1 sinh (g z) (18.32a)

I = A2 cosh (g z) + B2 sinh (g z) (18.32b)

where the unknowns A1, B1, A2, B2 are determined by the use of the boundary conditions at the
receiving end (z = 0) and at the sending end (z = - l), as shown in Figure 18.7.

+
I
S

V
S

I
R

V
R

Z Z
L R

=

–
z

+

–

l

Figure 18.7 Transmission line terminated with a load impedance (ZL = ZR) at the
receiving end.

The boundary conditions are:

(a) at z = 0, V = VR, I = IR; and

(b) at z = - l, V = VS, I = IS (18.33)

Substituting these equations in (18.32), and also using Eqs. (18.24), we get

VS = VR cosh (g l) + ZcIR sinh (g l) (18.34a)

    IS = IR cosh (g l) + 
⎛ ⎞
⎜ ⎟
⎝ ⎠

R

c

V
Z

 sinh (g l) (18.34b)
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These are general transmission line equations correlating the voltages and the currents at the two
ends of the line. Hence the general expression for the input impedance of the line is

                         = S
in

S

V
Z

I

g g

g g

+
=

⎛ ⎞+ ⎜ ⎟
⎝ ⎠

R c R

R
R

c

cosh ( ) sinh ( )

cosh ( ) sinh ( )

V l Z I l

V
I l l

Z

(18.35)

From the general expression for the input impedance, we now look at certain special cases of
interest, as in the previous section, i.e.

(1) a line, short-circuited at the receiving end, i.e. ZR = 0

\ VR = 0, and the input impedance = Zsc = Zc tanh (g l) (18.36)

(2) for an open-circuited line, ZR Æ •, IR = 0

\ the input impedance = Zoc = Zc coth (g l) (18.37)

(3) the product of these two gives us: ZscZoc = Zc
2 (18.38)

The low-loss or loss-less (idealized) line characteristics can also be obtained from the equations of
this section, by considering the limit, when: R << wL and G << w C.

Then, Z = R + jwL = jwL and Y = G + jw C  = jw C, and

                   
w
w

+= =
+c

R j L L
Z

G j C C
(18.39)

                    ( )( )R j L G j C j LC j= + + = +g w w w a b¥

\                a = 0 and b = w LC (18.40)

For low-loss lines, the approximation for b is very good, but at times the approximation of zero
for a may not be good enough, even though a is very small compared with b. A better
approximation is obtained by rearranging the terms in g, and using the binomial expansion as
shown below:

g 1 1

1
2 2

1
2 2

2
2

w w w

w w w

w w w

w

Ê ˆ Ê ˆ= + +Á ˜ Á ˜Ë ¯ Ë ¯

Ê ˆ Ê ˆ= + +Á ˜ Á ˜Ë ¯ Ë ¯

Ê ˆ+ +Á ˜Ë ¯

+ +

R G
j LC

j L j C

R G
j LC

j L j C

R G
j LC

j L j C

L
GR C j LC

L
C

¥

¥ (18.41)
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so that

c
c

1
and

2
R

GZ LC
Z

⎛ ⎞⎛ ⎞ +⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠
a b w¥ ¥ (18.42)

This value of a needs to be used only for calculating the line losses. For the calculations of the
voltage and the current distributions, the attenuation of most of the low-loss ultra high frequency
transmission lines is so small that a = 0 gives satisfactory results. For many purposes, the low-
loss lines may be treated as loss-less, i.e. R = G = a = 0. Hence the equations of the general
transmission lines reduce to the form given below for the low-loss high frequency lines:

                            VS = VR cos (b l) + jIRZc sin (b l) (18.43a)

IS = IR cos (bl) + j 
⎛ ⎞
⎜ ⎟
⎝ ⎠

R

c

V
Z

 sin (bl) (18.43b)

where Zc = 
L
C

 is a pure resistance.

The input impedance of such a line is

                          = S
S

S

V
Z

I

   
R c

c
c R

cos ( ) sin ( )
cos ( ) sin ( )

Z l jZ l
Z

Z l jZ l
+⎡ ⎤= ⎢ ⎥+⎣ ⎦

b b
b b (18.44)

18.2.3 Other Types of Transmission Lines

The coaxial cable has already been analyzed in detail in Chapter 14 (Sections 14.3.2, 14.4.1–
14.4.2), and so we shall not repeat it here, even though it is a device to produce guided
electromagnetic waves. However it is recommended that the students of the subject would find it
beneficial to reread these above-mentioned sections, at this stage, following the knowledge gained
so far, for further clarity of understanding.

The other commonly used transmission line is the ‘stripline’ which consists of two parallel
strips of finite e, m, s such that each strip’s width b is much greater than its thickness a
(i.e. b >> a). We shall not discuss this device in detail here.

Next we shall discuss some basic types of waveguides.

18.3 WAVEGUIDES

18.3.1 Introduction

So far, in this chapter, we have described some different types of transmission lines which have
been defined as guiding systems having two parallel conductors (but there may be more
conductors in a system as in three-phase power lines which have three or four parallel
conductors). The currents in the two conductors at any cross-section are of equal magnitude, but
opposite in direction, and hence the electric and the magnetic field vectors are in planes, which
are transverse to the direction of the lines, and hence are also transverse to the direction of energy
propagation. The waves propagating along the transmission lines are thus transverse
electromagnetic waves (TEM).
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Waveguides are guiding systems, which generally have the form of highly conducting tubes
or dielectric rods of different cross-sections, i.e. rectangular, circular, etc., and the electro-
magnetic energy is transported through such systems. There are many types of waveguides. In
this short introduction, we shall start with the type known as the rectangular waveguide, which
has the form of a tube of rectangular cross-section.

Also, for the ease of analysis, we consider here an idealized system with perfectly
conducting walls, and two-dimensional in nature, though in reality the waveguides are never
perfectly straight nor infinitely long. However, in spite of all these limitations, the picture we
derive on the basis of this idealized model, closely resembles the real situation.

The rectangular waveguides are metallic guides (as are the two-wire transmission lines), and
these are used efficiently over frequencies ranging from few tens of kHz to few tens of GHz. As
the frequencies go further towards optical spectrum, the metallic waveguides become inefficient
because of excessive losses in them and then the dielectric waveguides are used in the form of
optical fibres. Since these are cylindrical in structure, their behaviours are analysed by solving the
operating equations in the cylindrical polar coordinate system. So the cylindrical waveguides are
dielectric waveguides which are more useful in the sub-millimetre and optical wavelength range
(i.e. in terms of frequency this will be in units of THz). However, there are two types of dielectric
waveguides i.e. cylindrical waveguides (e.g. optical fibres) and slab waveguides which are of
rectangular geometry and are used in thin films and integrated optical devices.

The waveguides and many derived structures are the basic building blocks of any
microwave system. The engineering problems related to such structures are varied, and in our
introductory discussion, we shall deal with only important basic concepts. An important concept
which will be developed is the ‘modal propagation’ of waves in these guided structures.

18.3.1.1 Parallel plane waveguide

In Section 17.17.2, it was shown that when a uniform plane E.M. wave, with its E vector normal to
the plane of incidence, hits a perfectly conducting plane obliquely, it produces a reflected wave
which interacts with the incident wave to produce a wave pattern such that this wave pattern is
stationary or standing in the direction normal to the reflecting surface (i.e. in this case in the
z-direction as shown in Figures 17.23 and 17.24 of Section 17.17.2) and sliding parallel to the
reflecting surface, i.e. in the x-direction.

The interference pattern (say, of E field) has zero value on the reflecting surface (z = 0 plane).
There are successive parallel planes of zero E alternated by +ve and –ve crests of the E-wave as
shown in Figure 17.24. It was further stated that if another conducting plane was introduced in this
pattern along the plane of zero E [(say), the first plane of zeros from the z = 0], then in the gap
between these two parallel conducting planes (of width z = d), there is an E-wave pattern which is
stationary in the z-direction, and gliding parallel to the x-direction. So starting from a wave which
hits the z = 0 surface at any oblique angle q,. a wave has been produced which travels in the
x-direction, i.e. the wave has been guided along the x-direction. This is how the parallel plane
waveguide has been developed. The mathematics of such a guided wave has been derived and
discussed in Section 17.17.2 and so it will not be repeated here. Summarizing the results, the
resultant electric and the magnetic field components are:
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0 i i2 sin( cos ) exp[ ( sin )]b q w b q+= - -E i y ij E z j t x

   
0

i i i
0

2 cos cos( cos ) exp[ ( sin )]i
x

E
j z j t x

Z
q b q w b q+Ê ˆ
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- -Á ˜Ë ¯
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These are travelling waves in the x-direction but standing (or stationary) patterns in the
z-direction.

The electric field Ey which is parallel to the conducting boundary z = 0 (i.e. xy-coordinate
plane), becomes zero on that plane, as well as parallel planes located at z = d such that

isin ( cos ) 0 sin or sind nb q p p= =

\ 0 0
i

, 2
cos

n
d f

p b p m e
b q

= =

\
icos

d
p

b q
=

If l is the wavelength of the incident wave (in the direction of its propagation), then 2l p b=
and hence

i icos 2 cos
d

p l
b q q

= =

(17.205)and more generally

i i

0, 1, 2, ...
cos 2cos

n n
x d n

p l
b q q

= = = =

This means that the fields remain unaffected, if another conducting plane is interposed at any x
given by Eq. (17.205). Hence we find that for a given angle of incidence q i, the height of the
second conducting boundary, in order to maintain this described field pattern in the intermediate

gap, will be a discrete multiple of i(2 cos )l q . Or rewriting this equation by reversal,

icos
2

n n

d d

l pq
b

= = (A)

So now we can say that when there are two parallel conducting boundaries separated by a distance
d, the fields between them will be due to superposition of waves incident at angles q i given by the
above equation. Since n is an integer, there will be discrete values of q i. It should be noted that
when there is a single boundary, the field generated by the reflection of the incident wave would
have survived at any angle of incidence, i.e. q i could change in a continuous manner. But when
there are parallel boundaries, the boundary conditions on the two boundaries can be satisfied only
by certain discrete values of q i and so the field pattern in the gap would survive only for these
specific values of q i. So there have been some drastic changes in the process which are stated
below:

¸
Ô
Ô
Ô
˝
Ô
Ô
Ô
˛

¸
Ô
ÔÔ
˝
Ô
Ô
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(i) There has been a change from the continuous domain of q to the discrete domain.
(ii) For a given boundary separation d and a specified frequency f, there are only a finite

number of angles q, as cos q < 1.

(iii) When dn < l/2, then from Eq. (A) cos q becomes greater than 1 which is not possible.
This means that no waves can be launched between the two conducting planes, if the
gap between them is < l/2, i.e. less than the half wavelength.

(iv) As d increases or l decreases, the number of angles (i.e. q ) at which waves can be
launched also increases.

In the field expressions [i.e. Eqs. (17.204)], cosqi can be replaced by l and dn from
Eqs. (17.205), i.e.

icos
2

n n

d d

l pq
b

= =

and

i
2

cos
2

z n n z
z

d d

p l pb q
l

= =

and

2

isin 1
2

xn

d

blq
b

È ˘Ê ˆ= - =Í ˙Á ˜Ë ¯Í ˙Î ˚

and the wave number (the phase constant) for the guided wave pattern isinxb b q= = .
\ The field existing between the two conducting boundaries can be written as

02 sin exp[ ( )]
p w b+

Ê ˆ= - -Á ˜Ë ¯
E i y i x

n z
j E j t x

d

      
0

0

2 cos exp[ ( )]
p p w b

b
+Ê ˆ Ê ˆ Ê ˆ= - -Á ˜Á ˜Á ˜ Ë ¯Ë ¯Ë ¯

i i
x x

E n n z
j t x

Z d d
H (17.204a)

0

0

2 sin exp[ ( )]
b p w b
b

+Ê ˆ Ê ˆ Ê ˆ- -Á ˜Á ˜Á ˜ Ë ¯Ë ¯Ë ¯
i x

z x
E n z

j j t x
Z d

i

It should be noted that for a given value of n, the variation of the field in the z-direction is fixed
and independent of the frequency. For example, for n = 1, the field pattern is half sine wave; and
for n = 2, the field pattern is one complete cycle (both the bounding planes z = 0 and z = d, and
so on.).

Thus the field pattern is unique for a given n, and that there is no gradual change from one
pattern to another.

These unique field patterns are called the ‘modal field patterns’, and the propagation of these
waves in the form of these discrete patterns is called ‘modal propagation.’

Since the time-varying electric field cannot exist alone, it will be associated with orthogonal
magnetic field. For n = 0, the E field will be zero, and so both Hx and Hz will also vanish.

The field components in this problem are such that the E field is transverse to the direction
of propagation, and so it is called ‘Transverse Electric’ or TE mode. (m is put as a suffix to indicate
the order of the mode and so n used earlier would be replaced by m.)
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A similar ‘Transverse Magnetic’ or TM mode pattern would be obtained if the incident wave
had the E-wave parallel to the plane of incidence which has been described in Section 17.17.1.

The corresponding field expressions for the TM mode would be

        02 sin exp[ ( )]
p p w b

b+
Ê ˆ Ê ˆ= - -Á ˜Á ˜ Ë ¯Ë ¯

E ix i x
m m z

j E j t x
d d

   02 cos exp[ ( )]
b p w b
b+

Ê ˆ Ê ˆ- -Á ˜Á ˜ Ë ¯Ë ¯
i x

z i x
m z

E j t x
d (17.191¢)

  
0

0

2 cos exp[ ( )]
p w b+Ê ˆ Ê ˆ= -Á ˜Á ˜ Ë ¯Ë ¯

i
y x

E m z
j t x

Z d
H i

by similar algebraic manipulations as for the TE mode expressions.

Note: The suffix m for either TE mode or TM mode (or TEM) denotes the order of the mode, i.e.
the number of half-cycles of the wave pattern in the gap width d.

18.3.1.2 Cut-off frequency

The modal propagation constant or the wave number in the direction of propagation (i.e.
x-direction) is

2
1

isin 1
2x

m

d

lb b q b
È ˘Ê ˆ= = -Í ˙Á ˜Ë ¯Í ˙Î ˚

2
2 m

d

pb
È ˘Ê ˆ= -Í ˙Á ˜Ë ¯Í ˙Î ˚

From the field expressions (17.204a), it follows directly that if the resulting pattern is to be
travelling in the x-direction [i.e. exp{j(w t – bxx)}] then bx must be real. If bx is not real, i.e.

becomes imaginary, then jbxx becomes real and then the function does not represent a travelling
wave. It then becomes an attenuated standing alternating pattern.

Hence the condition for wave propagation is

Realx
m

d

pb b= fi ≥

Since
2 2

u

p pb
l

= =
f

where u is the velocity of the uniform plane wave in the medium under consideration, and we get

u

2

m

d
≥f

or

2d

m
l £
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So for a given waveguide height d, the frequency f must be higher than a certain threshold value,
for the wave to propagate for a particular mode. This threshold value of the frequency is called the
cut-off frequency for that mode, i.e.

cm
1

u
(or )

2c
m

f f
d

=

and the corresponding cut-off wavelength cm
2

(or ) .c
d

m
l l =

18.3.2 Rectangular Waveguides

The present analysis is essentially a continuation of the matter discussed in Section 17.17.2 (and
should be read as such, since the present discussion is a direct follow up of that section), where
we analyzed in detail the wave pattern produced by the oblique incidence of a plane wave, with
its E vector normal to the plane of incidence, on a perfectly conducting surface. We found that
parallel to the reflecting interface plane z = 0, there are planes like AA¢ (referring to
Figure 17.24) on which Ei + Er = 0 for all x and y at all t. This means that the wave pattern can
still exist, if one of these parallel planes is replaced by a second conducting wall (similar to the z
= 0 plane). If the nearest of such planes to z = 0 is taken, i.e. A1A1¢ (Figure 17.24), then its distance
d1 from the reflecting surface is related with the free space wavelength (denoted by l0), i.e.

l l qq= =0 0
1 i

i
sec

2 cos 2
d (18.45)

The above equation refers to Eq. (17.206) of Section 17.17.2 where l the wavelength of the
incident wave has now been expressed as l0, as the wave is in free space, and hence,

( )0

0 0

1 cl
m e

= =
ff

Or, conversely, we can argue that, given two perfectly conducting planes d1 distance apart, a
wave pattern can be set up at an angular frequency w, such that:

0 1 i

2 c c
2

cos
f

d
= = =p pw p l q (18.46)

The field Ei + Er does not vary with y, and hence can terminate on the ± charges on the planes at
y = 0 and y = b. Thus a ‘rectangular waveguide’ is produced.

The field patterns are as shown in Figures 18.8(a) and (b). These are shown in two
orthogonal planes, i.e. y-z plane and x-y plane. The separate fields Ei, Er, Hi, Hr and –q i, which
were used for generating this final pattern, are really parts of the building scaffolding, and are
now omitted.

From Figure 18.8(b), it will be seen that the field alternates longitudinally (in the
x-direction—the direction of propagation of the guided wave—as distinct from the direction of
propagation of the incident wave). It will also be noted that the E field (the resultant field) is
transverse and H has both the transverse and the longitudinal components. The field travels with
a velocity vx given by

vx = c cosec qi (18.47)
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Figure 18.8 Field pattern in a rectangular waveguide (refer to Figure 17.24, for correspondence
with the incident wave direction).

and the wavelength of the longitudinal waves is

lx = l0 cosec q i (18.48)

(It should be noted that vx is greater than c, and so vx will exceed the velocity of light in an air-
filled waveguide). It should be carefully noted that the velocity with which the signals are
transmitted is the so called ‘group velocity’ vgr, which is given by

vgr = c sin q i (18.49)

This is most simply explained by thinking of the transmission as by a sequence of reflected waves
on two parallel planes z = 0 and z = d1, as shown in Figure 18.9.

qi

qi

qi

qi

Figure 18.9 Group velocity vgr.

To obtain the cut-off frequency, using Eqs. (18.45) and (18.48), we get

2 2
0 0 1

2 xa
⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

l l
l
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or
22 2 2

0

1 1 1
2 2 cx a

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ = =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

w
l l p (18.50)

(We have replaced d1 by a for simplicity of notation.)

\ For lx to be real, 
c

w
p  must be > 1

a
,

i.e. w must be > 
c

a
p

.

\ The limiting value of the cut-off frequency is given by

c
c a

= pw (18.51)

which from Eqs. (18.46) and (18.49) corresponds to q i = 0 and vgr = 0.
Below this frequency there can be no propagation. This quantity relates the width of the

waveguide to the proposed frequency.
If now we look at the lines of E and H in a plane containing the direction of propagation

(as shown in Figure 18.10), then the lines of E (= Ey) in the x-y plane are lines transverse to the
direction of propagation, and the lines of H are closed loops in the z-x plane (y = constant).

E

y

x

v
x

v
x

z

x

H

Figure 18.10 E and H lines along the direction of propagation: (a) E lines and (b) H lines.

The pattern, which we have discussed above, is only one of the many possible modes of
operation, known as the TE10 mode where TE stands for the ‘Transverse Electric’, because the E
field is entirely across the guide (i.e. totally normal to the direction of propagation). The suffix 10
is given because the standing wave of E has one-half cycle in the x-direction and none in the
y-direction.

In general, there is a possibility of m, n, half-cycles in these two directions, leading to TEmn

mode. If we had chosen the second plane AA¢ (of Figure 17.24), then we should have obtained
TE20 mode, with two half-cycles of E in the standing waves.

In addition, there is a whole series of modes in which the magnetic field is transverse; the
TM11 being the lowest. The TM11 modes are as shown below in Figure 18.11.
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Figure 18.11 TM11 mode in a rectangular waveguide.

These broad types of waves can exist in all transmission systems. In a coaxial cable,
for example the mode usually considered is TEM mode, but it can be shown that this cannot
occur in a single-conductor waveguide (which is simply-connected). This is because a transverse

magnetic field must have the basic form shown above (possibly with several vortices); d⋅∫ H l

has a finite value round any closed line, showing that the current must be enclosed. This requires:

either (a) one or more central conductors (i.e. multiply-connected);

or (b) a displacement current, which necessitates a longitudinal electric field.

Thus TEM waves can only occur if there are conductors in the waveguides.

18.3.3 Rectangular Waveguide: Mathematical Analysis from the
Fundamentals

In Section 18.3.2, we derived the behaviour of rectangular waveguides by starting from the
reflection patterns of a plane wave incident obliquely on a perfect conducting surface. However, it
is also possible to arrive at the same results directly, without using the pattern due to the oblique
incidence of plane waves, and solve directly the Maxwell’s equations for the specified geometry
of the rectangular waveguide. We shall now analyze the device this way and confirm the results
of the previous section. The advantage of such an approach is that, since the method of analysis
is completely general, we can then suitably modify the results to account for the imperfections
and changes in a practical device.

We start with the rectangular tube as shown in Figure 18.12, with its coordinate system
shown in the figure, and the direction of propagation in the guide being +z-direction. The guide is

Figure 18.12 A rectangular waveguide, with cross-section a * b, and the coordinate
system as shown.
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assumed to be infinitely long, and its walls are (initially) made of perfect conductor, and the
dielectric inside is loss-less; it has the characteristic properties: e, and m, with s being zero.

It has been seen earlier that using complex notation for the sinusoidally time-varying
excitations, a wave travelling in the + z-direction is denoted by exp (- jbz). When there is
attenuation, jb has to be replaced by g, such that g = a + jb. So to maintain the generality, we
indicate the propagation in the + z-direction by exp (-g z). Hence the complex field vectors are of
the form:

E = E(x, y) exp (-g z)       and       H = H(x, y) exp (-g z) (18.52)

From the Maxwell’s equations,

— ¥ H = ∂
∂t
D

and — ¥ E = - ∂
∂t
B

, we get

∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂⎛ ⎞− + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

y yz zx x
x y z

H HH HH H
y z z x x y

i i i
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y yz zx x
x y z

E EE EE E
y z z x x y

i i i

= - jwm (ixHx + iyHy + izHz )

using B = mH, D = eE, and 
∂
∂t

 = jw .

Combining these equations with Eqs. (18.52), and equating the vector components, we get
the following scalar equations:

 g we
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∂
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(18.53a)
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   w m
∂ ∂

- = -∂ ∂
y x

z

E E
j H

x y (18.53f)

From Eqs. (18.53), by combining (a) and (e) we get Ex and Hy, and by combining (b) and (d) we
get Hx and Ey as given below:

g we∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠2 2
z z

x
H E

H
x yk k

(18.54a)
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g we∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠2 2
z z

y
H E

H
y xk k

(18.54b)
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g w m∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠2 2

z z
y

E H
E

y xk k
(18.54d)

where k2 = g 2 + w2me.
The wave equations for Ez and Hz are obtained from the equations of (18.53) along with the

Maxwell’s divergence equations in charge-free region, i.e.

— ◊◊◊◊◊ D = 0 and — ◊◊◊◊◊ B = 0 (18.55)

We differentiate (18.53a) with respect to y, (18.53b) with respect to x, and then add them and
substitute from (18.53f) and (18.55) to get

2 2

2 2
z zH H

x y

∂ ∂
+

∂ ∂
 + g 2Hz = -w2meHz (18.56)

and similarly differentiate (18.53d) with respect to y, (18.53e) with respect to x, then add them
and substitute from (18.53e ) and (18.55) to obtain:

2 2

2 2
z zE E

x y

∂ ∂
+

∂ ∂
 + g 2Ez = -w2meEz (18.57)

Equations (18.54), (18.56) and (18.57) give us the relationship between the field components
within the rectangular guide. It should be noticed that if both Ez and Hz are zero simultaneously,
then all the fields within the guide will also vanish. Hence for such a waveguide structure
(in which there is no inner conductor in the space of the guide—mathematically this region is
‘singly-connected’ whereas a region with conductor inside is ‘multiply-connected’), there must
exist either an Ez or a Hz component, i.e. a component directed in the direction of propagation.
Thus two possible field configurations can exist in this waveguide, i.e. (1) the transverse electric
(TE mode) waves for which Ez = 0, and (2) the transverse magnetic waves (TM mode) for which
Hz = 0.

For the guide shown in Figure 18.12, the resultant boundary conditions are (we have
assumed the enclosing boundaries to be perfect conductors, at this stage)

(1) at y = 0 and y = b, Ex = Ez = 0; and

(2) at x = 0 and x = a, Ey = Ez = 0.

Physically the conditions state that there can be no tangential electric field on any of the boundary
surfaces.

18.3.3.1 Transverse electric waves in rectangular waveguides

In this type of waveguide, if Ez = 0, the electric field intensity vector is in the transverse plane,
and such waves are referred to as transverse electric or TE waves.
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When Ez = 0, Eqs. (18.53) simplify to:

  g Ey = - jwmHx (18.58d)

g Ex = jwmHy (18.58e)
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(18.58c)

We now express all the field components in terms of Hz, i.e. we combine Eqs. (18.58b) and
(18.58d), and get

wmg we g
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Similarly from (18.58a) and (18.58e), we get
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Combining these two equations with (18.58e) and (18.58d), we get
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and the equation for Hz is
∂ ∂

+ + =
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2 2
2

2 2
0z z

z
H H

k H
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(18.63)

We solve this equation by using the method of separation of variables, i.e.

Hz = Hz(x, y) = XY = X (x)Y(y) (18.64)

Equation (18.63) becomes
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Since the first term is a function of x only, and the second term is a function of y only, the above
equation can be satisfied only if each term is a constant, such that

2 2
2 2

2 2
,x y

X Y
k X k Y

x y

∂ ∂= − = −
∂ ∂ (18.66)

where

� � ��+ = = +2 2 2 2 2
x yk k k (18.67)

The solutions of Eqs. (18.66) are of the form

X = Ax sin (kx x) + Bx cos (kx x)
and

Y = Ay sin (kyy) + By cos (kyy)
so that

Hz� ��
x yk k
� � [Ax sin (kx x) + Bx cos (kx x)][Ay sin (kyy) + By cos (kyy)] (18.68)

The unknown constants Ax, Bx, Ay, By, and kx, ky have to be determined by using the boundary
conditions stated in the previous section.

The first set of boundary conditions state that

at y = 0, and y = b, Ex = 0 and Ez = 0

From Eqs. (18.61) and (18.68), we get

x yk k
� � [Ax sin (kx x) + Bx cos (kx x)][Ay cos (kyy) � By sin (kyy)]ky = 0

for y = 0 and y = b, for all values of x.

� Ay = 0 and ky = 
�n
b

, where n = 0, 1, 2, 3, ... .

The second set of boundary conditions states that at x = 0 and at x = a, Ey = 0 and Ez = 0.
� From Eqs. (18.62) and (18.68),

x yk k
� � [Ax cos (kx x) – Bx sin (kx x)]kx [Ay sin (kyy) + By cos (kyy)] = 0

for x = 0 and x = a for all values of y.

� Ax = 0 and kx = 
�m

a
, where m = 0, 1, 2, 3, ... .

Hz� �� Hz(x, y)� � H0 
� �⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
cos cos

m x n y
a b

(18.69)

where m, n = 0, 1, 2, 3, ..., and H0 stands for the product (BxBy) of the constants from
Eq. (18.68), and is determined by the intensity of the wave propagating through the guide. It
should be noted that these boundary conditions cannot be satisfied if Hz� � 0 all over the region
inside the guide, and, if Hz�� 0, then the equations define a wave for which E and H are constant
in the transverse planes. So we have here proved mathematically that a rectangular waveguide
cannot support a TEM wave.

All other components of TE type of waves, which can be supported by the waveguide, can
now be calculated by using the equations from (18.59) to (18.62). An infinite number of modes
corresponding to different values of m and n can propagate through the waveguide. The general
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(mn) wave (or TEmn mode, where the physical significance of m and n has been explained in
Section 18.3.2) is supported by the waveguide, and the particular types are TE10, TE01, TE11,
TE12, TE45, etc. It should also be noted that the mode TE00 cannot exist, because then Hz = H0 =
constant, so that then all the field components become zero.

From Eq. (18.67), we have

p p g w me⎛ ⎞ ⎛ ⎞= + = + = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

2 2
2 2 2 2 2
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⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥+ −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

1/22 2
2m n

a b
(18.70)

In the transmission line theory, which we studied in the earlier part of this chapter, g the
propagation constant was found to be a complex number, i.e. g = a + jb, where a is the
attenuation constant (or factor) (i.e. attenuation per unit length), and b is the phase-shift constant
(i.e. phase-shift per unit length). If g is real, then b = 0, i.e. there is no phase-shift along the tube,
which means that for real g [i.e. at low frequencies, since w2me is < (mp /a)2 + (np/b)2] there is no
wave motion along the guide. However as the frequency is increased, there is a critical value of w
(= wc) at which the expression under the square-root sign is zero, and for higher values of w, g
will be imaginary, i.e.

g = jb = 
p pw me

⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥− +⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭⎣ ⎦

1/2
2 2

2 m n
j

a b
, when w > wc (18.71)

where

wc = 
p p

me
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥+⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

1/21/2 2 2
1 m n

a b
 = 2p fc (18.72)

This critical value of the frequency is called the cut-off frequency [see Eq. (18.51)].
The corresponding cut-off wavelength

1/22 2

u c 2
c

c cf f
m n
a b

⎛ ⎞= = =⎜ ⎟
⎝ ⎠ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥+⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

pl
p p

(18.73)

The velocity of wave propagation

1 / 2
2 2

2

v

m n
a b

w w
b

p pw me

= =
⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥− +⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦

(18.74)

which indicates that the velocity of propagation of the wave in the guide is greater than the phase
velocity in free space. As the frequency is increased above the cut-off frequency, the phase
velocity decreases from an infinitely large value and approaches the velocity of light in free space
c, as the frequency is kept on increasing indefinitely.

The cut-off frequencies of different modes are different. The mode TE10 for which m = 1,
n = 0, has the lowest cut-off frequency, i.e.
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( fc)TE10 = 
1 c

22 aa
=

me
, for a >> b (18.75)

which matches with the value obtained in Eq. (18.51).
The next lowest cut-off frequency is for TE01 mode, for which

( fc)TE01 = 
c

2b
(18.76)

\ In the range (c/2a) < f < (c/2b), only TE10 mode can propagate through the guide.
The field equations for the TEmn mode are:

 02
cos sinx

n m x n y
E j H

b a bk

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
wm p p p

(18.77a)

    02
sin cosy

m m x n y
E j H

a a bk

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
wm p p p

(18.77b)

 02
sin cosx

m m x n y
H j H

a a bk

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
b p p p

(18.77c)

02
cos siny

n m x n y
H j H

b a bk

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
b p p p

(18.77d)

                       
p p⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

0 cos cosz
m x n y

H H
a b

(18.77e)

In the above expressions, g has been replaced by jb, which is valid for the frequencies above the
cut-off frequency fc.

Implicit in the above expressions are the terms [exp (– jbz) exp ( jw t)], and the real part of
the total expression has to be considered. Also, by convention, the x-coordinate is assumed to
coincide with the larger transverse dimension, and hence the TE10 mode has the lowest cut-off
frequency (lower than the TE01 mode), and this is called the ‘dominant mode’.

18.3.3.2 Energy transmission in the TE10 mode of rectangular
waveguides

The field components in the TE10 mode are obtained by substituting m = 1, n = 0, in
Eqs. (18.77), which give:

Ex = 0 (18.78a)

    Ey = - ( )0 sin exp
wm p bp

Ê ˆ Ê ˆ -Á ˜ Á ˜Ë ¯ Ë ¯
a x

j H j z
a (18.78b)

Hx = ( )0 sin exp
b p bp

Ê ˆ Ê ˆ -Á ˜ Á ˜Ë ¯ Ë ¯
a x

j H j z
a (18.78c)

Hy = 0 (18.78d)
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Hz = H0 cos ( )p bexp
x

z
a

j
⎛ ⎞ −⎜ ⎟⎝ ⎠ (18.78e)

All these expressions have exp ( jw t) implicit in them.

                   

2

2
2

2
1

a

a

⎛ ⎞
⎜ ⎟⎝ ⎠⎛ ⎞= − = −⎜ ⎟⎝ ⎠

p
pb w me w me

w me
22

c
1 1

2
cf

af f
⎛ ⎞⎛ ⎞= − = − ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

w me w me (18.79)

where w = 2p f ; c = me  and fc = 
c 1

2 2a a
=

me
 both in free space.

The wavelength of the wave propagating along the z-direction of the guide is (= l z):

2 2
c c

2 2 c c

2 1 1

z

f f
f f

f f

= = =
⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

p pl b
p

                          
2

2
1

l
=

- cf

f
(18.80)

l, being the wavelength of the plane wave of the same frequency.
Hence the velocity of propagation of the wave along the waveguide (in the z-direction) is:

vp = fl z = 
2

2

c

1 - cf

f
(18.81)

This velocity of propagation as described before is greater than the velocity of light in vacuum. It
is only a ‘geometrical velocity’, and the energy propagation is at a lower velocity which is the
group velocity. The average power transmission through the guide is obtained by integrating the
complex Poynting vector, over a cross-section of the guide. The complex Poynting vector is in
the direction of propagation, i.e. in the z-direction.

Sav = 
⎛ ⎞
⎜ ⎟⎝ ⎠

1
2

Etransverse ¥ H*transverse = - 
⎛ ⎞
⎜ ⎟⎝ ⎠

1
2

EyHx
*iz

\ ΩSavΩ = *

0 0

1
Re

2

a b

y xE H dxdy
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦∫ ∫

                                       

2 2
20

2
0 0

sin
2

a b
a H x

dxdy
a

⎛ ⎞= ⎜ ⎟⎝ ⎠∫ ∫wmb p
p

                                       
wmb

p
=

3 2
0

24

a bH
(18.82)
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Typical dimensions of a guide to transmit a TE10 mode with a free space wavelength of 10 cm
would be a = 7.5 cm and b = 2.5 cm.

18.3.3.3 Transverse magnetic wave in rectangular waveguides

If now in the rectangular waveguide Hz = 0, then the magnetic field is in the transverse plane, and
such waves are called the transverse magnetic or TM waves.

When Hz = 0, Eqs. (18.53) become:

           gHy = jweEx (18.83a)

             gHx = - jweEy (18.83b)

∂ ∂
−

∂ ∂
y x

H H
x y

 = jweEz (18.83c)

     
∂
∂

zE

y
 + gEy = - jwmHx (18.83d)

  
∂
∂

zE

x
 + g Ex = jwmHy (18.83e)

                                    
∂ ∂

−
∂ ∂

y xE E
x y

 = 0 (18.83f )

This time we express the field components in terms of Ez.
Combining Eqs. (18.83d) and (18.83b),

z
x x

E
H j H

y j
gg wmwe

∂ −⎛ ⎞+ = −⎜ ⎟∂ ⎝ ⎠

\ Hx = 
we ∂⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟ ∂⎝ ⎠ ⎝ ⎠2
zEj

yk
(18.84)

Similarly from Eqs. (18.83e) and (18.83a),

Hy = - 
we ∂⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟ ∂⎝ ⎠ ⎝ ⎠2
zEj

xk
(18.85)

Combining these two equations with (18.83a) and (18.83b),

Ex = - 
g ∂⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟ ∂⎝ ⎠ ⎝ ⎠2
zE

xk
(18.86)

Ey = - 
g ∂⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟ ∂⎝ ⎠ ⎝ ⎠2
zE

yk
(18.87)

and the equation for Ez is
2 2

2 2
z zE E

x y

∂ ∂
+

∂ ∂  + k2Ez = 0 (18.88)

The method of solving this equation is same as that of Eq. (18.63). Using the same method of
separation of variables, the solution can be written as

Ez = 
x yk k

S S [Cx sin (kx x) + Dx cos (kx x)][Cy sin (kyy) + Dy cos (kyy)] (18.89)
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Applying the boundary conditions:

(1) On y = 0 and y = b, Ex = 0, Ez = 0.

From Eq. (18.89):

(Ez)y = 0 = SS [Cx sin (kx x) + Dx cos (kx x)]Dy = 0 for all x.

\ Dy = 0; and from y = b plane, sin (kyb) = sin np

\ ky = 
p⎛ ⎞

⎜ ⎟⎝ ⎠
n
b

, where n = 1, 2, 3, ... .

(2) On x = 0 and x = a, Ez = 0.

This condition gives: Dx = 0; and sin (kx a) = sin mp, m = 1, 2, 3, ... . Note that in this case
m = 0 and n = 0 are not admissible values.

\ The final expression for Ez is

Ez = E0 sin 
p p⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
sin

m x n y
a b

(18.90)

where m and n = 1, 2, 3, ...; E0 = CxCy [from Eq. (18.89)]
Note that as in the previous case,

k2 = 
p p⎛ ⎞ ⎛ ⎞+ = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

2 2
2 2
x y

m n
k k

a b
= g 2 + w2me

or

                        g = 
p p w me

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥+ −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

1/22 2
2m n

a b

                          = a + jb (18.91)

where a and b have the same meanings ascribed to them in Section 18.3.3.1. Since, if g was real,
b the phase-shift constant would be zero and there would be no wave in the guide. There would
be, as before, a critical value of w (= wc) for which g is zero, and above which g would be
imaginary, i.e. = jb and there would be wave propagation in the guide. This value of w would
give the cut-off frequency, whose expression is same as for the TE mode, i.e.

wc = 
p p

me

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠

2 2
1 m n

a b
 = 2pfc (18.92)

m and n being 1, 2, 3, ... .

\                      fc = 
p p

p me

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠

2 2
1

2

m n
a b

(18.93)

and the corresponding cut-off wavelength is

2 2

2
c

m n
a b

=
⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

pl
p p

(18.94)
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The wave number b for propagation in the TM mode is

p pb w me
⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥= − +⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭⎣ ⎦

1/2
2 2

2 m n
a b (18.95)

The velocity of wave propagation will be:

w w
b

p pw me

= =
⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥− +⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭⎣ ⎦

1/2
2 2

2

v

m n
a b

(18.96)

This is again greater than the phase velocity in free space; and its behaviour pattern is similar to
that in the TE mode. The wavelength in the guide is

1/2
2 2

2

v 2
f

m n
a b

= =
⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥− +⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭⎣ ⎦

pl
p pw me

(18.97)

which is also greater than the free space wavelength. The lowest value for the TM mode is m = n
= 1, i.e. TM11. The expressions for the field vectors of the TMmn mode are as given below:

   02
cos sinx

m m x n y
E j E

a a bk

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
b p p p

(18.98a)

  02
sin cosy

n m x n y
E j E

b a bk

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
b p p p

(18.98b)

                         
p p⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

0 sin sinz
m x n y

E E
a b

(18.98c)

02
sin cosx

n m x n y
H j E

b a bk

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
we p p p

(18.98d)

   02
cos siny

m m x n y
H j E

a a bk

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
we p p p

(18.98e)

In these expressions, g again has been replaced by jb which is valid for the frequencies
above the cut-off frequency. And also the terms [exp (– jbz) exp ( jw t)] are implicit in these
expressions.

18.3.4 Phase Velocity and Group Velocity

During our discussion of wave propagation of guided waves between parallel planes and in
waveguides, we have mentioned two types of velocities. The first one is the ‘phase velocity’
(= vph) which is the velocity of propagation of equiphase surfaces along the guide. (It should be
noted that the phase velocity is identical with the velocity of propagation of the wave-fronts in the
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rigorous sense only when we are dealing with non-dispersive waves). The geometrical
significance of the phase velocity is shown on the w –k plot of Figure 18.13(a), i.e.

phv
k

= w

 

w

( )w, k

d dkw/ = vgr

w w
k

= vph

k

k

vph

z

vgr

Figure 18.13(a) The slope of the line Figure 18.13(b) Sum of two sinusoidal
joining the point (w, k) and the origin is the waves of different frequencies.
phase velocity. The tangent of the w-k curve
at this same point is the group velocity.

For evanescent waves, the phase velocity approaches infinity as k Æ 0, and it is certainly
unreasonable to assume that a pulse will propagate with this velocity.

The second type of velocity we have come across is the group velocity (= vgr) which in
these particular cases, could be taken as the velocity of energy propagation in the direction of the
axis of the guide. In general, the group velocity of the waves with frequencies in the
neighbourhood of w is defined as, vgr = (dw/dk), or as the slope shown in Figure 18.13(a).

Its physical significance is then the velocity of propagation of a group of waves with
essentially the same wave-number and frequency.

For waveguide propagation, the phase velocity vph is always greater than v0 me −⎡ ⎤=⎢ ⎥⎣ ⎦
1/2( ) ,

whereas the group velocity is always less than v0.
It should be clearly understood that by itself, a purely sinusoidal wave cannot transmit any

information other than its own presence. If a signal has to be transmitted, then the wave must be
suitably modified. Whatever the method, the result is a ‘package of frequencies’ which is close to
the fundamental frequency (i.e. the frequency of the wave without a signal). The velocity of the
package carrying the information is the main interest.

We shall try to explain this by considering the simplest possible package made up of only
two waves of angular frequencies w1 and w2 which are close to the fundamental frequency w.
Since the frequencies are different, their phase constants, (say) b1 and b2 respectively, would also
be different. So we add the two waves, in the forms of:

F1(t, z) = cos (w1t - b1z) and F2 (t, z) = cos (w2t - b2z)

By standard trigonometrical relation, which gives the sum as

F1(t, z) + F2(t, z) = 
w w b b w w b b+ + − −⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

1 2 1 2 2 1 2 1( ) ( ) ( ) ( )
2 cos cos

2 2 2 2
t z t z

Ô̧
˝
Ǫ̂
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Let w1 and w2 be very near the fundamental frequency w (w2 > w > w1), so that:

(w2 + w1)/2 = w,  (b2 + b1)/2 = b,  (w2 - w1) = Dw,  and (b2 - b1) = Db.

The above sum of these two waves then can be expressed as

F1(t, z) + F2(t, z) = 
w bΔ − Δ⎛ ⎞

⎜ ⎟⎝ ⎠
2 cos

2
t z

cos (w t - bz) (18.99)

Since Dw << w, this expression represents a signal in the form of a wave cos (w t - bz) with a
varying amplitude 2 cos [(Dw t - Dbz)/2] as shown in Figure 18.13(b).

The sinusoidal wave inside the envelope propagates with the velocity vph = w /b. The wave
packages enclosed by the envelope are the carriers of energy, since no energy can be transmitted
through the zero values of the wave. The velocity of the envelope is (Dw /Db), which in the
limiting case becomes:

gr
1

v
d
d d

d

= =w
b b

w
(18.100)

which is the group velocity in a dispersive medium. This assumes that the frequency spectrum of
the signal is quite narrow. The group velocity is therefore interpreted as the velocity at which the
group of waves, defined by the envelope, propagates in the z-direction. Note that, because
the phase and the group velocities are different, the waves will appear to move with respect to the
envelope.

If we consider the rectangular waveguide in TE10 mode, the phase constant was obtained as:

b = 
2

1 cf
f

⎡ ⎤⎛ ⎞⎢ ⎥− ⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦
w me [Eq. (18.79)]

Using Eq. (18.100), the signal velocity in the guide is

2 2

gr
1

v 1 c 1c cf f
f f

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= − = −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
me (18.101)

and, in this case only:
vgrvph = c2 (18.102)

18.3.5 Rectangular Waveguide: Attenuation due to Lossy Dielectric,
and Imperfectly Conducting Walls

We shall briefly recapitulate the wave behaviour in imperfect conductors and lossy dielectrics.
Maxwell’s equations become:

— ¥ E = - wmH (18.103a)

— ¥ H = (s + jwe)E = jwe 
s
we

⎛ ⎞+⎜ ⎟⎝ ⎠
1

j
E (18.103b)

\ We have to replace e by [e {1 - js /(we)}] in all the formulae for propagation,
impedance, etc.; e.g.

g (= jb ) = jw 
sme we

⎛ ⎞+⎜ ⎟⎝ ⎠
( ) 1

j
, which is complex (18.104)

                              = a + jb
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Z0 = 
m

se we

⎡ ⎤
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⎢ ⎥
⎢ ⎥⎛ ⎞−⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦

1/2

1
j

¨ characteristic impedance of the medium (18.105)

q m e
q sm e we
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r 1 1

i
2 2

2

sin
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1
j

(18.106)

The critical quantity in this expression is s /we2.
For a good conductor, s /we2 >> 1,

q m e we
q m s s

w

⎡ ⎤
⎢ ⎥ ⎛ ⎞= =⎢ ⎥ ⎜ ⎟

⎝ ⎠⎢ ⎥
⎢ ⎥⎣ ⎦

1/2

1/2
r 1 1 1

i 2

sin
sin

j

j

(18.107)

which is very small.
\ sin qr is very small for any value of q i, i.e. the propagation takes place almost normally

into the conducting medium. Also, since the above expression is complex, the wave gets
exponentially damped as it propagates.

18.3.5.1 Attenuation due to lossy dielectric

We consider the TE10 mode in the rectangular waveguide. For the loss-less dielectric, the
propagation constant g is

g = jb = jk ( )
2 2

1 1c cf f
j

f f

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎢ ⎥− = −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
w me (18.108)

where k2 = w2(me).
For the lossy dielectric, we have replaced

e by 
jse we1

⎛ ⎞−⎜ ⎟⎝ ⎠
(18.109)

\ k gets modified as shown below, i.e.

( ) ( )1 1
2

k
j j

⎛ ⎞= + = +⎜ ⎟⎝ ⎠
s sw me w me
we we (18.110)

\ The propagation constant is now complex, i.e.

g = a + jb = ( )
2

1 1
2

cfj
j f

⎛ ⎞⎛ ⎞+ − ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠
sw me we (18.111)

\ The attenuation constant

                       ( )
2

1
2
sa w me we

Ê ˆ= - Á ˜Ë ¯
cf
f
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2

1 Nepers/metre
2

cf
f

⎛ ⎞ ⎛ ⎞⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠

m s
e (18.112)

and the phase-shift constant

( )
2

1 cf
f

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

b w me (18.113)

18.3.5.2 Attenuation due to imperfectly conducting walls

Let us initially consider transmission lines with sending waves (VS, IS):

V = VS exp (-a z), I = IS exp (-a z) (18.114)

\ Transmitted power = VI cos f = VSIS cos f exp (-2a z) = W (18.115)

\
dW
dz

 = - 2aW (18.116)

\ a = ×
Power loss per unit length

2 Power sent from the sending point
(18.117)

Power dissipated = 
⎛ ⎞
⎜ ⎟⎝ ⎠

1
2

 Re (Et ¥ H t
*) = 

⎛ ⎞
⎜ ⎟⎝ ⎠

1
2

 Re (HtZin ¥ H t
*)

                                 = ( )2
t in

1
Re

2
Z

⎛ ⎞
⎜ ⎟⎝ ⎠

H

                                 = ΩHtΩ2 
⎛ ⎞
⎜ ⎟⎝ ⎠

1
2

 Re
wm
s

j

                                         (see below for this step)

                                 =ΩHtΩ2 
⎛ ⎞
⎜ ⎟⎝ ⎠

1
2

wm
s  = 

⎛ ⎞
⎜ ⎟⎝ ⎠

1
2

ΩJΩ2 RS (18.118)

Note: To calculate the input impedance due to (say) the bottom wall (of the waveguide),

m wm
sse we

1/2

t
in

t 1

E
Z

H j

j

⎡ ⎤
⎢ ⎥
⎢ ⎥= = =
⎢ ⎥⎛ ⎞−⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦

(18.119)

The tangential Et exists on the wall because now there is an ohmic loss in the wall as it is now an
imperfect conductor.

Also, when there is a surface current, Ht1 - Ht2 = JS.

For a perfect conductor, Ht2 = 0, and hence Ht1 = JS (18.120)

Referring to Figure 18.12, we consider first the top and the bottom walls, which are planes y = 0
and y = b. We write the field vectors [from Eqs. (18.78)] as:
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                         Ey = A0 sin 
p⎛ ⎞

⎜ ⎟⎝ ⎠
x

a
 exp (-g z) (18.121a)

                        Hx = - 
g

wm
⎛ ⎞
⎜ ⎟⎝ ⎠

 A0 sin 
p⎛ ⎞

⎜ ⎟⎝ ⎠
x

a
 exp (-g z) (18.121b)

Hz = - 
p

wm
⎛ ⎞
⎜ ⎟⎝ ⎠j a

 A0 cos 
p⎛ ⎞

⎜ ⎟⎝ ⎠
x

a
 exp (-g z) (18.121c)

\ On the top and the bottom walls, y = 0 and y = b,

                         Jz = - 
g

wm
⎛ ⎞
⎜ ⎟⎝ ⎠

 A0 sin 
p⎛ ⎞

⎜ ⎟⎝ ⎠
x

a
 exp (-g z) (18.122a)

 Jx = - 
p

wm
⎛ ⎞
⎜ ⎟⎝ ⎠j a

 A0 cos 
p⎛ ⎞

⎜ ⎟⎝ ⎠
x

a
 exp (-g z) (18.122b)

\ The total power loss in the top + bottom plates per unit length in the z-direction is

                    ( )22 2
S S

0 0

2 2
a a

z xJ R dx J J R dx= ⋅ = + ⋅∫ ∫
b p

w m w m

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= + ⋅⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

2 2
2 2
0 0 S2 2 2 2 2

2
2 2
a a

A A R
a

(18.123)

Next, we consider the side walls x = 0 and x = a; on these side walls, since Hy = 0, only Jy will
be produced by Hz, i.e.

Jy = - 
p

wm
⎛ ⎞
⎜ ⎟⎝ ⎠j a

A0 cos 
p⎛ ⎞

⎜ ⎟⎝ ⎠
x

a
exp (-g z) (18.124)

\ The power loss in the two side plates per unit length

p
w m

⎛ ⎞
= ⎜ ⎟⎜ ⎟⎝ ⎠

2
2
0 S2 2 2

A aR
a

(18.125)

The transmitted power through the guide

( )*

0 0

2 2
0

0

2
0

1
Re

2

sin

2

a b

y x

a

dxdy

j x
A dx

a

j a
A b

⎛ ⎞= ×⎜ ⎟⎝ ⎠

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∫ ∫

∫

E H

g p
wm

g
wm

(18.126)

Note: exp (-2g z) has been assumed in all these expressions, and RS the resistance of the walls per
unit length.
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18.3.5.3 Parallel plane waveguide (as a limiting case of the
rectangular waveguide)

Initially, the parallel plane waveguide was derived from the reflection of uniform plane waves
hitting a perfectly conducting plane surface obliquely and studying the interference pattern
obtained therefrom. The rectangular waveguide was first derived from the parallel plane waveguide
by adding two parallel conducting surfaces orthogonally. The rectangular waveguide was also
analysed by using general mathematical approach, from fundamental considerations. Now, we shall
treat the parallel plane waveguide as a limiting case of the rectangular waveguide.

A rectangular waveguide with its edges parallel to the coordinate axes is shown in
Figure 18.13(c) (as was shown in Figure 18.12 as well). For the rectangular waveguide, with its
dimensions as shown in Figure 18.13(c), we have

x

a

b

o

z

y x z

a

o
y

Figure 18.13(c) Rectangular waveguide (a ¥ b) and its limit as b Æ •
giving the plane parallel waveguide.

1/ 22 2
2m n

a b

p pg w me
È ˘Ê ˆ Ê ˆ= + -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

(18.70)

When w > wc,
1/ 2

2 2
2 m n

j j
a b

p pg b w me
È ˘Ï ¸Ô ÔÊ ˆ Ê ˆÍ ˙= = - +Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Ô ÔÓ ˛Î ˚

(18.71)

where

f
p pw p

me
È ˘Ê ˆ Ê ˆ Ê ˆ= + =Í ˙Á ˜ Á ˜Á ˜ Ë ¯ Ë ¯Ë ¯ Í ˙Î ˚

1/ 21/ 2 2 2
1

2c c
m n

a b

To get the limit b Æ •, then

1/ 22 2
2 2and

m m
j j k

a a

p pb w me
È ˘Ê ˆ Ê ˆ= - =Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
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and the field equations for the TE mode become [(from Eqs. (18.77)]

Ex = 0

0 sin exp[ ( )]
/y

j m x
E H j t z

m a a

�� �
� �

�

� �� � �� �� 	

0 sin exp[ ( )]
/x

j m x
H H j t z

m a a

� �
� �

�

� �� �� �� 	 (18.77�)

Hy = 0

0 cos exp[ ( )]z
m x

H H j t z
a

�
� �

� �� �� �� 	

These are same as Eqs. (17.204a) of Section 18.3.1.1.

Note: In the above equation, the direction of propagation is z, whereas in Section 18.3.1.1 the
direction of wave propagation is x.

Next we consider the TM mode for the rectangular waveguide. As before, we take the limit
as b ���, but in this case all the five expressions [i.e. Eq. (18.98)] become identically equal to zero.
So the question that arises is ‘can the fields of the TM mode be derived thus or that the TM mode
does not exist. The answer to this apparent confusion lies in the fact that H0 is an arbitrary
mathematical constant and it can be infinite. The expressions appeared to become zeroes as
b �� was because of the implicit assumption that E0 in finite. So we define a new constant E0�
such that

0 0 sin
n y

E E
b

�
� �

which is finite when b ���
Then the field expressions of Eqs. (18.98) become:

0 sin exp[ ( )]z
m a

E E j t z
a

�
� �

� �� 
 �� �� 	

0 cos exp[ ( )]
/x

j m x
E E j t z

m a a

� �
� �

�
�

� �� � �� �� 	
(19.98�)

Ey = 0

Hx = 0

0 cos exp[ ( )]y
j m x

H E j t z
m a a

�� �
� �

�

�
� �� � �� �� 	

As before these are same as Eqs. (17.191�) of Section 18.3.1.1. Again it should be noted that the
direction of propagation has changed from x to z which causes a change in one of the field
components. The relationship between E0i+ and H0 and E0i and E0� can be written down by

comparing the two sets of equations.

�
�
�
�
�
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�
�
���

�
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18.3.6 Cylindrical Waveguide

We start with the solution of Maxwell’s equations in cylindrical coordinates (Figure 18.14).
We consider the Maxwell’s equation

d
d

dt
FÊ ˆ◊ = - Á ˜Ë ¯Ú E l

and apply it to the elemental contour ABCDA of the circular guide as shown in Figure 18.14(b).

Er dr + q
q

⎡ ⎤∂⎛ ⎞+⎢ ⎥⎜ ⎟∂⎝ ⎠⎣ ⎦

E
E dr

r
(r + dr) dq - qq

⎡ ⎤∂⎛ ⎞+⎢ ⎥⎜ ⎟∂⎝ ⎠⎣ ⎦
r

r
E

E d dr - Eqrdq = - jwmHz drrdq

(a)

(b)

dq
Eq

A E
r

E
r

+
d
dq
E

r
dq

D

C

B

Eq +
d
d
E

r

q
dr

E
z

z

F

E

G

E +
z

d
d
E

r

z
dr

Figure 18.14 A cylindrical waveguide and its elemental section.

or

1 zr HE E
E r

r r t

⎡ ⎤ ∂∂ ⎛ ⎞∂⎛ ⎞ ⎛ ⎞+ − = −⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
q

q mq (18.127)

And similarly from the other equation ,d
t

∂◊ =
∂Ú D

H l  we get

1 zr EH H
H r

r r t

⎡ ⎤ ∂∂ ⎛ ⎞∂⎛ ⎞ ⎛ ⎞+ − =⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
q

q eq (18.128)
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Note that (∂/∂t) ∫ jw, for sinusoidally time-varying excitations, and hence the operator and the
imaginary quantity are interchangeable in these equations.

We again apply the line integral Ú E ◊◊◊◊◊ dl around the contour ADEFA (in the clockwise

direction) and obtain

Eq r dr + qq
⎡ ⎤∂⎛ ⎞+⎢ ⎥⎜ ⎟∂⎝ ⎠⎣ ⎦

z
z

E
E d dz - q

q
⎡ ⎤∂⎛ ⎞+⎢ ⎥⎜ ⎟∂⎝ ⎠⎣ ⎦

E
E dz

z
rdq - Ez dz  = -jwmHrrdqdz

or

 
1 q wmq

∂∂ Ê ˆÊ ˆÊ ˆ - = -Á ˜ Á ˜ Á ˜∂ ∂Ë ¯ Ë ¯ Ë ¯
z

r
EE

j H
r z (18.129)

Similarly applying Ú H ◊◊◊◊◊ dl to the same contour ADEFA, we get

1 q weq
∂∂ Ê ˆÊ ˆÊ ˆ - = +Á ˜ Á ˜ Á ˜∂ ∂Ë ¯ Ë ¯ Ë ¯

z
r

HH
j E

r z (18.130)

Next we apply Ú E ◊◊◊◊◊ d l around the contour AFGBA (in the clockwise direction), and get

Ezdz + 
⎡ ⎤∂⎛ ⎞+⎢ ⎥⎜ ⎟∂⎝ ⎠⎣ ⎦

r
r

E
E dz

z
dr - 

⎡ ⎤∂⎛ ⎞+⎢ ⎥⎜ ⎟∂⎝ ⎠⎣ ⎦
z

z
E

E dr
r

dz – Erdr = - jwmHq drdz

or

qwe∂ ∂
- = -

∂ ∂
r zE E

j H
z r

(18.131)

Similarly applying Ú E ◊◊◊◊◊ dl to the same contour AFGBA, we get

zr HH
j E

z r
∂∂

− =
∂ ∂ qwe (18.132)

And we assume exp (-g z) variation of the field in the z-direction. We then combine
Eqs. (18.129) and (18.132),

     
1 z

r
E

E j H
r qg w mq

∂⎛ ⎞⎛ ⎞ + = −⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

1 zH
j j E

rq
wew m g g

⎡ ⎤∂⎛ ⎞⎛ ⎞ ⎛ ⎞= − − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
or

       ( )2 2 z zE H
E j

r rq
gg w me w mq

∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞+ = − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

\                   Eq = 
g w mq

⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦2

1 z zE H
j

r rk
(18.133)

where k2 = g 2 + w2me.
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From Eq. (18.129),

w m q
∂⎛ ⎞⎛ ⎞= − ⎜ ⎟⎜ ⎟ ∂⎝ ⎠ ⎝ ⎠

1 z
r

E
H

j r
g g w m
wm q

⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦2 2
z zE H

j
j rk r k

or

2

1 z z
r

E H
H j

r rk

⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

we gq (18.134)

From Eqs. (18.130) and (18.131), we get

2

1 z zE H
H j

r rk

⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞= − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
q

gwe q (18.135)

 2

1 z z
r

H E
E j

r rk

⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞= − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

wm gq (18.136)

We now derive the wave equation for Ez, i.e. from Eq. (18.128),

1 r
z

H H
H r j E

r r

⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞+ − =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠⎣ ⎦
q

q weq

From Eq. (18.135),
2 2

2 2 2

1 z z zE H HH
j

r r rk r r

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥= − + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂∂ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

q g gwe q q

Also from Eq. (18.134),

we g
qq

⎛ ⎞ ⎛ ⎞∂ ∂⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

2 2

2 2 2
z z

r
E H

H j
rk r k

Substituting from these equations in Eq. (18.128), we have

we g we g g
q q q

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

2 2

2 2 2 2 2 2
z z z z zE H E H Hr
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r rk rk k r k r k
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we g weqq
Ê ˆ Ê ˆ∂ ∂Ê ˆ Ê ˆ- + =Á ˜ Á ˜Á ˜ Á ˜∂ ∂Ë ¯ Ë ¯∂Ë ¯ Ë ¯

z z
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E H
j j rE

rk r k
Simplifying

( )g w me
q
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2 2
2 2

2 2 2

1 1
0z z z

z
E E E

E
r rr r

(18.137)

where k2 = g 2 + w2me = g 2 + p2, p2 = w2me.
This is the wave equation in Ez in the cylindrical coordinate system.

To obtain the solution of this wave equation, using the method of separation of variables, let the
solution be of the form

Ez = RF exp ( jw t - g z) (18.138)

where R ∫ R(r), F = F(q).
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Substituting in Eq. (18.137),

g 2 2
2

1 1
( ) 0R F R F RF p RF

r r

⎛ ⎞ ⎛ ⎞′′ ′ ′ ′+ + + + =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

where the prime indicates differentiation with respect to its corresponding independent variable.
Multiplying this equation by [r2/(RF)], and rearranging the terms,

g
2

2 2( )
r R rR F

p
R R F

′′ ′ ′′
+ + + = − (18.139)

For this equation to be true for all values of r and q, both sides must equal constants. Hence,

q
= −

2
2

2

d F
n F

d
(18.140)

where the constant n2 is to determine the periodicity in the q direction. The solution of this equation is

F = A cos nq + B sin nq (18.141)
where n = 0, 1, 2, 3, ... .

The corresponding r equation is

⎛ ⎞ ⎛ ⎞−⎛ ⎞ ⎛ ⎞+ + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

2 2 2

2 2

1
0

d R dR k n
R

r drdr r
(18.142)

There are three solutions to this equation, which are

R = CJn(kr) + DYn(kr) (18.143)

where Jn and Yn are the Bessel’s functions of first and second kind (and of the order n)
respectively. This is a standing wave solution.

= +(1) (2)( ) ( )n nR EH kr FH kr (18.144)

where Hn
(1) and Hn

(2) are Hankel’s functions of the first and second kind (and of the order n)
respectively. These are Bessel’s functions with complex arguments.

R = GIn( jkr) + G¢Kn( jkr) (18.145)

where In and Kn are modified Bessel’s functions of the first and second kind (and of order n)
respectively. These are Bessel’s functions with imaginary arguments.

The behaviour of Jn(x) and Yn(x) are shown below (approximately) in Figure 18.15.

Hn
(1)(x) = Jn(x) + jYn(x) ¨ represents an inward travelling wave.

 Hn
(2)(x) = Jn(x) - jYn(x) ¨ represents an outward travelling wave.

The inward and the outward directions refer to the assumptions based on that of exp ( jw t) (this is
a matter of relative convention. Stratton, in his book uses as reference exp (- jw t), and his
notations are reversed).

Hn
(1)(x) at the Brewster’s angle is a surface wave travelling inwards so that there is no reflection.

So far, we have used the notation

 k2 = (g 2 + w2me) = g 2 + p2, p2 = w 2me
                           = p2 - b2



678 ELECTROMAGNETISM: THEORY AND APPLICATIONS

If k is real, p2 - b2 is +ve; or 
0

2 2

g

⎛ ⎞
−⎜ ⎟

⎝ ⎠

p p
l l  is +ve; i.e. if k is real, l0 < lg.

\ It is a fast wave, i.e. v > c.

For a slow wave, k2 is -ve; \ k = j ( ).

J x
n
( )

n = 0

n = 1

x

Y x
n
( )

n = 0

x

Figure 18.15 Approximate plots of Jn(x) and Yn(x).

Given below in Figure 18.16 are the plots of the modified Bessel’s functions which are non-
orthogonal and hence are not oscillatory in nature.

In(m) = jnJn(- jm) and Kn(m) = 
p⎛ ⎞

⎜ ⎟⎝ ⎠2
(-j)n + 1 Hn

(2)(- jm)

I
n
( )x K x

n
( )

n = 0

n = 1

n = 1

n = 0

x x

(a) (b)

Figure 18.16 Modified Bessel’s functions: (a) of the first kind and (b) of the second kind.

Next we consider some examples.

18.3.6.1 TE wave in cylindrical waveguide

We assume perfectly conducting wall; and so there is a standing wave. For the TE mode Ez = 0.
Hence the wave equation solution is for Hz, which is
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Hz = [CJn(kr) + DYn(kr)](A cos nq + B sin nq) exp (-jbz) (18.146)

where k2 = g 2 + p2, g = jb.
Since the origin of the coordinate system is inside the guide geometry, D = 0 (as Yn Æ • at

r = 0) (see Figure 18.17).
Since the boundary conditions need the electric fields, we determine the Eq now:

              q
wm ∂⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟ ∂⎝ ⎠ ⎝ ⎠2

zH
E j

rk

                  
wm⎛ ⎞= ⎜ ⎟⎝ ⎠2

j
k

kCJn¢(kr)(A cos nq + B sin nq) exp (-jbz) (18.147)

where Jn¢  is the derivative of Jn with respect to its argument.
The boundary condition is Eq = 0 at r = a;

\ Jn¢(ka) = 0 (18.148)
The roots of this equation are

(ka)¢01 = 3.83, (ka)¢02 = 7.02

(ka)¢11 = 1.84, (ka)¢12 = 5.33

where the first subscript refers to the value of n, and the second to the order of the root.

\ b2 = p2 - k2 = w2m0e0 - 
2

2

( )mnk a

a
(for free space) (18.149)

                \ The cut-off frequency = wc
2 = 

2

2
0 0

( )mnk a

a m e
(18.150)

(Note that the other boundary condition that can be applied is: Hr = 0 at r = a.)

2a

Copper wall

Figure 18.17 A cylindrical waveguide.

The other field components are:

 2
( ) sinr n

n
E j A J kr n

k r

⎛ ⎞ ′′= ⎜ ⎟⎝ ⎠
w m q (18.151a)

                             q
g q⎛ ⎞ ′′= ⎜ ⎟⎝ ⎠2

( ) sinn
n

H A J kr n
k r

(18.151b)
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g q⎛ ⎞ ′′ ′= − ⎜ ⎟⎝ ⎠
( ) cosr nH A J kr n

k
(18.151c)

where A¢¢ = CA.
It should be noted that when n = 0 (i.e. no angular variation), the only nonzero components

are Eq, Hr, Hz. The field patterns are as shown below in Figure 18.18.

z

E

H —

q — circles

dotted lines
r

Figure 18.18 Field pattern for circular waveguide when n = 0.

18.3.6.2 Attenuation in TE10 mode in cylindrical waveguide

The field components are:

Hz = A¢¢ J0(kr) exp (- jbz) (18.152a)

  Eq = A¢¢ j
wm⎛ ⎞

⎜ ⎟⎝ ⎠k
J0¢(kr) exp (-jbz) (18.152b)

Hz = A¢¢ j
b⎛ ⎞

⎜ ⎟⎝ ⎠k
J0¢(kr) exp (-jbz) (18.152c)

We have already shown [Eq. (18.116)] that:

a = ×
Power lost per unit length

2 Power sent

Power sent (axially) = 
1
2 ∫∫  Re(E ¥ H*)dS

                                               = * *1
Re ( )

2 r rE H E H−∫∫ q q r dr dq (18.153)

In the above expression, Er = 0.

\ Eq Hr* = - ( )2 2
02
( )A J kr

k
′′ ′⎡ ⎤⎣ ⎦

w mb
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\ 2 ¥ Power sent = ( )
2

2 2
02

0 0

( )
a

A J kr r dr d
k

⎛ ⎞ ′′ ′⎡ ⎤⎜ ⎟ ⎣ ⎦⎝ ⎠∫ ∫
p

wmb q

                = ( )2 2
02

0

2 ( )
a

A J kr r dr
k

⎛ ⎞ ′′ ′⎡ ⎤⎜ ⎟ ⎣ ⎦⎝ ⎠∫ wmbp (18.154)

Note: J0¢ = J1; and

{ } { }2 22 2
0 1 12 2

0

1 1
( ) ( ) 1 ( )

2

a

r J kr dr a J ka J ka
k a

⎡ ⎤⎛ ⎞ ⎛ ⎞′ = + −⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦∫ (18.155)

Power lost/metre = q
⎛ ⎞
⎜ ⎟⎝ ⎠

S
1
2

J R (18.156)

where Jq is the linear current density in amperes/metre; and

SR = pbm
s (18.157)

\ Power lost per metre = 
⎛ ⎞
⎜ ⎟⎝ ⎠

1
2

HzRS = 
⎛ ⎞
⎜ ⎟⎝ ⎠

1
2

RS (A¢¢)2 [J0(ka)]2 2pal (18.158)

(l, being the length of the guide, which in this case is = 1.)

\ a = 
2

S

20

1
2

1

c

c

R fdP
P aZ f

f
f

⎡ ⎤
⎢ ⎥
⎢ ⎥⎛ ⎞ ⎛ ⎞= ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎛ ⎞−⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

(18.159)

If a is plotted as a function of frequency, then its behaviour is as shown in Figure 18.19,
given below.

a

f
f
c

— cut-off frequency

Figure 18.19 Attenuation as a function of the frequency.
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We show below the two modes TE01 and TE11 with their E and H lines shown in two
orthogonal sections (Figure 18.20).

H

E

TE mode
01

H

E

z

E H

TE mode11

H

+ + – – – – +

+– – + + + –

Figure 18.20 TE01 and TE11 modes in a circular waveguide.

18.3.7 Quality Factor Q of Waveguides

We have already discussed earlier, a number of times, the attenuation factor (or constant) a in the
range of propagation of a wave. Another quantity closely related to a is the ‘quality factor Q’
which is defined as:

Q = 
w (Energy stored per unit length)

Energy lost per unit length per second
(18.160)

                         = -
ww r

−∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠

1
W W

W
t

where W = energy at a time after the initial energy W0.
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The above expression, which is a general one, is applicable to both waveguides and
transmission lines.

For a waveguide,

Energy transmitted per second = vgr ¥ Energy stored per unit length (18.161)

where vgr is the group velocity which is related to the phase velocity vph by the relationship

12
0 2

gr 0
ph

v
v , where v ( )

v

−
= = me (18.162)

From Eq. (18.161),

Energy stored per unit length = 
gr

1
v

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

 ¥ Power transmitted (18.163)

\ Substituting in (18.160),

gr
(Power transmitted)

v

Power lost per unit length
Q

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

=

w

                                 
gr2 v

= w
a (18.164)

which can also be written in terms of the cut-off frequency as

ph

2 2
0

2

v
=

2 v
2 1 c

Q
⎛ ⎞

= ⎜ ⎟⎜ ⎟⎝ ⎠ −

w w
a wa

w

(18.165)

Because the waveguides have low attenuation factors compared with the transmission lines, it is
possible to construct waveguide sections with extremely high Q’s, which are used as resonators or
waveguide filters.

It should be noted that the Q factor of ordinary resonant circuits is of the order of a few
hundreds, and of resonant lines a few thousands.

18.3.8 Dielectric Slab Waveguide

These are generally used in thin film technology. It consists of two layers of dielectrics. The
bottom layer dielectric slab is called the ‘substrate’. The top layer is a thin layer of another
dielectric of higher dielectric constant (compared to that of the substrate) deposited on the
substrate. The propagation loss in the top layer is thus much less at the operating frequency. The
slab dielectric waveguide is an asymmetrical structure as shown in Figure 18.21.
Simplifying assumptions: (1) The substrate is infinitely thick. This is a justifiable assumption, as the
field decays rapidly as we move from the dielectric–substrate interface into the dielectric. (2) The
y- and z-dimensions are assumed to be infinite, to make it a simple one-dimensional problem.

As discussed earlier in this chapter (Section 18.3.3), the wave is propagating in the +z-direction.
Also, either Ez or Hz zero would give rise to modal fields for TE and TM modes respectively. Hence
these two independent components must satisfy the wave equation (in rectangular Cartesian
coordinates)
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x

x =

x = 0 z

Region 1 Air e0

Region 2 Dielectric e
d

Region 3 Dielectric e
s

e
d

> e
s

y

Figure 18.21 Dielectric slab waveguide.

2 2 2
2

2 2 2
( or ) 0z zE H

x y z
w me

Ê ˆ∂ ∂ ∂
+ + + =Á ˜∂ ∂ ∂Ë ¯ (18.166)

Since the waves are travelling in the z-direction, the z-variation of the fields will be ~ exp(–jb z)
where b, the modal phase constant will be determined from the interface continuity conditions.
Also, since the structure extends to infinity in the y-direction, the fields are constant functions of y,
i.e. independent of y.

\ ( , ) ( ) exp( )z zE H X x j zb= - (18.167)

We will now consider the TE mode for this guide.

A. TE Mode

In this case Ez = 0, and all the transverse fields are represented in terms of Hz only. Hence,

( ) exp( )zH X x j zb= - (18.168)

exp( jwt) being implicit in the above expression. Substituting in Eq. (18.166),

2
2 2

2

1
0

d X

X dx
b w me- + =

This has to be satisfied for all values of x, and so

  
2

2
2

1
(say, a constant)

d X
k

X dx
= ±

\
2

2
2

d X
k X

dx
= ± (18.169)

The sign of k will have to be chosen so as to satisfy the interface continuity conditions between the
media 1 and 2, and 2 and 3. There will be fields in the three media, but in air (1) and in the
substrate (3), the fields would decay rapidly as we move away from the interfaces. So this
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requirement gives +ve sign of k2 in the media 1 and 3 and –ve sign in region 2. The equations for
the three media can be written as

Region 1
2

21
1 12

d X
k X

dx
=

\ 2 2 2
1 0k b w me- + = (18.170a)

Region 2 (X2) 2 2 2
2 0dk b w me- - + = (18.170b)

Region 3 (X3)
2 2 2
3 0sk b w me- + = (18.170c)

The field then in the regions 1 and 3 will be in terms of exponentials and in the intermediate
region 2 it will be in terms of trigonometric functions. The boundary conditions at infinity would
simplify the equations further, i.e. as x Æ +•, Hz1 Æ 0 in the region 1 and as x Æ –•, Hz3 Æ 0
in region 3. Thus the longitudinal component of the magnetic field in the three regions will be

1 1 1exp( ) exp( )zH A k x j zb= - - (18.171a)

2 3 2 4 2( cos sin ) exp( )zH A k x A k x j zb= + - (18.171b)

3 6 3exp( ) exp( )zH A k x j zb= - (18.171c)

b being same in all the three media.
The transverse field components (Hx, Hy, Ex, Ey) in the three regions can be obtained, as

shown in Section 18.3.3, Eqs. (18.59) and (18.62). Substituting for Hz and Ez in these equations,
we get:

Region 1

 1 1 1 1
1

0, exp( ) exp( )x y
j

E E A k x j z
k

wm b= = - - - (18.172a)

 1 1 1 1
1

exp( ) exp( ); 0x y
j

H A k x j z H
k

b b= - - - =
Region 2

      2 2 3 2 4 20; ( sin cos ) exp( )x y
z

j
E E A k x A k x j z

k

wm b= = - -

 2 3 2 4 2
2

( sin cos ) exp( )x
j

H A k x A k x j z
k

b b= - - (18.172b)

  Hy2 = 0

Region 3

3 3 6 3
3

0; exp( ) exp( )x y
j

E E A k x j z
k

wm b= = -

(18.172c)

3 6 3
3

exp( ) exp( )x
j

H A k x j z
k

b b= -

¸
Ô
Ô
ÔÔ
˝
Ô
Ô
Ô
Ǫ̂

¸
Ô
Ô
˝
Ô
Ô
˛
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The unknowns to be evaluated are A1, A3, A4, A6, and k1, k2, k3, and b. The interface continuity
conditions used for evaluating these unknowns are:

(i) 2 3 3 6On 0, z zx H H A A= = Æ = (18.173a)

(ii) 64
2 3

2 3

On 0, y y
AA

x E E
k k

-
= = Æ = (18.173b)

(iii) 1 2 1 1 3 2 4 2On , exp( ) cos sinz zx d H H A k d A k d A k d= = Æ - = + (18.173c)

(iv) 1
1 2 1 3 2 4 2

1 2

1
On = exp( ) ( sin cos )y y

A
x d, E E k d A k d A k d

k k

-
= Æ - = - (18.173d)

It should be noted that since there are no surface currents on the dielectric interfaces, the continuity
conditions are simplified.

We need three more equations to evaluate k1, k2 and k3, i.e. from Eqs. (18.170a) and
(18.170b),

2 2 2 2
1 0 2 dk kw me w me+ = - +

or

2 2
1 2[ ( ) ]d sk kw m e e= - - (18.174a)

and from Eqs. (18.170b) and (18.170c),

2 2
3 2[ ( ) ]d sk kw m e e= - - (18.174b)

Equations (18.173a to d) can be written in matrix form to solve for A1, A3, A4, A6. The
characteristic equation of the determinant of the 4 ¥ 4 coefficient matrix comes out to be:

1 3 2
2 2

2 1 3

( )
tan

k k k
k d

k k k

+
=

-
(18.175)

These three equations can be solved as simultaneous equations by a numerical method, and once k2

has been evaluated, using Eq. (18.170b), i.e.

2 2 2
2 dk w me b- + =

b can be evaluated.
Some important points which should be noted are:

1. The characteristic Eq. (18.175) has multiple solutions which represent the propagation of
‘discrete modes’.

2. k1, k2 and k3 have to be real. So from Eqs. (18.174a) and (18.174b), we have

2 2 2 2
0 2 2( ) and ( )d d sk kw m e e w m e e- > - > (18.176)

Since 2
2k  is always +ve, this means 0 and .d d se e e e> >  Now 0de e>  is always true;

and the permittivity of the dielectric slab must be greater than that of the substrate for
the propagation of waves to be possible in the slab.

3. For a specified frequency 2 ,w p= f  k2 must lie between 0 and ( ).d swm e e-
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4. When k2 becomes ( ),d swm e e> -  k3 becomes imaginary and then exp(k3x) does not
represent an attenuating exponent and now it represents a leakage wave travelling in the
–x direction. So this mode is no longer a guided wave mode and is now its cut-off mode.
The frequency at which this happens is the cut-off frequency of the guide, i.e.

2

( )
c

d s

kw
m e e

=
-

(18.177)

18.3.9 Circular (Cylindrical) Dielectric Waveguide

So far, the present discussion has emphasized the mathematics of waveguides with cylindrical
geometry. A circular dielectric waveguide is now very commonly used for guiding microwaves as
well as millimetre waves. The energy is propagated along the axis of the circular rod made of
dielectric material, i.e. glass or silica rod in the form of optical fibres. The operation of the circular
waveguide is same as that of dielectric slab metallic waveguide. The modal propagation is a
consequence of superposition of totally internally reflected waves inside the dielectric rod. The
analysis of this geometry is already explained in Section 18.3.6 and hence without repeating it, the
results in terms of field components will be stated now.

A circular dielectric waveguide is shown in Figure 18.21. The rod has a radius a, and
permittivity e1. To keep the analysis general, let the rod be located in an infinitely large medium
of permittivity e2. If this is free space, then e2 = e0.

a

y

x

e
2e

1

z

e
2

q

g

Figure 18.21 Circular dielectric waveguide.

The wave equation for field components will be as derived in Eq. (18.137) and the solutions are
given in Eqs. (18.143) to (18.146), So now the TE and TM modes will be considered.

18.3.9.1 Transverse electric mode

For a TE mode, Ez is zero and the longitudinal field Hz is given as

1 1 1( ) exp( ) exp ( )z nH A J k r jn j z r aq b= - < (18.178a)

2 1 2( ) exp( ) exp( )z nH G K k r jn j z r aq b= - > (18.178b)
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The transverse fields are obtained as:
For r < a (i.e. inside the rod)

1
1 1 12 2

1 1

1
( ) exp( ) exp ( )z

r n
Hj n

E A J k r jn j z
r rk k

wm wm q b
q

∂-
= = ◊ ◊ -

∂ (18.179a)

1
1 1 12

11

( ) exp( ) exp( )z
n

Hj j
E A J k r jn j z

r kk
q

wm wm q b¢∂
= = ◊ -

∂ (18.179b)

1
1 1 12

11

( ) exp( ) exp( )z
r n

Hj j
H A J k r jn j z

r kk

b b q b¢∂ -
= - = ◊ -

∂ (18.179c)

1 1 12 2
1 1

1
( ) exp( ) exp ( )z

n
Hj n

H A J k r jn j z
r rk k

q
b b q b

q
∂

= - = ◊ -
∂ (18.179d)

and for r > a (i.e. outside the waveguide)

2
2 1 22 2

2 2

1
( )exp ( ) exp( )z

r n
Hj n

E G K k r jn j z
r rk k

wm wm q b
q

∂- -
= = -

∂-
(18.180a)

2
2 1 22

22

( ) exp( ) exp ( )z
n

Hj j
E G K k r jn j z

r kk
q

wm wm q b¢∂ -
= = -

∂- (18.180b)

2
2 1 22

21

( ) exp( ) exp( )z
r n

Hj j
H G K k r jn j z

r kk

b b q b¢∂-
= = -

∂- (18.180c)

2
2 1 22 2

2 2

1
( ) exp ( ) exp( )z

n
Hj n

H G K k r jn j z
r rk k

q
b b q b

q
∂- -

= = -
∂-

(18.180d)

To evaluate the constants of integration, the relevant boundary conditions are that the tangential
components of E and H are continuous on the surface of the rod (i.e. at r = a). This gives

Hz1 = Hz2   and   Eq1 = Eq2 at r = a

(18.181)
i.e.  1 1

1 1 1 1
1 2

( ) ( ) and ( ) ( )n n n n
A G

A J ka G K k a J ka K k a
k k

¢ ¢= = -

Since Hq is also tangential to the rod surface, we get

1 1
1 2 12 2

1 2

or ( ) ( )n n
nA nG

H H J ka K k a
k k

q q= - = (18.182)

The above equations for Hz and Hq can be simultaneously satisfied only if b or G1 or n is made
identically equal to zero.

Now G1 which represents the field amplitude cannot be made zero. Also b cannot be zero
because this is a travelling mode.

\ n = 0 is the required condition (18.183)

¸
Ô
˝
Ǫ̂
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This means that there is no q variation, i.e. the field is circularly symmetric.

1 2 1 20 and 0r rE E H Hq q= = = = (18.184)

Hence the resulting field components are:
Inside the waveguide (r < a),

1 1 0 1( ) exp( )zH A J k r j zb= - (18.185a)

1 1 0 1
1

( ) exp( )
j

E A J k r j z
kq
wm b¢= - (18.185b)

1 1 0 1
1

( ) exp( )r
j

H A J k r j z
k

b b¢= - - (18.185c)

Outside the waveguide (r > a),

2 1 0 2( ) exp( )zH G K k r j zb= - (18.186a)

2 1 0 2
2

( ) exp( )
j

E G K k r j z
kq
wm b¢= - - (18.186b)

2 1 0 2
2

( ) exp( )r
j

H G K k r j z
k

b b¢= - (18.186c)

To eliminate the arbitrary constants, the characteristic equation for the TE mode is obtained from

1 2

1 2

on ,
z z

E E
r a

H H
q q= =

i.e.
0 1 0 2

0 1 1 0 2

( ) ( )

( ) ( )

J k a K k a

k J k a k K k a

¢ ¢
= (18.187)

This equation has multiple roots, because J0 is an orthogonal function. A TE mode is designated as
TE0m because the suffix 0 corresponds to n = 0.

18.3.9.2 Transverse magnetic mode (TM)

For the transverse magnetic mode Hz = 0, and the transverse fields are expressed in terms of Ez.
Following the analysis of the TE mode, it will be seen that the TM mode is also circularly
symmetric and hence the corresponding field components are:

1 1 0 1( ) exp( )zE A J k r j zb= - (18.188a)

2 1 0 2( ) exp( )zE G K k r j zb= - (18.188b)

The corresponding transverse components are:
Inside the waveguide (r < a),

1
1 1 0 12

11

( ) exp( )z
r

Ej j
E A J k r j z

r kk

b b b¢∂- -
= = -

∂ (18.189a)
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11 1
1 1 0 12

11

( ) exp( )zEj j
H A J k r j z

r kk
q

we we b¢∂- -
= = -

∂ (18.189b)

and outside the waveguide (r > a),

2
2 1 0 22

22

( ) exp( )z
r

Ej j
E G K k r j z

r kk

b b b¢∂-
= = -

∂-
(18.190a)

22 2
2 1 0 22

22

( ) exp ( )zEj j
H G K k r j z

r kk
q

we we b¢∂-
= = -

∂-
(18.190b)

Next, the continuity of the tangential components of the fields at the waveguide surface r = a gives

1 2 1 2andz zE E H Hq q= = (18.191)
from which we get:

1 2
1 0 1 1 0 2 1 0 1 1 0 2

1 2

( ) ( ) and ( ) ( )A J k a G K k a A J k a G K k a
k k

e e¢ ¢= - = (18.192)

Taking the ratios of these two equations,

0 1 0 21 2

1 0 1 2 0 2

( ) ( )

( ) ( )

J k a K k a

k J k a k K k a

e e¢ ¢
= - (18.193)

This is the characteristic equation of the TM mode, which is similar to that of the TE mode. The
above equation also has multiple roots. The TM mode is designated as TM0m mode.

18.3.9.3 Cut-off frequencies of TM mode

For the two Bessel functions, i.e. J0 (k1r) the Bessel function for the region inside the dielectric rod
and K0(k2r) the modified Bessel function for the region outside the rod, K0 is not oscillatory and is
a decaying function as shown in Figure 18.16(b). We also have

2 2 2 2
1 1 2 2( ) and ( )k jk jw me b b w me= - = - (18.194a)

\ 2 2 2
1 2 1 2( ) constantk k w m e e+ = - = (18.194b)

for a given waveguide and frequency.
The decaying field outside the rod remains so, so long as k2 is real. If k2 were to be imaginary

K0 would be replaced by ordinary Bessel function which is oscillatory in nature and travelling
radially away from the axis of the rod—a leaking wave. This then no longer remains a guided mode.
Hence the cut-off frequency would be obtained when k2 is made zero. From Eq. (18.194b), it is
obvious that both k1 and k2 cannot be made simultaneously equal to zero.

Hence, as k2 Æ 0, since k1 cannot approach zero, J0(k1a) Æ 0
\ J0(k1a) = 0 corresponds to the cut-off frequency of TE or TM mode, i.e.

0c mk a c= (18.195a)

where c0m is the mth root of the J0 Bessel function.
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\  The modal cut-off frequency

0

1 2( )
m

c
a

cw
m e e

=
-

(18.195b)

The first root of the J0 function is 2.40, and hence the lowest frequency which can propagate in TE
or TM mode is

01
1 2

2.4

( )
c

a
w

m e e
=

-
(18.195c)

18.3.9.4 Hybrid modes

So far it has been seen that in circular dielectric waveguides the TE and TM modes are circularly
symmetric, This is so when either Ez = 0 or Hz = 0, i.e. one field component in the direction of
propagation is mode equal to zero. When both Ez and Hz are non-zero, then the mode is neither TE
nor TM. Such fields are called ‘hybrid modal fields.’ When such fields exist, they are not
circularly symmetric. The longitudinal fields in the two media can then be written as follows:

For r < a, i.e. inside the waveguide

1 1( ) exp( )z nE A J k r jn j zq b= - (18.196a)

1 1( ) exp( )z nH B J k r jn j zq b= - (18.196b)

For r > a, i.e. outside the waveguide

2 2( ) exp( )z nE C K k r jn j zq b= - (18.196c)

2 2( ) exp( )z nH D K k r jn j zq b= - (18.196d)

A, B, C, D being the amplitudes of the respective field components.
From these four equations for the z-components of the field, the transverse field expressions

can be written down as follows:
Inside the waveguide, r < a

1 1 12
11

( ) exp( ) ( ) exp ( )r n n
n j

E B J k r jn A J k r jn
kk r

wm bq q¢= - (18.197a)

1 1 12
1 1

( ) exp( ) ( ) exp( )n n
j n nA

E B J k r jn J k r jn
k rk

q
w bq q¢= + (18.197b)

1
1 1 12

11

( ) exp ( ) ( ) exp( )r n n
n j

H A J k r jn BJ k r jn
r kk

we bq q¢= - - (18.197c)

1
1 1 12

1 1

( ) exp( ) ( ) exp( )n n
j n

H A J k r jn BJ k r jn
k k r

q
we bq q¢-

= + (18.197d)



692 ELECTROMAGNETISM: THEORY AND APPLICATIONS

Outside the waveguide, r > a,

2 2 22
22

( ) exp( ) ( ) exp( )r n n
n j

E D K k r jn C K k r jn
r kk

wm bq q¢= - + (18.198a)

2 2 22
2 2

( ) exp( ) ( ) exp( )n n
j n

E D K k r jn C K k r n
k rk

q
wm bq q¢= - - (18.198b)

2
2 2 22

22

( ) exp ( ) ( ) exp( )r n n
n j

H C K k r jn D K k r jn
r kk

we bq q¢= + (18.198c)

2
2 2 22

2

( ) exp( ) ( ) exp( )n n
j n

H C K k r jn K k r jn
k rk

q
we bq q¢= - (18.198d)

For four unknowns A, B, C, D to be evaluated, the four boundary conditions are:

at r = a, 1 2 1 2,z z z zE E H H= =

        1 2 1 2,E E H Hq q q q= =

The four equations obtained from these four conditions can be written in a compact matrix form as:

1 2

1 2

1 1 2 22 2
1 21 2

1 2
1 1 2 22 2

1 21 2

( ) 0 ( ) 0

0 ( ) 0 ( )

( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( )

n n

n n

n n n n

n n n n

J k a K k a

J k a K k a A

n j n j B
J k a J k a K k a K k a

k kak ak C

j j Dn n
J k a J k a K k a K k a

k kak ak

b wm b wm

we web b

¢ ¢

¢ ¢

-È ˘
Í ˙- È ˘Í ˙ Í ˙Í ˙ Í ˙ =Í ˙ Í ˙Í ˙ Í ˙Í ˙- - Í ˙Î ˚Í ˙
Í ˙Î ˚

(18.199)

The characteristic equation of the hybrid mode can be obtained by setting the determinant of the
coefficient matrix of the last equation to zero. If then, in the characteristic equation n is made equal
to zero, the equation splits into two equations which are

0 1 0 2

1 0 1 2 0 2

( ) ( )
0

( ) ( )

J k a K k a

k J k a k K k a

¢ ¢
+ = (18.200a)

and

0 1 0 21 2

1 0 1 2 0 2

( ) ( )
0

( ) ( )

J k a K k a

k J k a k K k a

e e¢ ¢
+ = (18.200b)

Equations (18.200a) and (18.200b) are the characteristic equations of TE and TM modes
respectively [i.e. Eqs. (18.187) and (18.193)].

18.3.9.5 Cut-off frequency of a hybrid mode

Evaluation of the cut-off frequency of a hybrid mode is rather complicated. The recurrence
relations of Bessel functions have to be used. The derivatives of Bessel functions are replaced by
Bessel functions of higher and lower orders. After a somewhat lengthy algebraic manipulation, it is
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found that the lowest mode is HE11 and for n = 1, its cut-off is given by k1c = 0. The cut-off
frequency for k1c = 0 is 0. Hence it means that HE11 does not have a cut-off frequency, i.e. it can
propagate any frequency up to dc. It is an interesting point to be noted that for direct currents, the
fields inside a dielectric rod are hybrid and not transverse. So the electrostatic field (which
corresponds to dc) must have a field component along the axis of the dielectric rod.

18.4 RESONANT CAVITIES (CAVITY RESONATORS)

A tuned circuit consisting of a coil and a capacitor (i.e. a resonating circuit) acts as an energy
storage device, and is an important part of a radio receiver. But at very high frequencies, a simple
coil cannot act as an inductor. In the centimetre range of wavelengths (i.e. 100 MHz and above),
the dimensions of the circuits are comparable with the operating wavelength and hence unwanted
radiation takes place. So, at high frequencies the RLC circuits are replaced by cavity resonators.
Such resonant cavities are used in klystron tubes, band-pass filters and wave-meters. Even the
microwave oven is an application of a cavity resonator so that the oven is the cavity itself which is
supplied by a waveguide feed and a power supply.

In a resonant cavity, the electromagnetic waves are reflected by the conducting walls and thus
the resonance is produced in it. A cavity resonator can be of any shape—rectangular, cylindrical
or spherical—but an important class is produced by placing end-faces on a finite length (i.e. piece)
of cylindrical waveguide.

We will consider a rectangular cavity (or a closed conducting box). It is effectively a
rectangular waveguide shorted at both the ends. Now when a metal plate is placed at the end of a
waveguide (rectangular), the propagation of the electromagnetic wave is blocked and the wave is
reflected. So now there are two waves travelling in opposite directions. A standing wave pattern is
produced which must satisfy the boundary conditions at both the ends. The problem can be analysed
either (1) by starting with the (say) longitudinal magnetic wave travelling in the direction of
propagation for TEmn mode or electric wave for the TMmn mode, or (2) by solving the wave
equation for the closed box with appropriate boundary conditions.

18.4.1 TE Mode Waveguide Approach

In the waveguide, the wave is assumed to travel in the z-direction, and for the cavity, the metal
plates are placed at z = 0 and z = d. In this situation, the two waves are travelling in opposite
directions (i.e. +z and –z). For the TEmn mode, the longitudinal Hz for the travelling wave is given by

Figure 18.22 A rectangular resonant cavity.
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0 cos cos exp[ ( )]z
m x n y

H H j t z
a b

p p w b= - (18.201a)

For the reflected TEmn wave, let its amplitude be 0H ¢ . Hence

0 cos cos exp[ ( )]z
m x n y

H H j t z
a b

p p w b¢ ¢= + (18.201b)

The total H field inside the cavity is then

Z z zH H H ¢= + (18.202)

Since HZ would be perpendicular to the boundaries z = 0 and z = d, it follows that it should be
zero on these two planes.

\    0 0at 0, 0zz H H H ¢= = Æ = - (18.203)

0 cos cos [exp( ) exp( )]z
m x n y

H H j z j z
a b

p p b b= - -

02 cos cos sin( )
p p bÊ ˆ Ê ˆ= - Á ˜ Á ˜Ë ¯ Ë ¯

m x n y
jH z

a b (18.204)

not writing exp (jw t) in these expressions explicitly.

Also on z = d, Hz = 0   Æ   bd = pp, p = 1, 2, 3, ...

or p

d

pb = (18.205)

Substituting for b from this equation, into Eqs. (18.67) or (18.70), while noting that g = jb in the
present case,

    
2 2 2

2 m n p

a b d

p p pw me Ê ˆ Ê ˆ Ê ˆ= + +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

or

1/ 22 2 2
1

2
m n p

f
a b d

p p pw p
me

È ˘Ê ˆ Ê ˆ Ê ˆ= = + +Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚
(18.206)

where m, n, p are all integers and hence there will be discrete frequencies at which the
electromagnetic fields can be excited inside the cavity. Since the fields are characterized by three
indices, this mode is designated as TEmnp.

18.4.2 TE Mode—From the Fundamentals

It should be noted that depending on how the cavity is excited, the wave can propagate in any of
the x-, y-, or z- direction. For simplicity, we choose the direction of propagation as +z direction (as
in Section 18.4.1, Figure 18.22).

Since 0, ( ) ( ) ( )z zE H X x Y y Z z= = (18.207)

where Hz is the solution of 2
2 0k— + =H H .
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  1 2( ) cos sinx xX x B k x B k x= +

3 4( ) cos siny yY y B k y B k y= + (18.208)

5 6( ) cos sinz zZ z B k z B k z= +

where 2 2 2 2
x y zk k k k= + + (18.209)

The boundary conditions are:

(i)   0 at 0,zH z d= =

(ii) 0 at 0,zH
x a

x

∂
= =

∂

(iii) 0 at 0, .zH
y b

y

∂
= =

∂
From the boundary conditions (ii) and (iii),

2 40, 0, and ,x y
m n

B B k k
a b

p p
= = = = (18.210)

where m = 0, 1, 2, 3, ... and n = 0, 1, 2, 3.
For the boundary condition (i),

5 0 and , where 1, 2, 3, ...z
p

B k p
d

p
= = = (18.211)

\ 0 cos cos sinz
m x n y p z

H H
a b d

p p pÊ ˆ Ê ˆ Ê ˆ= Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ (18.212)

2 2
2 2 2m n p

k
a b d

p p pb w me
2Ê ˆ Ê ˆ Ê ˆ= = + + =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

\

1/ 22 2 2
1

2
m n p

f
a b d

p p pw p
me

È ˘Ê ˆ Ê ˆ Ê ˆ= = + +Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚
(18.213)

The resonant frequency is same as derived by the other method, i.e. Eq. (18.183). It should
be noted that both m and n cannot be zero simultaneously because the field components will be zero
if both m and n are zeroes. The ‘dominant mode’ (i.e. the mode having the lowest resonant
frequency is TE101 mode (a > b < c). A practical resonant cavity has walls with finite conductivity
sc, and hence can lose stored energy. The loss is determined by the quality factor Q.

18.4.3 TM Mode—From the Fundamentals

In this case, Hz = 0 and hence

Ez = X(x) Y(y) Z(z) (18.214)

¸
ÔÔ
˝
Ô
Ǫ̂
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\ 1 2( ) cos sinx xX x A k x A k x= +

3 4( ) cos siny yY y A k y A k y= + (18.215)

5 6( ) cos sinz zZ z A k z A k z= +

where 2 2 2 2 2
x y zk k k k w me= + + = (18.216)

The boundary conditions are:

(i) 0 at 0,zE x a= =

(ii) 0 at 0,zE y b= = (18.217)

(iii) 0, 0 at 0,x yE E z d= = =

From the boundary conditions (i) and (ii),

1 30, 0, ,x y
m n

A A k k
a b

p p
= = = =

(18.218)
where m = 1, 2, 3, ... n = 1, 2, 3, ...

Next, for the boundary condition (iii), from the two curl equations of Maxwell, i.e.

and
t t

∂ ∂
— ¥ = — ¥ = -

∂ ∂
D B

H E (18.218a)

we get

and
yz zx

x y

HH EE
j E j H

y z z x
we wm

∂∂ ∂∂
= - - = -

∂ ∂ ∂ ∂

Combining these two equations,

22

2

1z zx
x

H EE
j E

y j x zz
we

wm
Ê ˆ∂ ∂∂

= + -Á ˜∂ ∂ ∂∂Ë ¯

Since Hz = 0, this simplifies to

j
j

we
wm

Ê ˆ∂∂
= -Á ˜∂ ∂∂Ë ¯

22

2

1 zx
x

EE
E

z xz (18.219)

and considering Ey and Hx from the same two ( )—¥  equations

22

2

1 yz
y

EE
j E

j y z z
we

wm

Ê ˆ∂∂
= -Á ˜- ∂ ∂ ∂Ë ¯

(18.220)

From these two equations [i.e. (18.219) and (18.220)], to satisfy the boundary condition (iii) which
states

0, 0 at 0,x yE E z d= = =

¸
Ô
˝
Ǫ̂

¸
ÔÔ
˝
Ô
Ǫ̂
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the requisite condition is

     0 at 0 and .zE
z d

z

∂
= =

∂

6 0 and sin 0 sinzA k d ppÆ = = =

\ , where 0, 1, 2, 3, ...z
p

k p
d

p
= = (18.221)

Substituting for the unknowns in Eqs. (18.214) and (18.215),

0 sin sin cosz
m x n y p z

E E
a b d

p p pÊ ˆ Ê ˆ Ê ˆ= Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯
(18.222)

where E0 = A2 A4 A5.
The other field components can be obtained from Eq. (18.222) and the two curl

Eqs. (18.218a).
The phase constant comes out to be

2 2 2
2 m n p

k
a b d

p p pÊ ˆ Ê ˆ Ê ˆ= + +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

 2w me=

\
2 2 2

1
2

m n p
f

a b d

p p pw p
me

È ˘Ê ˆ Ê ˆ Ê ˆ= = + +Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚
(18.223)

The lowest order TM mode is TM110

18.4.4 Stored Energy and Quality Factor

Considering the TE101 mode (m = 1, n = 0), the longitudinal magnetic field component is [from
Eq. (18.204)]

02 cos sinz
x z

H j H
a d

p pÊ ˆ Ê ˆ= - Á ˜ Á ˜Ë ¯ Ë ¯
(18.224)

The other field components come out to be

02 sin cosx
a x z

H j H
d a d

p pÊ ˆ Ê ˆ= Á ˜ Á ˜Ë ¯ Ë ¯ (18.225)

0 02 sin siny
a x z

E H
a d

p pw m
p

Ê ˆ Ê ˆ= - Á ˜Á ˜ Ë ¯Ë ¯ (18.226)

by suitable substitutions in Eqs. (18.77c) and (18.77b) respectively (for the incident and the
reflected waves in the cavity).

The resonant frequency w0 for the TE101 mode comes out as



698 ELECTROMAGNETISM: THEORY AND APPLICATIONS

1/ 22 2

0 0
1

2 f
a d

p pw p
me

È ˘Ê ˆ Ê ˆ= = +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
(18.227)

Since every resonant circuit stores electromagnetic energy, we now calculate the stored energy.
The average electrical energy stored inside the cavity is

*

0 0 0

1
Re ( . )

2 2

a b d

e

x y z

W dx dy dz
e

= = =

= Ú Ú Ú E E

2
2 2 2

0 sin sin
a x z

H dx dy dz
a d

wm p pe
p

Ê ˆ Ê ˆ Ê ˆ= Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ÚÚÚ
2

2
04

ab d a
H

e wm
p

Ê ˆ= Á ˜Ë ¯ (18.228)

The average magnetic energy stored inside the cavity

0 0 0

1
Re ( *)

2 2

a b d

m

x y z

W dx dy dz
m

= = =

= ◊Ú Ú Ú H H

 

2
2 2 2 2 2

0

0 0 0

sin cos cos sin

a b d

x y z

a x z x zH dx dy dz
d a d a d

p p p pm
= = =

È ˘Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ= +Í ˙Á ˜ Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚Ú Ú Ú

 

2
2

0 1
4 e

abd a
H W

d

m È ˘Ê ˆ= + =Í ˙Á ˜Ë ¯Í ˙Î ˚

2
2since 1

a
a

d
w m e p

Ê ˆÊ ˆ + =Á ˜Á ˜Ë ¯Ë ¯
(18.229)

which is obtained from Eq. (18.223) or (18.213) by suitable substitutions for m, n, p.
Thus the average stored electrical and magnetic energy are equal for the cavity resonator. This

equality is identical with the LC circuit at the resonance.
The quality factor Q, for the resonator, is a measure of loss in the resonator, and is defined

as

0
Energy stored in the cavity

=
Power loss in the cavity

Q w (18.230)

0 Power loss in the cavity
e mW Ww +

=

02

Power loss in the cavity
eWw

= (18.231)

Assuming the loss in the cavity to be small, the field distribution of a lossy cavity is almost same
as that of a loss-less cavity. The surface currents on the walls of the waveguide (and the conductor
loss) can be obtained from the knowledge of the magnetic field. If the surface resistance is denoted
by RS,
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0( ) /(2 ),SR w m s=  s = conductivity of the cavity walls,

then for the TE101 mode,

2 3
0

101 2 3 3 2 2

( )

2 [2 ( ) ( )]S

ad b
Q

R b a d ad a d

m e w
p

=
+ + +

(18.232a)

2 2

3 3 2 2

( )

[2 ( ) ( )]

a d abd

b a d ad a dd
+=

+ + +
(18.232b)

where 
0 0

2d
w m s

=  = depth of penetration (or skin depth) = 2d  of Eq. (15.7).

Note: ‘d’ of skin-depth or depth of penetration ( 2)d  of Eq. (15.7) is not to be confused with the
dimension d of the cavity. Hence the notation d has been used here.

18.4.5 Cylindrical Cavity

It is a cylindrical piece of radius R and axial length d, and its walls are assumed to have infinite
conductivity. For simplicity, the cavity is asumed to be filled with a loss-less dielectric of
characteristics m, e. Since the reflections take place on the end-surfaces of the cylinder the relevant
expressions for the standing waves (using the cylindrical coordinate system) are:

sin( ) cos( )A kz B kz+

Since the two ends of the cylindrical cavity are z = 0 and z = d, the boundary conditions can be
satisfied only if

, where 0, 1, 2, 3,...
p

k p
d

p
= = (18.233)

For TE modes, the vanishing of Hz at z = 0 and z = d requires

( , ) sin , 1, 2, 3,...z
p z

H x y p
d

py Ê ˆ= =Á ˜Ë ¯
(18.234)

For TM modes, the vanishing of Et at z = 0 and z = d requires

( , ) cos , 0, 1, 2, 3,...z
p z

E x y p
d

py Ê ˆ= =Á ˜Ë ¯ (18.235)

where y is a scalar function which satisfies the two-dimensional wave equation

2 2( ) 0t g y— + = (18.236)

and 2
t—  is the transverse part of the Laplacian operator, i.e.

2
2 2

2t
z

∂
— ∫ — -

∂
(18.237)
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In the Cartesian coordinates, the transverse fields for the two modes are obtained as:

TM mode: 2
sint t

p p z
E

dd

p p y
g

È ˘Ê ˆ Ê ˆ= - —Í ˙Á ˜Á ˜ Ë ¯Ë ¯Í ˙Î ˚
(18.238a)

2
cos

c
t z t

j p z
H

d

ew p y
g

È ˘Ê ˆ Ê ˆ= ¥ —Í ˙Á ˜Á ˜ Ë ¯Ë ¯Í ˙Î ˚
i (18.238b)

TE mode: 2
sin

c
t z t

j p z
E

d

wm p y
g

È ˘Ê ˆ Ê ˆ= - ¥ —Í ˙Á ˜Á ˜ Ë ¯Ë ¯Í ˙Î ˚
i (18.239a)

2
cost t

p p z
H

dd

p p y
g

È ˘Ê ˆ Ê ˆ= —Í ˙Á ˜Á ˜ Ë ¯Ë ¯Í ˙Î ˚
(18.239b)

where the constant
22

2

c

p

d

pw meg Ê ˆ Ê ˆ= - Á ˜Á ˜ Ë ¯Ë ¯
(18.240)

and y can be solved as an eigenvalue problem.
In the cylindrical resonant cavity, the tuning is done with a piston by varying d. For the TM

mode, the transverse wave equation for y is = Ez, subject to the boundary condition that Ez = 0
at r = R.

The solution for the cavity is

( , ) ( ) exp( )m mnr J r jmy f g f= ±
(18.241)

where
mn

mn
x

R
g =

xmn, being the nth root of Jm(x) = 0.
The integers m and n have the values

m = 0, 1, 2, 3, ...; n = 1, 2, 3, ...

The resonant frequencies are given by:

2 2 2

2 2

c mn
mnp

x p

R d

pw
me

Ê ˆ
= +Á ˜Ë ¯

(18.242)

For the lowest TM mode, m = 0, n = 1, p = 0, the designation is TM010 and its resonance
frequency is

010
2.405c

R
w

me
= (18.243)

In general terms, for cavities of a few cm linear dimension with a of about 10–4 cm, the Q value
is of the order of 10,000
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PROBLEMS

18.1 Show that the input impedance of a loaded lossy transmission line is given by

L c
in c

c

tanh
tanhl

Z jZ l
Z Z

Z jZ l
+⎡ ⎤= ⎢ ⎥+⎣ ⎦

g
g

where
 g = propagation constant
Zc = characteristic impedance

Z L= load impedance
  l = length of the line.

Hence, for a quarter wavelength line

Zin = 
2
c

L

Z
Z

18.2 A coil has a complex impedance of resistance R and self-inductance L. It is connected in
parallel with a capacitor of capacitance C with an imperfect dielectric equivalent to a
series resistance which is also R. Find (i) a value of R which makes the impedance
purely resistive at all values of w, and (ii) a value of w which again makes the
impedance purely resistive for all R.

Ans.: (i) R = 
L
C

, (ii) w = 
1

LC

18.3 Rectangular waveguide is often made of brass or steel for economy, and then silver-
plated to provide the lowest losses. Assuming operation at 10 GHz with s = 6.17 ¥ 107

mho/m for silver, calculate the amount of silver required per mile to provide a
three-skin-depths coating on a waveguide with an inner periphery of 10 cm. Density of
silver = 10.5 g/cc.

Ans.: 3.25 kg

18.4 Define phase velocity vph and group velocity vgr of a travelling wave, and show that

ph

2
ph gr ph

v1 1
v v v

d

d
− = w

w
and that

ph
gr ph

v
v v

d

d
= − l l

Hint: Differentiate the modified expression for vph with respect to b, and b = 
p
l

2
.

18.5 A transmission-line consists of two parallel strips of copper forming the go and return
conductors, their width being six times the separation between them. The dielectric is air.
From the Maxwell’s equations applied to a TEM wave, show that the ratio of voltage to
current in a progressive wave is 20p ohms.

Hint: Calculate L and C of the system, and hence the characteristic impedance.



702 ELECTROMAGNETISM: THEORY AND APPLICATIONS

18.6 Radar signals at 10,000 MHz are to be transmitted and recieved through a polystyrene
window (e /e0 = 2.5) let into the fuselage of an aircraft. Assuming that the waves are
incident normally, how would you ensure that no reflections are produced by the
window by choosing a particular thickness (= d) for the window?

Ans.: d = any integral multiple of 0.95 cm

18.7 By using Maxwell’s equations, prove that a TEM wave cannot exist in a single
conductor waveguide, such as rectangular or cylindrical waveguides.
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19.1 INTRODUCTION

So far we have studied the propagation of electromagnetic waves in some detail. In Chapters 17
and 18, we studied their propagation in free space, in various dielectric and conducting media
(extending to infinity), and then across the interfaces (i.e. planes of discontinuity) between
different types of media, which produce the phenomena of reflection and refraction, and then
along various guiding structures. But till now, we have not considered how and where such
waves are produced and their effects at their destinations. So in the present chapter, we shall
study the sources and the receivers of such waves.

The sources of any electromagnetic field are electric charges and currents. When these
charges are time-varying, they may produce electromagnetic waves propagating away from the
sources (and not returning to them). Such a process is known as ‘the radiation of electromagnetic
waves’. Theoretically, any time-varying sources of charges and currents radiate certain amount of
energy. For example, at power frequency of 50 Hz, the radiation from the power transmission
lines does exist in the rigorous sense, but in reality the radiated energy is so small that
practically it cannot be detected, and hence justifiably considered as negligible.

In many practical problems, configurations of charges and currents radiating considerable
energy to the surrounding space are required; and the science of designing and analyzing the
‘radiating systems’ has developed as a part of the theory of electromagnetism. Such a topic is
highly specialized and complex. In our present introductory text, we intend to consider the basic,
fundamental and simple types of radiating systems.

Systems designed for effectively radiating electromagnetic waves, are called antennae, of
which there are many types. Once an antenna creates the em wave, the wave travels through the
space to its destination where the message contained in the wave has to be extracted. The
distance between the transmitting antenna and the receiving point is variable, and can be as
much as hundreds of thousands of miles. For such large distances, special antennae which radiate
very narrow beams are used. For receiving purposes, structures similar to transmitting antennae
are used. These are called receiving antennae. There is a great diversity of such antennae, but
their common characteristic is that they behave as generators when the incoming wave hits them

Radiation and
Reception of
Electromagnetic
Waves19
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and a corresponding emf is induced in them. The analysis of receiving antennae is more complex
than that of the transmitting antennae.

To design a radiating system, the information needed would include its wave pattern
distribution, its polarization, and the distribution in space of the radiant energy, non-radiative
losses, the currents and the charge distributions in the system, and its input impedance. These
will depend on impressed frequency and voltage, the system dimensions, geometrical
configuration, its materials and those of its surroundings. A complete solution of the problem
must give fields which satisfy the Maxwell’s equations and also the surface boundary conditions.
There are methods of calculating the necessary required quantities with reasonable accuracy. By
using the retarded potentials, the fields of charge and current distributions can be obtained. A
rough estimate of the distant radiation (the far field) which is dependent on the major features of
the source distributions is quite adequate. The ohmic losses can be calculated with sufficient
accuracy by taking the real part of the complex Poynting vector.

19.2 THE ELECTRIC DIPOLE ANTENNA (THE HERTZIAN
DIPOLE)

The electric dipole antenna or the Hertzian dipole (as it is more commonly known as) is the
simplest of all the radiating systems, and is the basis for all types of antennae.

19.2.1 Electromagnetic Field of a Hertzian Dipole

The basic source of an electrostatic field is a point charge; and of magnetic field is a current
loop. For an electromagnetic field, the simplest independent source is a Hertzian Dipole
consisting of a pair of charges ±q, separated by a distance l which is small compared with other
distances considered; the charges vary with time, and are connected by a conductor in which is
a current i which is

= dq
i

dt

The electric field of the charges is associated, when the charges vary with time, with a
displacement current which may be considered to complete the circuit for the element (i, l);
alternatively, in terms of conduction currents only, we have a flow of charges which is associated
with variation in the positive and negative charges at the termini (Figure 19.1).

Let us consider the field in free space surrounding such a dipole, in which (say) the charges
and the current are given by

q = f(t) and i = f ¢(t) (19.1)

In Section 13.5, we considered the magnetic vector potential applied to time-varying fields.
Therein we have shown that the time-varying fields expressed by the Maxwell’s equations can be
expressed by the equations in terms of the magnetic vector potential A and a scalar electric
potential V under the ‘Lorentz gauge condition’, such that the potential equations are
completely separate. [Refer to Eqs. (13.52) to (13.54)]. These general equations reduce to the
following form in free space (which we are considering at present), i.e.

∂⎛ ⎞ ⎛ ⎞∇ ⋅ + =⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠2

1
0

c

V
t

A (19.2a)
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⎛ ⎞∂⎛ ⎞∇ − =⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

2
2

2 2

1
0

c t

A
A (19.2b)

⎛ ⎞∂⎛ ⎞∇ − =⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

2
2

2 2

1
0

c

V
V

t
(19.2c)

where c = (m0e0)
–1/2, as earlier in connection with the plane waves.

For a current element (i, l) under static conditions, we saw that A was a vector of
magnitude (m0/4p)(il /r), parallel to the current element at every point [Ref.: Eq. (13.10) of
Section 13.3.1]. It is not to be assumed that this will hold good under non-static conditions, but
it will be assumed that the non-static solution still retains two features of the static, i.e.

(a) A is everywhere parallel to the element; and
(b) A depends only on the distance r from the element and on time t.

With these assumptions, A in Eqs. (19.2) has only one component which may be called Az or
just A.

Also,

— ◊◊◊◊◊ A = zA A
z z

∂ ∂=
∂ ∂

and
2 2

2
2 2

2 1
( )

A A
A rA

r r rr r

⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞∇ = + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠∂ ∂⎝ ⎠ ⎝ ⎠

These two equations may be proved by considering the flux out of an elementary volume
in spherical coordinates.

Moreover with A being a function of r only, the maximum rate of change is 
∂⎛ ⎞

⎜ ⎟∂⎝ ⎠
A
r

, and
∂
∂
A
z

 = 
∂⎛ ⎞

⎜ ⎟∂⎝ ⎠
A
r

cos q.

The first two equations of the set (19.2), i.e. (b) and (a) therefore become in the reverse
order as mentioned above:

⎛ ⎞ ⎛ ⎞∂ ∂⎛ ⎞ ⎛ ⎞− =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

2 2

2 2 2

1 1
( ) 0

c

A
rA

r r t
(19.3)

and

cos q 
∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠2

1

c

A V
r t

 = 0 (19.4)

It may be verified that Eq. (19.3) is satisfied by

1
c
r

A F t
r

⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
(19.5)

where F is any function.

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞′′= =⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

2 2

2 2 2 2

1 1 1
This is because: ( )

c c

A
rA F

r r r t
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We now compare Eq. (19.5) with the static equation

A = 
m
p

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠

0

4
il
r

, which now becomes = 0 ( )
4
lf t

r
m

p
′

when i = f ¢(t) [Ref.: Eq. (19.1)].

Now c is a large number; thus for small values of r and moderate values of t, F
⎛ ⎞−⎜ ⎟⎝ ⎠c

r
t

approximates to F(t). If now we make

F(t) = 0 ( )
4

l
t

m
p f

⎛ ⎞ ′⎜ ⎟⎝ ⎠

then we see that Eq. (19.5) reduces to the static equation (or more accurately, the quasi-static).
Hence the solution (19.5), for the more general case, is to be written as

m
p

⎛ ⎞ ⎛ ⎞′= −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
0

4 c
l r

A f t
r

(19.6)

Substitution of this value of A in Eq. (19.4) now gives

              q∂ ∂⎛ ⎞= − ⎜ ⎟∂ ∂⎝ ⎠
2c cos

V A
t r

m qp
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′′= − + −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

20
2

1 1
c cos

4 c c c
r r

l f t f t
rr

(19.7)

whence

q
pe

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞′= − + −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦2
0

cos 1 1
4 c c c

l r r
V f t f t

rr
(19.8)

Now f (t - r/c) is the value of the charges q at an instant r/c earlier than the instant at which the
value of V is being calculated; similarly f ¢(t - r/c) is the value of i at an earlier instant. We write
these as [q], [i], and call them the retarded values of q and i (refer to Section 13.6 on Retarded
Potentials). Physically we see that this means that a signal travels from the point O to the point
P with a finite velocity c, so that at the time t, an observer at P can only know about the values
which q and i had at an earlier instant (t - r/c).

Thus the potentials due to the oscillating dipole are

m
p

⎛ ⎞ ⎧ ⎫= ⎨ ⎬⎜ ⎟
⎩ ⎭⎝ ⎠

0 [ ]
4

l i
A

r
(19.9)

q
pe

⎛ ⎞ ⎧ ⎫= +⎨ ⎬⎜ ⎟
⎩ ⎭⎝ ⎠ 2

0

cos [ ] [ ]
4 c

l q i
V

rr
(19.10)

It should be noted that we did not assume the retarding effect to start with, but proved this to be
an essential requirement for the time-varying nature of the radiating sources. If the ‘retarding
effect’ is assumed, then these potentials can be obtained more directly (see Carter: The
Electromagnetic Field, pp. 301–302). It must however be noted carefully that the field
components E and B cannot be obtained by inserting the retarded values of q and i into the
static expressions of E of the static dipole. It is essential to note that we started from the
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potentials (and not the field expressions) which were shown to require the retarding effects to
account for the time-varying nature of the sources.

Note: In our evaluation of the expressions for the two potentials, we have so far
disregarded (or to be more precise, we have not been required to use it in our derivations so far)
the third of the equations (19.2), i.e. Eq. (19.2c). If we use the Cartesian coordinate system, then:

∂ ∂ ∂∇ ≡ + +
∂ ∂ ∂

2 2 2
2

2 2 2x y z
The first equation (19.2a) is

∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠2

1
0

c

V
z t
A

(19.2a)

The second equation is

⎡ ⎤⎛ ⎞∂⎛ ⎞∇ − =⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

2
2

2 2

1
0

c t
A (19.2b)

Differentiating Eq. (19.2b) with respect to z, we get

⎡ ⎤⎛ ⎞∂ ∂⎛ ⎞ ⎛ ⎞∇ − =⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
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1
0

c zt

A
(19.2b¢)

Combining Eqs. (19.2a) and (19.2b¢), we get

⎡ ⎤⎛ ⎞∂ ∂⎛ ⎞ ⎛ ⎞∇ − =⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

2
2

2 2

1
0

c

V
tt

In other words, Eq. (19.7) is a solution of the equation, and V in Eq. (19.8) is of just the same
form except for the different functions of (t - r/c). Hence, we find that V, deduced as before,
automatically satisfies Eq. (19.2c).

Figure 19.1 An oscillating dipole.

19.2.2 Field Components for the Hertzian Dipole

We use the spherical polar coordinate system with the origin at the centre of the dipole, and the
angle q measured from the axis of the dipole (Figure 19.2). In this coordinate system, a point P
is defined by (r, q, f), and the element of length has the components—dr, rdq, r sin qdf—and

grad V = —V = q fq q f
∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

1 1
sinr

V V V
r r r

i i i

r

P

q

–q +qO
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In the present problem, V varies with r and q, but not with f [see Eq. (19.8)].
\ (grad V ) has r and q components only.

Now, E = - ∂⎛ ⎞ − ∇⎜ ⎟∂⎝ ⎠
V

t
A

where A and V are given by Eqs. (19.6) and (19.8).
Also, Ar = A cos q, and Aq = A sin q.

\ Er = - q∂ ∂⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
cos

A V
t r

        = 0 cos
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l
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r
m qp

Ê ˆ ¢¢Á ˜Ë ¯ 3 2 2
0

cos 2 2 1
4 c c

l
f f f

r r r

q
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where (t - r/c) is understood as the argument of each function; and if we make the substitution:
m0 = 1/(c2e0), we find

q
pe
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Similarly,

        Eq = q q
1

sin
A V
t r
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q
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x-axis

f

–q(t)
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+q(t)

Parallel to the x-axis
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Figure 19.2 Oscillating dipole with spherical polar coordinate system.

q increasing
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The lines of force of the magnetic field form circles round the axis of the current (carried
by the dipole). Thus B has a f-component only. To evaluate Bf, we consider the contour ABCDA
as shown below in Figure 19.3:

Bf = 
line-integral of  round ABCDA

area ABCD
A

= 
1

1 2 2

( ) ( ) 1l A r A r r A
r

l l l r

d d
d

d d d
− +⎡ ⎤ ∂⎛ ⎞ ⎛ ⎞⎣ ⎦ = −⎜ ⎟ ⎜ ⎟∂⎝ ⎠⎝ ⎠

Also, dr = d l2 sin q

\ Bf = sin
Α
r

q∂⎛ ⎞− ⎜ ⎟∂⎝ ⎠

Also, Bf = 
q q

f q
1

( ) r
A A A
r r r

∂ ∂⎛ ⎞⎛ ⎞∇ × = + − ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
A

with Ar = A cos q, Aq = - A sin q, where A is a function of r only (and of t).

\ Bf = sin q 
∂⎛ ⎞− − +⎜ ⎟∂⎝ ⎠

A A A
r r r

= sin
A
r

q∂⎛ ⎞− ⎜ ⎟∂⎝ ⎠

Figure 19.3 Contour for evaluating Bf due to the dipole.
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Thus,

Bf = 0
2

1 1
sin

4 c c c
l r r

f t f t
rr
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If (r/c) is negligible, the retardation is of no effect, and Eqs. (19.11), (19.12), and (19.13) can be
written as

Er = 3
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q
pe

(19.14a)

Eq = 3
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(19.14b)

Bf = 0
2

sin

4

il

r

m q
p

(19.14c)

These are the equations for a static dipole, and steady current element respectively.
At a great distance, however, the terms containing (1/r) predominate, and we get (the far

field):
Er = 0 (19.15a)
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c4 c
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(19.15b)

Bf = 0 sin
4 c c
l r

f t
r

⎛ ⎞ ⎛ ⎞′′ −⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠
m q

p (19.15c)

Thus the field at this distance consists of electric and magnetic components, perpendicular to
each other, and both perpendicular to the radius, and related by the simple relationship:

Eq = cBf (19.16)

This pattern travels outwards with a velocity c, diminishing in proportion to (1/r); it forms, in
fact, ‘a travelling electromagnetic wave’. It is this waveform, which made the radio-telegraphy
and telephony possible. The Poynting vector shows that it is associated with an outward flow of
energy into space.

The Hertzian dipole is not in itself an efficient form of transmitting aerial (or antenna), but
its field is the ‘brick’ from which the fields of practical aerials are built up.

19.2.3 Radiated Power of the Hertzian Dipole Calculated by the
Poynting Vector, and the Radiation Resistance

We now apply the Poynting vector to find the energy transmitted from an oscillating dipole. As
in the previous sections, the dipole is made up of the charges ±q, where q = f (t), and the charges
are separated by a distance l.
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q
dq

Eq

S

Bf

z

At a great distance r from the dipole, the electric field was found to be in the q-direction
(i.e. a line of longitude on a sphere concentric with the dipole), and given by the expression:

Eq = 
m q

p
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(19.15b)

and the magnetic field lies along a parallel of a latitude, i.e.

Bf = 
m q
p
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\ The Poynting vector is radially outwards,

S = E ¥ H, where Hf = 
Bf

m
And hence the magnitude of the Poynting vector is

S = 
m q

p
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i.e. a travelling wave of energy in which the direction of flow is never reversed (like in a coaxial
cable).

To obtain the total outflow of power from the dipole, we have to integrate over the whole
surface of the sphere, concentric with the dipole, as shown in Figure 19.4.

Figure 19.4 Surface of integration around the dipole. Note that the three vectors
Eq, Bf and S are mutually orthogonal.

Area of the cross-hatched curvilinear rectangle between the angles q and q + dq, and df is
(rdq)(r sin qdf).

\ Area of the circular strip (shown dashed) between the angles q and q + dq, is
(2pr sin q)(rdq).

For the complete area covering the whole surface of the enclosing sphere, q varies from
q = 0 to q = p.

x

The displacement between
these two great circles is
df in the x-y plane.
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In this integral, substitute cos q = x; \ -sin q dq = dx, and the limits are: q = 0 fi x = 1; and
q = p fi x = - 1.
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\ W = 
m

p
⎛ ⎞ ⎡ ⎤⎛ ⎞′′ −⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎝ ⎠⎣ ⎦⎝ ⎠

22
0

6 c
l r

f t
c

Usually f(t) is a function varying sinusoidally with time. Hence, we can write:

q = f(t) = Qm sin w t, where Qm = amplitude of the charge

\ w w
⎡ ⎤⎛ ⎞ ⎛ ⎞′′ − = − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦

2
m sin

c c
r r

f t Q t

\ The total power, W = 
m w wp

⎛ ⎞ ⎡ ⎤⎛ ⎞−⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎝ ⎠⎣ ⎦⎝ ⎠

2 4 2
20 m sin

6 c c
l Q r

t (19.18)

\ W varies sinusoidally between 0 and 1.
To find the mean output of power, we have to consider the time-varying term and integrate with
respect to t over one time-period. The mean value of this integrated term is (1/2).

\ The mean power, W  = 
m w

p
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

2 4 2
0 m

6 c 2
l Q

                = 
2 4 2

0

6 c
l Qm w

p (19.19)

where m

2

Q⎛ ⎞
⎜ ⎟
⎝ ⎠

 = Q ¨ rms value of the time-varying charge.

In the transmitting aerials, it is more common to use the current than the charge. Hence:

The rms (= root mean square) current, I = wQ

\ The mean power, W  = 
m w

p

2 2 2
0

6 c
l I

(19.20)
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We substitute for the angular frequency w,

w = 
p
l

2 c
, where l is the wavelength

\ The mean power, W  = 
m p

p l

2 2 2
20

2

4 c
6 c

l
I

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠

          = p
l

2
2 2

0 e2

2
3

l
Z RI I

⎛ ⎞⎛ ⎞ =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ (19.21)

where m0c = 0 0/m e  = Z0 (= wave impedance of free space).

Re (= Rrad) is called the radiation resistance of the aerial at the wavelength in question.

\ Re = 
2

0 2

2
3

l
Zp

l
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

(19.22)

But, Z0 = 377 W \ Re = 
2

2
790

l

l
.

Thus the Hertzian dipole is rather inefficient because of the (l/l)2 term as l << l.
The above expression explains how it is possible for a transmitting aerial to send out

power into the surrounding space, and how the process of transmission reacts back upon the
source by bringing about an apparent increase in the resistance.

So the Hertz dipole can be considered as a resistance when seen from the input terminals of
the antenna [Figure 19.4(a)].

Hertz
dipoleI0

I0

Rrad

Figure 19.4(a) Equivalent resistance of the Hertz dipole.

This is quite low for a Hertzian dipole as mentioned above, e.g., for a 0.1l long dipole,
Rrad = 8 W only

Note that Eq and Bf are in time-phase; and I is not necessarily a constant, but a function
of z.

We shall see later that l = l /2 is a more efficient choice of an antenna.

19.2.4 Distributions of Potentials, Field Vectors, and the Poynting
Vector of the Hertzian Dipole

We have obtained the expressions for the vector and the scalar potentials of the Hertzian dipole
(i.e. the oscillating electric dipole) in Section 19.2.1, as:
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          A = 
m wp
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i (19.9¢)

V = 
q w wpe
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0
2

0

cos
exp exp

4 c c c
Ql r I r

j t j t
rr

(19.10¢)

The plots of A and V are shown in Figure 19.5. It is seen that the scalar potential V is a
maximum at the poles and becomes zero at the equator, where the potentials due to the
individual charges ±Q of the dipole cancel each other. The charge of +Q predominates in the
northern hemisphere, and that of -Q in the southern hemisphere. The magnitude of A is
represented by the sphere marked A (Figure 19.5), and is independent both in direction and
magnitude, of the coordinates q and f.

Figure 19.5 The scalar potential V and the magnitude of the magnetic vector potential,
i.e. |A|, shown as functions of q and f about the dipole oriented as shown.

x

q

z

V(+)

A

y

V(–)

The electric lines of force can be obtained on the basis of the consideration that
when (r/c) is negligible, the retardation effects can be neglected, and then the E vector
[i.e. Eqs. (19.11) and (19.12)] collapses to the expressions of the static dipole. Then,

r EE
dr r d

q
q= (19.14¢)

since an element of a line of force having the components dr and rdq is parallel to the local E
having the components Er and Eq. To simplify the calculations, an auxiliary vector C can be used
such that:

C = f
w w qpe

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦
0

0
exp sin

4 c c
Q l l j r

j t
r

i (19.14a¢)

whence E = — ¥ C, so that
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Er = 
1

( sin )
sin

C
r

qq q
∂⎛ ⎞

⎜ ⎟ ∂⎝ ⎠
(19.14b¢)

and

Eq = 
1

( )rC
r r

∂⎛ ⎞−⎜ ⎟ ∂⎝ ⎠
(19.14c¢)

The differential equation for the lines of force is therefore:

1
( sin )

sin
C qq q

∂⎛ ⎞
⎜ ⎟ ∂⎝ ⎠

 = 
1

( )rC
r r

∂⎛ ⎞−⎜ ⎟ ∂⎝ ⎠
or

( sin ) ( sin )Cr d Cr dr
r

q q qq
∂ ∂⎡ ⎤ ⎡ ⎤+⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

 = 0

\ Cr sin q = constant (19.14d¢)

Figure 19.6 shows four families of lines of force of E at four instants of time. The magnetic lines
of force are much simpler. They are circles, perpendicular to, and centred on the axis of the
dipole.

Figure 19.6 Lines of E of a Hertzian dipole for wt = 0, p/2, p, 3p /2. The dipole is
situated at the centre and oriented vertically.

w t = 0 w t = p /2

w t = 3p/2w t = z
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y
x

z

Figure 19.7 Plots of angular distributions of E (or H) and Sav of the Hertzian dipole.

Figure 19.7 shows the polar diagrams (or the angular distributions) of E or H, and Sav at
distances much greater than the dipole wavelength l. In fact, Eqs. (19.14) and (19.17) show that
E and S vary as sin q and sin2q respectively; and hence these are effectively plots of these two
functions. The Poynting vector varies as (1/r2), and E and B vary as (1/r). Since the energy flow
varies as sin2q, it is zero along the axis of the dipole, and is maximum in the equatorial plane.
So an electric dipole does not radiate energy along its axis. Also, the energy flow is radial
everywhere.

19.2.5 Thin Linear Antenna

The Hertz dipole which is a very small current element has a very small radiation resistance, and
hence is not an efficient radiator. So a logical extrapolation would be a dipole of reasonable
physical length, such that the antenna can then be used for both transmission and reception of the
electromagnetic radiation.

A linear dipole is then a piece of wire of length 2L (say) excited by a current or voltage source
as shown in Figure 19.7(a).

L

L

+

–

x

y

R

R1

dz

z

z

A

q
O

P (far away)

Figure 19.7(a) A linear dipole antenna of length 2L.
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The gap at the centre of the dipole is assumed to be small, and the current spreads over its
length only to achieve a steady-state value (or distribution). Finding the current distribution along
the antenna is not an easy problem. Once the current distribution is known, the radiation
characteristic of the antenna can be predicted. It can be argued that where the wire ends the current
will be zero and this antenna can be visualized as a flared-up version of a twin-wire transmission
line as shown in Figure 19.7(b).

1 m

Current distribution

L
Transmission line

(a) (b)

L

L

(c)

L

L

Antenna

Figure 19.7(b) A dipole antenna as a flared version of a transmission line.

We consider an o.c. section of a transmission line (twin-wire types of length L). The voltage
reflection coefficient at the o.c. end is +1, and hence there would be a standing wave along the
line. The current at the o.c. end would be zero and its magnitude varies sinusoidally along the
length.

The standing wave current distribution on the line

( ) sin[ ( | |)]mI z I L zb= -

sin[ ( )], for 0mI L z zb= - > (19.22a)

    sin[ ( )], for 0mI L z zb + <
where

Im = maximum current amplitude on the line

b =
2

,
p
l  i.e. the propagation constant in free space

z = distance measured on the line from the generator, +ve on the upper conductor and
–ve on the lower conductor.

As the line becomes flared, it becomes a non-uniform transmission line. When the line
becomes an antenna, we assume the current distribution to remain unchanged, which rigorously
speaking is a questionable assumption. For the analysis, we simplify the current distribution to be
sinusoidal [I sin (w t – br)]. To evaluate the field due to this linear dipole, the dipole is sub-divided
into infinitesimally small current elements, and obtain the field due to each element and then apply
the principle of superposition to obtain the field due to the whole dipole. So considering an
element dz at a height z with the coordinate system as shown in Figure 19.17(a), the Eq field can
be expressed as [referring to Eq. (19.15b) for the far field components]

¸
ÔÔ
˝
Ô
Ǫ̂
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12

1

sin ( )

4

j RI z dz e
dE j
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b

q
b q

pwe

-
= (19.22b)

and the associated magnetic field

dE
dH q

q h
= (19.22c)

Since the point under consideration (i.e. P) is far away from the antenna, lines AP and OP are
effectively parallel, and so

R1 = R – z cosq (19.22d)

In the expression for ,dEq  R1 in the denominator can be replaced by R but not in the

exponent because it is considered relative to the wavelength l. Hence

2
( cos )sin

( )
4

j R zdE j I z e dz
R

b b q
q

b q
pw e

- += (19.22e)

The total field due to the complete dipole will be

2
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( )
4
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j z
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e
E j I z e d
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b
b q

q
b q q

pwe

-

-

= Ú
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j R
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e

j I F
R

b
q

-
= (19.22f)

where I(z) is as stated earlier, and

2 2
0 30

4 4 4 4

bhb w me wm b
pw e pw e p p

= = = = (19.22g)

and

cos( cos ) cos( )
( )

sin

L L
F

b q bq
q
-

= (19.22h)

F(q) describes the relative variation of the electric field as a function of q and so it is the
E-plane radiation pattern. In the H-plane, Eq, not being a function of f, is constant. So the H-plane
radiation pattern of this dipole is same as that of the Hertzian dipole. But as seen the E-plane
pattern is different from that of the Hertzian dipole.

19.3 THE HALF-WAVE ANTENNA

The oscillating dipole discussed so far, is a useful tool for theoretical work, but it is not a
practical antenna. The half-wave antenna, shown in Figure 19.8, is simply a straight conductor
whose length is half a free-space wavelength. It is fed at the centre (i.e. a current
(I0 cos w t) is established at the centre of the dipole) by means of a suitable electronic circuit,
and a standing wave is formed along the conductor.

Note: It should be noted that, in many cases, the half-wave antenna is a quarter wavelength
mast set vertically on the ground which then behaves like a mirror. The quarter-wave mast and
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its image in the ground then together form a half-wave antenna. Radio broadcast antennae are
often of this type. The ground in the neighbourhood of the antenna can be covered with a
conducting screen in order to achieve good conductivity.

The standing wave of the current on the conductor is

I = I0 exp ( jw t) cos (bl) (19.23a)

Each element (I dl) of the antenna then radiates an electromagnetic wave similar to that of
an electric dipole, and the field at any point in space is the sum of all these fields.

Since the (magnetic) vector potential at any point will be parallel to the direction of the
source current in the antenna, the vector potential will have only the z-component (parallel to l).

The vector potential at the point P(r, f, q) due to the antenna element (I dl), at a distance l
from the centre-point of the antenna (which is also the origin of our coordinate system) is given by

dAz = 0 exp ( )
4

I j R dl
R

m b
p
−

(19.23b)

where R is the distance between the point P and the antenna element (I dl). Since the distance R
to the point of observation is >> l (we are interested in the far field only), we shall be able to
make some simplifications in our analysis as we proceed.

The total vector potential Az at P, due to all the current elements in the antenna is

Az = 

0 /4
0 0

0 0

/4 0

cos ( ) exp ( ) cos ( ) exp ( )
4 4

dl dl
I l j R I l j R

R R

l

l

m mb b b bp p
−

⎛ ⎞ ⎛ ⎞− + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫ (19.23c)

In the denominators, we can approximate R ≈ r, but for the R in the phase factor of the
numerator, the difference between R and r is important. Also, for the large values of R, the two
lines R (from the element dl to P) and r (from the centre (the origin) to P) can be considered as
parallel lines, and we can write

R = r – l cos q (19.24)

\ The above expression for A simplifies to

l = l/2

z

l/4

l/4

Figure 19.8 Centre-fed half-wave antenna.
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(19.25)

Since the current is entirely in the z-direction,

Hf = 
0

1
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r
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(19.26)

retaining only (1/r) terms for the larger distances considered.
The electric field strength,

Eq = Z0Hf = 0

cos cos
260 exp ( )
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j I j r
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p q
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q
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(19.27)

\ The magnitude of the E field for the radiation field of a half-wave dipole (or a quarter-wave
monopole) is

ΩEqΩ = 0

cos cos
260 V
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q (19.28)

For q = 0 and q = p, the expressions for Eq and Hf become indeterminate, because the
trigonometric term becomes (0/0). To evaluate it (using l’Hospital’s rule), we get

0 or
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\ E is zero along the axis of the antenna.
Eq and Hf are in time-phase, and hence the maximum value (in time) of the Poynting

vector is the product of the peak values of Eq and Hf.
\ The average value in time of the Poynting vector (= 1/2 the peak value),

Sav = 

2
2

0 0
2 2 2

cos cos
2
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Z I
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p q
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(19.30)

It points radially outwards, and varies as (1/r2), and hence ensures conservation of energy.
The total radiated power is obtained by integrating Sav over a sphere of radius r:
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by replacing I0 by its rms value Irms.
In most of the radiation problems, the main difficulty lies in the evaluation of some

integral. The above integral can be evaluated in a number of ways. One possible way is to use
the substitution,

cos
2 2 2
p a pq⎛ ⎞ = −⎜ ⎟⎝ ⎠

(19.32)
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Breaking up the fraction:
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by Simpson’s rule (numerically).

\ W = 73.1(I rms)
2 watts (19.36)

Rrad = 73.1 W (19.37)
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Thus the radiation resistance of the half-wave antenna is 73.1 W, on the basis of the
assumption that the current distribution on the antenna is sinusoidal, which however is not quite
correct. This is because, the standing wave pattern assumed on the antenna can be truly
sinusoidal, only if there is zero energy loss, and hence no radiated wave. But a more rigorous
calculation shows nearly the same result as the present approximate idealized calculation. So the
present simplified assumption is a justifiable one.

The radiated power by this antenna is also greater in the equatorial plane, compared with
the dipole. If we plot the angular distributions of E, H, and the Poynting vector for the half-wave
antenna, then the comparable functions are [cos {(p /2) cos q)}/sin q ] for E and [cos2{(p /2)
cos q )}/sin2q] for Sav, as against sin q for E and sin2 q for Sav of the Hertzian dipole. The
trigonometric functions for the half-wave antenna produce flatter polar diagrams compared with
the torii produced by the sin q and sin2 q for the Hertzian dipole (refer to Figure 19.7). The polar
diagrams for the half-wave antenna are plotted below in Figure 19.9.

Figure 19.9 Angular plots of [cos {(p/2) cos q}/sin q] and [cos2 {(p /2) cos q}/cos2 q] showing
respectively the angular distributions of E and Sav for a half-wave antenna at r >> l. The

plots are similar to those of the dipole (Figure 19.7) except that these are flatter compared
to those of the dipole, indicating a larger fraction of its power in the equatorial plane.

19.3.1 Quarter-wave Monopole Antenna

Since at low frequencies, the wavelength becomes too large, the  length of the dipole antenna also
becomes large. So at medium frequencies (wavelength approximately hundreds of metres), the
dipole antenna is not a viable choice. So a quarter-wave monopole antenna consisting of one-half
of a half-wave dipole, normal to a conducting ground plane is used. The base plane is assumed to
be infinite and perfectly conducting. A co-axial cable connected to its base, feeds it.

A monopole antenna of length L is shown here, and a voltage has been applied between the
bottom of the antenna and the ground. By using the image theory, the infinite, perfectly
conducting ground plane is replaced by the image of the monopole. The field produced in the
region above the ground plane, by the l/4 monopole and its image is same as the field produced
by a l /2 dipole. For calculating the radiated power, the limit of integration in Eq. (19.31) should
be replaced by q = 0 to q = p/2, as the monopole radiates only through the upper hemispherical
surface. Thus the monopole radiates only half the power radiated by the dipole with the same
current. Hence

2 rad
rad 0 rad rad2

0

2
18.28 and or 36.5

P
P I R R

I
= = = W
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L = l/4

l/4 Image

Infinite
conducting
ground plane

Figure 19.9(a) The monopole antenna. (Its image is also shown in the figure.)

Thus, in spite of the similarity, the following points should be borne in mind while analyzing a
monopole antenna.

1. The radiation from a monopole is in the semi-infinite half-space as distinct from a
dipole which radiates in the infinite space. Hence the range of q in the monopole is
from 0 to p/2 and for the dipole q varies from 0 to p.

2. For identical currents in a monopole and the corresponding dipole, the radiated power
by the monopole is only half of that radiated by the corresponding dipole.

3. Since the radiated power of a monopole is half of that radiated by the corresponding
dipole for the same current, the input impedance of the monopole is half of the dipole.

19.4 THE MAGNETIC DIPOLE RADIATION

The static magnetic dipole has already been studied in Section 8.2.1., where we considered a
circular current loop of radius a, and carrying a current I; and was found to have a vector
potential A at a point P(r, f, q) from the centre of the dipole, as

Af = 
2

0 0
2 2

sin sin

4 4
i i

I a IS

r r
f f

m p q m q
p p

⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

                            = 0 0
2 2

sin

4 4

m

r r
f

m q m
p p

×⎛ ⎞ =⎜ ⎟
⎝ ⎠

m u
i (8.11)

where the magnetic moment of the loop (or the dipole) was:

m = izIS, and u = the unit vector in the direction of r

We now consider a magnetic dipole, as shown in Figure 19.10.
The vector potential at a point P(r, q, f) or (x, y, z) as shown in Figure 19.10, is the vector

sum of the potential due to each element (Idl) of the dipole loop, i.e.

A = 0

4
I d

r
m

p
Ê ˆ
Á ˜ ¢Ë ¯ Ú l

(19.38)
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where r¢ is the distance of the point P from the element under consideration. It can be easily seen
that, in the loop, for any given value of r ¢, there are two symmetrical dl vectors, such that their
y-components add up and the x-components cancel.

\ A = 

p

f
m f f

p

⎡ ⎤′ ′⎛ ⎞⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫
2

0

0

cos
4

I a d
r

i (19.39)

where f¢ is the f-coordinate of the element (Idl) under consideration; and y is the angle between
the radius vector a of the current element (Idl) and r¢ (the distance between the point P and the
element under consideration).

Now, r¢2 = r2 + a2 - 2ra cos y

\ r
r′ = y

⎡ ⎤
− +⎢ ⎥′ ′⎢ ⎥⎣ ⎦

1/22

2 2

2
1 cos

a ar

r r

                                 
2

2
1 cos

2

a a
rr

− +
′

y

since a << r ¢, and (r/r¢) ≈ 1, and hence we can substitute r for r¢ in the denominators of the two
correction terms on the right-hand side. Now consider (r ◊◊◊◊◊ a), a being the vector radius at the
element under consideration.

(r ◊◊◊◊◊ a) = (ix x + iyy + izz) ◊ [(a cos f¢)ix + (a sin f¢)iy]

= xa cos f¢ + ya sin f¢ = ra cos y

\ cos y = cos sin
x y
r r

f f⎛ ⎞ ⎛ ⎞′ ′+⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

\ r
r′ = 

2

2 2 2
1 cos sin

2

a ax ay

r r r
f f⎛ ⎞ ⎛ ⎞′ ′− + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

(19.40)
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Figure 19.10 Magnetic dipole antenna fed by an oscillator.
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Now, for the ‘oscillating magnetic dipole’, we have to consider the retardation effect, i.e.

AP = 
p

m w f fp
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Since the loop is quite small compared with the wavelength, i.e.
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where x = r sin q.
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where m0 is the magnetic moment of the dipole = I0pa2 = I0S; and [m0]
 is the retarded value of

the moment; and r1 is the unit vector in the direction of r.
When w = 0, Eq. (19.43) reduces to the magnetic vector potential of the static dipole, i.e.

A = 2 0 1
24

m r
i

r
rf

m
p
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⎝ ⎠⎝ ⎠⎣ ⎦
(19.44)

Since there is no static charge in the dipole, V = 0. (19.45)
And, hence the Lorentz gauge simplifies to:

div A = — ◊◊◊◊◊ A = 0 (19.46)

19.4.1 E and H Vectors of the Oscillating Magnetic Dipole
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Since the scalar potential is zero, E is hence due to the changing magnetic field. H lies in a
plane passing through the z-axis, whereas E is azimuthal.

At w = 0, H reduces to that of a static magnetic dipole, and E = 0.
If we compare the E and the H fields of the magnetic and the electric dipoles, it is seen

that the fields of the two are similar, except that the expressions for E and H are interchanged.

19.4.2 Poynting Vector and the Radiated Power of the Oscillating
Magnetic Dipole

For r >> l,
Hr = 0 (19.50a)
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The total radiated power W is obtained by integrating Sav over the surface of a sphere of
radius r, i.e.
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The radiation resistance is the coefficient of 
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Thus the radiation resistance of the magnetic dipole is proportional to the 4th power of the
frequency, whereas that of the electric dipole is proportional to the square of the frequency. This
dipole is the basis for loop antenna.
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It will be noticed that Ef given by Eq. (19.50) is a maximum, when q = (p /2), i.e. in the
plane of the loop. Hence, by the reciprocity theorem (which we shall study later in this chapter),
the signal received by a loop will be a maximum when the plane of the loop passes through the
transmitter. This property is used in the loop antenna which is fitted to the aircraft and to the
ships to locate their positions by taking bearings on the radio beacons at known places.

19.4.3 Electric and Magnetic Quadrupoles

We now go on to study the more elaborate types of radiation produced by quadrupoles. We first
study the linear electric quadrupole which consists of two dipoles of opposite polarity arranged
in a line to give three charges +q, -2q, +q, at distances l from each other. The dipole moment of
such charge distribution is zero (i.e. m = S (Qm l) = 0, where q = f (t) = Qm sin w t, Qm being the
amplitude of the charge). Its quadrupole moment is m00 = S (Qm l2) = 2Qm l2.

Since the dipole moment is zero, there will be no dipole radiation, but as there are time-
varying charges, there will be radiation of some sort which would be the subject of our
investigation. We can proceed exactly as for the electric dipole radiation, and calculate as before
the quantities V, A, E, and H. However, it is easier to add the fields of the component dipoles as
indicated below; and for simplicity we consider the radiation field components at large distances
(r >> l, i.e. the far field). There are two dipoles now, one with the moment [-m0 exp ( jw t)]
centred at (- l/2), and another with the moment [+m0 exp ( jwt)] centred at (+l/2). The electric
field intensities of the two dipoles can be added vectorially (by the principle of superposition).
Since the two dipoles (forming the quadrupole) are located at some distance away from the
origin of the coordinate system, their field intensities at a point P(r, q, f) will differ slightly in
direction, in amplitude, and in phase. However for the far field (when r >> l), the differences in
direction and in amplitude may easily be neglected, but not in phase. Hence, for each dipole at
the origin,
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For the quadrupole,
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These two exponential functions can be expanded in power series in (w l/c) for the far field, and
then their sum reduces to j(w l/c) cosq.
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There can be no radiation along the axis q = 0 or = p, where neither of the two dipoles
forming the quadrupole radiate energy. Also along the equator q = p /2, there would be zero
radiation as the two dipoles produce equal and opposite fields on this plane.

The magnetic field intensity can be found directly from the E field as

Hf = if Eq 
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Next, we consider an oscillating magnetic quadrupole which can be formed from two
oscillating magnetic dipole loops placed parallel to each other on either side of the origin of the
coordinate system. For the simplest case, we assume the distance between the two loops to be
equal to the radius (= a) of the loop. The lower dipole is centred at z = -a/2 and has a moment,
-m0 exp ( jwt), whereas the upper dipole is located at z = +a/2 and has a moment, +m0 exp ( jwt).
This arrangement is very similar to that of the linear electric quadrupole discussed in the earlier
part of this section.

Once again, the fields of the two magnetic dipoles can be added up, neglecting the
differences in direction and amplitude, but taking into account the difference in phase or
retardation. This is done by multiplying the dipole field by j(aw /2pc) cos q,

Hq = 
w q q w
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19.4.4 Antenna Characteristics (Radiation Parameters)

So far we have considered the theory of some of the basic elementary antenna types. Now we shall
discuss some of the important characteristics of an antenna as radiator of electromagnetic energy.
These are stated as below.

(A) An Antenna Pattern (or Radiation Pattern)

This is a three-dimensional plot of its radiation at far field. So this parameter describes the
directional dependence of the radiated power of the antenna.

The plot of the amplitude of a specified component of the E-field is called its field pattern,
the plot of square of the amplitude of E is its power pattern. A three-dimensional plot can be
avoided by plotting separately the normalized |E | against q for a given f (in spherical polar
coordinate system). This is called E-plane pattern or vertical pattern. When f = p ¥ 2, the pattern
is called H-plane pattern or horizontal pattern. The normalization of E is done with respect to
maximum value of E.

For Hertzian dipole, from Eqs. (19.14a) and (19.14b), it is seen that

f(q ) = sinq (19.53a)

and the polar or angular plot will be as shown in Figures 19.10(a), (b) and (c).
In general, a radiation pattern has a direction of maximum radiation as shown in the polar

plot of Figure 19.10(d). This is the main lobe. There are certain directions along which there is
no radiation. Such directions are called nulls. There are also certain directions along which the
radiation has a local maximum and these are called ‘side lobes’.
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Figure 19.10(a) and (b) Field patterns of the Hertzian dipole:
(a) normalized E-plane, f = 0;  (b) normalized H-plane, q = p/2.
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Figure 19.10(c) Three-dimensional pattern.
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q = –p/2oq = +p/2
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Figure 19.10(d) Radiation pattern as a polar plot.

Direction of the main beam: This is the direction along which the radiation field strength
is maximum, and is denoted by Qmax.

Half-power beam width (HPBW): The angular region, where the effective radiation from
the antenna goes, is the main beam.

The effective width of the main beam = the angular width of the pattern between the
points on the radiation pattern where the

magnitude of the field reduces to max ,
2

E  Emax

being the maximum field.
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From Figure 19.10(e),
HPBW = q1 – q2 (19.53b)
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Figure 19.10(e) Cartesian plot of the radiation pattern.

Since the field in the directions of q1 and q2 reduces by a factor of 
1

2
 of Emax, the Poynting

vector in these directions reduces to 1/2 or –3 dB compared to its value in the direction of
maximum radiation. (HPBW is also referred to as ‘3 dB beam width’ of the antenna). HPBWs are
generally measured in the planes of E and H.

Beam width between first nulls (BWFN): Sometimes, the width of the main beam is
measured by the angular separation between the first nulls on either side of the direction of the
main lobe.

\ BWFN = qn2 – qn1 (19.53c)

However HPBW is a better measure of the effective width of the main beam as the shape of
the main beam can change while keeping the null positions unchanged.

Side lobe level (SLL): Side lobes indicate the leakage of power in the undesired directions.
Ideally there should be no radiation outside the main beam. But in any practical antenna, there
are side lobes and the total radiated power is not focussed into the main beam.
So this leakage is to be kept minimal, i.e. the side lobe amplitude should be kept as small as
possible compared to the main beam amplitude. For good satellite antennae, the SLL is generally
–30 dB to – 40 dB. When we move away from the main beam, the amplitudes of the side lobes
decrease and hence the first side lobe usually defines the SLL.

(B) Radiation Intensity

We know that the radiation pattern (of an antenna) is a three-dimensional surface and the radiation
intensity is, in general, a function of q and f and is given by

Power along the direction ( , ) in a solid angle
( , )

Solid angle ( )

d
U

d

q fq f W
=

W (19.53d)

The solid angle on the surface of a sphere,
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2

dA
d

r
W = (19.53e)

where
  dA = area of the surface of the sphere

r = radius of the sphere
dW = sinq dq df, i.e. differential solid angle

\ 2Power along ( , )
( , )U r

dA

q fq f =
(19.53f)

     = (Power density)r2

Now, power density of a radiated wave = magnitude of the Poynting vector

i.e.

2
( , )

( , )
E

P
q f

q f
h

= (19.53g)

(h = intrinsic impedance of the medium)

\
2

2 2( , )
( , ) ( , )

E
U r P r

q f
q f q f

h
= = (19.53h)

The total power radiated (= Prad) can be obtained by integrating the radiation intensity over
the total solid angle (= 4p ), i.e.

2

rad

4 0 0

( , ) ( , ) sinP U d U d d
p p

p q f

q f q f q q f
W = = =

= W =ÚÚ Ú Ú (19.53i)

Hence the average radiation intensity

rad
av

1
( , )

4 4

P
U U dq f

p p
= = WÚÚ (19.53j)

(C) Directive Gain and Directivity

The radiation focussing capability of an antenna is quantified by the parameter ‘directivity’. So
as a first step in this process we define a parameter called its ‘directive gain’. So, the Directive
Gain GD (q, f) of an antenna is a measure of the concentration of the radiated power in specified
direction (q, f). It is thus the measure of the ability of the antenna to direct the radiated power
in a given direction.

So it is the ratio of the radiation intensity in a given direction (q, f) to the average radiation
intensity, i.e.

av

( , )
( , )D

U
G

U

q fq f =

rad

4 ( , ) 4 ( , )

( , )

U U

PU d

p q f p q f

q f
= =

WÚÚ
(19.53k)

¸
Ô
˝
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So P(q, f) can be expressed in terms of the directive gain as

rad2
( , )

4
DG

P P
r

q f
p

= (19.53l)

The directive gain GD(q, f) depends on antenna pattern. For Hertzian dipole and also for
l/2 dipole, P(q, f) is maximum for q = p / 2, and minimum (i.e. = 0) at q = 0 or p. So the Hertzian
dipole radiates power in a direction broadside its length.

In general GD can vary from 0 to •. In the direction of the nulls, E(q, f) and hence U(q, f)
and G(q, f) are zero, whereas GD is maximum in the direction of the main beam.

So now we define directivity:
The directivity D of an antenna is the ratio of the maximum radiation intensity to the average

radiation intensity.
Thus the directivity D is the maximum directive gain.

\ max
max

av
D

U
D G

U
= =

(19.53m)or

max max

rad

4 4

( , )

U U
D

P U d

p p

q f
= =

WÚÚ
Thus D = 1 for an isotropic antenna (which does not exist physically and is an ideal

reference).

So,
2
max

2
2

,

0 0

4

sin

E
D

E d d
p p

q f
q f

p

q q f
= =

=

Ú Ú
(19.53n)

Namalizing the radiation pattern as 
max

( , )
( , ) ,n

E
E

E

q fq f =  D can be rewritten as

2

0 0

4

( , ) sinn

D

E d d

p p

q f

p

q f q q f
= =

=

Ú Ú (19.53p)

For a Hertzian dipole, 2( , ) 1.5 sin , 1.5DG Dq f q= =
(19.53q)

For a l/2 dipole,
2

rad

( , ) ( ), 1.64DG f D
R

hq f q
p

= =

where h = 120p, Rrad = 73 W, and
cos cos

2
( )

sin
f

p q
q

q

Ê ˆ
Á ˜Ë ¯

=

(D) Antenna Gain or Power Gain

As seen above, the parameter directivity depends totally on the radiation pattern. An implicit
assumption in this discussion, has been that the total power radiated Prad, is same as the power

¸
Ô
˝
Ǫ̂

¸
Ô
˝
Ǫ̂

¸
Ô
Ô
Ô
˝
Ô
Ô
Ô
˛
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supplied to the antenna input. In actual practice, the antennae are made out of conductors having
finite resistivity (or conductivity), and so when there is a current flow in the antenna surface, there
is an ohmic loss. So a part of the power supplied to the antenna input is lost in the heating of the
antenna due to the ohmic loss. So if Pi is the power supplied to the antenna input, then

radi lP P P= + (19.53r)

where Pl is the ohmic loss in the antenna due to its finite conductivity.

\ 2
in rad

1
( )

2i lP I R R= + (19.53s)

where
Iin = current at the input terminals
Rl = loss or ohmic resistance of the antenna.

So we define the power efficiency (= hr) of the antenna as

rad rad

rad

i l

i i l

P P P P

P P P P
h -

= = =
+

(19.53t)

And the antenna power gain (= GP) is defined as

max

av

(actual)
( , )

for a loss-less caseP
U

G
U

q f =

 
max4 (actual)

i

U

P

p
= (19.53u)

 
max rad

rad

4 (actual)
r

i

U P
D

P P

p h= ◊ =

Thus
Power Gain = Directivity ¥ Efficiency (19.53v)

19.5 ANTENNA ARRAYS

19.5.1 Directional Properties of Antennae

The antennae have two main functions. The first job is to radiate the high frequency energy
which has been generated in the transmitter, and then guided to the antenna by the transmission
line. In this process, the antenna is acting as an impedance matching device whereby it matches
the impedance of the transmission line to that of the free space. The second job of the antenna
is to direct the energy to the required directions and to suppress the energy from those directions
where it is not required.

In general, a completely omni-directional (i.e. non-directional) radiator radiates energy
uniformly in all directions. Such a device is called an isotropic radiator or a unipole, an example
of this being a point source of sound. Since all radio antennae have some directivity, there is no
isotropic radiator of electromagnetic energy. However, conceptually such a hypothetical source
can still be used as a standard of reference for comparing with actual devices.

The radiation pattern of an antenna is a graphical representation of the radiation of the
antenna as a function of the direction. The radiation can be expressed either in terms of the field-

¸
Ô
Ô
ÔÔ
˝
Ô
Ô
Ô
Ǫ̂
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strength (i.e. E in volts/metre) or in terms of the power per unit solid angle. The power pattern is
proportional to the square of the field strength pattern. The coordinate system, generally used for
specifying the radiation patterns is the spherical polar coordinate system (r, q, f). The antenna is
usually located at or near the origin of the coordinate system, and the field strength is specified
at points on the spherical surface of radius r. So long as r is chosen such that r >> l and also >>
the largest dimension of the antenna system, the shape of the radiation pattern is independent of
r. For the radiation field, E is always tangential to the spherical surface. For a vertical dipole,
E is in the q-direction; and for a horizontal loop, E is in the f-direction. In general, there may
be both Eq and Ef components which may or may not be in time-phase. In this case, the
characteristics are shown by separate patterns for q- and f-polarizations, instead of the older
vertical and horizontal polarizations respectively. The older denominations were somewhat
confusing, because the q- or the vertical polarization does not rigorously mean that the signal is
vertical (though the signal does lie in a vertical plane through the radius vector), whilst the f- or
the horizontally polarized signal is always horizontal.

The half-wave wire antenna which we have studied so far, is directive, in the sense that
most of its radiation is in the direction for which q > 60∞, but it does not discriminate between
the azimuthal directions. To produce a preferred direction in the equatorial plane, it is necessary
to replace the single antenna by a group or an array of antennae suitably spaced and excited. So
we define an ‘antenna array’ as a system of similar antennae, similarly oriented. The arrays make
use of the wave-interference phenomena which take place between the radiations from the
different elements of the array. We shall consider first, the simplest two-element array.

19.5.2 Two Element Array

We consider the simplest array in which two half-wave antennae (with their axes parallel to the
z-axis) are spaced apart l/2, and are excited in phase. The antennae are parallel and lie in
the x-z plane, as shown in Figure 19.11. The point of interest P is (r, q, f) such that r >> l.

The E field due to each antenna is given by Eq. (19.27) which we can rewrite as

z

d

q

r
P(r, q, f)

x y

f

y

Figure 19.11 A pair of parallel half-wave antennae, d metres apart.

o

Note: f is measured in the xoy
plane whereas y is measured
in the xoP plane.
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For the array, the resulting Eq will be
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It should be noted that in the above expressions, of the two waves reaching the point P from the
two antennae, one has travelled a distance [r + (d cos y)/2], and the other one a distance of
[r - (d cosy)/2], and as a result, when they reach P, they will be out of phase. This, of course,
assumes that the antennae had been excited in phase. Now, we replace the angle y by q and f,
because:

r cos y = r sin q cos f (19.56)

\ The electric field intensity expression becomes
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When the two antennae are half-wavelength apart,

w wl p l p
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\ In the x-y plane, where q = p /2, the variation of the E field is proportional to
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At points where f = 0 or p, E = 0; and where f = p /2, E is a maximum, i.e.

Emax = q w
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Thus there is constructive interference along the y-axis; and destructive interference along the
x-axis.

In the x-z plane, f = 0, and hence E is

E = q
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The first trigonometric term is the angular distribution for a single half-wave antenna. This is
zero at q = 0, and maximum at q = p /2. The second trigonometric term is a consequence of the
interference between the two antennae. It is a maximum at q = 0, and zero at q = p/2.

\ In the x-z plane, E is zero both at q = 0, and q = p /2.
Finally, we consider the y-z plane where f = p/2.
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i.e. E on the plane y-z, behaves like the E field of a single half-wave antenna.
To obtain the expression for power, we rewrite the expression for the E vector, changing its

numerical constant to the characteristic impedance, and we have
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\ The average value in time, of the Poynting vector is
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This is for the two half-wave antennae spaced a distance d on the x-axis, both excited with the
same current and in phase (by the same current, we mean both have currents of the same
amplitude). We can generalize further, and if there is a phase difference between the antennae of
a, then, we have:
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This is the ‘power per unit solid angle’, when r = 1.
If the two antennae are in phase, and spaced a distance of half-wavelength, then a = 0,

d = l /2, and {wd/(2c)} = p /2, and so:
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The pattern in the plane q = p /2, is shown in Figure 19.12, which indicates that there are two
main directions of radiation which are both perpendicular to the line of the array. This is a
particular example of a ‘broadside array’. If the number of elements is increased, the main beam
becomes sharper and small sidelobes appear.

On the other hand, if the two antennae are spaced quarter wavelength, i.e. d = l /4, with a
phase difference of p /2, i.e. a = p /2, then Eq. (19.64) becomes
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Figure 19.12 Two-element broadside array.
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The pattern of this expression is symmetrical about the x-z plane (i.e. E plane) and about the
x-y plane (i.e. H plane). The power patterns in these two planes are shown in Figure 19.13. It will
be seen that only a small portion of the power is radiated to the left of x = 0, the main energy
going in a broad beam in the direction of the positive x-axis, i.e. the line of the array. This
system is an example of an ‘end-fire array’.

z

x
E plane

y

x
H plane

Figure 19.13 Two-element end-fire array.

As mentioned earlier, the factor [cos {(p /2) cos q}/sin q]2 in Eqs. (19.65) and (19.66)
represents the pattern due to an element of the array. The factors cos2 [(p /2) cos q ] and
cos2 [(p /4) (sin q cos f + 1)] characterize the broadside and the end-fire arrays respectively, and
are called ‘array factors’. The broadside array factor is like a toroid with a directive pattern in
any plane through the x-axis. The end-fire array has a pattern like a pencil beam possessing
directivity in both the planes through x- and y-axes. These arguments hold for the arrays
containing more than two elements. The end-fire arrays usually have a higher gain than the
broadside arrays of the same size. More highly directive systems can be designed by combining
the two types which we have discussed now.

19.5.2.1 Two element array (of isotropic antennae)

So far we have described a two-element array of half-wave dipoles which is a practical one. Now
we will discuss a two-element array made up of isotropic antennae. An isotropic antenna does not
exist in real life and is a hypothetical one. But its use helps us in understanding the principle of
the arrays, and we will show that an array of non-isotropic elements can be derived very easily
from this analysis of isotropic element array.

Since we are considering an array of isotropic elements, this means that each antenna is a
‘point source’. Let the two such antennae be separated by a distance d, and be excited by the
currents I1 –d1 and I2 –d2 where I1 and I2, and d1, d2 are the amplitudes and phases of the excitation
current in the two antennae respectively. The line joining the two elements is the axis of the array
[i.e. line AB in Figure 19.13(a)]. All the angles measured from the axis of the array are f which
should not be confused with the spherical polar coordinate variable (r, q, f). As the antenna
elements are point sources, the radiation pattern of the array would be axi-symmetric about the axis
AB. So the section of the radiation pattern in a plane passing through this axis [e.g. (say) the plane
of the paper] would generate the total pattern by rotating the section about AB. Since we are
interested in the far field, let P be such a point at which the total E field has to be evaluated. The
distance of the point P from the array is specified as r, as shown in Figure 19.13(a). This distance
r is >> than the dimensions of the array.
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A B

I1 I2

ff(1) (2)

d

r
r d– cos f

To the point P,
i.e. point of observation

Figure 19.13(a) A two-element array of isotropic antennae.

\ E field at the point P, due to the antenna (1) is

1
1

1

j
rC I e

E e
r

d
b-= j (19.66a)

where C is a constant dependent on the parameters of the medium. Similarly the field E2 at P due
to the antenna (2) is

2
( cos )2

2 ( cos )

j
j r dC I e

E e
r d

d
b f

f
- -=

- (19.66b)

Since d << r, it can be neglected in the denominator of the amplitude term, but not in the phase
term.

\
2

( cos )2
2

j
j r dC I e

E e
r

d
b f- -= (19.66c)

Since the two isotropic antennae are identical, the directions of E1 and E2 will be same.

\   ET = E1 + E2

1 2

2
cos

1 2

dj r jj jC e
I e I e e

r

pb fd d l
- Ê ˆ

= +Á ˜Á ˜Ë ¯

For a specified r, 0constant (say)
j rC e

C
r

b-
= =

\
1 2 1

2 cos
( )2

T 0 1
1

1

d
j

j jI
E C I e e e

I

p f
d d d l

Ê ˆ
Á ˜Ë ¯-

Ê ˆ
Á ˜= +
Á ˜Ë ¯

(19.66d)
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A plot of ET as a function of f gives the radiation pattern of the array in the plane containing the
axis. From this equation, the radiation pattern can be controlled by the following three parameters.

1.
d

l  (i.e. the ratio of the distance between the two antennae to the wavelength).

2. (d2 – d1) (= phase difference between the two elements).

3.
2

2

I

I  (i.e. the ratio of the amplitudes of the currents).

(A) Effect of Phase Difference on Radiation Pattern

Let 2
2 1

1

1 and ; then
I

I I I
I

= = =

 
1 2 1

2
cos( )

T 0 1
d

jj jE C I e e e
p fd d d l-

Ê ˆ
= +Á ˜Á ˜Ë ¯

(19.66e)

Since the radiation pattern is a plot of E  against the angle f, we have

2 1

2
cos( )

T 0 1
d

jjE C I e e
p fd d l-

Ê ˆ
= +Á ˜Á ˜Ë ¯

(19.66f)

Let the antenna 1 be the reference element, i.e. d1 = 0 and the phase difference d1 – d2 = d.
So, we get

2
cos

T 0 1

d
j

E C I e

pd f
l

Ê ˆ+Á ˜Ë ¯
Ê ˆ
Á ˜= +
Á ˜Ë ¯

0
1 2

2 cos cos
2

C I
pd f
l

Ï ¸Ê ˆ= +Ì ˝Á ˜Ë ¯Ó ˛
(19.66g)

For maximum Et, from the above equation,

2, ...
1 2

, being 0, 1,cos
2

m m
p pd f
l

Ê ˆ = =+Á ˜Ë ¯ (19.66h)

The direction of maximum radiation is obtained from the principal value of m, i.e.

2
cos 0

pd f
l

+ =

(19.66j)

\ 1
max cos

2

dlf
p

- -Ê ˆ= Á ˜Ë ¯

When the spacing between the elements and the wavelength of operation are specified, the
direction of maximum radiation is a function of d. So the direction of maximum radiation changes
as the phase difference d changes, i.e. when d = 0 and the two elements have the same phase,

¸
ÔÔ
˝
Ô
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then 1
max cos (0) 2;f p-= =  or when 1

max 0.
2

, cos (1)
d

d
pd b f
l

-= - = - = =

From the expression for fmax, it is seen that as d changes from –b d to bd, fmax changes from
0° to 180°, i.e. this is the range of variation of the direction of maximum radiation. So the inter-
element phase difference is an important parameter to control the direction of maximum radiation.

(B) Inter-element Spacing (= d )

Let I1 = I2 = I and d1 = d2 so that d = 0. The radiation pattern then becomes

T 02 cos cos
d

E C I
p f
l

Ê ˆ= Á ˜Ë ¯ (19.66k)

where 
d

l  is the spacing normalized with respect to the wavelength.

\ The condition for maximum radiation is

cos , 0, 1, 2,...
d

m mp f p
l

= =  (integers only)

\ 1
max cos

m

d

lf - Ê ˆ= Á ˜Ë ¯ (19.66l)

When 1,
m

d

l
£  the corresponding values of fmax will be physically realizable, i.e. for all ,

d
m

l
£

the radiation is maximum. There will be discrete number of directions of maximum radiation (= N).

\ N = maximum permitted value of m = floor 1
d

l
Ê ˆ +Á ˜Ë ¯  where floor (x) represents the highest

integer < x.
Next, for null directions, i.e. directions along which there is no radiation, we use the same

equation, allowing the cosine function to be zero and thus we get:

null
1

cos 0 and integers
2

d
m m

p f p
l

Ê ˆ= + =Á ˜Ë ¯
(19.66m)

So it follows that the directions of nulls and the directions of maximum radiation appear
alternately [Figure 19.13(b)].

Figure 19.13(b) Maxima and nulls in a radiation pattern of a two-element array.
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Thus the inter-element spacing 
d

l  splits the radiation pattern into angular zones.

(C) Effect of Amplitude Ratio

Considering the general case, i.e. Eq. (19.66d),

2
cos

2
0 1

1

1
j dI

E C I e
I

pd f
l

Ê ˆ+Á ˜Ë ¯
Ï ¸Ô Ô= +Ì ˝
Ô ÔÓ ˛

(19.66d)

let us discuss the effect of the ratio 2

1

I
R

I
=  on the radiation pattern, allowing R to vary over the

whole range 0 to •.
When R = 0, there is no excitation to the second element,  and when R Æ •, there is no

excitation to the first element.
In both these cases, there will be no array and the radiation patterns will be those of

individual antenna (i.e. isotropic in both the cases). The maximum array effect is thus realized when
I1 = I2, i.e. equal excitation to both the elements. In general, the array elements are excited with
equal magnitude but with different phases. There are special cases where the amplitudes of the
currents have to be varied.

Thus combining the effects of these three parameters, i.e. ,
dd
l

 and 1

2

I

I
 (each having different

effect on the radiation pattern) a derived radiation pattern of high complexity can be achieved.
So far this analysis has been based on the assumption of isotropic antenna which is of course

not physically realizable. All available antennae are non-isotropic in nature. Even the basic
Hertzian dipole is non-isotropic with zero radiation along its axis and the maximum on the normal
central plane. So when the elements have non-identical patterns, the radiation pattern in each plane
through the array axis has to be computed, and the three-dimensional pattern would be a collection
of such planar patterns.

We now consider a two-element array of non-isotropic but identical antennae, with its axis
lying in the plane of the paper (say). Let the individual pattern be f(f) in the plane of the paper.
Let the two antennae be oriented identically with respect to the array axis and the excitation
currents be I1 – 0 and I2 – d. The far fields at a point P, due to these two elements can be expressed
as

1
1 ( )

j rC I e
E f

r

b
f

-
=

(19.66n)
2

2 ( )
j rjC I e e

E f
r

bd
f

-
=

Hence the total field at the point P will be

cos1 2
T

1

( ) 1
j r

j djC e I I
E f e e

r I

b
b fdf

- Ê ˆ
= +Á ˜Ë ¯ (19.66p)

by analysis on similar lines as in the case of isotropic elements.
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It should be noticed that Eq. (19.66p) is identical with Eq. (19.66d), except that now there
is a multiplying factor f(f).

Hence it can be stated that:
Radiation pattern of a non-isotropic array
=  (Pattern of each element) ¥ (Radiation pattern of array of isotropic elements)

≠ ≠
This is also known as This is defined by array parameters and is called
Primary Pattern or Array Factor (AF).
Unit Pattern.

= Element Radiation Pattern ¥ Array Factor (= Group Pattern) (19.66q)
This is known as Pattern Multiplication.
Thus, it is possible to draw by inspection, the pattern of an array by pattern multiplication
While the ‘Unit Pattern’ depends on the type of the element, the ‘Group Pattern’ is

independent of the element type so long as d, d and orientation of the element in the array remain
the same.

Note: These points which have been mentioned in general terms here, can be checked specifically
for a two-element half-wave antenna discussed in Section 19.5.2 by referring to Eqs. (19.60)
to (19.66).

19.5.3 Linear Arrays

When the communication has to be made from one point to another (i.e. point-to-point
communication), the requisite radiation pattern is a single narrow lobe or a beam. Such a
characteristic can be achieved by a multi-element linear array. An array is said to be linear, when
the elements of the array are spaced equally along a straight line. A linear array is said to be
uniform, when the elements are fed with currents of equal magnitude and progressive phase-shift
along the line.

The pattern of such an array can be obtained by the vector addition of the field-strengths
of each of the elements. For a uniform array of non-directional elements, the field-strength
will be

ET = E0[1 + exp ( jy) + exp ( j2y) + . . . + exp ( j(n - 1) y)] (19.67)

where

E0 = field-strength due to the first element of the array, or due to an isolated element
y = b d cos f + a (19.67a)

with

 a = progressive phase-shift between two successive elements
 d = distance between two successive elements in the array
bd = 2p /l— path difference in radians

From Eq. (19.67),

T

0

E
E

= 
{ }1 exp ( )

1 exp ( )

j n

j

y
y

−
−
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= 

sin
2

sin
2

ny

y

⎛ ⎞
⎜ ⎟⎝ ⎠
⎛ ⎞
⎜ ⎟⎝ ⎠

(19.68)

The maximum value of this expression is n, and this occurs when y = 0. This is the ‘principal
maximum’ of the array. This occurs, when [from Eq. (19.67a)]:

cos f = 
d
a

b
−

(19.69)

A broadside array is one whose array factor has an absolute maximum in directions perpendicular
to the axis of the array. (In our present notations, in this section, this means f = p /2). This means
that a = 0 for this condition. The half-power width, the full angle in which the power radiated in
any direction is not less than half the maximum value, is 102∞/n, the approximation improving
as n increases.

When the (currents in the) elements in an array are all in phase, but the amplitudes
decrease uniformly from the central element, such an array is called a ‘gabled array’. If a is the
ratio of the sidelobe maximum to the main maximum of an array in which the currents are
uniform, then for the corresponding gabled array, this ratio will be a2 (as its factor is square of
the uniform one). Hence the sidelobes are reduced, but the main beam is now broader, and has a
half-power width of about 146∞/n for n elements.

An end-fire array is one, which has a maximum in the direction of the axis of the array.
This happens when f = 0, and hence,

a = -bd (19.70)

For this type, Eq. (19.68) is zero, when

, 1, 2, 3
2

n
k k

y p= ± = , º (19.71)

These are the nulls of the pattern. The secondary maxima occur approximately between the
zeroes or nulls, i.e.

(2 1) ,
2 2

n
m

y p= ± + m = 1, 2, 3, º (19.72)

Numerous graphs and details of the function (ET/E0) can be found in any book specifically
dealing with detailed study and design of antennae (e.g. Jordan and Balmain, Electromagnetic
Waves and Radiating Systems, 2nd Edition, Prentice-Hall of India, 2000).

Another type of linear array has elements which are called ‘parasitic elements’. These
elements are not connected to a generator, instead the currents in the parasitic elements are
induced by the currents in the driven elements. The resultant radiation pattern is the vector sum
of the patterns produced by all these elements.

A very familiar type of a linear array with parasitic elements is the Uda-Yagi array, shown
in Figure 19.14. A rigorous analysis of such a system is highly complex. The distances d1, d2, d3

are determined experimentally. The driven element is approximately l /2 long, the reflector
being slightly longer, and the directors shorter. The directors can be two or more.

The Uda-Yagi antenna is most often used as a receiving antenna. So far we have discussed
some of the basic points of some of the fundamental types and simple and familiar types of
antennae. The subject is a complex one, and for greater details and in-depth study, the interested
readers are recommended texts on the subject, such as Jones, D.S., Jordan and Balmain, etc.
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It should be noted that Eq. (19.68) is the Array Factor of the uniform linear array, i.e.

T

0

sin
2AF

sin
2

n
E

E

y

y= = (19.68)

(or sometimes, T

0

AF ,
E

nE
=  where n is the number of elements in the array)

19.5.3.1 Direction of maximum radiation

The total phase difference between the fields due to any adjacent elements in the uniform linear
array is

cosdy b f a= + (19.67a)
where

b d cosf is the space phase, being a function of the direction f (b d—the path difference in

radians p l= 2 / ),
a = the electrical phase – the progressive phase shift between the two successive elements,

independent of the direction f.
For the direction of maximum radiation, y = 0

\ maxcos
d

af
b

= -

or

1 1
max cos cos

2d d

a alf
b p

- -Ê ˆ -Ê ˆ= - = Á ˜Á ˜ Ë ¯Ë ¯ (19.72a)

This is same as Eq. (19.66j).
It is to be noticed that the direction of maximum radiation is independent of the number of

elements in the uniform array. Hence as in the case of the two-element array, the direction of
maximum radiation is made to vary from f = 0 to f = p by allowing a to change from –bd to +b d.

d1 d2

l /2

Direction of the
main beam

Directors

Driven element

Reflector

Figure 19.14 An Uda-Yagi array.

d3
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When f = 0 or f = p, the direction of the maximum radiation appears along the array axis,
and such an array is called the ‘End-fire Array’. When the direction of the maximum radiation is

orthogonal to the array axis, i.e. / 2f p= , the array is called the ‘Broadside Array’ [Figure 19.14(a)].

End-fire
direction

Broadside
plane

Axis of the array End-fire
direction

Figure 19.14(a) Broadside and end-fire directions of an antenna array.

Substituting for a (or d of the earlier equations) in Eq. (19.67a),

max(cos cos )dy b f f= - (19.67b)

19.5.3.2 Direction of nulls

This is the direction in which there is no radiation, i.e. the electric field is zero. Hence the
required condition from Eq. (19.68) is

sin 0
2

nyÊ ˆ =Á ˜Ë ¯
or

, 1, 2, 3,...
2

n
m m

y p= ± =

\
2

, 1, 2, 3,...
m

m
n

py = ± = (19.72b)

\ If fnull denotes the direction of null

null
2

cos
m

d
n

py b f a= + = ±

or

null max
2

(cos cos )
m

d
n

pb f f- = ± (19.72c)

\ null max max
2

cos cos cos
m m

dn dn

p lf f f
b

= ± = ± (19.72d)

It should be noted that m is to be an integer π 0 because m = 0 corresponds to y = 0 representing
maximum radiation and not a null. To obtain the directions of null, the integral values of m must
be such that the RHS of Eq. (19.72d) must lie within the range ±1. So there will be finite number
of nulls. Also the maximum value of m with +ve and –ve signs can be different depending on the
value of fmax.
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19.5.3.3 Half-power beam width (HPBW)

This has been defined while discussing the radiation parameters of an antenna. This is the angular
separation between two directions, one on either side of the direction of maximum radiation,

along which the E field has reduced to 
1

2
 of its maximum value. Let these two directions be f1

and f2 [Figure 19.14(b)]. Since the power density, as given by the Poynting Vector is proportional
to the square of the E field, the power density along these two directions will be half of that
along the direction fmax. The angular width (f2 – f1) is called the ‘half-power beam-width’ of the
array.

The half-power angles f1 and f2 can be calculated from the expression for |E| given in
Eq. (19.68)

sin1 12
2sin

2

n

n

y

y = (19.72e)

f p= f = 0

f–

n1 f2 fmax

f1

f+

n1

E = 0.707

Maximum Radiation

E = 1

E = 0.707

Figure 19.14(b) Half-power beam-width of a radiation pattern.

This equation has to be solved numerically to obtain the half-power angles f1 and f2, which then
gives the exact value for HPBW.

Next, we have the following quick and approximate method of calculating HPBW of a large
array (when an accurate answer is not required).

Note that the beam width between the first nulls (BWFN) is approximately twice the half-
power beam-width (HPBW).

We assume that the first nulls are approximately symmetric with respect to the direction of
maximum radiation, then

–
HPBW 2 1 1 1

1
( )

2 n nf f f f f+= - -

(19.72f)
            

1 max

max 1

( )

( )

n

n

f f

f f

+

-

-

-
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Here the implicit assumption is max 1 1
1

( )
2 n nf f f+ -+

It should be appreciated that depending on the location of max ,f  there may be cases when 1nf+

or 1nf-  may not be visible in the polar plot of the radiation pattern, i.e. when maxf  approaches p,

the null 1nf+  may not be visible, or when maxf  approaches 0, 1nf-  may not be visible. In such cases,

the suitable expression from Eq. (19.72f) should be used.
Let us first consider the case

HPBW 1 maxnf f f+ - (19.72g)
then

1 maxcos cosn nd

lf f+ = - from Eq. (19.72d) with m = 1

or

1 maxcos cosn nd

lf f+ - = - (19.72h)

or

1 max 1 max2sin sin
2 2

n n

nd

f f f f l+ +Ê ˆ Ê ˆ- +
=Á ˜ Á ˜Ë ¯ Ë ¯

or

HPBW max PBW2
2sin sin

2 2 nd

f f f l+Ê ˆ Ê ˆ =Á ˜ Á ˜Ë ¯ Ë ¯
(19.72k)

Expanding the trigonometric function, and considering a large array for which n >> 1 and using
the approximations sinx Æ x, cosx Æ 1 (x << 1) the above equation can be reduced to the
following quadratic

2
HPBW max max HPBW

2
(cos ) (2sin ) 0

nd

lf f f f+ - = (19.72l)

Solving this quadratic,

2
max max max

HPBW
max

2
sin sin cos

cos

nd

lf f f
f

f

Ê ˆ- + +Á ˜Ë ¯
= (19.72m)

i.e. as maxf  increases from 0 to p /2, the beam width HPBWf  decreases monotonically.

When fmax = 0— the end-fire array, HPBW is maximum.

When fmax = p/2— the broadside array, HPBW is minimum.
For these two limiting cases, from Eq. (19.72l), for the broadside array (fmax = p/2)

HPBW length of the arraynd

l lf = = (19.72n)

For the end-fire array (fmax = 0),

HPBW
2 2

length of the arraynd

l lf = = (19.72p)

The length of the array is (n – 1)d, but when n >> 1, the length = nd (approx).
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19.5.4 Directivity of Uniform Array

In Section 19.4.4 subsection (C), the directivity of an antenna has been defined as its power
focussing capability and from the radiation pattern of an antenna, the directivity can be calculated
using Eq. (19.53p).

\ The directivity for an N-element uniform array,

 
2

4

AF
D

d
q f

p=
WÚ Ú

(19.72q)

where AF (= the normalized radiation pattern of the array) is given by Eq. (19.68).
For a general uniform array, this expression has to be solved numerically. For a large array,

approximations are possible for the integral in the denominator. The integral can be replaced by
the solid angle within the half-power beam-width of the array.

Considering the two limiting cases, i.e. broadside and end-fire arrays, and denoting their
HPBW by fBS and fEF respectively.

BS EF
2

and
nd nd

l lf f= = (19.72r)

The solid angle for the broadside array is approximately

BS BS2 ;pfW
and for the end-fire array is

2
EF

EF 2

fp Ê ˆW Á ˜Ë ¯

(19.72s)

The directivity of the two arrays, thus, are

BS
BS

4 2

2

nd
D

p
pf l

= =

EF 2 2
EF

4 16 8

2

2

nd
D

nd

p
lf lp

= = =
Ê ˆ Ê ˆ

Á ˜Á ˜ Ë ¯Ë ¯

(19.72t)

i.e. the directivity of the end-fire array is about four times that of the broadside array of same
length.

On the other hand, comparing HPBWs.

 BS

EF 2 2

nd

nd nd

f l l
f l

= = (19.72u)

Since (nd) >> l for large arrays, the conclusion is fBS >> fEF. This implies that the broadside array
has high directivity as it has a narrower beam compared to the end-fire array.

So one has to be careful using only a planar radiation pattern. It is more important to develop
the capability of visualizing the three-dimensional patterns (as three-dimensional solids).
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19.6 THE RECEIVING ANTENNA

So far we have been discussing only the transmitting antennae. The task of a receiving antenna
is to extract the energy from an electromagnetic wave, together with the signal carried by the
wave, and deliver it to a receiver. This mechanism can be described qualitatively in simple terms.
The time-varying E field of the wave which surrounds the antenna, induces currents and charges
in the body of the conducting antenna. A certain voltage is thus developed across the antenna
terminals; this voltage varying with time as per the inducing wave. This voltage is fed into the
receiver which amplifies it, and then converts it into the required form which can be sound (e.g.
in radio, and the corresponding audio signals of the televisions) and/or optical (e.g. optical
signals in televisions, and in radars).

Though the geometrical shape of a receiving antenna is less diverse than that of a
transmitting antenna, they are functionally interchangeable. But it must be remembered that the
working conditions of the two types are not the same. For the transmitter, the external E-field
wave acts only between the antenna terminals; whilst for the receiver, the external E-field exists
all over the antenna surface. The resulting currents and the charge distributions for the two cases
will be quite different.

But even then, it can be shown that the most important characteristics of the receiving
antenna (which are its directive properties and its impedance) are identical to those of a
transmitting antenna. In our present discussions, we shall consider the two dipoles as the two
basic receiving antennae. (For further detailed information, interested readers are referred to the
specialized texts mentioned earlier.)

We have seen so far that from the input side, an antenna appears as an impedance in general,
the resistive part of the impedance corresponds to the power radiated by the antenna. So, for a
transmitting antenna, we can say that the current (of the antenna) is the cause and the
electromagnetic radiation is the effect. But for a receiving antenna the cause and the effect get
reversed, i.e. the cause is the incoming electromagnetic radiation, and the effect is the current
induced in the antenna surface, and the voltage induced between the antenna terminals. There are
two important points to be understood regarding the receiving behaviour of the antenna:
(1) Variation of the terminal voltage as a function of the direction and polarization of the incoming
radiation. (2) The maximum power that can be received by the load connected to the antenna. Also
of interest are the relationship between the antenna parameters in its two modes, i.e. transmitting
and receiving.

The antenna is a reciprocal device (i.e. an antenna has identical radiation and circuit
characteristics in transmitting and receiving modes). This follows from the reciprocity theorem
which has been proved in Section 19.7.

19.6.1 The Electric and the Magnetic Dipoles (Oscillating) as
Receiving Antennae

Figure 19.15 shows the electric (Hertzian) and the oscillating magnetic dipoles as the receiving
antennae.

The tangential component of the incident E field induces currents in the wire, such that
they re-radiate the energy and produce a voltage V across the load resistance R. It can be
justifiably assumed that the effects of these currents on the transmitting antenna are negligible.
The voltage across R can be measured by some suitable electronic voltmeter.
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For the Hertzian dipole, it can be shown that,

V = Et l = E ◊ l (= El cos a) (19.73)
where

Et = tangential component of E (i.e. tangential to the antenna)
l = length of the dipole antenna
V is maximal when E is parallel to the antenna (i.e. a = 0).

Hertzian dipoles (or almost Hertzian dipoles) are used as receiving antennae of television
receivers, portable radios, or car radios, etc.

For the magnetic dipole, the induced emf is given by

V = 
C C

d V d
t

∂Ê ˆ◊ = - + — ◊Á ˜∂Ë ¯Ú Ú A
E l l

  = 
S

V d
t

∂⎛ ⎞− ∇ × + ∇ × ∇ ⋅⎜ ⎟∂⎝ ⎠∫∫ A
S (19.74)

where S is any surface bounded by the contour C of the loop.

Now, — ¥ —V = 0 (a vector identity)

Also, we can interchange the order of the operators of time and space on the first term on
the right. Hence, we have

V = ( )
C S S

d d d
t t

∂ ∂Ê ˆ Ê ˆ◊ = - — ¥ ◊ = - ◊Á ˜ Á ˜∂ ∂Ë ¯ Ë ¯Ú ÚÚ ÚÚE l A S B S (19.75)

Hence, the induced emf in the loop is equal to the time-rate of change of the flux linking the loop.
This is a maximum, when the normal to the loop is parallel to the local B. V is zero, when a = p /2.
Either of these two conditions can be used to determine the direction of the wave, and locate, say,
a clandestine broadcasting station. Usually a = p /2 condition is used, because the zero of V can be
detected more accurately than a maxima. With two or more search loops, the location of a
transmitting antenna can be determined with a high degree of accuracy (Figure 19.16).

It should be noted that when R Æ •, then the voltage V is not necessarily the induced emf,
because the circuit may be excited in the electric dipole mode. For a symmetrical loop as shown
in Figure 19.15(b), when the E vector is in the plane of the loop, but is perpendicular to the pair
of the wires leading to the loop, an extra voltage appears on R which comes from the dipole
excitation and adds to the induced emf. But if the co-planar E is parallel to the two wires

R V
R V

(a) (b)

Figure 19.15 Oscillating electric and magnetic dipoles used as receiving antennae.

a
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leading to R, then the charge oscillates from one end of the wire to the other end, and V is not
affected by the dipole oscillation, and so Eq. (19.75) is correct.

Search loop (2)

Transmitter
Search loop (1)

Search loop (3)

Figure 19.16 Locating a transmitter by search loop antennae.

19.6.2 Hertzian Dipole Parameters as a Receiving Antenna

(A) Radiation Pattern and Polarization

We consider a Hertzian dipole, which of course is a small length of wire with an infinitesimal gap
at the centre, placed in an incoming radiation field. The dipole is located at the origin of the
coordinate system, its axis being along the z-axis. A source of an electromagnetic wave is located
at a very large distance R from the dipole which generates an electromagnetic wave linearly
polarized in the plane of the paper.

Let this source be located at A [Figure 19.17(c)] on the y-axis (i.e. along the centre of the
dipole orthogonal to its axis, i.e. q = p/2. So the E field will be polarized along the z-direction
and hence parallel to the Hertz dipole.

z

R

E

y

H

A

l

q

x

Hertzian
dipole

Voc

Wave
travelling
inwards

BE

H

Figure 19.17(c) Hertzian dipole as a receiving antenna.
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The o.c. voltage  between the terminals of the dipole will be

oc ( and are parallel)AV V El= = ◊ =E l E l (19.75a)

Let the source be moved to a point B such that it is along the arc of radius R and the direction
of radiation is inwards towards the Hertzian dipole.

The angle between the Elect. field E and the Hertzian dipole 
2

p q= -

oc cos sin
2BV V E l El El
p q qÊ ˆ= = ◊ = - =Á ˜Ë ¯ (19.75b)

\ Induced voltage at the receiving antenna is a function of the direction of incoming radiation q.

ocWhen , is maximum
2

V
pq =

ocWhen 0, 0Vq = =
Thus sin q is the factor of dependence for Voc (for a given polarization).
It should be remembered that the radiation pattern for a transmitting Hertzian dipole is sinq.

So the Hertzian dipole shows the same directional dependence for both the transmitting and the
receiving mode. This is true for any radiating system, i.e. the radiation pattern for an antenna is
identical for both transmitting and receiving.

We have kept the orientation of E unchanged in the movement of source so far. If the
polarization of E is changed by moving the point A to the x-axis, the terminal voltage of the Hertz
dipole changes and becomes zero when E is oriented in the x-direction. So the o.c. voltage is also
a function of the polarization of the incoming radiation.

For the Hertzian dipole, Voc will be maximum when E is along q-direction, i.e. E = iq Eq. So
an antenna responds maximally to that polarization in the receiving mode, which it generates in
the transmitting mode, i.e. the state polarization of a receiving antenna is same as that which it
is capable of generating. Thus the radiation pattern and the polarization of an antenna are identical
in transmitting and receiving modes.

(B) Equivalent Circuit

A transmitting antenna is equivalent to an impedance R + jX, where R is related to the power
radiated by the antenna, and X is related to the capacitive and inductive fields surrounding the
antenna.

The receiving antenna is like a voltage source with o.c. voltage Voc and an internal
impedance R + jX. The receiving antenna delivers power to the load impedance ZL connected to
its terminals. The power delivered is maximum when ZL and Z are conjugates of each other, i.e.
ZL = R – jX.

Hence, the maximum power received by the antenna and delivered to the load is then

2
oc

max 4L

V
P

R
=      [Figure 19.17(b)] (19.75c)
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Z Z R jX= +

Z
L Voc

R jX+

Z
L

Transmitting antenna

Receiving antenna

Figure 19.17(b) Equivalent circuits of the antenna.

(C) Effective Aperture (or Area)

Let the Poynting vector of the incident radiation on the receiving antenna be S.

\      Power density of the incident wave = S watts/m2

This antenna taps a power PL from the wave.

\ The effective aperture of the antenna L
e

P
A

S
= = (19.75d)

This parameter is special to the receiving antenna and it gives the power capturing ability of a
receiving antenna.

(D) Directive Gain

A system as shown in Figure 19.17(c) consists of a transmitting antenna 1 and a receiving
antenna 2 separated by a distance r. Let the antennae 1 and 2 have internal impedances

Z1 and Z2 respectively where antenna 2 has been connected to a conjugate load *
2Z . From circuit

considerations the two antennae would interact through a mutual impedance Zmu.

Hence Voc can be expressed as

Voc = ZmuI1 (19.75e)

V1

Transmitting
antenna

Radiation

r

Receiving
antenna

(1) (2)

I1

V1 Z1 Voc

Z2

*Z2

Zmu

Figure 19.17( c) Transmitting and receiving antennae system.
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\ The power received by the antenna 2 and delivered to the load *
2Z  is

2 2
mu 1

24L

Z I
P

R
= (19.75f)

The power transmitted by the antenna 1 is
2

1 1tP I R= (19.75g)

Let us assume that the gain of the transmitting antenna = GDt, and the two antennae are aligned in
the direction of their maximum radiation.

\ The power density due to antenna 1 at the location of antenna 2 is

2
1 1

2 24 4
Dtt Dt I R GP G

S
r rp p

= = (19.75h)

If the effective aperture of the antenna 2 is Ae2, then the power received by antenna 2

 Pr = SAe2 = 

2
1 1

224
Dt

e

I R G
A

rp
(19.75j)

Since this is same as the power delivered to the load PL,

then
2 2 2

mu 1 1 1
22

24 4
Dt

L r e

Z I I R G
P P A

R rp
= Æ = (19.75k)

\
2 1 2 2

mu 2
Dt eR R G A

Z
rp

= (19.75l)

By the reciprocity theorem, since the two antennae are reciprocal, so

2 1 2 1
mu 2

Dr eR R G A
Z

rp
= (19.75m)

\ From Eqs. (19.75l) and (19.75m),

2 1Dt e Dr eG A G A= (19.75n)

or
1 2

(a constant)Dt Dr

e e

G G
K

A A
= = (19.75p)

Since in this Section (D) no specific antenna was mentioned, Eq. (19.75p) will hold i.e. the ratio
e

G

A

Ê ˆ
Á ˜Ë ¯

only if it is a constant, which is to say that K does not depend on any type of antenna.

(E) K for the Hertzian Dipole

First we calculate G for the Hertzian dipole

E(q ) = sinq
For a loss-less dipole,
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2
2

0 0

4 3

2
sin sin

DG D

d d

p p

q f

p

q q q f
= =

= = =

Ú Ú
(19.75q)

Let the Hertz dipole be of length l, and be located in a radiation electric field specified as E

\ Power density of the wave 

2 2

120

E E
S

h p
= = = (19.75r)

Maximum o.c. voltage developed at the antenna terminals,

Voc = El

Note: Radiation resistance of the Hertzian dipole = Rrad = 
2 2

2

80 lp
l

\ Maximum power delivered (to the matched load)

2 22 2
oc

2 2
rad4 4 80

L

E lV
P

R l

l
p

Ê ˆ
= = Á ˜¥ Ë ¯

(19.75s)

\ The effective aperture for the Hertez dipole

23

8
L

e
P

A
S

l
p

= = (19.75t)

\ Effective aperture of Hertzian dipole is not dependent on its length and is a function of
the operating wavelength only.

\ 2

4D

e

G
K

A

p
l

= = (19.75u)

For a general antenna,
2

4 e
D

A
G

p
l

= (19.75v)

It should be noted that the ‘Directive Gain’ is a parameter of a transmitting antenna, whereas
the ‘Effective Aperture’ is a parameter of a receiving antenna. So for an antenna which can operate
in both modes (by the theorem of reciprocity), these two parameters, GD and Ae, are directly
proportional, i.e. if an antenna has high gain while transmitting, its effective aperture will also be
high while in receiving mode.

Referring back to 2-antennae system of (D), from Eq. (19.75h), we have
24

t
Dt

r S
P

G

p=

From Eq. (19.75d),

PL = Ae2 S = Pr

which combined with Eq. (19.75v), gives
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2

4r DrP S G
l
p

= ◊

\
22

2

/(4 )

44
r Dr

Dt Dr
t

P S G
G G

P rr S

l p l
pp

Ê ˆ= = Á ˜Ë ¯

\
2

4r Dt Dr tP G G P
r

l
p

Ê ˆ= Á ˜Ë ¯ (19.75w)

This is known as ‘Friis Transmission Formula’ relating the power received by one antenna
to the power transmitted by another provided that the two antennae are separated by a distance
r > 2d2/l where d is the largest dimension of either antenna. So care must be taken to see that the
two antennae are in the far field of each other.

19.7 THE RECIPROCITY THEOREM

It is known, in the theory of electrostatics, that certain relations exist between two possible
potential and charge distributions on a given system of conductors (see Appendix 3). Such
relations are commonly known as the ‘reciprocity theorems’, and similar theorems exist for the
harmonic electromagnetic field. Each component of the field vector satisfies the harmonic wave
equation,

—2f + k2f = 0 (19.76)

However, we start by discussing a more general equation, which can be written as

Div (a grad f ) + k2f = 0 (19.77)

where a and k are known functions. When a = 1, this equation reduces to Eq. (19.76). Let T be
the volume enclosed by a closed surface S, and let f1 and f2 be any two solutions of the
Eq. (19.77) which satisfy the same boundary conditions at any boundaries within T.

\ It follows from the divergence theorem, that

2 1
1 2 0

S

f f
a f f dS

n n

Ï ¸∂ ∂Ê ˆ Ê ˆ- =Ì ˝Á ˜ Á ˜∂ ∂Ë ¯ Ë ¯Ó ˛ÚÚ (19.78)

provided that the integrand is continuous across all boundaries within T.
The boundary conditions of this type are:

1. f and (a ∂f/∂n) are continuous, or

2. (af ) and (∂f/∂n) are continuous.

The more general boundary condition containing both these conditions is:

a{(∂f /∂n) + a f} and {b (∂f /∂n) + f} are continuous, where a and b are continuous, and such
that (a b ) π 1.

The continuity of the integrand with these conditions can be seen by writing it in the form:
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1 2 2 1
1 2 2 11

b a b aab
È ˘Ï ¸ Ï ¸ Ï ¸ Ï ¸∂ ∂ ∂ ∂Ê ˆ Ê ˆ Ê ˆ Ê ˆÊ ˆ + + - + +Í ˙Ì ˝ Ì ˝ Ì ˝ Ì ˝Á ˜ Á ˜ Á ˜ Á ˜ Á ˜- ∂ ∂ ∂ ∂Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯Í ˙Ó ˛ Ó ˛ Ó ˛ Ó ˛Î ˚

f f f fa
f f f f

n n n n

This theorem holds also if the boundary condition is f = 0 or (∂f /∂n) = 0 or more generally
(∂f /∂n) + s f = 0. Equation (19.78), which is valid under the appropriate boundary conditions, is
one form of the reciprocity theorem. This form does not include the sources in the region. A
different form of the theorem is for when the sources are present in the region under
consideration, i.e. inside T. In this case, let f1(R) and f2(R) satisfy the equations,

div (a grad f1) + k2f1 = - d (R - R1) (19.79a)

div (a grad f2) + k2f2 = - d (R - R2) (19.79b)

where R1 π R2, and R1 and R2 are points of T. Then

2 1
1 2 2 1 1 2( ) ( )

S

f f
a f f dS f R f R

n n

È ˘∂ ∂Ê ˆ Ê ˆ- = -Í ˙Á ˜ Á ˜∂ ∂Ë ¯ Ë ¯Î ˚ÚÚ (19.80)

provided f1 and f2 satisfy the boundary conditions of the type mentioned earlier. If, in addition,

1
1

f
n

s f
∂

+
∂  = 0, 2

2
f

f
n

s∂ +
∂

 = 0, on S,

then
f1(R2) = f2(R1) (19.81)

Under these conditions, the reciprocity theorem states that:

The field produced at the second source by the first source is the same as that produced at
the first source by the second.

In case Eqs. (19.77) and (19.79) are not satisfied inside S, but valid outside, then the
reciprocity theorems (19.78), (19.80), and (19.81) are still valid provided f1 and f2 satisfy suitable
radiation conditions at infinity.

The corresponding theorems for the electromagnetic fields are obtained in a similar manner.
This theorem when applied to electromagnetic waves states that ‘the current in a detector

divided by the voltage at the source remains constant when the source and the detector are
interchanged, so long as the frequency and all the impedances remain unchanged’.

This theorem is very widely used for investigating circuits as well as antennae. Here we
shall prove the generalized form by using the Maxwell’s equations.

To start with, we have a pair of loop antennae, one of which is being used as a transmitter,
and the other is used as a receiver, as shown in Figure 19.18 shown below.

The conductors and the medium of propagation are assumed to be isotropic. The source
connected to the left-hand antenna supplies a voltage V, and the detector is connected to the
right-hand antenna and measures a current I.

By the reciprocity theorem, (I /V ) remains unchanged, if the source and the detector are
interchanged, as shown in Figure 19.19. We now consider the field a (i.e. Ea, Ha) that is obtained
when the antenna a is the transmitter on being connected to the oscillator (the top part of the
Figure 19.19), and then the different field b (i.e. Eb, Hb) when the antenna b is made the
transmitter by connecting it to the oscillator as shown in the lower part of Figure 19.19. We
assume the frequency and the impedances to remain unchanged for these two arrangements.
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Then for any point in the space which includes the antennae as well as the source, the following
vector identity holds:

— ◊ (Ea ¥ Hb - Eb ¥ Ha) = Hb ◊ (— ¥ Ea) - Ea ◊ (— ¥ Hb) - Ha ◊ (— ¥ Eb) - Eb ◊ (— ¥ Ha) (19.82)

Using the Maxwell’s equations,

— ◊ (Ea ¥ Hb - Eb ¥ Ha) = a b
b a f bt t

∂ ∂⎛ ⎞ ⎛ ⎞− ⋅ − ⋅ +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
B D

H E J

                                     
B D

H E Jb a
a b fat t

∂ ∂⎛ ⎞ ⎛ ⎞+ ⋅ + ⋅ +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
(19.83)

Ra

V

Oscillator

Transmitter
Receiver

Zero-impedance
ammeter

Rb

I

Figure 19.18 A pair of loop antennae. The one on the left (transmitter) is excited by an
oscillator, supplying a voltage V. The other (receiver) is connected to a load resistance Rb

through a zero-impedance ammeter, measuring the current I.

Ra

V

Field vectors

Transmitter Receiver

Ammeter

Rb

I

Ea Ha

Receiver Transmitter

a
b

a
b

Field vectors
Eb Hb

Ammeter

I

Ra Rb

Figure 19.19 A pair of loop antennae with the source in a at the top, and then in b (bottom).
The frequency and the impedances remain unchanged.
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Since we are considering the time-harmonic fields, 
t

∂
∂

 ∫ jw,

and on simplifying, this equation reduces to:

— ◊ (Ea ¥ Hb - Eb ¥ Ha) = Eb ◊ Jfa - Ea ◊ Jf b (19.84)

For points outside the source, Jf = s E (assuming that the Ohm’s law holds). But within the
source there is another electric field intensity Es, and hence, in general:

Jfa = s (Ea + Esa) (19.85a)

Jf b = s (Eb + Esb) (19.85b)

The quantities Esa and Esb are the applied field intensities within the source when it is in the
loop a, and when it is in the loop b, respectively.

Jfa = the current density at any point in space, when the source is in a
Jf b = the current density at any point in space, when the source is in b.

\ Substituting these in Eq. (19.84), we obtain

— ◊ (Ea ¥ Hb - Eb ¥ Ha) = Esa ◊ Jf b - Esb ◊ Jfa (19.86)

In general, the right-hand side of the equation is not equal to zero.
This above relationship holds for any pair of electromagnetic fields at any points in space,

including the region inside the sources. Hence, integrating over the whole space,

( ) ( )a b b a sa f b sb fadv dv
∞ ∞

∇ ⋅ × − × = ⋅ − ⋅∫∫∫ ∫∫∫E H E H E J E J (19.87)

By applying the divergence theorem,

( ) ( )a b b a sa f b sb fad dv
• •

¥ - ¥ = ◊ - ◊ÚÚ ÚÚÚE H E H S E J E J (19.88)

If the sources are now constrained to a finite volume, the surface of integration on the left-hand
side is infinitely away from them, and then there is a plane wave with E and H orthogonal and
transverse.

\ E ¥ H = r1EH (19.89)

where r1 is the unit radial vector.

\ Ha = 
0

1
Z

⎛ ⎞
⎜ ⎟
⎝ ⎠

r1 ¥ Ea and Hb = 
0

1
Z

⎛ ⎞
⎜ ⎟
⎝ ⎠

r1 ¥ Eb (19.90)

\ The integrand on the left-hand side of Eq. (19.88) is

(Ea ¥ Hb - Eb ¥ Ha) = 
0

1
Z

⎛ ⎞
⎜ ⎟
⎝ ⎠

[Ea ¥ (r1 ¥ Eb) - Eb ¥ (r1 ¥ Ea)] = 0 (19.91)

at points infinitely remote from the sources.
\ The integral on the right-hand side of Eq. (19.88) must also be zero, i.e.
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∞
∫∫∫ (Esa ◊ Jf b - Esb ◊ Jfa) dv = 0 (19.92)

The integration is extended to all space, but it can be restricted to the sources, since Esa and Esb

are zero elsewhere.

\
∞
∫∫∫ (Esa ◊ Jf b) dv = 

∞
∫∫∫ (Esb ◊ Jfa) dv (19.93)

where the integrals are evaluated over the regions where Esa and Esb are non-zeroes.
Physically what this equation means, can be explained in terms of the pair of the loop

antennae a and b, i.e.

a
∫∫∫ (Esa ◊ Jf b)dv = ∫∫∫ (Esa ◊ dl)(Jf b ◊ dS) = VsaIb in a

where Vsa is the voltage supplied by the source in a, and Ib in a is the current in the same loop a
when b is energized.

Similarly,

b
∫∫∫ (Esb ◊ Jfa) dv = ∫∫∫ (Esb ◊ dl) (Jfa ◊ dS) = VsbIa in b

\ VsaIb in a = VsbIa in b

\ in ina b b a

sa sb

I I

V V
=

i.e. the physical interpretation is:

The current induced in b when a is energized, divided by the voltage applied on a is equal
to the current induced in a when b is energized, divided by the applied voltage on b
(keeping the frequency and the impedances unchanged).

This is the reciprocity theorem. It is valid for any pair of antennae. It should also be noted that
this theorem is concerned only with the ratio (I/V), and does not say anything about the power
expended by the source (which usually changes when the source is moved from one position to
the other).

PROBLEMS

19.1 The field near to a Hertzian dipole of length l has the following principal components
in spherical polar coordinates:

0
3 3 2

0 0

sincos sin
; ;

2 4 4
r

ilql ql
E E B

r r r
q f

m qq q
pe pe p

= = =

If i is oscillating and equal to 2I cos wt, prove that the predominant energy flow in
this region is likewise oscillatory, being such that a quantity of energy given by
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2 2

2 3
06

i l
W

rpe w
=

flows out and back from a sphere of radius r, twice in each cycle of the dipole current.

19.2 Show that the phase velocity of H field of an oscillating dipole is

f w
⎛ ⎞

= +⎜ ⎟⎜ ⎟⎝ ⎠

2

2 2

c
v c 1

r

Show also that the phase velocities of r- and q-components of E field are:

2 4 2

2 2 4 2

c ( /c) ( /c) 1
v c 1 , and v c respectively

( /c) 2( /c)
r

r r

r r r

⎛ ⎞ ⎡ ⎤− += + =⎜ ⎟ ⎢ ⎥⎜ ⎟ −⎢ ⎥⎝ ⎠ ⎣ ⎦
q

w w
w w w .

(The charges of the dipole are ±Qe jwt.)

19.3 The symmetry of Maxwell’s equations in free space implies that any system of
travelling waves defined by the field vectors E, B, has a dual in which E¢ = – cB, B¢ =
E /c. What source would produce a field which is the dual of that set up by a Hertzian
dipole?

19.4 Discuss and draw the image of a horizontal dipole antenna above a perfectly
conducting plane, and show that the current in the image and the current in the antenna
flow in opposite directions.

Discuss and draw again the image of a vertical dipole (antenna) above a perfectly
conducting plane, and show that in this case, the current in the image as well as in the
dipole flow in the same direction.

19.5 Considering the far fields of the electric dipole and the magnetic dipole, show that they
are duals of each other.

19.6 The field of a magnetic dipole is such that V = 0 and A π 0. Is it possible to have a
radiation field which has V π 0, A = 0?

19.7 A sealed plastic box contains a transmitting antenna radiating electromagnetic waves.
How would you identify whether it is a magnetic or electric dipole?
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20.1 INTRODUCTION

So far, in our study of electromagnetism, whenever we have distinguished the ‘electrostatic’ field
of stationary charges from the ‘electromagnetic’ field of moving charges, we have made a tacit
assumption that the earth is fixed, and ‘stationary’ means at rest relative to the earth’s surface.
But the earth is not fixed in any absolute sense, and the dominant factor is whether there exists
rest or motion with respect to a particular observer. Electromagnetic observations, made by two
observers in relative motion, will differ. However before we apply the relativistic concepts to the
electromagnetic phenomena, we shall have a look at the concepts of relativity in the context of
classical mechanics.

Furthermore, if we have a look at the historical sequence of the scientific developments, we
find that Maxwell’s electromagnetic theory (1855–1865) was based on the experimental laws of
Coulomb, Ampere, and Faraday. The special theory of relativity was enunciated in 1904–1905. It
was L. Page, who in 1912 said that ‘if the principle of special relativity had been enunciated
before the date of Oersted’s discovery of the magnetic effects of electric currents, then the
fundamental relations of Maxwellian electrodynamics could have been predicted on theoretical
grounds as a direct consequence of the fundamental laws of electrostatics, extended so as to
apply to charges in relative motion, as well as to charges at rest’.

We shall try to show in this chapter that starting from electrostatics (i.e. Coulomb’s law),
and applying the transformations of special relativity, we can derive Ampere’s, Faraday’s laws,
and the generalization into Maxwell’s equations.

This will give us a better insight and deeper understanding of all aspects of the electro-
magnetic theory, and thereby lay the groundwork for more advanced study of electrodynamics in
moving media. It will also help us in finding correct solutions for indeterminate or ambiguous
problems caused by the flux-cutting rule. Finally, various isolated laws will appear as different
facets of a single comprehensive theory. However, before we apply the concepts of relativity to
electromagnetic phenomena, we shall have a look at some of the simpler phenomena in classical
mechanics so as to be clear about the ‘relative velocity’.

Electromagnetism
and Special
Relativity20
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20.2 GALILEIAN RELATIVITY (GALILEO GALILIE)

This is the simplest case in classical mechanics, so much so that it is applied without any
conscious thought process.

Let us consider a boat, on a river moving downstream with a velocity v relative to the
water of the river, and that the river water has a velocity u (in the same direction).

Hence the velocity of the boat relative to a stationary observer on the bank of the
river = v + u.

And (to an observer sitting on the boat), the observer on the bank appears to move with a
velocity equal to = -(v + u).

\ The position of the boat can be specified with respect to:

1. a fixed point on the bank of the river, or
2. a point on the river—moving with the water, i.e. a drifting bouy.

So now we choose a coordinate system S fixed to a point which is fixed on the bank, and
another coordinate system S¢ whose origin is fixed on the drifting bouy (Figure 20.1).

Figure 20.1 Coordinate systems S and S¢.

z z ¢

x

x ¢

y ¢

x ¢u Boatx

y

O O ¢

Bouy

Hence,

x  = the position of the boat with respect to the coordinate system S; and
x¢ = the position of the boat with respect to the coordinate system S ¢; then we can write:

x¢ = x - ut (20.1)

This equation expresses the position of the boat relative to the drifting bouy in terms of the
position and the time measured by an observer fixed on the bank.

Or, we could equally well have written this relationship in the form

x = x¢ + ut¢, (t = t¢) (20.2)

where the position of the boat relative to the bank has now been expressed in terms of the
position and the time measured by an observer sitting on the bouy and drifting along with it.

This transformation from one coordinate system to another as given by Eq. (20.1) or (20.2)
is known as the Galilean transformation, named after Galileo Galilei. In classical Newtonian
mechanics, the basic hypothesis is that the laws of motion hold equally in all rigid coordinate
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frames moving with uniform rectilinear velocity with respect to each other. The equations of
motion remain unchanged in the two systems by using the two transformation relations
mentioned above. This invariance of the laws of mechanics under a Galilean transformation is
called the ‘Galilean relativity’. There are certain assumptions implicit in this transformation.
They are that the mass and the dimensions remain same at rest as under motion. Also, it is
important to note that the variation of time is at the same rate for both moving and fixed
observers. As we shall see later, that these assumptions are valid only when the velocities under
consideration are much smaller when compared with the velocity of light (= c), i.e. v << c. These
laws become different when we have much higher velocities, i.e. the velocities comparable to
that of the light velocity.

20.3 ELECTROMAGNETIC PHENOMENA AS VIEWED BY
DIFFERENT OBSERVERS

We have two inertial frames of reference F and F ¢ where the frame F ¢ moves with a constant
velocity u in the x-direction with respect to the frame F.
(Note: We define an ‘inertial frame of reference’ as follows: ‘If in a reference frame, a particle
under the influence of no forces travels in a straight line with constant speed, then that reference
frame is called an inertial frame of reference’. The laboratory system is generally a very
satisfactory approximation to an inertial reference frame for the description of electromagnetic
phenomena.)

The two frames of reference F and F ¢ have a common x-axis as shown in Figure 20.2 below.

Figure 20.2 Parallel layers of electric charge.

Layer of –ve surface charge density, –rS
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O x O ¢

z ¢

F ¢
u

x ¢

Layer of +ve surface charge density, +rS

There exist two layers of electric charges parallel to the x-y plane, y-axis being normal
(into) the plane of the paper. We consider an observer making measurements at O, a point
between the two sheets of charges (as shown above) of densities ± rS per unit area. Since the
electric field is stationary in this frame, the observer will detect an electric field having one
component given by

Ez = S

0

r
e (20.3)

and no magnetic field.
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shows the end-view of these currents. At infinity they seem coincident, so produce no magnetic
field, and hence a magnetic circuit such as C1 shows that there exists no magnetic field anywhere
outside the currents, while the circuit C2 shows that between them (the current-sheets—as they
appear to the observer in the moving frame of reference), there exists a magnetic field in the
direction O¢y¢, which is given by

H ¢y = urS = -J ¢Sx (20.4)
or

B¢y = m0rSu = m0e0uEz = 2

u

c
zE

⎛ ⎞
⎜ ⎟⎝ ⎠

(20.5)

Thus the observer O¢ in the frame F ¢ observes this magnetic field as well as the electric field
which the observer O in the frame F discerns, i.e.

E ¢z = Ez (20.6)

Let the charge-sheets now be replaced by iron poles with respect to which the frame F is at rest.
Let the magnetic field between these poles be observed from F as Bz (Figure 20.4).

If the frame F ¢ carried a conductor along the axis O¢y¢, then an emf (uBz) would be found to
be induced in it in the direction O¢y¢. This emf is a sign that if the conductor were absent, there
would be an electric field given by

E ¢y = -uBz (20.7)

The observer in the frame F ¢ will observe this field in addition to the magnetic field Bz.
The magnetic flux density B¢y given by the Eq. (20.5), introduced into the observations on

the moving frame F ¢ by its relative motion to the frame F, is got by multiplying (F)’s electric
field Ez by (u/c2) and swinging the vector through negative 90∞ about the direction of u. If (F)’s
field had contained a component Ey, the same rule would give

In the other frame of reference F ¢ with the axes O¢ x¢ y¢ z¢, moving relatively to F with the
velocity u in the direction Ox, an observer (sitting at O¢) will also detect the electric field Ez, but
for him the charges are gliding backwards with the velocity u, and so the upper charge-sheet
appears as a current-sheet of (rSu) amps/metre directed in the direction O¢x¢ whilst the lower
charge-sheet appears as a similar current-sheet in the reverse direction. The diagram (Figure 20.3)

Figure 20.3 End-view of the charge-sheets as seen by an observer in the
moving frame of reference F ¢.

C1

z ¢

x ¢

O ¢ y ¢

C2

+ rSu/unit width
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B ¢z = 2

u

c
yE

⎛ ⎞− ⎜ ⎟⎝ ⎠
(20.8)

Similarly the electric force E ¢y given by Eq. (20.7) is obtained by multiplying the flux
density Bz observed from the frame F by u and swinging the vector through positive 90∞ about
the direction of u. So by similar arguments [as we had for Eq. (20.8)], if the frame (F)’s field had
contained a component By, then the same rule (mentioned before in this paragraph) would give

E ¢z = uBy (20.9)

But the components in the x-direction (i.e. the direction of motion) would be observed equally
from both the frames. Hence

E¢x = Ex and B¢x = Bx (20.10)

Thus building up a general field by superposition of perpendicular components. we find that the
general relation between the vectors E, B in the frame F and E¢, B¢ in the frame F ¢ which has a
relative motion u with respect to F in the direction Ox, is contained in these equations:

E ¢x = Ex, E¢y = Ey - uBz, E¢z = Ez + uBy (20.11a)

B ¢x = Bx, B¢y = By + 2

u

c

⎛ ⎞
⎜ ⎟⎝ ⎠

Ez, B¢z = Bz - 2

u

c

⎛ ⎞
⎜ ⎟⎝ ⎠

Ey (20.11b)

These equations have been derived with the assumption of uniform fields, but with fields which
vary from place to place, they are still true at the instant when the frames F and F ¢ coincide.
Equations (20.11) can be written in compact vector form as:

E¢ = E + (u ¥ B) (20.12a)

B¢ = B – 2

1

c

⎛ ⎞
⎜ ⎟⎝ ⎠

(u ¥ E) (20.12b)

As a first application, we may get the formula for the force on a moving charge. Let the charge
q move with a velocity v = u in the frame F in which exists both an electric field E and a
magnetic field B. Let q move with the origin of F ¢, it is then static in F ¢, and so the force on it
is given by

P¢ = qE ¢ (20.13)

Figure 20.4 Two parallel magnetic poles.
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Transforming to the frame F, and assuming:

1. q is same for both the frames (true);
2. P = P¢ (true for the order of the accuracy here considered),

we get [from Eq. (20.12)]

P = q[E + (u ¥ B)] (20.14)

This is the important Lorentz Force Formula, which we had used to define the magnetic flux
density vector B.

20.4 TRANSFORMATION OF ELECTRIC AND MAGNETIC
FIELDS

Equations (20.11) were derived from the Galilean relativity which is applicable to the Newtonian
mechanics.

\ Similar to these principles, the physical results obtained should be independent,
whether the frame F or F ¢ is regarded as fixed, i.e. it is valid to consider F¢ as fixed and F
moving in the x¢ direction with a velocity (-u).

\ The unprimed fields should be obtained from the primed fields by a set of relations
corresponding exactly to Eqs. (20.11) with the primed and the unprimed quantities interchanged,
and u replaced by (-u).

\ Equations (20.11) should transform to

Ex = E ¢x, Ey = E ¢y + uB¢z, Ez = E¢z - uB¢y (20.15a)

Bx = B ¢x , By = B¢y - 2

u

c

⎛ ⎞
⎜ ⎟⎝ ⎠

E¢z, Bz = B¢z + 2

u

c

⎛ ⎞
⎜ ⎟⎝ ⎠

E¢y (20.15b)

But, if Eqs. (20.11) are solved to obtain the unprimed field quantities, then the following set of
relations is obtained by the steps which are obtained from Eqs. (20.12), i.e. Eqs. (20.12) can be
re-written as

E = E¢ - (u ¥ B)

= E¢ - (u ¥ B¢) – 2

1

c

⎛ ⎞
⎜ ⎟⎝ ⎠

[u ¥ (u ¥ E)]

If u has only x-component, the components of (u ¥ E) are 0, – uEz, uEy; and of [u ¥ (u ¥ E)] are
0, -u2Ey, -u2Ez.

Thus the equations for E and B in terms of E¢ and B¢ are

Ex = E ¢x (20.16a)

Ey = 2

2

u

u
1

c

y zE B′ ′+

−
(20.16b)

Ez = 2

2

u

u
1

c

z yE B′ ′−

−
(20.16c)
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and
Bx = B ¢x (20.17a)

By = 
2

2

2

u

c

u
1

c

y zB E
⎛ ⎞′ ′− ⎜ ⎟⎝ ⎠

−
(20.17b)

Bz = 
2

2

2

u

c

u
1

c

z yB E
⎛ ⎞′ ′+ ⎜ ⎟⎝ ⎠

−
(20.17c)

which can be written in the compact form

Ex = E ¢x , Ey = b2(E¢y + uB ¢z), Ez = b2(E ¢z - uB¢y) (20.18a)

Bx = B¢x, By = b2
2

u

c
y zB E

⎡ ⎤⎛ ⎞′ ′−⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦
, Bz = b2

2

u

c
z yB E

⎡ ⎤⎛ ⎞′ ′+⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦
(20.18b)

where  b 2 = 

12

2

u
1

c

−⎛ ⎞
−⎜ ⎟⎜ ⎟⎝ ⎠

.

Then, how do we explain this lack of self-consistency in these equations? That is, they do
not transform properly into a similar set when solved with primed and unprimed quantities
interchanged and u replaced by -u. We have to look for the reasons for this inconsistency.

This inconsistency implies that something is wrong with the underlying principles of this
above analysis, i.e. either with Newtonian mechanics and Galilean relativity, or with classical
electromagnetics, or with both. Historically, this was the difficulty faced by the physicists
towards the end of the nineteenth century. The uncertainty and the controversy were associated
with the correct formulation of the velocity of light, and was eliminated by the special (or the
restricted) principle of relativity.

What we have been saying so far has been that:

The laws of nature are same referred to all frames of reference, which are in uniform
translation with respect to one another (i.e. there is no meaning in absolute velocity).

So, we consider, as before, two frames of reference F and F ¢. The coordinates of a point, in
the frame F, are (x, y, z), and in the frame F ¢ are (x - ut, y, z); i.e. a particle with velocity u1 in
the x-direction with respect to the frame F, will appear to have a velocity (u1 - u) in the frame F¢.

This, in fact, conflicts with the observation of constant velocity of light in both the frames
of reference.

We shall not go into the historical details of this controversy regarding the velocity of
light. Suffice it to say that the root of the conflict was the question of existence of an ‘aether’.
We have seen that Maxwell showed light to be an electromagnetic phenomenon, and that the
velocity of light was given by c = (me)-1/2—a characteristic of the medium, and presumably the
velocity is measured relative to the medium. Under these circumstances, if the frame F is
assumed to be stationary in the medium, the frame F ¢ moves through the medium with a velocity
u in the +x-direction. Then a light wave travelling in the medium with a velocity c in the
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+x-direction, should appear to have a velocity (c - u) to an observer in the frame F ¢, moving
along with it. This result conflicts with our results as we obtained in Eqs. (20.18), as the factor
(1 - u2/c2) obtrudes itself. Admittedly, c is a very large velocity, and so this factor is very small;
but even so its presence raises doubts about the validity of the whole theory. It is not difficult to
cook Eq. (20.11) in such a way as to remove this anomaly. For example, if it could be shown
that the true equation for E¢ were

E¢x = Ex (20.19a)

E¢y = b(Ey - uBz) (20.19b)

E¢z = b(Ez + uBy) (20.19c)

where b = 

1/22

2

u
1

c

−⎛ ⎞
−⎜ ⎟⎜ ⎟⎝ ⎠

(20.20)

with a similarly modified set of equations for B¢, i.e.

B¢x = Bx (20.19d)

B¢y = b
2

u

c
y zB E

⎡ ⎤⎛ ⎞+⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦
(20.19e)

B¢z = b
2

u

c
z yB E

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦
(20.19f)

the process of solution would give

Ex = E ¢x (20.21a)

Ey = 

b
2

2

u

u
1

c

y zE B′ ′+
⎛ ⎞

−⎜ ⎟⎜ ⎟⎝ ⎠

 = b (E ¢y + uB ¢z) (20.21b)

Ez = 
2

2

u

u
1

c

z yE B

b

′ ′−
⎛ ⎞

−⎜ ⎟⎜ ⎟⎝ ⎠

 = b (E ¢z - uB¢y) (20.21c)

and so forth, so that the new equations would have the same form as Eqs. (20.19) except that the
sign of u has been changed. It should be noted in passing that Eqs. (20.19) cannot be expressed
directly in vector form, because the factor b does not multiply every component.

However, the mere fact that b makes the answer come true (right) does not justify us in
inserting it. There must be some much more solid argument for its presence. To explain it, we
need a fundamental enquiry into the relation between the physical quantities as measured in the
two frames of reference; not merely of electromagnetic quantities, but of length and time, and—
ultimately—of mass. For the two frames of reference having a relative motion, which is linear
and uniform, this inquiry is the province of the ‘Special Theory of Relativity’.
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20.5 THE RELATIVITY OF SPACE AND TIME

The ‘relativity’ of electromagnetic measurements to a particular observer is a consequence of the
elementary electromagnetic principles, but the more subtle considerations lead to a similar
‘relativity’ about the fundamental measures of mass, length, and time. We shall consider first the
last two.

We have proved that the electromagnetic waves travel with the velocity c = (m0e0)
-1/2 in

free space. Since the field equations on which this deduction is based are relative to a particular
observer, we do not expect the velocity as observed by an observer in a ‘moving’ frame of
reference to be the same. Experiments [especially those of Michaelson and Morley (1887)] show
that the velocity of light or other electromagnetic signals is the same for all observers.

This means a departure from the normal kinematic ideas; if a particle has a velocity (U, V,
W) with respect to the frame of reference F, it is assumed to have the velocity (U - u, V, W) with
respect to the moving frame F ¢, and so it cannot have the same velocity with respect to both. In
order that the light may have the same velocity c with respect to both F and F ¢, we find it
necessary to introduce a scheme wherein the measures of length l and time t are relative to a
particular observer.

Let F and F ¢ be the frames of reference having relative motion u, and let them coincide at
t = 0. An event is defined as something happening at a specified place and time—e.g. a flash of
light or a pulse of radiation occurring at a place (x, y, z) and time (t). In ordinary or classical
Newtonian mechanics, an event (x, y, z, t) observed from the frame F will have the coordinates

x¢ = x - ut, y¢ = y, z¢ = z, t¢ = t (20.22)

observed from the frame F ¢. These are linear relationships, but we have seen that they cannot
satisfy the ‘constant velocity of light’ condition.

The path of a particle in either F or F ¢ is a sequence of events. If a particle is acted on by
no forces, it moves (we assume) with uniform velocity in a straight line with respect to either F
or F ¢; its path may be represented by a straight line with time members uniformly spread along
it. In order that this may be true, the relations between (x, y, z, t) and (x¢, y¢, z¢, t¢) must be linear.

A flash of light occurring at the origin, at the instant when the two frames F and F¢
coincide, will spread out so that at the time t an observer in F sees it as having reached the
sphere

x2 + y2 + z2 = c2t2

and, in F ¢
x¢2 + y¢2 + z¢2 = c2t¢2

Hence the relation between (x, y, z, t) and (x¢, y¢, z¢, t¢) must be such that

x¢2 + y¢2 + z¢2 - c2t¢2 = x2 + y2 + z2 - c2t2 (20.23)

and this combination of coordinates is said to be invariant.
We find it possible to satisfy [Eq. (20.23)] with y¢ = y, z¢ = z, and x¢, t¢ linear functions of

x, t such that
x¢2 - c2t¢2 = x2 - c2t2 (20.24)

Let those functions be (since x = 0, t = 0 Æ x¢ = 0, t¢ = 0)

x¢ = Ax + Bt, t¢ = Cx + Dt; then from (20.24)

(Ax + Bt)2 - c2(Cx + Dt)2 = x2 - c2t2
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whence

A2 - c2C2 = 1, c2D2 - B2 = c2, AB - c2CD = 0 (20.25)

Now x¢ = y¢ = z¢ = 0 is moving with the velocity u with respect to F.

\ B
A

 = -u (20.26)

and Eqs. (20.25) and (20.26) give four equations for A, B, C, D.
Substituting from Eq. (20.26) in Eqs. (20.25),

c2C2 = A2 - 1 and c2D2 = u2A2 + c2; thus

(A2 - 1)(u2A2 + c2) - u2A4 = 0

whence (taking the positive root),

A = 
1/22

2

u
1

c
b

−⎛ ⎞
− =⎜ ⎟⎜ ⎟⎝ ⎠

(20.27a)

B = -ub ; C = 
b

2

u

c
± ; D = b (20.27b)

Assimilation to Eq. (20.22) requires the lower signs, and the relations are:

x¢ = b (x - ut), y¢ = y, z¢ = z, t¢ = b
2

u

c

x
t

⎛ ⎞−⎜ ⎟⎝ ⎠
(20.28)

This is called the Lorentz transformation.

20.6 CONSEQUENCES OF THE LORENTZ TRANSFORMATION

1. Events which occur simultaneously, but at different places in one frame, are not

simultaneous in the other frame. This is a consequence of t¢ = b
2

u

c

x
t

⎛ ⎞−⎜ ⎟⎝ ⎠
.

2. If the equations are solved for x ¢, t¢ in terms of x and t, we get the same relation with the
sign of u changed.

3. Contraction of lengths. Let x¢1, x ¢2 be points on the x¢-axis in the frame F¢; and x1, x2

their coordinates in the other frame F. Then,

x¢2 – x¢1 = b (x2 – x1) (20.29)

when measured at a particular time t with respect to the frame F.

Hence an observer in F sees a length divided by b, a number > 1. (This is Fitzgerald
contraction.)

It should be noted that there is no contraction perpendicular to the line of motion.

4. Dilatation of time. Let a clock at the origin of the frame F¢ tick at t¢ = t¢1 and t¢ = t¢2.
With respect to the frame F, we have

x1 - ut1 = 0, x2 - ut2 = 0, t¢1 = b 1
1 2

u

c

x
t

⎛ ⎞−⎜ ⎟
⎝ ⎠

, t¢2 = b 2
2 2

u

c

x
t

⎛ ⎞−⎜ ⎟
⎝ ⎠
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i.e. t¢1 = b
2

12

u
1

c
t

⎛ ⎞
−⎜ ⎟⎜ ⎟⎝ ⎠

 = 1t
b , t¢2 = 2t

b

and the time-interval measured from the frame F is

t2 - t1 = b (t ¢2 - t ¢1) (20.30)

—a longer time—i.e. the ticks seem to occur at a longer interval. This leads to the famous clock
paradox.

5. Transformation of velocities. Let a particle have the velocity (vx, vy, vz) in the frame
F, and (v¢x, v¢y, v ¢z) in the frame F ¢, where

vx
2 + vy

2 + vz
2 = v2 and vx¢2 + vy¢2 + vz¢2 = v¢2

If the coordinates of the particle in the two frames are (x, y, z, t) and (x¢, y¢, z¢, t¢) respectively,
then:

v¢x = 

22

v u( u )
uvu 1
cc

x

x

dx dx dt
dt dx

dt

b

b

′ −−= =′ ⎛ ⎞ −−⎜ ⎟⎝ ⎠

(20.31a)

v¢y = 
b b

2 2

v

u uv
1

c c

y

x

dy dy
dt dx

dt

′
= =′ ⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

(20.31b)

v¢z = 
b b

2 2

v

u uv
1

c c

z

x

dz dz
dt dx

dt

′
= =′ ⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

(20.31c)

Similarly,

2

v u
v

v u
1

c

x
x

x

dx

dt ¢
¢ +

= =
+

(20.31d)

 
2

v
v

v u
1

c
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dy

dt b

¢
= =

¢Ê ˆ+Á ˜Ë ¯

(20.31e)

2

v
v

v u
1

c

z
z

x

dz

dt b

¢
= =

¢Ê ˆ+Á ˜Ë ¯

(20.31f)

It should be noted that if the two systems have a relative velocity u = c, and if a point in

the F ¢-system has a velocity v c,x¢ =  then the value of ux is still c.
By similarly differentiating these six equations with respect to t and t¢, we get

3

2

v v u v
1

c
x x xd d

dt dt
b

-È ˘¢ ¢Ê ˆ= +Í ˙Á ˜Ë ¯ ¢Î ˚
(20.31g)
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and

2
, , ,

2 2 2 2

v v vv u v u uu
1 1

c c c

y z y z y zx x x
d d d

dt dt dt
b

b

- ¢ ¢È ˘¢ ¢ ¢Ê ˆ Ê ˆ= + - +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯¢ ¢Î ˚
(20.31h)

The corresponding expressions for 
,uu

and
y zx

dd

dt dt

¢¢
¢ ¢

 can be obtained by interchanging the primed

and unprimed quantities and replacing +u by –u. A  point to be noted is that a constant
acceleration in the F¢-system does not, in general, imply a constant acceleration in the F-system.
Thus,
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2
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u
1 (c v )

c

uv
1

c
x

⎛ ⎞
− −⎜ ⎟⎝ ⎠

⎛ ⎞−⎜ ⎟⎝ ⎠
i.e.

c2 – v¢2 = 

b

2 2

2
2

2

c v

uv
1

c
x

−

⎛ ⎞−⎜ ⎟
⎝ ⎠

(20.32)

\ If v = c, then v¢ = c; the ‘addition’ of (u, 0, 0) to (vx, vy, vz), then gives the same
velocity.

If we write (1 - v2/c2) = (bv)-2, then (1 - v¢2/c2) = (b¢v)-2

then Eq. (20.32) becomes:

(b¢v)2 = v2

uv
1

c
x⎛ ⎞−⎜ ⎟

⎝ ⎠
bb (20.33)

6. Transformation of mass and momentum. (a) We postulate for the mechanics of
interacting particles, as a general law of nature, the conservation of mass and momentum.

In the system F¢, two equal perfectly elastic particles, moving with velocities v and –v along
O¢x¢, collide and rebound. (‘Equal’ means that they have identical properties with respect to an
observer at rest relative to them.)
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The frame F ¢ moves relative to the frame F, parallel to Ox with the velocity u, and it will
be shown that the masses of the particles depend on their velocities. Relative to F, let the
velocities before the collision be w1 and w2, and let the masses be m1, m2. Let M be the sum of
the masses at the moment of collision when they are relatively at rest—at rest relative to F ¢, but
having velocity u relative to F.

Then, for F:
m1 + m2 = M (conservation of mass) (20a)

                    m1w1 + m2w2 = Mu  (conservation of momentum) (20b)

Also, w1 = 

2

u v
uv

1
c

+

+
, w2 = 

2

u v
uv

1
c

−

−
(20c)

From Eqs. (20a) and (20b),

m1 = 2

1 2

(u w )
w w

M −
− and m2 = 1

1 2

(w u)
w w

M −
−

1

2

m
m  = 

2
2

1
2

uv
1

u w c
w u uv

1
c

+
− =

− −
, by (Eq. 20c)

but by Eq. (20c),
2
1
2

w
1

c
−  = 

2

2
2

2

1 (u v)

uv
c 1

c

+−

⎛ ⎞+⎜ ⎟⎝ ⎠

                = 

2 2

2 2

2

2

u v
1 1

c c

uv
1

c

⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞+⎜ ⎟⎝ ⎠
Thus,

1/22 2

2 2

2 2
1
2

u v
1 1

c cuv
1

c w
1

c

⎛ ⎞ ⎛ ⎞⎡ ⎤
− −⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥+ = ⎢ ⎥

⎢ ⎥−
⎢ ⎥⎣ ⎦

(20d1)

and
1/22 2

2 2

2 2
2

2

u v
1 1

c cuv
1

c w
1

c

⎛ ⎞ ⎛ ⎞⎡ ⎤
− −⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥− = ⎢ ⎥

⎢ ⎥−
⎢ ⎥⎣ ⎦

(20d2)
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\ 1

2

m
m

= 

1/22
2

2

2
1
2

w
1

c
w

1
c

⎛ ⎞
−⎜ ⎟

⎜ ⎟
⎜ ⎟

−⎜ ⎟⎜ ⎟⎝ ⎠

(20d3)

Hence, the masses of the two particles, which by hypothesis have the same mass—m0, say, when
at rest, are inversely proportional to (1 - w2/c2)1/2 when moving with the velocity w. So the mass
m of a particle moving with the velocity w is

m = 0
1/22

2

w
1

c

m

⎛ ⎞
−⎜ ⎟⎜ ⎟⎝ ⎠

where m0 is called its rest-mass or proper-mass. Therefore, the mass m increases with velocity.
By Eq. (20a),

M = m1 + m2 = 0 0
1/2 1/22 2

1 2
2 2

w w
1 1

c c

m m
+

⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

= 
0 2 2

2 2

2 2

uv uv
1 1

c c

u v
1 1

c c

m
⎛ ⎞ ⎛ ⎞⎡ ⎤+ + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎛ ⎞ ⎛ ⎞

− −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

by Eqs. (20d),

= 0

2 2

2 2

2

u v
1 1

c c

m

⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

> 0

2

2

2

u
1

c

m

⎛ ⎞
−⎜ ⎟⎜ ⎟⎝ ⎠

, since 
2

2

v
1

c

⎛ ⎞
−⎜ ⎟⎜ ⎟⎝ ⎠

 < 1, when v π 0.

But M is the total mass at the instant of collision, when the particles are relatively at rest—the
instant of greatest deformation. u is their common velocity at this instant (with respect to F);
2m0 is their total (undeformed) rest-mass.

Hence the total mass M at the instant of greatest deformation is greater than the mass with
respect to F as calculated from the total undeformed rest-mass. This suggests that the mass must
be ascribed to the potential energy of the elastic deformation, if the laws of conservation of mass
and momentum are to be preserved.

(b) We consider next a simple hypothetical experiment devised by Tolman.
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As before we consider two frames of reference F and F ¢ where F ¢ moves with a constant velocity
u in the x-direction with respect to the frame F (also they have a common x-axis). At the instant
of time when the origins of the two frames are coincident, the frame F ¢ projects a sphere with a
velocity v from B ¢ toward O ¢, and the frame F projects one from A parallel to y with a velocity v.
The lengths OA and OB are so chosen that these two spheres collide when their centres are
aligned in the y-direction. The collisions as observed by F and F ¢ are shown in Figure 20.4(a).
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u
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z

A

v

x

v
b

–
b
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B�

v

y �

O �

u

A�

v

v
b
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b�

a�

F �

�z

Figure 20.4(a) Experiment with colliding spheres.

The masses of the spheres have been so chosen that when they are at rest with respect to any
observer, both have (for the observer), the mass m0. It is assumed that the mass is a function of the
magnitude of the velocity, so that

m = f (v2) and m0 = f(0) (20.d4)

From the formulae of last section,
       

  For F           For F ¢
v 0, v vax ay= =

v
v u vax ay b

¢ = - ¢ =
(20.d5)

b
= = - v

v u vbx by v 0 v vbx by= ¢ = -¢

Let the velocities after the impact be denoted by bars on the top.
Neither of the observers in the two frames will see any transfer of the x-component of the

momentum (as a consequence of the impact of smooth spheres),

Hence F observes that  u u,b bm m=  
or

2 2
2 2

2 2

v v
u u u u bf f

b b
Ê ˆ Ê ˆ

+ = +Á ˜ Á ˜Ë ¯ Ë ¯

which requires v v andb b bm m= - \ = (20.d6)

v

u
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The –ve sign has been chosen, since it is to be correct for small velocities where b = 1.
For the y-component, the observation of F is

2 2v v
v (v ) v (v )b b b

a a
m m

f f
b b

- = -

Since we saw above that b bm m=  and also the known result when u = 0, this equation can
be satisfied, only if v v,a = -  and so the above equation becomes:

2(v ) b
a

m
f m

b
= = (20.d7)

If the velocity of projection v becomes very small, then

2
2 2 2

02

v
u (u ) and (v ) (0)b am f f m f f m

b
Ê ˆ

= + Æ = Æ =Á ˜Ë ¯ (20.d8)

Thus the mass of an object in motion having a velocity u with respect to a given observer appears
to him to be increased by a factor

1/ 22
u

1
c

b
-Ï ¸Ô ÔÊ ˆ= -Ì ˝Á ˜Ë ¯Ô ÔÓ ˛

(20.d9)

over its mass at rest.

At this stage, two new symbols are introduced, i.e. b1 and 1b¢  which are defined as:

1/ 22 2 2

1 2

v v v
1

c

x y zb
-Ê ˆ+ +

= -Á ˜
Ë ¯

(20.d10)

1/ 22 2 2

1 2

v v v
1

c

x y zb
-

¢
Ê ˆ¢ + ¢ + ¢

= -Á ˜
Ë ¯

(20.d11)

where vx, vy, vz are the components of the velocity of a particle as seen by an observer in the

frame F, and v , v , vx y z¢ ¢ ¢ are the components of the velocity of the same particle as seen by the
observer in the frame F¢.

Using Eqs. 20.31(a) to (f ), we get

1 1 2

v u
1

c
xb bb ¢Ê ˆ= ¢ +Á ˜Ë ¯ (20.d12)

and 1 1 2

v u
1

c
xb bb Ê ˆ¢ = -Á ˜Ë ¯ (20.d13)

7. Transformation of charge density amd current density. (If rC and J are the values
measured from the frame F, what are the corresponding values measured from the
frame F¢?)
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We consider a volume element dv with respect to the frame F, containing (nvdv) charges, all
moving with the same velocity v (= vx, vy, vz). Let F0 be a frame of reference moving with the
charges; and if an observer in F0 sees (n0dv0) charges occupying the volume dv0, then the observer
in the frame F sees:

dv = dv0 
2

2

v
1

c

⎛ ⎞
−⎜ ⎟⎜ ⎟⎝ ⎠

, and since (nvdv ) = (n0dv0),

nv = 0

2

2

v
1

c

n

⎛ ⎞
−⎜ ⎟⎜ ⎟⎝ ⎠

(20.34)

If each charge is q (assumed absolute), we have

rC = S (qnv) (20.35)
and

Jx = S (qnvvx), and similarly Jy and Jz, so that:

J = S (qnvv) (20.36)

where the summation is over all the velocities.
Similarly, an observer in the frame F ¢ sees the density:

n¢v = 0

2

2

v
1

c

n

⎛ ⎞′
−⎜ ⎟⎜ ⎟⎝ ⎠

(20.37)

r¢C = S (qn¢v) (20.38)

   J¢ = S (qn¢vv¢) (20.39)

The components of v¢ are given by Eq. (20.31), and in the notation of Eq. (20.33), Eqs. (20.34)
and (20.37) are to be written in the form:

nv = bvn0, n¢v = b ¢vn0 (20.40)

\ n¢v = 
b bb v v2

v

uv
1

c
v xn n

⎛ ⎞′ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎝ ⎠⎜ ⎟⎝ ⎠
[from Eq. (20.33)] (20.41)

F0

v

u

F F ¢

Figure 20.5 Charge density and current in the two frames of reference F and F ¢.
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Thus,

r¢C = S (qn¢v) = bS v2

uv
1

c
xq n

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

= C 2

u

c
xJ⎛ ⎞−⎜ ⎟

⎝ ⎠
b r (20.42)

J¢x = S (qn¢vv¢x) = bS v2

2

uv v u
1

uvc 1
c

x x

x
q n

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟−⎛ ⎞⎢ ⎥⎜ ⎟−⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

= b (Jx - rCu) (20.43)

J¢y = S (qn¢vv¢y) = b
b

S v

2

2

vuv
1

uvc
1

c

yx

x

n
q

⎡ ⎤
⎢ ⎥⎛ ⎞⎢ ⎥−⎜ ⎟⎢ ⎥⎛ ⎞⎝ ⎠ −⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

= Jy (20.44)
and

J¢z = Jz (20.45)

These are similar to the Lorentz transformation of t, x, y, z.
When b Æ 1, they tend to vector equations:

r¢C = rC - 2

1

c

⎛ ⎞
⎜ ⎟⎝ ⎠

(u ◊ J) (20.46)

J¢ = J - rCu (20.47)

8. Moving conductors. The charge and the current density transformations derived in
Eqs. (20.42)–(20.45) can be expressed in the compact matrix form as

C C

0 0 ( u/c)

0 1 0 0

0 0 1 0

c c( u/c) 0 0

x x

y y

z z

J Jj

J J

J J

j jj

′−⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ′⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ ′
⎢ ⎥ ⎢ ⎥⎢ ⎥

′⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

b b

r rb b
(20.48)

(a) CHARGED BODY NOT CARRYING CONDUCTION CURRENT

If J ¢x = J¢y = J ¢z = 0, then we get Jx = (bur¢C), rC = br ¢C.

The latter is increased due to the Fitzgerald contraction. The former, equivalent to
Jx = (urC), is a convection current.

(b) CURRENT-CARRYING BODY NOT CHARGED

If r¢C = 0, we get Jx = bJ ¢x ,       Jy = J¢y,       Jz = J ¢z,       rC = 2

u

c
xJ

b⎛ ⎞ ′⎜ ⎟⎝ ⎠
.
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J¢ is entirely the conduction current (the movement of equal +ve and -ve charges). Ohm’s law
(E¢ = r¢J¢) is obeyed.
(Note that r¢ is the conductivity of the conductor, whereas rC and r¢C are the charge densities.)

From the fixed frame, the +ve and -ve charges no longer appear equal, and the current
(density vector) J is part conduction, and part convection; and in fact:

J = J + rCu (20.49)

Ohm’s law applies to conduction current only. We thus have

JCx = Jx - rCu = bJ ¢x - 
2

2

u

c
x

x
J

J
b

b
⎛ ⎞ ′

′ =⎜ ⎟⎜ ⎟⎝ ⎠
Also, JCy = Jy = J¢y, JCz = J ¢z.

Let the electric and the magnetic fields in the fixed frame F be E, B respectively. The
effective electric force driving the current through the conductor is [E + (u ¥ B)]; so if the
effective resistivities are rx, ry, rz, then

Ex = rx JCx , Ey - uBz = ry JCy, Ez + uBy = rz JCz

But Ex = E ¢x = r¢J ¢x,       Ey - uBz = yE′
b  = r¢ 

yJ ′
b ,       Ez + uBy = r¢ zJ ′

b .

\ Substituting for JCx, JCy, JCz, we get

                                  r¢J ¢x = x xJr
b

′
  or  rx = br¢ (20.50a)

                                yJr
b
′ ′

 = ry J¢y or ry = 
r
b
′

(20.50b)

                                zJr
b
′ ′

 = rz J ¢z or rz = 
r
b
′

(20.50c)

Thus r (= the resistivity) appears to have increased in the direction of motion, and reduced in the
perpendicular directions.

20.6.1 The Transformation Equations for Force

We define the force as the rate of change of momentum (and not as the product of mass by
acceleration, which can then change the nature of these equations). Then,

0 1( ) ( )
d d

m m
dt dt

b= =F v v (20.50d)

When the components of this equation are written down, it is seen that with this definition, the
force and the acceleration, in general, are not in the same direction. Carrying out the
differentiation in the above equation,

3
0 1 0 1 2

v v

c

d dm d d
m m m

dt dt dt dt
b b= + = +

v v
F v v
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1/ 2 1/ 22 2 2 2

0 1 1 2 2

v v v v
( ), 1 1

c c

x y zdm d
m

dt dt
b b

- -È Ê ˆ+ + Ê ˆ
Í = = - = -Á ˜ Á ˜Í Ë ¯Ë ¯Î

1
12 2

31
0 0 0 12 2 2

1 v 2v v v v
1

2 c c c

d d d
m m m

dt dt dt

b b
- - ˘Ï ¸

Ê ˆ ˙Ô ÔÊ ˆ Ê ˆ= = - + - = ◊Ì ˝ ˙Á ˜Á ˜ Á ˜ Ë ¯Ë ¯ Ë ¯Ô Ô ˙
Ó ˛ ˚

\
2

3
0 1 2 2

v v
1

c c

d dv
m

dt dt
b

È ˘Ê ˆ
= - +Í ˙Á ˜Ë ¯Í ˙Î ˚

v v
F (20.50e)

If the force applied is in the direction v1 of v (v1 = unit vector in the direction of v), then

1 1
v

v and
d d

dt dt
= =

v
v v v

then 3
0 1l l

d d
m m

dt dt
b= =v v

F (20.50f)

where Fl is the longitudinal component of the force, and 3
0 1lm m b= = longitudinal mass of the

particle.

If 
v

0,
d

dt
=  i.e. the velocity changes in direction, but not in magnitude, then Eq. (20.50e)

shows that the force is again in the direction of acceleration (which is perpendicular to v) and
hence,

0 1t t
d d

m m
dt dt

b= =
v v

F (20.50g)

where Ft is the transverse component of the force, and mt = m0b1 = transverse mass of the particle.
The components of the force F can be obtained as:

0 1( v )x x
d

F m
dt

b= [from Eq. (20.50d)]

1

0 12

v u
1 { (v u)}

c
x

x
d

m
dt

b
-

¢¢Ê ˆ= + ¢ +Á ˜Ë ¯ ¢

1 2
1

0 12 2 2

v u v v
u 1 1 v

c c c
x x x

x x
d d

F m
dt dt

bb
-

¢ ¢
È ˘Ê ˆ¢ ¢ ¢ ¢Ê ˆ= + + - - ¢Í ˙Á ˜Á ˜Ë ¯ ¢ ¢Ë ¯Í ˙Î ˚

(20.50h)

and so on.

20.6.2 Energy of a Charged Moving Particle

The energy given to a charged particle by the action of a force is defined as the work done on it.
If in an infinitesimal interval of time dt, a particle moves a distance dr = vdt, then the work

done on it,
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3
0 1

v
l

d
dW F dr m dr

dt
b= ◊ = =F dr [from Eq. (20.50f)]

            3
0 1 vm db= (20.50j)

Substituting for b1 and integrating from 0 to v, we get

v v
3

0 1

0 0

vW dW m db= =Ú Ú
   2 2

0 1 0( )c ( 1) ctm m mb= - = - (20.50k)

i.e. an energy increase is equivalent to a mass increase.

20.7 THE PRINCIPLE OF SPECIAL RELATIVITY
The theory of special relativity is concerned with the frames of reference for which the relative
velocity is uniform and in a straight line. The principle of special relativity states that:

The laws of nature are the same referred to all frames of reference in uniform translation
relative to each other.

As a consequence of applying this to the law of conservation of momentum, it has been
shown that a particle whose mass is m0 with respect to a frame in which it is at rest, has a mass
m = b m0 with respect to a frame in which it has a velocity u. Thus, moving bodies become
heavier. This relativistic increase of mass must be taken into account in designing high-energy
particle accelerators.

Note that all these effects tend to a limit, as u Æ c—moving rod contracts to zero, moving
clock goes infinitely slowly, moving mass becomes infinite.

The velocity c of light in free space is deduced from the Maxwell’s equations. Since this
velocity applies to both the frames, we expect the Maxwell’s equations to transform into
themselves, or to be invariant under a Lorentz transformation. We shall verify this later.

20.8 FIRST ORDER RELATIVISTIC EFFECTS IN
ELECTROMAGNETISM

In the exact equations relating E¢, B¢ to E, B, the factor b appears in the equations for the
transverse components only. This means that they cannot be written in the vector form without
the use of a highly artificial ‘transverse stretching operator’. However if we write b = 1 [so
neglecting the (u2/c2) term], we get a first-order relativity which cannot be entirely self-
consistent, but this nevertheless throws light on a number of electromagnetic phenomena. In this
(simplified, approximate, first-order) theory, E¢, and B¢ are related to E and B by:

E¢ = E + (u ¥ B) (20.51a)

B¢ = B - 2

1

c

⎛ ⎞
⎜ ⎟⎝ ⎠

(u ¥ E) (20.51b)

There is no loss of generality, if we take the direction of the relative velocity of the frames u as
the x-axis; so that the coordinates are now related by the classical equations:
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x¢ = x - ut, y¢ = y, z¢ = z, t¢ = t

A charge density rC at rest in the frame F is observed as moving with a velocity (-u) in the
frame F ¢; thereby constituting a convection current density (-rCu); Thus the current densities J
and J¢ are related by the equation:

J¢ = J - rCu (20.52)

It is not so easily obvious physically that a current density in the frame F gives rise to a charge
density when viewed from the moving frame F ¢; this however is a consequence of the first
equation of Eq. (20.51a), as we shall see. Let there be a steady current density J in the frame F;
this creates a magnetic field which is such that it satisfies the equation:

curl H = — ¥ H = J

Let the currents and the charges be in free space; then the first equation of Eq. (20.51),
when multiplied by e0, can be written in the form:

D ¢ = D + 2

1

c

⎛ ⎞
⎜ ⎟⎝ ⎠

(u ¥ H) (20.53)

Now, in the frame F ¢,

r¢C = 
y zx

x y z

′ ′∂′ ∂∂
+ +′ ′ ′∂ ∂ ∂

D DD

= 
y zx

x y z

′ ′∂′ ∂∂
+ +

∂ ∂ ∂
D DD

since t is independent of the space coordinates.

Also, D ¢x = Dx ,       D ¢y = Dy - 2

u

c

⎛ ⎞
⎜ ⎟⎝ ⎠

Hz,       D¢z = Dz + 2

u

c

⎛ ⎞
⎜ ⎟⎝ ⎠

Hy,

so that

r¢C = 
2

u

c

D HD HD y yz zx

x y z y z

∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂∂ ⎛ ⎞+ + − −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

= C 2

u

c
xJ

⎛ ⎞− ⎜ ⎟⎝ ⎠
r (20.54)

This is generalized as:

r¢C = rC - 2

1

c

⎛ ⎞
⎜ ⎟⎝ ⎠

(u ◊ J ) (20.55)

A physical explanation of the last term of Eq. (20.55) can be offered in terms of the Fitzgerald
contraction. Let us imagine a conductor of unit cross-section, carrying a longitudinal current J.
and let this consist of positive charges moving to the right (as shown in Figure 20.6) with
velocity u, and stationary negative charges. The charge density viewed from a frame F fixed in
the conductor, must be (±J/u). If there are N charges, each (-q), in each metre of the conductor,
then: Nq = J/u.

The N positive charges (+q) must also occupy a metre when viewed from the frame F, and
hence b metres when viewed from the moving frame F ¢; because their (i.e. the moving charges)
space undergoes a Fitzgerald contraction when viewed from any frame other than that moving
with the charges.
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Let us now move to the frame F ¢, and look back at the negative charges, and we observe
that their space has undergone a contraction as is now (1/b) metres. The negative charges have
now become denser, and

the apparent charge density is = – b b
1

u
J⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

= – 
b 2

2

u
u c

J ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

To the first-order approximation, we now put b = 1. and thereby obtain a charge density (as
viewed from the frame F ¢) of = - (uJ/c2). This is identical with the term - (1/c2)(u ◊ J) in
Eq. (20.55).

This explanation given above is not a completely satisfactory one. This is because of the
fact that the second-order Fitzgerald contraction has to be invoked to explain Eq. (20.55) which
is derived from the first-order Eq. (20.51), and thus does indicate the difficulty of defining the
border-line between the first- and the second-order effects in such a way that the first-order
effects form a closed and self-consistent set.

It is not quite clear that the last term is of such an order as to be retained; but it is essential
in order to be consistent with the field equations. It represents the source of the electric part, as
viewed from the frame F ¢, of the electromagnetic field which corresponds with a purely magnetic
field as seen from the frame F.

In free space, Eqs. (20.51) may be rewritten as

D¢ = D + 
2

1

c

⎛ ⎞
⎜ ⎟⎝ ⎠

(u ¥ H) (20.56a)

H¢ = H - (u ¥ D) (20.56b)

Through the Maxwell’s equations,

div D = — ◊ D = rC

and

curl H = — ¥ H = J + 
t

∂
∂
D

these above equations (20.56) are related to the charge and the current densities. If the
transformations (20.52) and (20.55) hold good in all media—and it seems likely that the
transformations of charge and current will be independent of the medium in which they are
found—it follows that Eqs. (20.56) must apply to all media, not merely to free space.

Figure 20.6 Section of a conductor of unit cross-section.

F F ¢

u +–
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20.9 THE FIELD OF A MOVING CHARGE

Let a charge q, momentarily at the origin of the frame F, be moving with respect to F with a
velocity u, and let the frame F ¢ move with the charge. Then, since the field in F ¢ is electrostatic,

E¢ = pe0

1
grad

4
q

r
⎛ ⎞ ⎛ ⎞− ⎜ ⎟ ⎜ ⎟′⎝ ⎠⎝ ⎠

(20.57a)

B¢ = 0 (20.57b)

Transferring to the frame F, and noting that r = r¢ at the instant stated, we get

E = pe0

1
grad

4
q

r
⎛ ⎞ ⎛ ⎞− ⎜ ⎟ ⎜ ⎟′⎝ ⎠⎝ ⎠

(20.58)

B = ( )2 2
0

1 1
grad

c 4 c
u E u

q
rpe

⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎛ ⎞′× = − ×⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠
or

B = 
( )0

2

×
4

q

r

⎛ ⎞
⎜ ⎟
⎝ ⎠

1u r
m

p
(20.59)

where r1 is the unit vector in the direction r, because:

grad 1

2

1 r

r r

⎛ ⎞ = −⎜ ⎟⎝ ⎠
This magnetic vector is perpendicular to u and to r, the rotation from u to r being right-handed
about it; and also its magnitude is

m q
p

0
2

u sin

4

q

r

where q is the angle between u and r. This is in strict accord with Biot–Savart.
If we have an element ds of a circuit of wire of cross-section S (Figure 20.7), N charges per

unit volume moving with velocity u, the above formula gives

Figure 20.7 A circuit element ds.

d s
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B = 
( )0

1

2

u
4

NSq s

r

⎛ ⎞ ×⎜ ⎟
⎝ ⎠

u r
m d

p

                  = 0 1

2

( )

4

i

r

×s rm d
p

, à la Biot–Savart (20.60)

20.10 THE FORCE ON A MOVING CHARGE (RELATIVISTIC
CALCULATION)

If a particle is momentarily at rest in a frame F ¢ and has the force P¢ = (P¢x, P¢y, P¢z) upon it, the
components of the force measured from the frame F can be shown to be

Px = P ¢x , Py = b
yP′

, Pz = b
zP′

(20.61)

Let us consider now a charge q at rest in the frame F ¢, so that

P¢ = qE¢
or

P¢x = qE ¢x , P¢y = qE ¢y , P¢z = qE ¢z
Transferring to the frame F, we get

Px = qEx,     bPy = bq(Ey - uBz),     b Pz = bq (Ez + uBy)

The b ’s cancel, and we are left with the three equations which are equivalent to the vector
equation

P = q[E + (u ¥ B)] (20.62)

which is of course the Lorentz formula, which is thus seen to hold good for any velocity. Both
parts of it are known from elementary considerations, but the deduction of the magnetic half
from the force on a current-carrying wire is of doubtful validity, and the relativistic proof is the
sound one.

Note that the magnetic force [q(u ¥ B)] cannot change the energy of the particle.

20.11 THE BETATRON

We now consider the application of the methods discussed, to the problem of a practical device,
such as Betatron.

Betatron is a particle accelerator in which the electrons are accelerated to high energies by
having them move in a circular path of constant radius and at the same time, increasing the
magnetic flux through the circular orbit so that the electrons acquire additional energy during
each revolution. In the operation of the Betatron, the electrons from a heated filament are
injected into the circular or doughnut-shaped tube by applying a difference of potential between
the filament and a plate P, whilst the electrons are focused by a grid, placed in between the two.
The alternating magnetic field is applied parallel to the axis of the tube. As a result, two effects
are produced, i.e. an emf is produced in the electron orbit by the changing magnetic field which
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gives the electrons additional energy; and secondly, a radial force is produced by the action of
the magnetic field whose direction is perpendicular to the electron velocity. thus keeping the
electron moving in a circular orbit. The magnetic flux through the orbit has to be chosen in such
a way that the electrons will move in a stable orbit of fixed radius R. The electrons make several
hundred thousand revolutions in this circular path while the alternating magnetic field is
increasing from zero to a maximum in a quarter of a cycle.

The electron accelerator is like a transformer with its secondary replaced by an evacuated
glass tube containing an electron source. The core is shaped as shown in the Figure 20.8, to
provide at the electron orbit a field to keep the electrons in circular motion.

The equation of motion in orbit (neglecting relativity) is

p
F

2
du e d

m
dt R dt

⎛ ⎞ ⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
So an electron starting with negligible velocity when F = 0, subsequently has the velocity:

u = p F
2

e
Rm

⎛ ⎞
⎜ ⎟⎝ ⎠

(20.63)

Let the flux density at the orbit be B. Then, the inward radial force = euB. This must equal
mu2/R.

Figure 20.8 (a) Section of a Betatron and (b) the orbital path of electrons in a Betatron.

(a)

(b)

u

e

R

F
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\ B = 
um

eR
(20.64)

\ B = 
p
F

2

1
22 R

⎛ ⎞= ⎜ ⎟⎝ ⎠
(Mean flux density within the orbit) (20.65)

The whole acceleration takes place in a quarter cycle of the supply voltage, during which time
the electrons my describe 105 orbits. The relativistic increase of mass is used to get them out;
they spiral outwards till they hit a target.

20.12 MAGNETIC FOCUSSING OF ELECTRON BEAM BY
AXIAL FIELD

Let the electrons be emitted with axial and radial velocities u0, v0 respectively (as shown in
Figure 20.9), in an axial magnetic field B, and let the subsequent velocities be u, v. Only v
cooperates with B to produce a force (evB) perpendicular to the component of velocity at right
angles to the axis; it should be noted that neither component changes if there is no electric
field. In absence of the electric field E, (u2 + v2) is constant, since B can produce no force in its
direction; therefore, for all time, u = u0, and v = v0.

Figure 20.9 Magnetic focussing of an electron beam: (a) side view and (b) end view.

(a) (b)

Helix

p 02 um
eB

B B

= 0vm
R

eB

Thus the end-wise view of the path is a circle of radius [mv0/(eB)], described in the time =
[2pm /(eB)] = [(3.57 ¥ 10-11)/B] sec.

Thus the electron path is a helix, which crosses the axis of the tube at a distance
equal to [2p mu0/(eB)] from the source. Since this does not depend on the velocity component
v0, all the electrons are brought back to this point. In practice, the electrons are likely to have
equal energies, i.e. equal values of (u0

2 + v0
2); thus the condition that all electrons shall have

equal axial velocities is that (v0/u0) shall be small.

20.13 FOUR-DIMENSIONAL SPACE-TIME

We have seen that an event is designated by four numbers—3 space-coordinates for its position.
and 1 time-coordinate for its instant of occurrance. This leads us to consider a four-dimensional



CHAPTER 20 ELECTROMAGNETISM AND SPECIAL RELATIVITY 791

coordinate system, i.e. x, y, z, w = ct; by dropping z, we can picture the rest as a three-
dimensional system. A cross-section of this system in the plane Oxw is shown below in
Figure 20.10.

Figure 20.10 (a) Three-dimensional representation and (b) two-dimensional section of the
four-dimensional space-time.

(a) (b)
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w

A pulse of light at t = 0 at O (the origin) spreads out as

x2 + y2 + z2 + w2 = 0 (20.66)

if z is dropped, this is the equation of a cone; and so in four-dimensions we may call it a hyper-
cone; it is also known as light-cone. In this four-space, each particle, moving in space and
durable in time, is represented by a line which is called its world-line. In particular, a particle
moving uniformly along the x-axis is represented by a straight world-line which must lie (since
its velocity is necessarily < c) within the light-cone. If the point O (in Figure 20.10) represents
here-now, then the line points from the past to the future. It can be shown that all the events in
the upper-half of the cone are future, and all the events in the lower-half of the cone are past,
with respect to O, in all reference systems; and so these regions are labeled as absolute future
and absolute past.

To go from O to the region outside the cone, a particle would need to travel faster than
light; this being impossible, these points are absolute elsewhere with respect to O. Two events
can be related causally if the latter lies within the light-cone of the earlier.
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20.14 FOUR-SPACE ASPECT OF THE LORENTZ
TRANSFORMATION

Writing w for ct, the Lorentz transformation may be expressed as a matrix equation:

bb

w b wb

2

u
0 0

c
0 1 0 0

0 0 1 0

u
0 0

c

j
x x

y y

z z

j

⎡ ⎤
⎢ ⎥′⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥′ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥′ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥′⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦−⎢ ⎥⎣ ⎦

(20.67)

This linear transformation closely resembles that giving the change to a new set of axes in three-
space, i.e. if with respect to Ox¢y¢z¢, Ox has the direction cosines (l1, m1, n1), Oy has the direction
cosines (l2, m2, n2), and Oz has the direction cosines (l3, m3, n3), then the point (x, y, z) becomes
(x¢, y¢, z¢) which is given by the equation:

1 1 1

2 2 2

2 3 3

x l m n x

y l m n y

z l m n z

′⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′⎣ ⎦ ⎣ ⎦ ⎣ ⎦

(20.68)

In this equation,
l1

2 + m1
2 + n1

2 = l2
2 + m2

2 + n2
2 = l3

2 + m3
2 + n3

2 = 1 (20.68a)
and

l2l3 + m2m3 + n2n3 = l3l1 + m3m1 + n3n1 = l1l2 + m1m2 + n1n2

= m1n1 + m2n2 + m3n3 = n1l1 + n2l2 + n3l3 = l1m1 + l2m2 + l3m3 = 0 (20.68b)

This means that, with respect to Oxyz, Ox¢ has the direct cosines (l1, l2, l3), Oy¢ has the direction
cosines (m1, m2, m3), and Oz¢ has the direction cosines (n1, n2, n3). This is because Oxyz are
mutually perpendicular. Equations (20.67) do not have the corresponding properties; but by a
simple alteration they can be made to have such a property. This is by taking the time
coordinate as ‘imaginary’, so that these four are then:

x1 = x, x2 = y, x3 = z, x4 = jct (20.69)

This is rather inconvenient for visualizing, because the light-cone is now imaginary; but the
Lorentz transformation now becomes:

1 1

2 2

3 3

4 4

u
0 0

c
0 1 0 0

0 0 1 0

u
0 0

c

j
x x

x x

x x

x xj

⎡ ⎤
′ ⎢ ⎥⎡ ⎤ ⎡ ⎤

⎢ ⎥⎢ ⎥ ⎢ ⎥′ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥′ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥′⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦−⎢ ⎥⎣ ⎦

bb

b b

(20.70)

The sum of the squares of the terms in each row and column is now 1; and the sum of the
products in any pair of rows and columns is zero. Hence the Lorentz transformation is simply a
rotation of the axes in the four-dimensional space described by (x1, x2, x3, x4).
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20.15 FOUR-DIMENSIONAL VECTOR ALGEBRA

A vector having the components A1, A2, A3, A4 along the four mutually perpendicular axes is
called a 4-vector or world-vector. x1, x2, x3, x4 are themselves the components of a 4-vector—the
radius 4-vector; the rules of addition and transformation for any other 4-vector are the same as
for x1, x2, x3, x4. If i1, i2, i3, i4 are the unit vectors in the 4 directions, then a world-vector A is
given by:

A = i1A1 + i2A2 + i3A3 + i4A4 (20.71)

and, since i1 ◊ i1 = i2 ◊ i2 = i3 ◊ i3 = i4 ◊ i4 = 1, the scalar product of the 4-vectors would be:

A ◊ B = A1B1 + A2B2 + A3B3 + A4B4 (20.72)

It should be noted that i1, i2, i3, i4 are ordinary vectors, and the scalar product of any two of them,
only involves two dimensions. Just as 3 mutually perpendicular vectors add up to a vector in
3-space, so the adding up of four mutually perpendicular vectors give a ‘vector’ in 4-space
or 4-vector.

It should be further noted that ‘vector products’ cannot be formed in 4-space; if (i1 ¥ i2) is
perpendicular to i1 and i2, it could be anywhere in the plane (i3, i4).

If, on the analogy of the vector product, we formed the products of the form (AiBj - AjBi),
we should get six components, and hence the analogue of (A ¥ B) (of 3-dimensions) will not be
a 4-vector in 4-dimensions. Thus the mode of generalizing from 3- to 4-dimensions is found by
writing

AiBj - AjBi = Cij = -Cji (20.73)

and representing the vector product by the anti-symmetric matrix:

12 13

21 23

31 32

0

0

0

C C

C C

C C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

By analogy, we can then say:

12 13 14

21 23 24

31 32 34

41 42 43

0

0

0

0

C C C

C C C

C C C

C C C

⎡ ⎤
⎢ ⎥
⎢ ⎥× = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A B
(20.74)

By analogy with the vector operator del —, we introduce the corresponding 4-vector operator:

1 2 4
1 2 3 4x x x x

∂ ∂ ∂ ∂⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞≡ + + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
3i i i i (20.75)

We then define:

grad f = 
f f f ff 1 2 4
1 2 3 4x x x x

∂ ∂ ∂ ∂⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
3i i i i (20.76)

div A = 31 2 4

1 2 3 4

AA A A
x x x x

∂∂ ∂ ∂⋅ = + + +
∂ ∂ ∂ ∂

A (20.77)
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However, if curl A = × A , it is not a 4-vector, but an anti-symmetric matrix:

curl A = × A  = 

12 13 14

21 23 24

31 32 34

41 42 43

0

0

0

0

F F F

F F F

F F F

F F F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = [Fij] (20.78)

where F12 = 2 1

1 2

A A
x x

∂ ∂−
∂ ∂ , º, and so on (20.79)

In 3-dimensions, the components of curl A are of the above form and satisfy the identity
div curl A = 0. Corresponding to this in 4-dimensions, there are four identities which may be
expressed in the general form,

jk ijki

i j k

F FF
x x x

∂ ∂∂
+ +

∂ ∂ ∂
 = 0 (20.80)

where i, j, k, are any 3 of the 4 numbers 1, 2, 3, 4.
A matrix whose components transform in a certain way when the axes are rotated is called

a ‘tensor’. [Fij] is one of such tensors, it is a ‘four-tensor of the second rank’.

20.16 FOUR-DIMENSIONAL ELECTROMAGNETISM

We have seen that the charge density rC and the components of the current density J
transformed in the Lorentz transformation in the same way as t, x, y, z. Hence it follows that the
quantity defined by

J = i1Jx + i2Jy + i3Jz + i4 jcrC (20.81)

is a 4-vector. It is called the ‘current 4-vector’. In the same way, the three components of the
magnetic vector potential A combine with the electric scalar potential f to form the 4-potential:

A = i1Ax + i2Ay + i3Az + i4
c
j f⎛ ⎞

⎜ ⎟⎝ ⎠
(20.82)

In both the cases, the dimensional uniformity is preserved by inserting c in the expressions.

We have × A  = [Fij] as defined in Eqs. (20.78) and (20.79).
If, now, we examine the components of [Fij], we find

F23 = 3 2

2 3

z y
x

A AA A
B

x x y z

∂ ∂∂ ∂− = − =
∂ ∂ ∂ ∂ (20.83)

and

  F41 = 4 1

1 4 c c
xAA A j j

x x t x
f∂∂ ∂ ∂⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = − −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

= 
c x
j

E
⎛ ⎞
⎜ ⎟⎝ ⎠

(20.84)
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using respectively curl A = B and -grad f 
A
t

∂⎛ ⎞− ⎜ ⎟∂⎝ ⎠
 = E.

Thus all the components of [Fij] are proportional to the components of the electromagnetic
field; in fact:

[Fij] =
 

j

j

j

jj j

1
3 3

2
3 1

3
2 1

31 2

0
c

0
c

0
c

0
c c c

E
B B

E
B B

E
B B

EE E

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

(20.85)

The components of E and B are thus all contained in this ‘electromagnetic field tensor’.
Next, we have a look at the identities of Eq. (20.80), and substituting i, j, k = 1, 2, 3,

respectively, we get

0y zx
B BB

x y z

∂ ∂∂
+ + =

∂ ∂ ∂
i.e. div B = 0 (20.86)

and with i, j, k = 2, 3, 4, respectively, we get

0
c c

yz x
EE Bj j

y z t

∂⎛ ⎞∂ ∂⎛ ⎞⎛ ⎞ ⎛ ⎞− − − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
which is the x-component of the equation:

curl E = 
t

∂⎛ ⎞− ⎜ ⎟∂⎝ ⎠
B

(20.87)

Thus, these two among the four Maxwell’s equations are implied when the field
components are expressed in the form:

[Fij] = × A (20.88)

This is quite natural and logical; because they are also implied by the underlying equations:

E = -grad f - 
t

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

A
and B = curl A

The development of the electromagnetic theory in free space is simplified, if A is made to
satisfy the condition:

div A + 
f

2

1

c t
∂⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠
 = 0 (i.e. Lorentz gauge) (20.89)

It is easily verified that in 4-space, this is equivalent to:

⋅ A  = 0 (20.90)
The other two Maxwell’s equations,

div D = rC (20.91)
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and

curl H - 
D
t

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

 = J (20.92)

contain D, H, and the components of the 4-current. So writing in the Cartesian form with
numbered components, we get

j3 2 1
1

2 3 4
( c)

H H D
J

x x x
∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − =⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠ (20.93a)

j31 2
2

3 1 4
( c)

HH D
J

x x x
∂∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − =⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠ (20.93b)

j 32 1
3

1 2 4
( c)

DH H
J

x x x
∂∂ ∂ ⎛ ⎞⎛ ⎞ ⎛ ⎞− − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ (20.93c)

31 2
4 C

1 2 3
( c) ( c )

DD D
j J j

x x x
∂∂ ∂⎛ ⎞+ + = =⎜ ⎟∂ ∂ ∂⎝ ⎠

r (20.93d)

If, now, we define a second field tensor

[Gij] = 

3 2 1

3 1 2

2 1 3

1 2 3

0 c

0 c

0 c

c c c 0

H H j D

H H j D

H H j D

j D j D j D

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦

(20.94)

then Eqs. (20.93) reduce to the form:

1311 12 14
1

1 2 3 4
,

GG G G
J

x x x x
∂∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂  and so on.

Or, in a more compact form:
4

1,2,

ij
i

jj

G
J

x
=

∂⎛ ⎞
=⎜ ⎟∂⎝ ⎠

∑ (i = 1, 2, 3, 4) (20.95)

The 4-space approach thus enables the four field vectors E, B, D, and H to be replaced by two
field tensors [Fij] and [Gij]; the four Maxwell’s equations to be replaced by two sets of equations
(20.80) or (20.78) and (20.95), the vector and the scalar potentials by a single 4-potential; the
two equations E = - gradf - (∂A/∂t) and B = curl A by the single Eq. (20.88). Finally, the
continuity equation

div J + C

t
∂
∂
r

 = 0 (20.96)

is implicit in Eqs. (20.91) and (20.92), and these take the single form

⋅ J = 0 (20.97)
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20.17 INVARIANCE OF MAXWELL’S EQUATIONS UNDER
THE LORENTZ TRANSFORMATION

From the Maxwell’s equations, together with the relations D = e0E and B = m0H, we conclude
that the electromagnetic waves travel in free space with velocity c. The Lorentz transformation
assures the truth of this statement for all inertial frames of reference. It is therefore to be expected
that Maxwell’s equations will hold good in all inertial frames, i.e. they will be invariant under a
Lorentz transformation.

A direct proof of this statement is possible, which is rather laborious, by writing the
equations in Cartesian coordinates, and then transforming them to the ‘primed’ system. A more
fundamental approach starts from the 4-dimensional field tensors. Comparison of Eqs. (20.85)
and (20.94) shows that, in free space, the terms of the tensors [Fij] and [Gij] are proportional:

Fij = m0Gij (20.98)

Thus, Eq. (20.95) may be rewritten as

m
4

0
1, 2 ,

ij
i

jj

F
J

x
=

∂⎛ ⎞
=⎜ ⎟∂⎝ ⎠

∑ (i = 1, 2, 3, 4) (20.99)

Substituting,

Fij = ,j i

i j

A A
x x

∂ ∂
−

∂ ∂
from Eq. (20.79), we get

m
4 42 2

02
1, 2, 1, 2,

j i
i

j i jj j

A A
J

x x x= =

⎛ ⎞ ⎛ ⎞∂ ∂⎜ ⎟ ⎜ ⎟− =
⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∑ ∑ (20.100)

and the first term is

( )
ix

∂⎛ ⎞ ⋅⎜ ⎟∂⎝ ⎠
A  = 0

when we assume that

div A + 2

1

c t
f∂⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠
= 0 [see Eqs. (20.89) and (20.90)]

Thus Eq. (20.100) reduces to the four equations,

m
4 2

02
1, 2,

i
i

jj

A
J

x=

⎛ ⎞∂⎜ ⎟ = −
⎜ ⎟∂⎝ ⎠

∑
or

iA⋅  = - m0Ji (i = 1, 2, 3, 4) (20.101)

Here Ai is treated as a set of 4 scalars. If a Lorentz transformation is performed, Ai and Ji transform
in the same way, and the transformed components obey the same equation.

If we substitute the components Ai and Ji from Eqs. (20.81) and (20.82), we find that the
first three of Eqs. (20.101) are

—2A - 
2

2 2

1

c

Α
t

⎛ ⎞∂⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

 = - m0J (20.102a)
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and the fourth
2

2 C
2 2

0

1

c t

⎛ ⎞∂⎛ ⎞∇ − = −⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

rff e (20.102b)

These are the equations which give rise to the waves propagating with the velocity c; their
similarity, surprising in a 3-dimensional approach, is here quite natural.

Thus the Maxwell’s equations in free space have led to a set of invariant equations
(20.101), which lead in turn to waves that propagated with velocity c. Maxwell’s equations
transcend the Lorentz transformation, and are so built deeply into the world structure. They are,
more fundamental, for example, than the Newton’s second law of motion, which is usually stated
in a form which assumes constancy of mass.

20.18 RELATIVISTIC ASPECTS OF ELECTROMAGNETIC
INDUCTION

We shall conclude our discussion of the relativistic approach to electromagnetic field theory, by
considering the practical problem of ‘electromagnetic induction’.

When induction occurs in a magnetic field of constant pattern but varying intensity (as in
a transformer), we have the so called transformer induction which is a sign of the fact that every
varying magnetic field is accompanied by an electric field (also varying). This is expressed in
the Maxwell’s equation:

curl E = 
t

∂⎛ ⎞− ⎜ ⎟∂⎝ ⎠
B

When we have a field pattern, which moves but remains constant in intensity (e.g. that set up by
rotating magnetic poles in an alternator), we have the motional induction, and find it convenient
to apply the flux-cutting method. This is a relativistic phenomenon. In Figure 20.11, in the frame
F ¢ (which is attached to the rotating pole), we have only a magnetic field; but in the frame F
(attached to the stator), we have also an electric field, which makes itself known as an emf
induced in a winding in that frame F.

The emf can equally well be calculated by the flux-linking approach [E = -(dL/dt)], which
is equivalent to the flux-cutting (E = Blu). But the equivalence seems to break down when we
have homopolar generator, with no passage from N (north pole) to S (south pole) poles.

F ¢

Figure 20.11 Stator and rotor of a rotating alternator.

F



CHAPTER 20 ELECTROMAGNETISM AND SPECIAL RELATIVITY 799

20.18.1 Electromagnetic Induction by Flux-cutting

This phenomenon takes a new aspect when viewed relativistically. For instance, the train of
arguments describing the operation of a dynamo with its field (winding) on the stator becomes:

1. The field winding sets up B with respect to the stator (frame F).
2. Both E ¢ and B ¢ are potentially present in the rotor (frame F ¢).
3. E ¢ is short-circuited by the rotor conductors, and is reduced to zero by the movement

of the charges to the ends of the conductors, just as when a metal rod is placed in an
electrostatic field.

4. The reduction of E ¢ to zero brings into being an electric field E with respect to the
stator (the frame F). The sources of the field are the charges aforementioned. Its
magnitude is given by:

E = -(u ¥ B¢) = –(u ¥ B), to first order (20.103)

This gives with respect to (the frame) F, a potential difference between the ends of the
conductor; but E ◊ d l = 0 for a fixed circuit with no change of flux-linkage, and so we get an equal
and opposite contribution across a measuring instrument. The flux-cutting action is shown
diagrammatically in Figure 20.12.

– –

B

External emf

+ +

Figure 20.12 Flux-cutting emf.

u ¥ B

20.18.2 The Concept of a Moving Field

There is no way in which the ideas of ‘fixity’ or ‘motion’ can be ascribed to a field. The velocity
u in the Lorentz formula is not ‘velocity relative to the field’ but ‘velocity relative to the
observer’; for another observer with relative motion, E, B, and u would be different, yet in such
a way as to make F (the Lorentz force) the same. What, then, are we doing when we make use of
the idea of a moving or gliding field, for example in an ac machine?

We now consider the induction of emf in the stator coil of an alternator (Figure 20.13). We
could calculate it by flux-linkage, but in fact we usually use flux cutting. regarding the flux as
glued to the magnetic pole. This is equivalent to changing from a frame F which is fixed with
respect to the stator, in which the flux density at any point is changing, to a frame F¢, fixed with
respect to the rotor, in which the flux pattern is practically unchanging. Relative to the frame F ¢, the
stator conductors are moving through an unchanging field—a fair case for a flux-cutting method.
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We are not necessarily ascribing to the field the same motion as that of the coils which
produce it. Thus the words ‘the velocity of the field’ must be taken to mean ‘the velocity of a
frame of reference, with respect to which the field pattern is unchanging’. In an induction motor,
the frame F ¢ (with respect to which the field is unchanging) glides round at synchronous speed,
which is not the speed of any material portion of the motor. When the field is pulsating,
whatever the frame of reference we may choose, the ‘moving field’ idea has reached its limit of
usefulness.

Figure 20.13 Stator and rotor of an alternator to explain the concept of a moving field.

F ¢

F

20.18.3 Examples of Homopolar Induction

20.18.3.1 Faraday’s disc

When a disc is rotated in an axial magnetic field, an emf is observed between the periphery of
the disc and the axle [Figure 20.14(a)]. The value of this induced emf is the value given by ‘flux
cutting’ by any radius of the disc; the method of ‘flux linking’ appears to give zero emf.

Take the axes as shown in Figure 20.14(b), and let the two frames F and F ¢ momentarily
coincide. The frame F is fixed in space, and the frame F¢ is fixed to the disc. The relative
velocity u = wr is in the x-direction.

As the disc is a conductor, there will be no electric field in the x- or y-direction relative to
the frame F ¢ (which is fixed to the disc).

\ E¢x = E ¢y = 0 (20.104)

But E ¢x = Ex and E¢y = Ey - uBz (20.105)

where Bz is the axial, imposed magnetic field.
Hence, with respect to the frame F (which is fixed in space),

Ex = 0 and Ey = uBz (20.106)

\ The emf across the radius PQ [Figure 20.14(a)] is

2

0

1
2

r a

z z

r

r B dr a B

=

=

⎛ ⎞= = ⎜ ⎟⎝ ⎠∫ w w (20.107)

where a is the radius of the disc. This emf value is measured by the meter.
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The amendment to the ‘flux-cutting’ rule which will make it cover this and similar cases is
that the circuit must be such that at no place are the particles of the material moving across it.
Such a circuit is shown in Figure 20.14(c), and it gives the correct answer when the flux-linking
rule is applied.

(a)

BB

P Q

w V

Figure 20.14 Faraday’s disc.

y

x
z

(c)

(b)

20.18.3.2 Faraday’s disc with rotating magnet

This is a slight modification of the previous configuration, as shown in Figure 20.15. The
question now is: ‘if the Faraday’s disc is excited by a cylindrical bar magnet, which rotates with
it, what result is expected?’

Actually, the induced emf is unaffected by the rotation of the magnet. This is because the
term ‘rotating field’ is fundamentally meaningless when the field pattern is symmetrical.

Figure 20.15 Faraday’s disc with rotating cylindrical bar magnet.

w

w

V

Bar magnet
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20.18.3.3 Induction in a rotating cylindrical bar magnet

This problem is akin to the last one. Here, do we expect an induced emf? (Figure 20.16)
The answer to this question is, yes. Since a symmetrical rotating magnetic field is

meaningless, we should get the same answer whether we assume it or not.
If the field is stationary, the induction occurs across the Faraday disc. If the field rotates,

we get an induced emf in the external circuit. It can be seen that the two mental pictures give
emf of the same polarity as also of the same magnitude.

Figure 20.16 A rotating bar magnet.

V

+

–

V

20.18.3.4 Current, terminal voltage, and power in a Faraday disc
generator

The Faraday disc generator (or Homopolar or acyclic generator), with its details, is shown in
Figure 20.17. The applied flux density B0 is constant, and the shaft is driven at constant velocity
(angular) w. The material of the disc is homogeneous, isotropic and electrically linear with
material constants s, m0, e0. The dimensions are defined in Figure 20.17. We shall derive the
expressions for the terminal voltage and the current for any load resistance RL (under steady-state
operation).

It should be noted that the current in the disc is radial, and the current density is uniform
around the periphery at any radius. The magnetic field generated by the current density is
tangential and has no effect on the terminal voltage. Hence the field due to the current in the
disc is neglected.

In the cylindrical coordinate system chosen, the symmetry and the uniformity of the
problem shows that we can assume

f 0
z

∂ ∂= =
∂ ∂

and the only variation is along the radius (= r).
If the total output current is I, the radial component of the current density in the disc (at a

radial distance r) is given by
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Jr = p2
I
rd

(20.108)

By Ohm’s law for a grain of matter at a radius r, we get the relationship

Jr = s (Er + wrB0) (20.109)

where B0 is the magnitude of the externally applied magnetic field, and Er the radial component
of the electric field intensity.

The tangential component of B (the flux density Bf due to the current flow in the disc) is
parallel to the material velocity, and hence does not contribute to the (v ¥ B) term above. Thus
the neglect of this component of B generated by the current flow in the disc is justified.

\ Er = wp s 02
I

rB
rd

− (20.110)

Since there is no time-rate of change of B in the fixed reference frame, the terminal voltage is

V = ( )w
p s

2 20ln
2 2

o

i

r R

o
r o i

i
r R

R BI
E dr R R

d R

=

=

⎛ ⎞ ⎛ ⎞⎛ ⎞− = − + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠∫ (20.111)

In the above expression, if we let RL Æ •, then the open-circuit voltage is

Voc = ( )w 2 20

2 o i
B

R R
⎛ ⎞ −⎜ ⎟
⎝ ⎠

(20.112)

and the internal resistance of the generator is

Rint = 

ln

2

o

i

R
R

d

⎛ ⎞
⎜ ⎟
⎝ ⎠
ps

(20.113)

Figure 20.17 Faraday’s disc generator, connected to a load resistor.
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Hence the terminal relationship is

I = 
oc

L int

V
R R+ (20.114)

The short-circuit current is

Isc = 
2 2

oc 0

int

( ) 2

2 ln

o i

o

i

V B R R d
R R

R

w ps−
=

⎛ ⎞
⎜ ⎟⎝ ⎠

(20.115)

The maximum power delivered by the generator is

Pmax = oc sc

4
V I

= 
w ps2 2 2 2

0 ( )

8 ln

o i

o

i

B R R d

R
R

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

(20.116)

20.18.4 Herring’s Experiment

This experiment is one in which the terminals of a galvanometer are connected to a pair of
springy metal strips, as shown in Figure 20.18, which are held apart at one end by an insulating
block. But the strips are so shaped that their springiness makes them snap together (bringing
them in contact) at the free end, thus short-circuiting the galvanometer.

In the experiment, the free ends of the strips are forced apart by pushing a permanent
magnet (say, of cylindrical cross-section) between them side-ways; when the magnet has been
completely pushed in, the contacts spring together again, with the magnetic flux from the
magnet now linking the circuit.

The question is: do we expect an induced emf, when the cylindrical bar magnet is pushed
between the clips?

Figure 20.18 Herring’s experiment.

V

(a)

(b)
(1) (2)

123
123
123
123
123
123
123
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The answer is: there is no reading in the galvanometer. The reason is that. as in the
previous case of the Faraday’s disc, the flux-linkage must be calculated in a circuit across which
the material particles are not moving. Two such circuits are shown in the Figure 20.18(b); and in
neither is there any change in the flux-linkage.

It will be found that when the idea of a moving field is successfully employed. we are
really talking about a moving field pattern. This means transference from a frame of reference in
which the field is unchanging to another in which the field-pattern moves without variation of
shape or magnitude. If no frame exists in which the field is unchanging, the concept of a moving
field is a snare.

20.18.5 The Cullwick Experiment

A piece of steel tubing R (as shown in Figure 20.19) is coaxial with a long wire C carrying a
direct current I. The tubing moves with a uniform velocity u in the direction opposite to that of
the current flow.

The questions in this experiment are:

1. What is the induced emf (in the loop or the contour shown in Figure 20.19)?
2. Does the emf change, if the steel tubing is replaced by a brass tubing (of identical

shape and size)?

A. Direct solution. We consider the emf in the loop shown in Figure 20.19, comprising
a path round the edge of the cylinder.

In air, B = 
m
p
0

2
I
r

(20.117)

If the cylinder has fallen through a height l in the time T,

Figure 20.19 The Cullwick experiment.

G

I

Wire C

l

Steel tubing R r1

r2

uu
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the extra flux in the length l = 
m

p
0 2

1
ln

2
Il r

r
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
(20.117a)

Since this fall has taken place in the time T,

the induced emf = 
m
p
0 2

1
ln

2
Il r
T r

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
(20.118)

and

the current in the loop = 
m
p

0 2

1
ln

2
Il r
RT r

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
(20.119)

where R is the resistance of the loop.
And

the charge = 
m

p
0 2

1
ln

2
Il r
R r

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
(20.120)

This is independent of the material of the cylinder.

B. Moving frame of reference solution. (Figure 20.20)

Figure 20.20 The Cullwick experiment, showing the frames of reference.

y

x
y ¢

x ¢

r

u

r1 r2

In the stationary frame F

H = Hf = 
p2
I

r
 (= -Hz) (20.121)

In the moving frame F ¢, there is potentially

D¢ = 2

1

c

⎛ ⎞
⎜ ⎟⎝ ⎠

(u ¥ H) (20.122)

which gives

D¢y = 2

u

2 c

I

rp
or E¢y = 0 u

2
I

r
m
p

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠

(20.123)
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This is short-circuited by the conductor, giving rise to an emf:

E = 
2

1

0 2

1

u
ln

2

r r

y

r r

I r
E dr

r
m

p

=

=

⎛ ⎞ ⎛ ⎞′ = ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠∫ (20.124)

If the velocity u = 
dx
dt

, this gives a charge:

  = 0 2

1
0 0

ln
2

T T
I r dx

dt dt
R R r dt

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠∫ ∫m
p

E

= 
m
p
0 2

1
ln

2
I r
R r

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎣ ⎦
 ¥ distance moved (20.125)

where R is the resistance of the circuit.
This argument is independent of the material of the cylinder.

PROBLEMS

20.1 A car with 2 metre long bumper is travelling at 100 km/h. Find the potential drop
produced in the bumper due to earth’s magnetic field of 3.2 ¥ 10–5 webers/m2 and the
angle of dip of 64°9¢.

Ans.: 1.6 mV

20.2 The differential form of Faraday’s law when applied to a system moving with a velocity
u can be written as:

B
E u B

t
∂∇ × = − + ∇ × ×
∂

A rectangular loop is located in the field of a long current-carrying straight wire as
shown below.

I

r0 b

a
q

r

z

Using the above expression, evaluate:

(i) The induced voltage in the loop if it is fixed in space but I varies as I0 cos w t.

(ii) The magnitude and the direction of the induced voltage as a function of r when
I = I0 and is constant, but the loop moves towards the wire with a velocity u.
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(iii) The induced voltage in the loop when it moves towards the long conductor with a
velocity u and the current varies as I = I0 cos w t.

Ans.: (i) 0 0 0

0
ln sin

2
I r b

a t
r

m w wp
+

⋅ ;  (ii) 0 0

0 0

u 1 1
2

I a
r r b

⎛ ⎞− −⎜ ⎟+⎝ ⎠
m

p ;

(iii) 0 0 0
0

0 0 0

1 1
ln sin cos

2
I a r b

t t
r r r b

m w w m wp
⎧ ⎫+ ⎛ ⎞⋅ − −⎨ ⎬⎜ ⎟+⎝ ⎠⎩ ⎭

.

20.3 The electric and magnetic fields in a region are E = iyE0 and B = izB0 respectively,
where E0 and B0 are constants. A small test charge Q having a mass m starts from rest at
the origin at the instant t = 0.

Using the Lorentz force equation

F = q(E + v ¥ B)

and the equation of motion, show that the velocity components of the charge will be:

0
c

0

0
c

0

v (1 cos )

v sin

x

y

E
t

B

E
t

B

w

w

= −

=

0
c

.where
B

Q
m

w =

What will be the electric field as seen by an observer moving with the test charge?

20.4 A metal vehicle travels round a set of perfectly conducting rails which form a large
circle. The rails are L metres apart and there is a uniform magnetic field B0 normal to
their plane as shown in the figure below. The mass of the vehicle is m, and it is driven
by a rocket engine having a constant thrust F0. The system acts as a dc generator whose
output is fed into a load resistance R. Show that the output current I from the system
increases exponentially as given by the equation

2 2
0 0

0
1 exp

F B LV
I t

R B L mR

⎡ ⎤⎧ ⎫⎛ ⎞⎪ ⎪⎢ ⎥= = − − ⎜ ⎟⎨ ⎬⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠⎩ ⎭⎣ ⎦
where V is the induced voltage.

1
ln ( ). Use the equation of motion of the cart.

dx
Hint: b ax

b ax a
⎧ ⎫= −⎨ ⎬−⎩ ⎭∫
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20.5 Faraday’s law when applied to a system moving with a velocity v can be written as

( )
C S C

d d d
t

∂
= ◊ = - ◊ + ¥ ◊∂Ú ÚÚ ÚE l B S v B lE

Hence or otherwise, find the emf induced in a rectangular loop, one side of which
moves with a constant acceleration g across a flux-density field B which increases
linearly in the direction of motion of the conductor and periodically with time. The
direction of the motion and of the magnetic field are shown in the figures below.

Uniform magnetic
field B0 

Conducting rails

Rocket
vehicle

Load resistance R

L metres

y

l v = gt (ix1 + iy0 + iz0)

x

z

x

     B = bxe jw t (ix sin q + iz cos q)

ww q q∂
∴ = +

∂
( sin cos );j t

x zj bxe
t
B

i i dS = iz dxdy B

Ans.: = –
2 3

cos 1
2 4

j t g t j t
e bl

⎛ ⎞+⎜ ⎟⎝ ⎠
w wq
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20.6 The Faraday disc shown is to be used as a motor by including a battery in the circuit.
If the current flowing is I and the magnetic flux density B is uniform, show that the

torque exerted on the disc is 
2

If
p , where f is the flux crossing the whole disc.

B

–
+

a

Find I if the battery emf is E, the resistance of the circuit is R, and w is the angular
velocity of the disc in rads/sec.

Ans.: I = 
/2
R

− fw pE
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21.1 INTRODUCTION

So far in our study of electromagnetic field theory, our main emphasis has been on the proper
understanding of the underlying physical concepts of the theory, so that correct mathematical
techniques may be applied to solve practical problems. In most of the practical problems, the
main difficulty lies not in the selection of the mathematical method, but in the representation of
the correct boundary conditions. The interpretation of the physical boundaries, and finding their
correct mathematical equivalents, is in fact, the first critical step in solving such problems. This is
the reason as to why we have emphasized so strongly on the need for a deep insight into the
physics of most electromagnetic phenomena. Having completed the mathematical analysis of the
problem, again re-interpreting the mathematical solution in terms of its physics depends very
much on the earlier step mentioned above. Hence the correct formulation of the boundary
conditions for a specified problem is a very critical step in solving it.

We have discussed earlier in a number of chapters (i.e. Chapters 4, 5, 9), the different
methods of solving electrostatic, magnetostatic, and quasi-static magnetic field problems, apart
from the various problems (including electrostatic, magnetostatic, and electromagnetic) discussed
and solved in different other chapters in this book. It has also been pointed out earlier in this
book that whilst the electrostatic and the magnetostatic problems are mostly Laplacian and
Poissonian in nature, the electromagnetic problems (i.e. eddy currents and wave problems) are
more complex in nature, though under special simplified and idealized conditions, these can be
reduced to simpler equations (i.e. Laplace and Poisson). However it should also be remembered
that in all these operating differential equations, there is the Laplace’s operator (∫ —2) as the main
spatial operator on their left-hand side. Hence the basic methods of solving the general
electromagnetic field problems would apply to the static problems, as these can be considered as
restricted cases of the more general class.

We have already discussed a number of eddy current and wave problems in the
Chapters 15–18, for which we have obtained (mostly) analytical closed-form solutions, using a

Numerical Methods
for and Computer
Solutions of
Electromagnetic
Field Problems

21
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number of analytical methods. But these are, by and large, idealized problems. So in this chapter,
we shall not go into further details of such methods. This is not to imply that we have covered the
complete range of such problems solved by these analytical methods. But since this is an
introductory text book on the subject of electromagnetism, we shall not go into the details of
those more complex problems, which, of course, would be the subject matter of more specialized
texts. Of the other methods which have been discussed earlier, the numerical methods are being
increasingly used to solve more and more problems because of the rapid development of more
powerful and faster computers. While describing the applications of the numerical methods
(i.e. the finite difference method = F.D.M., and the finite element method = F.E.M.), we have
pointed out that both these methods are being widely used to solve electrostatic problems. Whilst
F.E.M. has gained wide popularity in solving electromagnetic, magnetostatic, and quasi-static
magnetic field problems, the F.D.M. has been in significant use for solving electrostatic (and heat
transfer) problems, because in electrostatics, there are quite a large range of problems with open
boundaries. For such problems, F.D.M. is found to have significant advantages, and the geometry
of electrostatic problems (in a large number of cases) permits the use of regular and graded meshes
without taking too much computer time. Since we have already discussed in fair detail the
methods of F.D.M. (while considering the solutions of electrostatic problems), we do not propose
to go into the details of this method for solving magnetic and electromagnetic problems, as the
techniques of solving such problems are identical with those for the electrostatic problems. This is
true particularly for two-dimensional problems, because even though the vector potential is being
used for these problems, the potential usually has only one component (though some of the
magnetic field vectors can have more than one component) and hence the treatment is similar to
thar of the scalar potential (which is the usual operating variable used in most of the electrostatic
problems).

Similar arguments may apply to the use of the F.E.M., though of course, the formulation of
the ‘functional’ would be different for (say) the magnetostatic fields (being a resticted case) from
that for the electromagnetic eddy current fields to electromagnetic wave patterns. So we shall now
discuss the functionals for various types of electromagnetic field problems, using the concept of
magnetic vector potential.

21.2 FINITE ELEMENT METHOD APPLIED TO
TWO-DIMENSIONAL ELECTROMAGNETIC FIELD
PROBLEMS (INVOLVING EDDY CURRENTS)

As mentioned earlier, F.E.M. is a popular numerical method based on the variational principle for
solving any boundary-value field problem. A ‘functional’ is an integral expression involving a
function dependent on the unknown variable and its derivatives. The functional is identified, and
minimized with respect to the unknown variables, subject to the boundary conditions specified.
This process results in the required solution to the field equations. Let the functional be defined
as follows:

G = ∫∫ F(x, y, A, Ax, Ay) dx dy (21.1)

where Ax = 
A
x

∂
∂

, Ay = 
A
y

∂
∂

(Notes: 1. It should be carefully noted that here the suffices x and y in Ax, Ay respectively
represent the derivatives of A with respect to those independent variables, and not the vector
components. 2. Also this G should not be confused with the reflection coefficient of waveguides,
even though the same symbol is used for both.)
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As stated before, we are restricting ourselves to two-dimensional problems with the magnetic
vector potential having one component only, and the present derivation is in Cartesian coordinate
system (though this is not a restriction imposed on the method).

Since the functional is an area integral in terms of the variables x and y within the specified
boundaries of the problem, the variations can be effected in A only. Let A be changed by a small
quantity dA. The value of the functional then changes to:

G¢ = ∫∫ F(x, y, A + d A, Ax + d Ax, Ay + d Ay)dx dy

\ The change in the functional is given by:

d G = ∫∫ F(x, y, A + d A, Ax + d Ax, Ay + d Ay)dx dy - ∫∫ F(x, y, A, Ax, Ay)dx dy

The first term can be expanded by the Taylor series; and then for sufficiently small values of dA,
we can neglect the terms containing higher orders of d A.

\ d G = x y
x y

F F F
A dx dy A dx dy A dx dy

A A A

⎛ ⎞∂ ∂ ∂⎛ ⎞⎛ ⎞ + + ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠∫∫ ∫∫ ∫∫d d d

         = 
x y

F F A F A
A dx dy d dx dy d dx dy

A A x A y

⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠∫∫ ∫∫ ∫∫d (21.2)

From Eq. (21.1),

     d G = ( ) ( )
x y

F F F
A dx dy A dx dy A dx dy

A A x A y

⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠∫∫ ∫∫ ∫∫d d d

But the total differential of dA is given by:

d(d A) = ( ) ( )A dx A dy
x y

d d∂ ∂⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
(21.3)

\ d G = ( )
x

F F
A dx dy A dx dy

A A x

⎡ ⎤∂ ∂ ∂⎛ ⎞⎛ ⎞ ⎛ ⎞+ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦∫∫ ∫ ∫d d

                    ( )
y

F
A dy dx

A y
d

⎡ ⎤⎛ ⎞∂ ∂⎛ ⎞+ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
∫ ∫ (21.4)

In Eq. (21.4), for the bracketed term in the second integral, the integration is with respect to
x, keeping y constant, which implies that dy = 0 in Eq. (21.3), and so for this condition, we get

d(dA) = 
x

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

(dA) dx

and for the third integral, the bracketed term is integration with respect to y keeping x constant,
which reduces Eq. (21.3) to

d(dA) = 
y

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

(dA) dy

So Eq. (21.4) becomes

d G = ( ) ( )
x y

F F F
A dx dy d A dy d A dx

A A A

⎡ ⎤⎛ ⎞⎡ ⎤∂ ∂ ∂⎛ ⎞⎛ ⎞ + + ⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦
∫∫ ∫ ∫ ∫ ∫d d d (21.5)
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The second and the third integrals can be integrated by parts, i.e.

( )
x x x

F F F
d A dy A A d dy

A A A
d d d

⎡ ⎤ ⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦∫ ∫ ∫ ∫ (21.6)

But

x

F
d

A
∂⎛ ⎞

⎜ ⎟∂⎝ ⎠
= 

x x

F F
dx dy

x A y A
∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

= 
x

F
dx

x A
∂ ∂⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
since, as before dy = 0 as this integration is with respect to x.

Substituting in Eq. (21.6),

( )
x x x

F F F
d A dy A dy A dx dy

A A x A
d d d

⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦∫ ∫ ∫ ∫∫ (21.7)

Similarly the third term of Eq. (21.5) would reduce to

( )
y y y

F F F
d A dx A dx A dx dy

A A y A
d d d

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫ ∫ ∫∫ (21.8)

Substituting from Eqs. (21.7) and (21.8) in Eq. (21.5), the incremental change in the functional is
obtained as

 d G = 
x y

F F F
A A A dx dy

A x A y A

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
∫∫ d d d

                 
x y

F F
A dy A dx

A A
d d

⎡ ⎤⎛ ⎞∂ ∂⎛ ⎞+ +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
∫ ∫ (21.9)

The above expression is called the first variation of the functional for sufficiently small values of
dA. The necessary condition for the functional to attain its minimum is obtained when this
variation is set to zero, i.e.

d G = 0 (21.10)

If, in this expression, as shown in Eq. (21.9), the second (line) integral is set to zero, we are left
with the first integral which also must be made equal to zero to satisfy the above condition
(21.10). The implication of the line integral setting to zero will be discussed later when we
discuss the boundary conditions, with the actual functional for specific problems.

For the first integral, since dA π 0, we are left with the following equation:

d G = 
x y

F F F
A x A y A

⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 = 0 (21.11)

This is called the Euler equation of the functional G. Thus the minimization of the functional
requires that the Euler equation of the functional be satisfied along with the boundary integral
being set to zero. Thus, if for a given functional, the above equation turns out to be the original
partial differential equation which we seek to solve and force the boundary conditions so as to
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make the line integrals to be zero, then the minimization of the functional will yield the solution
of the partial differential equation. So now we shall select the functional for electromagnetic eddy
current problems with time-harmonic variations.

The appropriate functional for solving Eq. (21.11) for the type of electromagnetic field, as
specified just above, is one containing all energy terms expressed as functions of the variables
which are the magnetic vetor potential and the space (i.e. the coordinate variables). The required
functional for two-dimensional electromagnetic eddy-current, time-harmonic field problems is

G = 21 1
( ) ( ) ( )

2 2
J A

R

B dB dA j A dSn ws
⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥− ⋅ +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∫ ∫ (21.12)

where

R is the region of analysis
n is the reluctivity (reluctance)
J is the current density
B is the flux density
A is the magnetic vector potential
w is the angular frequency
s is the conductivity of the medium.

The first term represents the stored energy in the system; whilst the second term denotes the
input energy to the system. The third term represents the reaction of the induced field; i.e.  the
losses in the system. Thus the functional represents the energy balance of the complete system. If
the variable vector potential is changed by a small value, there will be a corresponding resulting
change in the functional. This change will be ‘zero’ only if the functional is at its minimum. If the
medium is linear, then the functional can be simplified to:

G = 2 21 1
( ) ( ) ( )

2 2
B j A dS

⎡ ⎤⎛ ⎞ ⎛ ⎞− ⋅ +⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦∫∫ J An ws

= 2 2 21 1
( ) ( ) ( )

2 2x yB B j A dS
⎡ ⎤⎛ ⎞ ⎛ ⎞+ − ⋅ +⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦∫∫ J An ws

Writing B in terms of the vector potential A, i.e.

Bx = 
A
y

∂
∂

 = Ay, By = 
A
x

∂−
∂

 = - Ax

\ G = 2 2 21 1
( ) ( ) ( )

2 2x yA A j A dS
⎡ ⎤⎛ ⎞ ⎛ ⎞+ − ⋅ +⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦∫∫ J An ws (21.13)

The Euler equation of the above functional is given by

x y

F F F
A x A y A

⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 = 0 (21.14)

where

F = 2 2 21 1
( ) ( ) ( )

2 2
J Ax yA A j An ws

⎡ ⎤⎛ ⎞ ⎛ ⎞+ − ⋅ +⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦
(21.15)
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Substituting for F in the Euler equation, and differentiating

( ) x yJ j A A A
x y

∂ ∂⎛ ⎞ ⎛ ⎞− + − −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
ws n n  = 0

or

( )
A A

J j A
x x y y

ws n n∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 = 0

or
2 2

2 2
( )

A A
J j A

x y

∂ ∂+ = − +
∂ ∂

m ws (21.16)

This is the governing equation for two-dimensional field problems expressed in terms of the
magnetic vector potential. Thus the minimization of the functional indirectly gives the solution of
the equation itself.

The line-integral of the equation is given by

x y

F F
A dy A dx

A A
d d

⎛ ⎞∂ ∂⎛ ⎞ + ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠∫ ∫  = 0

Substituting for F in Eq. (21.15),

x yA A dy A A dxd d+∫ ∫  = 0

or

A A
A dy A dx

x y
∂ ∂⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠∫ ∫d d  = 0

Replacing dx and dy by (ds cos a) and (ds sin a) respectively,

sin cos
A A

A ds
x y

⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞+⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦∫ a a d  = 0

Now, we have

A A dx A dy
n x dn y dn

∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
However,

dx
dn

 = sin a and
dy
dn

 = cos a

\ We get

A
A ds

n
d

⎡ ⎤∂⎛ ⎞
⎢ ⎥⎜ ⎟∂⎝ ⎠⎣ ⎦∫  = 0 (21.17)

The above condition derived by Eq. (21.17) is satisfied on the boundary, if either of the following
statements given below is true:

1. dA = 0. This makes the boundary an equipotential line or a flux line.

2.
A
n

∂
∂

 = 0. This requires the normal derivative of the vector potential to be zero, or the

flux lines to cross this boundary normally.
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Thus, in the process of minimization of the functional, we have obtained the Euler equation of the
functional (which, of course, comes out to be the original pde), and the boundary conditions, such
as the continuity of the flux density vector across the boundary, are automatically satisfied, while
the specified potentials on the boundaries have to be imposed in the solution process.

To minimize the functional over the region, the variable (i.e. the vector potential over the
whole region) is represented as a discrete quantity. To do this the whole region is sub-divided
into a number of elements in any desired manner ensuring that all the material interfaces (i.e. all
the iron–air–conducvtor boundaries) coincide with the sides of the elements. The number, shape,
and size of the elements can be chosen in any arbitrary manner. An approximate distribution of
the vector potential is assumed within each element, such that it is a function of the coordinates
of the nodes of the element and the nodal values of the potentials at its vertices. Thus an
approximate distribution of the vector potential is obtained by taking the above values together.
These potentials are now varied until the functional given by Eq. (21.13) reaches its minimum.
The resulting vector potential distribution gives the best possible result in the ‘least square’ sense,
since the functional contains terms involving the second order of the vector potential. A variety
of approximate descriptions for A within the element are possible. One of the simplest is triangular
element with linear variation of A inside, which gives sufficiently accurate results. The treatment
of such a triangular element is similar to that described in Section 5.6 with reference to
electrostatic problems. The only difference is that instead of the scalar potential V of the static
problems, we now use A—the vector potential, which we write as (referring to Figure 5.13):

A (x, y) = ax + by + c (21.18)

The constants a, b, c can be obtained in terms of the nodal values of A and their coordinates, to
give:

A(x, y) = 
1, 2, 3

2
i i i

i
i

p q x r y
A

D
=

+ +⎛ ⎞
⎜ ⎟
⎝ ⎠∑ (21.19)

where

D = area of the triangle, i, j, k being the vertices of the triangle

pi = (xjyk - xk yj)

qi = ( yj - yk )

ri = (xk - xj)

Ai = vector potential at the node i.

The flux density within the triangle is given by

Bx = 
1, 2,3

2
i i

i

r AA
y D

=

⎛ ⎞∂⎛ ⎞ = ⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠
∑ (21.20a)

By = 
1, 2,3

2
i i

i

q AA
x D

=

⎛ ⎞∂⎛ ⎞− = − ⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠
∑ (21.20b)

 [compare with Eq. (5.83)]

In this case, the flux density, and hence the permeability inside a triangle is constant, for the first
order elements.
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As in Eqs. (5.84) and (5.85), we can now express A in terms of area coordinates (or shape
functions), i.e.

A(x, y) =
1, 2, 3

i i
i

c A
=
∑ (21.21)

ci, cj, ck being the area coordinates for the nodes i, j, and k respectively.

ci = 
2

i i ip q x r y
D

+ +
(21.22)

The properties of these functions have already been described in Section 5.6, and so there is no
need to repeat them here. The only difference is that the functional is now

2 2

1, 2, ,

1 1
2 2k k k k k

k n

B j A dSG
=

⎡ ⎤⎛ ⎞ ⎛ ⎞= − ⋅ +⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∫ J An w s (21.23)

where
 n is the number of elements
dSk is the area of the kth element.

Rest of the treatment is similar to what has been discussed earlier in Section 5.6, and so the
final global matrix is now given by

[S] [A] + [T ] [A] = - [J ] (21.24)

The points regarding the Dirichlet boundary condition are also same as before, and the final
matrix equation, containing the set of simultaneous equations, is solved by the Gaussian
Elimination method.

21.3 FINITE ELEMENT METHOD FOR EDDY CURRENT
PROBLEMS

We have seen earlier (Sections 15.1, 15.4, and 15.5) that the current distribution within the
section of a conductor is affected by its own field, when the current is alternating. The result is
that the final distribution of the current density over the conductor cross-section is non-uniform,
producing higher losses which shows up as increased apparent resistance of the conductor. Thus
the effects of the induced currents cannot be neglected for evaluating the losses and the current
densities correctly.

The governing equation for the fields in a linear conducting region, with the excitation
having sinusoidal time-variation is

—2A - jwms A = - mJs

or
—2A = - m (Js - jwsA) (21.25)

The first term on the right-hand side is the uniform source current density within the section of
the conductor, whilst the second term represents the effects of the induced currents, or the reaction
field due to the eddy currents. More generally, the second term reflects the combined effects of
the boundaries and other conductors (i.e. combined skin-effects as well as proximity effects). Thus
the solution obtained corresponds to the current density distribution given by the right-hand side
of Eq. (21.25), or for the total current which is

s( )I J j A dS′ = −∫ ws (21.26)
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For a linear case, subject to the same boundary conditions, the resultant distribution of A,
obtained, remains unchanged, except for the magnitude and the phase for any other value of the
total current in that conductor. Hence the field distribution for any specified current I in a single
conductor, the final value of A is given by

A = A¢
I
I

⎛ ⎞
⎜ ⎟′⎝ ⎠

(21.27)

where

A¢ is the vector potential values obtained by feeding an arbitrary current I ¢ (corresponding
to a uniform direct current density Js)

I ¢ is the resultant final current given by Eq. (21.26)
I is the specified current in the conductor.

The current density at any point within the conductor section is

J = (Js - jwsA) (21.28)

where Js is the uniform source current density.
The total current is

s( )I J j A dS= −∫ ws (21.29)

It should be noted that all the quantities like A, Js, etc. are complex.

21.3.1 Single Circular Conductor in Open Space

We apply the above method to obtain the solution for a single circular conductor carrying an
alternating current, and hence having induced eddy currents in it. An analytical, closed-form
solution exists for this problem (Sections 15.5 and 15.5.1), and hence has been chosen to show the
effectiveness of the F.E. method, and compare the accuracy of the F.E. results with the numerical
values obtained from the analytical solution. The results are presented graphically in Figure 21.1,
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Table 21.1 Current density distribution inside a circular conductor

Radius of conductor = 60.0 mm, current = 10000.0 amps
Conductivity = 5.8E+07, Frequency = 50.0 Hz

Average current density = 0.885118E+07 amps/m2

Analytical solution FEM solution
Sr. No. Radius J (mag.) Phase J (mag.) Phase

1 0.0 0.756377E+07 –56.08 0.757594E+07 –56.00
2 8.0 0.756630E+07 –53.98 0.757869E+07 –53.90
3 12.0 0.756661E+07 –51.36 0.758918E+07 –52.80
4 16.0 0.760428E+07 –47.70 0.761703E+07 –47.70
5 20.0 0.766237E+07 –43.04 0.767522E+07 –43.00
6 24.0 0.776708E+07 –37.41 0.777990E+07 –37.90
7 28.0 0.793702E+07 –30.91 0.794965E+07 –30.90
8 32.0 0.819206E+07 –23.66 0.820429E+07 –23.70
9 36.0 0.855192E+07 –15.83 0.856353E+07 –15.80

10 40.0 0.903479E+07 –7.58 0.904555E+07 –7.60
11 42.0 0.932738E+07 –3.36 0.933765E+07 –3.40
12 44.0 0.965642E+07 0.91 0.966614E+07 0.90
13 46.0 0.100235E+08 5.19 0.100326E+08 5.20
14 48.0 0.104299E+08 9.45 0.104385E+08 9.50
15 50.0 0.108772E+08 13.78 0.108851E+08 13.70
16 52.0 0.113665E+08 18.05 0.113737E+08 18.00
17 54.0 0.118991E+08 22.30 0.119057E+08 22.30
18 56.0 0.124763E+08 26.52 0.124822E+08 26.50
19 58.0 0.130994E+08 30.72 0.131046E+08 30.70
20 60.0 0.137699E+08 34.88 0.137744E+08 34.90

DC resistance of the bar = 1.5244E–05 W AC resistance of the bar = 1.9486E–05 W

and numerically tabulated in Table 21.1. Figure 21.1 shows the current density amplitudes and its
phases presented as a function of the radial distance from the centre of the circular conductor.
Graphically, the results obtained by the two methods are practically coincident; and as shown in
Table 21.1, the numercal values obtained, agree remarkably for the first two places of decimals,
which can be considered to be very good.

21.3.2 Parallel, Rectangular Busbars (with Eddy Currents) Inside
a Slot

Two rectangular conductors are placed inside an open (at the top) rectangular slot whose side-
walls (as also the bottom floor) are infinitely permeable. The open top boundary of the slot is
assumed to be a flux line (Figure 21.2). When only the bottom conductor in the slot (i.e. the
conductor 1 in Figure 21.2) is carrying a current, the boundary constraints force all the flux lines
to be parallel to the top boundary, and the top surface of the conductor 1. There is no field below
the conductor 1 due to its own current (cf. check by the method of images; and also up to this
stage, this is a problem of skin effect with certain boundary conditions imposed in the finite
region). When a current is passed through the top conductor in the slot (i.e. the conductor 2 in
Figure 21.2), the above described field gets modified in a manner which depends on the
magnitude and the phase of the current in the conductor 2 (the current distributions in the two
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conductors are now a consequence of the skin effect as well as the proximity effect; and of
course the superimposed effects of the boundaries in the finite region). The current density J and
the flux density B distributions can be obtained by analytical method as well as the F.E.M.
described earlier in this chapter. For the analytical solution, the interested reader is recommended
to refer to Foundations of Electrical Engineering by K. Simonyi, for the solution of a similar
problem of a rectangular conductor in an open rectangular slot. The current density and the flux
density distributions for the top conductor in the slot have been ontained by both the analytical
method as well as by the F.E.M. The results of the two methods have been compared in
Figure 21.3 (i.e. the current density magnitudes at different vertical heights in the slot and the
corresponding phase of the current in the top conductor in the slot), and tabulated in Table 21.2,
for equal and opposite currents in the two conductors. The agreement between the two sets
of results is excellent, indicating the validity of the method. Also, the magnetic flux is confined
to the space between the top of the top conductor (i.e. the conductor 2) and the bottom of
the lower conductor (i.e. the conductor 1). The resultant field is shown in Figure 21.4. For the
calculations, the dimensions are as indicated in Figure 21.2, and the conductivity s of
the conductors = 5.8 ¥ 106 mhos/metre.

For the top conductor, it is found that

ac

dc

R
R  = 3.322

Flux line boundary

Infinitely permeable
boundary

I = 1000.0 amps

2

100.0
50.0

300.0

100.0

50.0
96.0

100.0(0.0, 0.0)

1

I = –1000.0 amps

Figure 21.2 Conductors in a slot.
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Table 21.2 Current density distribution inside a conductor in a slot

Conductor current = 10000.0 amps
Conductivity = 5.8E+07, Frequency = 50.0 Hz

Average current density = 0.10416E+07 amps/m2

Analytical solution FEM solution
Sr. No. Dist. J (mag.) Phase J (mag.) Phase

1 0.8 0.47682E+07 43.43 0.47353E+07 42.90
2 4.2 0.42617E+07 36.99 0.42386E+07 36.50
3 5.8 0.40423E+07 33.96 0.40104E+07 33.20
4 9.2 0.36129E+07 27.53 0.35911E+07 26.80
5 11.7 0.33264E+07 22.82 0.33058E+07 22.20
6 18.3 0.26734E+07 10.41 0.26512E+07 9.40
7 21.7 0.23877E+07 4.04 0.23736E+07 3.00
8 28.3 0.19143E+07 –8.29 0.18997E+07 –9.60
9 34.2 0.15668E+07 –19.30 0.15594E+07 –20.90

10 39.2 0.13184E+06 –28.69 0.13129E+07 –30.40
11 44.2 0.11060E+07 –38.22 0.11021E+06 –40.00
12 49.2 0.92493E+06 –48.02 0.92238E+06 –49.80
13 54.2 0.77215E+06 –58.28 0.77079E+06 –60.20
14 59.2 0.64565E+06 –69.20 0.64543E+06 –71.10
15 68.3 0.47961E+06 –91.17 0.48033E+06 –93.10
16 78.3 0.38575E+06 –116.60 0.38820E+06 –118.20
17 84.2 0.36407E+06 –129.46 0.36681E+06 –130.80
18 89.2 0.35720E+06 –137.65 0.35942E+06 –138.60
19 94.2 0.35541E+06 –142.86 0.35673E+06 –143.40
20 99.2 0.35526E+06 –144.93 0.35540E+06 –145.00

DC resistance of the bar = 1.7959E–05 W AC resistance of the bar = 5.9776E–05 W

Figure 21.3 Current density distribution inside a conductor in a slot.

60

48

36

24

12

0
0 20 40 60 80 100

–155

–115

–75

–35

5

45

J 
(m

ag
.)

, 
in

 a
m

p/
m

P
ha

se
 a

ng
le

Vert distribution, in mm

Magnitude

Phase



CHAPTER 21 NUMERICAL METHODS FOR AND COMPUTER SOLUTIONS . . . 823

Figure 21.4 Conductor in a slot with eddy currents—FEM solution—analysis in x-y
coordinates at t = 0.

1 2

21.3.3 Number of Parallel Busbars Enclosed in a Rectangular
Conducting Box

The F.E.M. described has been used to analyze the field distribution of eight, parallel, rectangular,
copper busbars enclosed in a rectangular box (whose sides are also parallel to the length
dimension of the busbars), made up of a conducting material of finite resistivity and permeability.
Only half the section of the box has been considered for analysis, because of the symmetry
considerations. Figure 21.5 shows the half-section of the box (or the tank), containing the busbars

Figure 21.5 Busbars enclosed in a conducting box.
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with all the dimensions and the currents indicated on the figure. It will be seen that
the conductor 3 is a dummy one carrying zero current. However this busbar as well as the
tank walls will have eddy currents induced in them, causing losses therein. These losses
will be reflected as additional resistances in the other conductors, which would be a
function of the other conductors and also of the tank walls to each conductor. For these
calculations,

sbusbars = 5.0 ¥ 10+7 mhos/metre

s tank walls = 1.666 ¥ 10+7 mhos/metre

m r, tank wall = 50

The resultant field distribution obtained is shown in Figure 21.6 at the instant of time t = 0,
when the currents are at their peak values. The flux distribution at the instant of time t = p /2,
when the currents are passing through their zeroes is shown in Figure 21.7. This picture
shows the flux due to the induced currents. When the ac resistances of the different
conductors are calculated, it is found that the ratio (Rac/Rdc) is different for the different
conductors.

2

4

3

1

5

Figure 21.6 Busbars enclosed in a conducting box of mild steel—half geometry with dummy
bar—analysis in x-y coordinates at t = 0.
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Figure 21.7 Busbars enclosed in a conducting box of mild steel—half geometry with dummy
bar—analysis in x-y coordinates at t =   .

21.4 APPLICATION OF THE F.E.M. TO TRANSFORMERS AND
DC MACHINES

The method of calculating the magnetic field and the eddy current distributions has been
successfully applied to all types of rotating machines and other allied electrical devices.
Figures 21.8 and 21.9 show the flux distributions in the two orthogonal sections of a generator
transformer, and Figures 21.10 to 21.13 show the flux density distributions in the core section (of
the armature, field pole and the yoke of the stator of the machine over one pole-pitch) of a DC
motor, under different load conditions, i.e. 50%, 100%, 200%, and 300%. Figures 21.14 and 21.15
show the flux distributions in the rotor region of a squirrel cage induction motor. It should be
noted that for the DC motor, the field has no eddy currents and its analysis has been treated as a
magnetostatic field problem.

p
2
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Figure 21.10 DC machine—flux distribution on 50% load.

Figure 21.11 DC machine—flux distribution on 100% load.
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Figure 21.12 DC machine—flux distribution on 200% load.

Figure 21.13 DC machine—flux distribution on 300% load.
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21.5 SOME PARTIAL DIFFERENTIAL EQUATIONS AND
THEIR FUNCTIONALS

We now list some of the other very commonly met PDEs and their functionals in electromagnetic
problems.

(a) Poisson’s equation (scalar)

n—2A = - J, and

2
( )

2
J AF A d d

n

W W

W W⎛ ⎞= ∇ − ⋅⎜ ⎟⎝ ⎠ ∫ ∫
(b) Diffusion equation (and/or Eddy current equation)

n —2A = j w s A - J, and

2 2 ( )
2 2

J A
j

F A d A d d
n ws

W W W

W W W⎛ ⎞ ⎛ ⎞= ∇ + − ⋅⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∫ ∫ ∫
(c) Vector Poisson’s equation

— ¥ n— ¥ A = J, and

2
( )

2
J AF A d d

n

W W

W W⎛ ⎞= ∇ × − ⋅⎜ ⎟⎝ ⎠ ∫ ∫
(d) Nonlinear Poisson’s equation

n (A) —2A = - J, and

0

( )J A
B

F b db dn
W

W
⎡ ⎤
⎢ ⎥= − ⋅
⎢ ⎥
⎣ ⎦

∫ ∫

21.6 GENERAL COMMENTS

We have shown only a very limited set of applications of the F.E.M. to eddy current problems.
This method has also been widely used for solving electromagnetic wave problems. We have not
discussed such problems here as there is quite a lot of similarity between the magnetic diffusion
equation and the wave equation, and the solutions would have significant points of similarity.
The main difference is due to the fact that the wave equation contains a term with double
derivative of time (as distinct from the diffusion equation where the equivalent term is a single
derivative of time). The consequence of this difference is that for time-harmonic excitations, the
eddy current equation becomes complex (due to the imaginary j) whereas the wave equation
remains one in real variables.

We have not included in the present text any solutions of three-dimensional problems.
Though F.E.M. has been successfully used to solve three-dimensional static problems, its
application to three-dimensional eddy current problems still remains a controversial point, and is
an important topic of research.
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21.7 FINITE ELEMENT METHOD (PROCEDURE DETAILS)

The finite element analysis has been so widely accepted as a successful numerical method for
solving a wide range of engineering problems, that it has now become an integral part of
‘Computer Aided Engineering’ (CAE). It is now extensively used in the analysis and design of
many complex real-life engineering systems. Though originally it started as a tool for structural
analysis, its application to electromagnetic field problems (amongst many other branches as well)
is very well-established. So far in our discussions (i.e. in Chapter 4 Section 5.4–5.6.5, and in this
Chapter 21) we have given a strong emphasis on the ‘variational’ basis of this method; and we
will end our present discussion of this method by describing the actual steps used in applying the
F.E.M to solve a typical two-dimensional problem in electromagnetism (including electrostatics,
magnetostatics, electromagnetics, or in fact any two-dimensional problem).

The main steps of the F.E. method are:

1. Choose a suitable formulation of the problem, i.e. whether to use vector or scalar
potential, a combination of both, interpretation of the boundaries, etc.

2. Discretization of the region under consideration (i.e. problem domain or solution
region) into a finite number of sub-regions which are called ‘elements’.

3. Deriving the governing equations, for a typical ‘element’ in the solution region.
4. Assembling all element equations in the solution region (in the global form).
5. Solving the global linear system of equations so obtained.

21.7.1 Formulation of the Problem

This is in fact a mental process. For a two-dimensional problem, based on the physical aspects, it
has to be decided whether a scalar potential or a vector potential is a better choice. If it is an
electrostatic field problem, then of course it can be solved by a scalar potential. On the other hand
for a magnetic field problem, if the solution region does not contain any current sources, the
scalar potential can be used. But if there are current-carrying regions in the solution domain then
the vector potential is an obvious choice. When the source current (volume or line) is normal to
the plane surface under consideration the vector potential will have only one component (e.g. in
a two-dim Cartesian geometry problem in x-y plane). When the vector potential has only one
component (i.e. z–component), only then the single component of A is similar to the scalar
potential {W}. This is not to say that Az is identical with W, it is only similar to W because the

field vectors Hx, Hy (or Bx, By) are in fact ,x yB B
x y

m m∂W ∂W
= - = -

∂ ∂
 from the scalar potential and

andz z
x y

A A
B B

y x

∂ ∂
= = -

∂ ∂  from the vector potential. Furthermore, if the source current is a line

current, then it can be accounted for in the domain only if it is normal to the plane of the domain
(i.e. if it is in the z-direction for a x-y plane problem). A line current in x-y plane cannot be
correctly represented in a two-dimensional x-y domain because if it is so drawn then it (the line
section) represents a section of a current sheet where width is in either x-z plane or y-z plane and
does not represent a line current. In fact, a line current lying in the x-y plane of the solution
region would produce a field pattern which would be three-dimensional in nature and hence
cannot be treated as a two-dimensional problem.
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The boundaries of any two-dimensional problem would be basically straightforward, i.e.
Dirichlet-type or Neumann type or Mixed type. For multi-region problems, the interface continuity
conditions need some care, in case there are surface currents on the interfaces.

21.7.2 Finite Element Discretization

The solution region is sub-divided into a number of ‘finite elements’ as shown in Figure 21.16.

Actual boundary

Approximate boundary
(a) (b)

Figure 21.16 Typical irregular domain, sub-divided into (a) triangular elements only and
 (b) a combination of triangular and quadrilateral elements.

Region (a) has 7 triangular elements and 8 nodes.
Region (b) has 3 triangular and two quadrilateral elements and 8 nodes.
For simplicity, we consider an electrostatic field problem.

Note: If it is a multi-region problem with different material characteristics (i.e. permittivity in E.S.
fields, permeability and conductivity in electromagnetic fields, etc.), then the material
interface (or interfaces) should coincide with the element sides. This process ensures the
continuity of normal boundary conditions across the interface.

We start by taking an approximate value for the potential in a typical element of the domain.
Let the potential be Ve (say) within the element e, and then inter-relate the potential distribution
in various elements, such that the potential is continuous across the inter-element boundaries. The
approximate solution for the potential in the region is then,

1

( , ) ( , )
N

e
e

V x y V x y
=

= Â (21.30)

where
N = number of elements into which the whole domain has been subdivided
Ve = approximate potential within the element e.
It should be clearly understood that the point (x, y) in the element is ‘any point’ in the

element e and is not restricted to a specific point. This is one of the important differences between
the F.E.M and the F.D.M. (i.e. finite difference method). In the F.D.M, once the region has been
discretized (say, for example, the rectangular mesh), we deal with the potential values at the ‘nodes
only’ and the inter-nodal spaces are ignored. This is very obvious when the P.D.E under
consideration is reduced to the corresponding algebraic equation by using the ‘Taylor series
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expansion method’. But when the ‘line integral method’ is used to derive the discretized equation,
the implicit assumption is that the potential values vary linearly along the mesh arms.

The simplest and the most common form of approximation for Ve in a triangular element is
the first-order polynomial approximation, i.e.

( , )eV x y a bx cy= + + (21.31)

And for a quadrilateral element, the corresponding approximation is

( , )eV x y a bx cy dxy= + + + (21.32)

The potential Ve is non-zero within the element e and is zero outside e. It is difficult to
approximate the boundary of the problem domain by quadrilateral elements; and for the present
problem we have used triangular elements only.

The assumption of linear variation of the potential within the triangular element (as given
by Eq. (21.31) is equivalent to assuming uniform electric field within the element, i.e.

e e
e e x y

V V
V

x y

∂ ∂Ê ˆ
= - — = - +Á ˜Ë ¯∂ ∂

E i i

x yb c= - -i i (21.33)

On the other hand, for the quadrilateral element, it amounts to saying that the components
of Ee vary linearly within the element, i.e.

e eE V= - —

( ) ( )x yb dy c dx= + - +i i (21.34)

21.7.3 Element Governing Equation

For a typical triangular element, as shown in Figure 21.17, the potentials Ve1, Ve2, and Ve3 at the
nodes 1, 2, and 3 respectively are given by [using the first-order polynomial relation of
Eq. (21.31)]

y

x

V x ye3( , )3 3

V

x y

e1

1 1( , ) V

x y

e2

2 2( , )

Figure 21.17 A typical triangular element.

(The local node numbering sequence 1–2–3 must be in the counterclockwise sense.)
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1 1 1

2 2 2

3 3 3

1

1

1

e

e

e

V x y a

V x y b

V x y c

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙=Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚Î ˚ Î ˚

(21.35)

written in compact matrix form.
The coefficients a, b, c of the polynomial representation can be determined by inverting the

3 ¥ 3 matrix above, i.e.
1

1 1 1

2 2 2

3 3 3

1

1

1

e

e

e

a x y V

b x y V

c x y V

-È ˘ È ˘È ˘
Í ˙ Í ˙Í ˙ = Í ˙ Í ˙Í ˙
Í ˙ Í ˙Í ˙Î ˚ Î ˚ Î ˚

(21.36)

2 3 3 2 3 1 1 3 1 2 2 1 1
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3 2 1 3 2 1 3

1

2

e

e

e

x y x y x y x y x y x y V

y y y y y y V

x x x x x x V

- - -È ˘ È ˘
Í ˙ Í ˙= - - -Í ˙ Í ˙D Í ˙ Í ˙- - -Î ˚ Î ˚

1 2 3 1

1 2 3 2

1 2 3 3

1

2

e

e

e

a a a V

b b b V

c c c V

È ˘ È ˘
Í ˙ Í ˙= Í ˙ Í ˙D Í ˙ Í ˙Î ˚ Î ˚

(21.37)

where

1 2 3 3 2 2 3 1 1 3 3 1 2 2 1

1 2 3 2 3 1 3 1 2

1 3 2 2 1 3 3 2 1

a x y x y a x y x y a x y x y

b y y b y y b y y

c x x c x x c x x

= - = - = -
= - = - = -
= - = - = -

and D is the area of the triangular element e, i.e.

1 1

2 2

3 3

1
1

1
2

1

x y

x y

x y

D =

2 3 3 2 3 1 1 3 1 2 2 1
1

[( ) ( ) ( )]
2

x y x y x y x y x y x y= - + - + -

[ ]2 1 3 1 3 1 2 1 2 3 3 2
1 1

( ) ( ) ( ) ( ) ( )
2 2

x x y y x x y y b c b c= - - - - - = -

1 2 3 2 2 1 2 1 3 1 1 3
1 1

[( ) ( ) ( ) ( )] ( )
2 2

y y x x y y x x b c b c= - - - - - = -

[ ]2 3 1 3 3 1 3 2 1 2 2 1
1 1

( ) ( ) ( ) ( ) ( )
2 2

y y x x y y x x b c b c= - - - - - = - (21.38)

Substituting the values of a, b, c from Eq. (21.36) or (21.37) into Eq. (21.31), and writing it in
matrix form:

2 3 3 2 3 1 1 3 1 2 2 1 1

2 3 3 1 1 2 2

3 2 1 3 2 1 3

1
[1 ]

2

e

e e

e

x y x y x y x y x y x y V

V x y y y y y y y V

x x x x x x V

- - -È ˘ È ˘
Í ˙ Í ˙= - - -Í ˙ Í ˙D Í ˙ Í ˙- - -Î ˚ Î ˚
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This can be written in further compact form as

3

1

( , ) ( , )e i ei
i

V x y N x y V
=

= Â (21.39)

where Ni are the interpolation (or shape) functions used to interpolate the values of the field
variable at an interior point in the element, from its value at certain key points (i.e. nodes) in the
element, and are given by:

[ ]1 2 3 3 2 2 3 3 2
1

( , ) ( ) ( ) ( )
2

N x y x y x y y y x x x y= - + - + -
D

1 1 1
1

( )
2

a b x c y= + +
D

(21.40a)

2 2 2 2
1

( , ) ( )
2

N x y a b x c y= + +
D

(21.40b)

3 3 3 3
1

( , ) ( )
2

N x y a b x c y= + +
D

(21.40c)

Expanding Eq. (21.39),

[ ]1 1 1 1 2 2 2 2 3 3 3 3
1

( , ) ( ) ( ) ( )
2e e e eV x y a b x c y V a b x c y V a b x c y V= + + + + + + + +

D
Also, it can be checked,

1, ;
( , )

0, .
i

i j j j

i j
N x y

i j
d

=Ï
= = Ì πÓ

(21.41)

≠
Kronecker Delta

[Check:
i = j = 1

[ ]1 1 1 2 3 3 2 2 3 1 3 2 1
1

( , ) ( ) ( ) ( )
2

N x y x y x y y y x x x y= - + - + -
D

2
1

2

D
= =

D
and ( 1) ( 2)i j= π =

[ ]1 2 2 2 3 3 2 2 3 2 3 2 2
1

( , ) ( ) ( ) ( )
2

N x y x y x y y y x x x y= - + - + -
D

= 0]

Since the shape functions Ni satisfy the Kronecker Delta function, it follows that the sum of the
shape functions for the triangular element would equal unity, i.e.

3

1

( , ) 1i
i

N x y
=

=Â (21.41a)
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O
3

21
(a) N1 (b) N2 (c) N3

1 2

O3

1 2

O

3

Figure 21.18 Shape functions (or linear interpolation functions)
for the triangular element 1–2–3.

Note: Length O1, O2, O3 are unit lengths normal to the plane of the triangular element 1–2–3.
Geometrically, the element triangle (1–2–3) is the projection of the shape function triangles
on the x-y plane.

Next, we consider the electrostatic energy (per unit length) associated with the element under
consideration (i.e. the element e) is given by Eq. (3.4) as:

e e= = —ÚÚ ÚÚ 221 1

2 2e eW ds V dSE (21.42)

where a two-dimensional, charge-free (r0 = 0) solution region has been assumed.
Using Eq. (21.38), we get:

3

1

( , ) ( , )e ei i
i

V x y V N x y
=

— = —Â (21.43)

(Since Vei are fixed potentials at the nodes of the element.)

Substituting Eq. (21.43) in Eq. (21.42),

3 3

1 1

1
( ) ( )

2e ei i j ej
i j

W V N N dS Ve
= =

È ˘= — ◊ —Í ˙Î ˚ÂÂ ÚÚ (21.44)

Defining the surface integral term in the above Eq. (21.44) as

( ) ( ) ( )e
ij i jC N N dS= — ◊ —ÚÚ (21.45)

then We [in Eq. (21.44)] can be written down in the matrix form as

( )1
[ ] [ ] [ ]

2
T e

e e eW V C Ve= (21.46)

where

1

2

3

[ ]
e

e e

e

V

V V

V

È ˘
Í ˙= Í ˙
Í ˙Î ˚

(21.47a)
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( ) ( ) ( )
2 311 1 1

( ) ( ) ( )( )
21 22 23
( ) ( ) ( )
31 32 33

[ ]

e e e

e e ee

e e e

C C C

C C C C

C C C

È ˘
Í ˙

= Í ˙
Í ˙
Í ˙Î ˚

(21.47b)

≠
The element coefficient matrix

Each term (i.e. matrix element) 
( )e
ijC  represents the coupling beween the nodes i and j. Its value

can be obtained from Eq. (21.45), e.g.

( )
1 212 ( ) ( )

e
C N N dS= — ◊ —ÚÚ

2 3 3 2 3 1 1 3
1 1

( ) ( ) ( ) ( )
2 2x y x yy y x x y y x x dSÈ ˘ È ˘= - + - ◊ - + -Î ˚ Î ˚D D ÚÚi i i i

[from Eqs. (21.40) and (21.38)]

[ ]2 3 3 1 3 2 1 32

1
( ) ( ) ( ) ( )

4
y y y y x x x x= - - + - - D

D

[ ]2 3 3 1 3 2 1 3
1

( ) ( ) ( ) ( )
4

y y y y x x x x= - - + - -
D

(21.48a)

Similarly,

( ) 2 2
2 3 3 211

1
( ) ( )

4
e

C y y x xÈ ˘= - + -Î ˚D
(21.48b)

[ ]( )
2 3 1 2 3 2 2 113

1
( ) ( ) ( ) ( )

4
e

C y y y y x x x x= - - + - -
D

(21.48c)

( ) 2 2
22 3 1 1 3

1
( ) ( )

4
e

C y y x xÈ ˘= - + -Î ˚D
(21.48d)

[ ]( )
23 3 1 1 2 1 3 2 1

1
( ) ( ) ( ) ( )

4
e

C y y y y x x x x= - - + - -
D

(21.48e)

( ) 2 2
33 1 2 2 1

1
( ) ( )

4
e

C y y x xÈ ˘= - + -Î ˚D
(21.48f)

and

( ) ( ) ( ) ( ) ( ) ( )
21 12 31 13 32 23, ,e e e e e e

C C C C C C= = = (21.48g)

These calculations would be easier, if the following notations are used, i.e.

= - = - -1 2 3 2 3 1 3 1 2( ), ( ), ( );P y y P y y P y y

(21.49a)and

= - = - = -1 3 2 2 1 3 3 2 1( ), ( ), ( )Q x x Q x x Q x x

By using Pi and Qi (i = 1, 2, 3 the local node numbers), each term of the element coefficient
matrix is obtained as

( ) 1
( )

4
e

i j i jijC P P Q Q= +
D

(21.49b)

¸
Ô
˝
Ǫ̂
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where D = -2 3 3 2
1

( )
2

P Q P Q (21.49c)

From Eqs. (21.49a), it should be noted that

1 2 3 1 2 30P P P Q Q Q+ + = = + + (21.50a)

\
3 3

( ) ( )

1 1

0
e e

ij ij
i j

C C
= =

= =Â Â (21.50b)

This serves as a check for these calculations.

21.7.4 Assembling All Element Equations

Having considered a typical element so far, we next move on to take into account all such
elements in the solution region.

Hence the energy associated with the collection of all the elements in the solution region
comes out to be

1 1

1
[ ] [ ] [ ]

2

N N
T

e
e e

W W V C Ve
= =

= =Â Â (21.51)

where

1

2[ ]

n

V

V
V

V

È ˘
Í ˙
Í ˙=
Í ˙
Í ˙
Í ˙Î ˚

(21.52)

n being the number of nodes, N the number of elements, and [C] = the global (or the overall)
coefficient matrix, being the collection of the individual coefficient matrices.

The main problem here is the derivation of [C] from [C(e)]. This process is best explained by
considering an actual example. So we consider a finite element mesh (a very simple one) as shown
in Figure 21.19, consisting of three elements which are interconnected.

1 3

2
3

(1)

(2)

(3)

3
32

4
2

5

2 11
1

Figure 21.19 A collection of three elements.

There are three elements and five nodes. The numbering of the nodes 1–2–3–4–5 (as shown on
the outside of the elements) is called the ‘global’ numbering. The numbering i–j-k, called the
‘local’ numbering (shown inside each element) corresponds to the sequence 1–2–3 for each of the
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elements. Note that in Figure 21.19, the global numbering 3–5–4 of the element (3) corresponds
to the local numbering 1–2–3 respectively of that element. It to be noted that the local numbering
for each element must be the counterclockwise sense whilst there is no such restriction on the
global numbering, and instead of 3–5–4 it is possible to choose 5–4–3 or 3–5–4 to correspond
with the local numbering of 1–2–3. It would be seen that whatever the sense of the global
numbering sequence, the global coefficient matrix [C] finally obtained, would be the same in all
cases. Since there are 5 nodes in our present problem, the (C) matrix will be a 5 ¥ 5 matrix of the
form given as below:

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

[ ]

C C C C C

C C C C C

C C C C CC

C C C C C

C C C C C

È ˘
Í ˙
Í ˙
Í ˙=
Í ˙
Í ˙
Í ˙Î ˚

(21.53)

As in the case of the element coefficient matrix, Cij represents the coupling between the nodes
i and j.

Cij is evaluated by using the fact that ‘the potential disribution across the inter-element
boundaries must be continuous’.

The contribution to the position i–j in the [C] matrix comes from all the elements which
contain the nodes i and j. As an example, to evaluate C11, from Figure 21.19, the global node 1
belongs to the elements (1) and (2) and it also happens to be the local node 1 in both the elements.
Hence

(2)(1)
11 11 11C C C= + (21.54a)

For C22 it belongs only to the element (1) and is same as the local node 3, and hence

(1)
22 33C C= (21.54b)

Similarly for C55, it belongs to the element (3) only, and is same as the local node 2, and so

(3)
55 22C C= (21.54c)

Considering the global node 3, it belongs to elements (2) and (3) and is the local node 2 of
element (2) and the local node 1 of the element (3). Thus,

(2) (3)
33 22 11C C C= + (21.54d)

The global node 4 belongs to all the three elements (1), (2) and (3); and is the local node 2 of the
element (1), the local node 3 of the element (2) as well as the local node 3 of the element (3); and
hence

(1) (2) (3)
44 (33)22 33

C C C C= + + (21.54e)

There is no direct link (or coupling) between

(a) the global nodes 2 and 3, and hence C23 = 0 = C32

(b) the global nodes 1 and 5, and hence C15 = 0 = C51 (21.55a)
(c) the global nodes 2 and 5, and so C25 = 0 = C52.

Ô̧
˝
Ǫ̂
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For C12 the global link 12 is same as the local link 13 of the element (1)

\ (1)
12 13C C= (21.56a)

and similarly for C21, the global link 21 is same as the local link 31 of the element (1)

\ (1)
21 31C C= (21.56b)

For C13, the global link 13 coincides with the local link 12 of the element (2)

\ (2)
13 12C C= (21.56c)

For C31, the same argument holds except that the linking direction is reversed.

\ (2)
31 21C C= (21.56d)

For C14, the global link 14 coincides with the local link 12 of the element (1) and the local  link
13 of the element (2). Hence

\ (1) (2)
14 1312C C C= + (21.56e)

For C41, only the linking direction is reversed in the above Eq. (21.56e)

\ (1) (2)
41 21 31C C C= + (21.56f)

Similar arguments for the remaining links will give

(2) (3)
34 (23) 13C C C= + (21.56g)

(2) (3)
43 (32) 31C C C= + (21.56h)

(3)(3)
35 12 53 21andC C C C= = (21.56k)

(3) (3)
54 23 45 32andC C C C= = (21.56l)

(1) (1)
42 2423 32andC C C C= = (21.56m)

Having thus obtained all the terms of the global coefficient matrix, it can now be written as:

(1) (2) (1) (2) (1) (2)
11 11 13 12 12 13

(1) (1) (1)
31 33 32

(2) (2) (3) (2) (3) (3)
21 22 11 23 13 12

(1) (2) (1) (2) (3) (1) (2) (3) (3)
21 31 23 32 31 22 33 33 32

(3) (3) (3)
21 23 22

0

0 0

[ ] 0

0 0

C C C C C C

C C C

C C C C C C C

C C C C C C C C C

C C C

È ˘+ +
Í ˙
Í ˙
Í ˙= + +Í ˙
Í ˙+ + + +Í ˙
Í ˙Î ˚

(21.57)

In the global coefficient matrix [C], there are 27 terms, i.e. 9 for each of the 3 elements, and the
element coefficient matrices overlap at those nodes which are shared by the elements.
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The properties of the global coefficient matrix are:

1. It is symmetric, i.e. Cij = Cji like the element coefficient matrix.
2. [C] is sparse and banded.

The reason for sparseness is that Cij = 0 for those values of i and j where no coupling
exists between the two nodes.

3. It is singular.

21.7.5 Solving the Resulting Global Equations

From the discussion of the variational basis of FEM in Chapter 5 and the earlier part of this
chapter (Chapter 5, Sections 5.6.1–5.6.5, and Chapter 21, Section 21.2), we know that the
Laplace’s equation (or to be more general the Poisson’s equation as the Laplace’s equation is a
degenerate case of Poisson), is satisfied when the total energy of the problem domain is
minimized. This implies that the partial derivatives of W (= the total energy) with respect to each
nodal value of the potential (Vi, i = 1, 2,..., n) are zero, i.e.

1 2

... 0
n

W W W

V V V

∂ ∂ ∂
= = = =

∂ ∂ ∂
or

0, 1, 2, ...,
k

W
k n

V

∂
= =

∂ (21.58)

As an example, to evaluate 
1

W

V

∂
∂  for the three element mesh of Figure 21.19, W is given in

Eq. (21.51) where N (the number of elements) = 3 and n the number of nodes) is 5, i.e.

1

1
[ ] [ ] [ ]

2

N
T

e

W V C Ve
=

= Â (21.51)

Since the partial differentiation is with respect to V1, only these terms of C which contain the
node 1 effect will give non-zero values, the rest of the derivatives will be zeroes. i.e.

1 11 2 12 3 13 4 14 5 15
1

W
V C V C V C V C V C

V

∂
= + + + +

∂

              1 11 2 21 3 31 4 41 5 51 0V C V C V C V C V C+ + + + + =

Since Cij = Cji(j π i), the above equation simplifies to

1 11 2 12 3 13 4 14 5 15 0V C V C V C V C V C+ + + + = (21.59)

\ In general 0,
k

W

V

∂ =
∂

gives      
1

0
n

i ik
i

V C
=

=Â (21.60)

n being the number of nodes in the mesh.
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This equation [i.e. (21.60)] can be written for all the nodes k = 1, 2,...,n (n = 5 in the present
case) and thus a set of simultaneous equations are obtained from which the solution of

= 1 2[ ] [ , ,..., ]T
nV V V V

can be found. This can be done by any of the two methods briefly described below.

1. Iteration Method

This method is similar to that used in F.D.M. Let the node 1 (of Figure 21.19) be a free node. The
potential at the node 1 can be obtained from Eq. (21.59) by writing it as

5

1 1
11 2

1
i i

i

V V C
C =

= Â (21.61)

In general, if the kth node is made free, then

1,

1
n

k i ik
kk i i k

V V C
C = π

= Â (21.62)

This equation is applied iteratively to all the free nodes in the mesh which of course contains n
nodes. But if the node k is not directly linked with the node i, then Cki = 0. So only these nodes,
which are directly linked with the node k, would contribute to Vk in the above Eq. (21.62).

Thus the potential of the node k, i.e. Vk can be determined by using Eq. (21.62), provided
the potentials at the nodes, which are connected to the node k, are known. So the iteration process
is started by setting the potentials at the free nodes to ‘zero’ or to the average potential which is

av min max
1

( )
2

V V V= + (21.63)

where Vmax and Vmin are the maximum and minimum values of the prescribed (or defined)
potentials at the fixed nodes. Using these as the initial values, the potentials at the free nodes are
calculated from Eq. (21.62). When the first iteration is complete, the calculated new value of
potentials at all the free nodes become the starting values for the second iteration. This process is
repeated till the change between the subsequent iterations becomes negligible, i.e. for the pth and
(p + 1)th  iteration.

1 , for 1, 2, 3,...,p p
k kV V k ne+ - < =

where e can be made as small as possible (e.g. e ~ .0001 or 1 ¥ 10–7, depending on the accuracy
requirements).

2. Band Matrix Method

In this method, all the free nodes are numbered first and the fixed nodes last, so that
Eq. (21.5l) can be rewritten as

1
[ ]

2

ff fp f
f p

pf pp p

C C V
W v v

C C V
e

È ˘ È ˘
= Í ˙ Í ˙

Í ˙ Í ˙Î ˚ Î ˚
(21.64)

where the subscripts f and p refer to nodes with free (floating) and prescribed (a fixed) potentials.
As Vp is constant (since it consists of known fixed values), the differentiations will be only with
respect to Vf. Thus applying Eqs. (21.58) to (21.64), the result is
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0ff p fp pC V C V+ = (21.65)

or, as we are dealing with matrices, this is

[ ] [ ] [ ] [ ]ff f fp pC V C V= - (21.66)

This equation can be expressed in the form

[A] [V] = [B] (21.67a)
or

[V] = [A]–1 [B] (21.67b)

where [V] = [Vf], [A] = [Cff], and [B] = – [Cfp] [Vp]

[A] is, in general, non-singular, and hence the potential at the free nodes can be evaluated by
using Eq. (21.66). In Eq. (21.67a), [V] can be solved for by Gaussian elimination. [V] in the
equation (21.67b) can be solved by matrix inversion, provided the matrix to be inverted is not
large.

21.7.6 Areal Coordinate System and 2D Linear Triangular
Elements

21.7.6.1 Areal coordinate system

We will first define this coordinate system.
Let ABC be a triangle and P be any point (either inside or outside the triangle). Then the

areal coordinates of the point P with reference to the triangle ABC are defined as the ratios

, ,
PBC PCA PAB

ABC BCA CAB

D D D
D D D

(21.68)

Let these three ratios be denoted by X, Y, Z respectively. It is obvious that if P lies within the
triangle ABC, then

X + Y + Z = 1 (21.69)

A

( , )x y1 1

B

( , )x y2 2

C ( , )x y3 3

P ( , )x y

Figure 21.20 Triangle ABC to define the areal coordinate system.
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But the location of P is not a necessary constraint for Eq. (21.69), and this relationship holds
wherever the point P may be in the plane of the triangle ABC (either inside or outside of DABC).
For this the signs of the areas of the triangles have to be accounted for. If P and A are on the same
side of line BC, then both the areas PBC and ABC have the same sign and the ratio X will be +ve.
But if P and A are on the opposite side of BC, then the ratio of the areas will be –ve.

Thus X will be +ve or –ve according as P and A are on the same or opposite sides of BC.
Similarly Y will be +ve or –ve according as P and B are on the same or opposite sides of

CA.
And also Z will be +ve or –ve according as P and C are on the same or opposite sides of

AB.
It should be noted that the three denominators for the three coordinates X, Y, Z are the same

both in magnitude and sign, e.g.
,ABC BCA CABD = D = D

the cylic order of the letters being the same in all. (anticlockwise rotation, referring to Figure 21.20).
Hence,

PBC PCA PAB ABCD + D + D = D

whatever be the position of the point P.

\ X + Y + Z = 1 (21.69a)

Next, without going into rigorous mathematical derivations, we will now state some
important and interesting results pertaining to this coordinate system.

1. If (x1, y1), (x2, y2), (x3, y3) be the Cartesian coordinates referred to any axes (rectangular
or oblique) in its plane of the vertices of the triangle ABC, and (x, y) the Cartesian
coordinates of the point P in its plane, then

1 2 3x x X x Y x Z= + +
(21.70)

1 2 3y y X y Y Y Z= + +

where X, Y, Z are the areal coordinates of the point P referred to the triangle ABC.
2. The general equation of a straight line in Cartesian coordinates is

Ax + By + C = 0 (21.71a)

which when transformed to areal coordinates, it becomes of the form

LX + MY + NZ = 0 (21.71b)

3. The equation of a line at infinity is often written as

X + Y + Z = 0 (21.72a)
though in rigorous form, it is

X + Y + Z = lim e (lX + mY + nZ) (21.72b)
e Æ 0

4. By using the relation X + Y + Z = 1, the algebraic equation of any curve in areal
coordinates can be made homogeneous in X, Y, Z.
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Note: Areal coordinates are only a particular case of a general system of ‘homogeneous
coordinates’.

In the general homogeneous coordinates, (X, Y, Z) the coordinates of the point P whose
Cartesian coordinates are (x, y) would have the relationship

1 1 1x X Y Zl m n= + +
(21.73)

2 2 2y X Y Zl m n= + +

where X, Y, Z are related by the equation

1 X Y Za b g= + + (21.74)
(in areal coordinates, a = b = g = 1)

Now
1 1 1

, ,
PBC PCA PAB

X Y Z
ABC BCA CABa b g

D D D
= = =

D D D (21.75)

The detailed discussion and derivation of both the coordinate systems would be found in
E.H. Askwith’s Analytical Geometry of the Conic Sections.

21.7.6.2 Shape functions and 2D linear triangular element

In two-dimensional F.E.M., triangle has been used as the basic element shape and a suitable trial
function based on this element has to be obtained. Consider the triangle of Figure 21.21, where

3(0, 0, 1)

L3

1(1, 0, 0)

2(0, 1, 0)
L1

L2

H1

h3

h
2

h
1

( , )x y

Figure 21.21 Triangular element with its shape function dimensions.

, 1, 2, 3i
i

i

h
N i

H
= = (21.76)

and (x, y) corresponds to (N1, N2, N3). (21.77)

The natural first order interpolation to be used within the triangle is

1 1 2 2 3 3( , )x y N N Nf f f f= + + (21.78)

Ô̧
˝
Ǫ̂



CHAPTER 21 NUMERICAL METHODS FOR AND COMPUTER SOLUTIONS . . . 847

The relationship which shows the interdependence of the three N’s can be determined by adding
up the areas of the three triangles formed by joining the vertices of the triangular element to the
point (x, y) as shown in Figure 21.21, i.e.

1 1 2 2 3 3
1 1 1

2 2 2
h L h L h L A+ + = (21.79)

where A is the total area of the triangle.
Replacing h1, h2 and h3 the trial functions given in Eq. (21.76), we obtain

1 1 1 2 2 2 3 3 3
1 1 1

2 2 2
N H L N H L N H L A+ + = (21.80)

But for every i = 1, 2, 3

1 1 2 2 3 3
1 1 1

2 2 2
A H L H L H L= = + (21.81)

Combining Eqs. (21.80) and (21.81), we get

N1 + N2 + N3 = 1 (21.82)

Two more relations between the triangular coordinates can be obtained in terms of the Cartesian
coordinates. Since (x, y) is of order one, these coordinates may be fitted exactly, with no inherent
approximation, by the interpolation of (21.82), so that

x1N1 + x2N2 + x3N3 = x (21.83a)

and
y1N1 + y2N2 + y3N3 = y (21.83b)

Note:

1. Compare the similarity between the above relations and the equations of the areal
coordinates discussed in Section 21.7.6.1.

2. Areal coordinate system is a three-axis, non-orthogonal, coordinate system for
representation of two-dimensional regions so that all the relationships can be expressed
in homogeneous form.

21.8 A SHORT NOTE ON FINITE-DIFFERENCE TIME-
DOMAIN METHOD (F-D T-D)

21.8.1 Introduction

The interaction of electromagnetic waves with arbitrarily shaped objects cannot be modelled so
easily nor accurately. Antenna apertures, cavity resonators, material inhomogeneities, etc. are some
of the examples of engineering interest. The modal transmission in such structures cannot be
modelled numerically so easily as to obtain correct information regarding magnitude and phase.
The methods for modelling such structures have been based on frequency domain integral
equation approach. The method of moments (MOM) and the finite element method (FEM) are of
this category. But these methods may require large matrices to be inverted. Hence for such
structures the F-D T-D method has certain advantages.
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The F-D T-D method gives a direct solution of Maxwell’s time-dependent curl equations
(i.e. Faraday’s law and modified Ampere’s law equations). It employs simple second-order central
difference approximation for space and time derivatives of the electric and the magnetic fields
(Though for time-derivatives, sometimes forward-difference approximation is preferred.) The
F-D-T-D is a time marching process which simulates the continuous actual waves by sampled-data
numerical analogues stored in the computer.

To illustrate the technique of the FD-TD method, a simple problem has been considered here.
As an example, a simple first order partial differential equation is solved. The equation has one
space variable and a time variable, i.e.

The potential function f is assumed to be a function of z-coordinate (space) and time t.

\ f = f (z, t) (21.84)
The equation under consideration is

1
0

cz t

f f∂ ∂
+ =

∂ ∂
(21.85)

with the initial condition
f = =( , 0) ( ) (say)z t F z (21.86)

(This equation is sometimes called the advection equation.)

It should be noted that the analytical solution of this equation is

f = -( , ) ( c )z t F z t (21.87)

which is a wave travelling in the +z-direction.
A point of further interest is that Eq. (21.87) is also a solution of the one-dimensional wave

equation where equation is of the form

f f∂ ∂
- =

∂ ∂

2 2

2 2 2

1
0

cz t
(21.88)

Both the wave equation (i.e. Eq. (21.88) and the advection equation (i.e. Eq. (21.85), belong
to the family of differential equations known as ‘hyperbolic equations’. The scalar diffusion
equation (or heat conduction equation) is a ‘parabolic equation’ and Laplace’s and Poisson’s
equations are called ‘elliptic equations’. The vector eddy current equation, with harmonic time
variation (i.e. ejw t)  can be reduced to ‘elliptic equation with complex variables’.

A three-dimensional view of f variation can be obtained pictorially with z and t as two
coordinate axes and f along the third axis orthogonal to z and t as shown in Figure 21.22.

t

f

z

L/2

–L/2

Space
time
region

0

h

t

Figure 21.22 Grid system used for evaluation of f of Eq. (21.85).
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Since the problem is to be solved numerically, the space dimension (say L) in which the wave
is propagating, has been sub-divided into N sections, so that

L
h

N
� (21.89)

It the velocity of propagation is c, then let � be the time-period required to transverse the
length h of the grid, so that

h = c� (21.90)

At this stage, the numerical stability is not be discussed; and assuming ‘periodic boundary
condition’, i.e. when the wave reaches the boundary z = L/2, it reappears at the same time at
z = –L/2, and thus continues to propagate in the region –L/2 < z < +L/2.

Next, Eq. (21.85) is converted to F.D. form. This can be done by Taylor series expansion or
by line integration, as shown in Chapter 5, Section 5.5.2). Hence without going through the
intermediate steps again, the final result is written down directly here.

The time derivative term is approximated by using forward difference,

f f��

�

� �� �
�

,( , ) ( )i n i nz t z t

t
(21.91)

where �
� �� � � � �� �� 	

1
, ( 1)

2 2i n
L

z i h t n (21.91a)

referring to Figure 21.22.
The space derivative is approximated by using central differences,

� �� � � ��
�

�
( , ) ( , )

2
i n i nz h t z h t

z h
(21.92)

Substituting from Eq. (21.91) and (21.92), Eq. (21.85) reduces to:

� � � � �

�

� � � � �
� �

( , ) ( , ) ( , ) ( , )1
0

2 c
i n i n i n i nz h t z h t z t z t

h
(21.93)

Of the four terms in the above equation, three terms are at the time instant tn and one term is at
the instant tn + t. Hence rewriting the equation,

� ��
� � � � �� � � � � �

c
( , ) ( , ) ( , ) ( , )

2i n i n i n i nz t z t z h t z h t
h

(21.94)

The finite difference method based on this equation is the F-D T-D method. The evaluation
of these terms in the time-steps is the ‘Time-marching process’. The initial values are all known
at t0 = 0, and the boundary conditions would give the values at the boundaries.

This is the underlying principle of the F-D T-D method, and serves as an introduction to this
method.
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Modern Topics
and Applications22

22.1 INTRODUCTION

In our study of electromagnetism, we have so far discussed both the magnetic diffusion (i.e. eddy
currents) and most of the aspects of electromagnetic waves (i.e. propagation, guidance and
radiation). Apart from the applications discussed till now, there are other areas of applications of
electromagnetism. Some of these applications are microwaves used in divese areas ranging from
satellite communication, EM interference and compatibility, remote seusing, heating, radar, radio
astronomy and so on, lasers, fibre optics, etc on the high frequency side, and electrical machines
and allied power generating equipment on the low frequency side. We shall now briefly describe
and discuss some of the new applications since the old applications have been comprehensively
discussed in specialized textbooks elsewhere.

We shall start with some of the important high frequency applications first and then go on
to describe briefly the new power frequency applications as well.

22.2 MICROWAVES

Microwaves are electromagnetic waves within the frequency range of approximately 300 MHz to
1000 GHz.

In the field of communication, the main means for carrying thousands of channels over long
distances are:

(1) Microwave links (2) Co-axial cables, and (3) Optical fibres (this being a new device, it
will be discussed briefly later.

Microwaves are highly attractive for communications because of the following properties:

(a) Wide available bandwidth
(b) Directive properties of short wavelengths.

Because of these properties, microwave communication has now become more common than
the radio and TV. A microwave system usually consists of a transmitter which includes mocrowave
oscillator, waveguides and a transmitting antenna and receiver sub-system made up of receiving
antenna, transmission line or waveguide, microwave amplifier and a receiver. The use of microwaves
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has very significantly increased. Some of the examples are telecommunications, radio astronomy,
land surveying (by remote sensing). Radar, terrestrial microwave links, heating, medicines and so
on. We shall briefly describe qualitatively the salient aspects of some of these applications. We
shall also describe some of the important low-frequency applications.

22.2.1 Microwave Heating

Microwaves are preferred over the low frequency electromagnetic waves because the microwave
energy can be more easily directed, controlled and concentrated. Also various atomic and
molecular resonances occur at the microwave frequencies. So this energy can be used for heating
purposes (another being remote sensing). The heating property of microwave power is used in a
wide variety of domestic, commercial and industrial applications. The microwave oven is one
such typical example (Figure 22.1).

Switches
and Indicators

Waveguide

Figure 22.1 Microwave oven (a typical one).

The oven gets the microwave energy for cooking from a magnetron which is a thermionic
valve capable of producing high power oscillations in the microwave region. The magnetron
consists of a heater, central cathode and a concentric, radially segmented anode, all enclosed in
an evacuated container, located in the gap of an external magnet. The movement of electrons is
controlled by a combination of crossed electric and magnetic fields. It is also used extensively in
radars. The energy from the magnetron is carried through a waveguide into the oven which is
basically a resonant cavity in which the food for cooking is located. The reflections from the
stationary walls and the motion of the stirring fan ensure the microwave energy to be well
distributed in the cavity. The shape of the oven cavity is usually a rectangular parallelepiped,
though there are some ovens with cylindrical cavity having a hemispherical top for more uniform
cooking. Thus the microwave makes the cooking to be fast and evenly distributed. In modern
microwave ovens, facilities are provided for grilling, convective cooking as well, in addition to
the microwave cooking. These two additional facillities are done at normal frequency and so these
sources (i.e. heater and fan) get their electricity at power frequency, thus bypassing the magnetron.
The microwave oven operates at 2.4 GHz. Apart from this type of domestic cooking, the microwave
heating capability is used in physical diathermy (in medical treatment) and in drying potato crisps,
paper, cloth, etc.
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22.2.2 Radar Systems

The word radar is an acronym for RAdio Detection And Ranging. It includes any system that
employs microwaves for the purpose of locating, identifying, navigating or guiding such moving
objects as ships, aircraft, missiles, or artificial satellites. It is now also used for burgler alarms,
garage-door openers, and police speed detectors.

The system essentially consists of a generator of electromagnetic radiation of centimetre
wavelengths, the output of which is pulse-modulated at a radio frequency and fed to a movable
antenna from where it is radiated as a beam. Distant objects crossing the path of the beam reflect
the pulses back to the transmitter which also acts as a receiver. A cathode-ray tube (CRT) indicator
displays the received signal in the correct time sequence so that the time required for a pulse to
travel to the object and back can be measured. Thus the distance of the object from the transmitter
can be calculated and its direction can be found from a knowledge of the direction of the antenna.
This fundamental technique has now been extrapolated so that automatic guidance and navigation
can also be made by computers without requiring a display system.

The radio transmitter should be of high power and the receiver has to be extremely sensitive.
The receiving antenna is also highly directional. The amplitude and delay of the receiving signal
are the two important parameters required for estimating the size and the distance of the observed
object from the radar. The size of the object is characterized by a parameter called the “radar cross-
section”. This is a complex function of the reflectivity of the object and its physical shape and
size. For example, metallic objects have higher radar cross-section compared with dielectric
objects.

Power reflected by an object
= Power density of the incident wave ¥ Radar cross-section (= s )

Let
 Pt = Transmitting power of the antenna

G = Directive gain of the antenna

Ae = Effective aperture of the antenna in the receiving mode 
2

4

Gl
p

=  (since the same antenna

is used for transmission and reception)
\ Power density of the transmitted signal (at the object),

p
=

24
tPG

W
r

(22.1)

where r is the distance of the object from the radar.
\ Power reflected by the object,

s
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p
= =ref 24
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r
(22.2)

\ Power density of the reflected power at the radar,

s
p p

= =ref
2 2 24 (4 )

t
r

P P G
W

r r
(22.3)

(This assumes that the reflected power is uniformly distributed in all directions.)
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\ Power received by the radar antenna,
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Thus Prec must be greater than the minimum detectable power of the receiver, for detection of objects.
Since r >> l, G must be quite large so as to maintain Pt within acceptable limits.
Hence radars use highly directional antennae like parabolic dishes.
The energy transporting medium from the transmitter to the antenna is usually a metal wave-

guide (rectangular or circular) since the radar needs high power to be transmitted.
The radars, though originally developed for military purposes, now have many civilian

applications, like weather monitoring, geological survey, air-traffic control, remote sensing and
planetary explorations. In defence applications, when they talk of invisible bombers, it is meant
that these planes are not visible on the radar.

In a sense, the defence requirements on radars are contradictory, because on one side the radar
research aims at detecting targets with highest resolution and sensitivity whilst on the other side
aircraft and ships are being developed with extremely low radar cross-section so as to make them
as invisible to radar detection as possible. (Invisible planes are used for spying purposes).

22.2.3 Remote Sensing

In radio remote sensing, the microwave frequencies are used for geological survey (i.e. to probe
the terrain). A radar is mounted on a moving platform which can be an aircraft or a satellite above
the surface of the earth. Proper frequencies have to be selected for effective imaging of a region
since the reflectivity of earth’s surface is a function of both location as well as frequency.

Two types of radars are used for getting high quality radio images of the earth’s surface, i.e.

1. Side looking radar (SLR)
2. Synthetic aperture radar (SAR).

In a SLR, the reflection from a region illuminated by the beam of the radar gives the average
reflectivity of that region. As the radar carrier moves, the beam spot on the region also moves and
thereby the reflectivity profile of the region along a strip is produced. Multiple scanning of
adjacent strips is done to build an image of the complete region. To obtain high resolution, large
antennae have to be used, and the radar vehicle should be at low attitude for better linear resolution
in the images.

In the SAR, the reflected signals for the entire flight of the radar are stored and then
coherently processed to form a synthesized antenna beam which is much narrower compared to the
beam of the radar antenna. The linear resolution of the SAR is proportional to the size of the
antenna, i.e. the resolution of the image improves as the size of the antenna is made smaller. Also
the resolution is independent of the height of the vehicle.

Numerical electromagnetic techniques are used to obtain accurate models of the earth’s
surface.

22.2.4 Radio Astronomy

This is the study of heavenly bodies by the reception and analysis of the ‘radio frequency
electromagnetic radiaton’ which they emit or reflect. In general the electromagnetic radiations from
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the extra-terrestrial sources are either absorbed by the earth’s atmosphere or reflected away from the
earth by the ionosphere. The two exceptions are: (i) the optical wavelengths which are able to
penetrate the atmosphere, and (ii) the radio wavelengths in the band 1 cm to 10 metres which are
too long to be absorbed by the atmosphere and too short to be absorbed by the ionosphere. These
radiations which pass through the ‘radio window’ come from a variety of sources ranging from
objects within the solar system to galaxies which are too far to be observed by optical telescopes.
The origin of these radio frequency emissions can be thermal or non-thermal. Information is
extracted from the apparently incoherent radio noise from the universe, by constructing maps of the
sky in terms of radio emission at several different frequencies which are then compared with optical
observations. Thus the radio sources and radio galaxies have been identified.

Radio telescopes are the instruments used in radio astronomy to pick up and analyse the radio
frequency electromagnetic. radiations of extraterrestrial sources. The two main types of radio
telescopes are:

(i) Parabolic reflectors (paraboloid reflector—a concave reflector, the section of which is
a parabola—also called a dish antenna). These are usually steerable so that they can be
pointed to any part of the sky and they reflect the incoming radiation to a small
antenna at the focus of the paraboloid.

(ii) Fixed radio interferometers. These consist of two or more separate antennae (an array),
each receiving electromagnetic radiation of radio frequencies from the same source and
each joined to the same receiver.

This type of telescope has greater position finding accuracy and can distinguish a small
source against an intense background better than the parabolic type. On the other hand the
parabolic type is more verslatile because of its mobility.

To achieve the same or similar resolution of optical telescopes, the radio telescope, operating
at radio frequencies would need to have a size a few hundred metres to few kilometres. Since
building a continuous aperture type of telescope of such sizes is not a viable proposition, the radio
astronomers have developed a technique known as the ‘aperture synthesis technique’ by using
which a large aperture can be synthesized without actually building one of that magnitude. The
method is based on the measurment of the spatial Fourier spectrum of the brightness distribution
(and not measuring this distribution directly). This spectrum is the auto-correlation function (also
called visibility function) of the incoming radiation from the sky. The Fourier inversion of the
visibility function then provides the brightness distribution of the sky.

22.2.5 Satellite Communication

This has been one of the important modes of long distance communication. There are many
advantages of this technique, e.g. large bandwidth, mobility, dynamic assigment of resources and
so on. Communication satellites are artificial earth satellites used for relaying radio, television and
telephone signals around the curved surface of the earth. ‘Passive’ satellites merely reflect the
transmissions from their surfaces whereas the ‘active’ satellites are equipped to receive and
retransmit signals.

The orbit of an artificial earth satellite which has a period of 24 hours is called synchronous
orbit (or stationary orbit). The altitude corresponding to such an orbit is about 35,700 km, and a
satellite in a circular orbit parallel to the equator at this altitude would appear to be stationary in
the sky (it is called a geostationary satellite). Communication satellites in synchronous orbits are
used for relaying radio signals between widely separated points on the earth.
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In satellite communication, radio signals are transmitted from a transmitter on the earth (this
is called the ‘earth station’) towards the satellite. The satellite on receiving the signal, changes its
frequency and retransmits it towards the earth. The satellite generally offers point to multipoint
transmission (i.e. broadcasting). Generally microwave frequencies are used for satellite
communication, since microwaves propagate along straight lines like a light ray and are not bent
by ionosphere as are lower frequency signals. The design of a satellite communication link takes
into consideration all the facts of the electromagnetic waves which have been discussed so far. The
satellite link design gives an estimate of both, i.e. (a) the power which the satellite would receive
from an earth station, and (b) the power which a receiving station on the ground would get from
the satellite. This design would have to take into account aspects such as (i) energy absorption
by the space between the satellite and the earth, (ii) changes in wave characteristics during
propagation, and (iii) design of antenna system. Since the power at the satellite is limited, the
antenna must be designed for high directivity as well as high efficiency. The antenna is a crucial
component of this link system.

The energy loss in the path (i.e. the path-loss) is independent of the transmitting and the
receiving systems. The path-loss is inversely proportional to the square of the wavelength and
hence the shorter wavelengths (i.e. higher frequencies) suffer greater path-loss. A geostationary
satellite operating (say) at 6 GHz would have a path-loss of about 200 dB.

22.2.6 Electromagnetic Interference and Compatibility
(EMI and EMC)

Electromagnetic Interference (EMI): It is the degradation of performance and consequent
malfunctioning of electronic devices and systems due to environmental electromagnetic fields.

There are various sources of electromagnetic emission, like spark plugs, relays, electric
motors and generators. The disturbing fields due to such devices are comparatively localized,
though there are electronic devices whose disturbing fields are more distributed. (Note: By
disturbing fields it is meant that these fields are more of accidental by-products of the design of
the device or the system. These are called ‘radiated emissions’). So it can be said that the
electromagnetic environment consists of apparatuses like radio and TV broadcast stations, radar
systems (both air-port as well as traffic ones), flourescent lights, car ignition systems, mobile radios,
navigational aids and so on, which radiate electromagnetic energy as they operate. The results of
such interference are obvious in every day life, such as ‘ghosting’ in television reception, high
voltage power lines causing interference with personal computer operation, taxicab radio
interference with police radio system. Hence electromagnetic compatiblity can be defined as
follows:

Electromagnetic Compatibility (EMC): An electronic system is said to ‘electromagnetically
compatible’ with its environment when the system is able to perform compatibly with other
electronic systems and neither produces nor be susceptible to the environmental electromagnetic
disturbances.

To achieve EMC, all electronic devices should be able to co-exist and operate in harmony,
i.e. the device should be able to function as per the designed purpose in presence of and in spite
of the others. In fact EMI is the problems caused by the unwanted voltages, currents and fields on
the devices and EMC is the solution to the problem. The goal of EMC is to achieve the system
compatibility which is achieved by freeing the system of EMI problems.
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22.2.7 Sources and Characteristics of EMI

EMI can be classified in terms of its causes and sources, so that it will be easier to control this
type of disturbance. As stated earlier, any electronic device can be the source of EMI even though
the designer may not have intended so. The cause of EMI can be within the system (i.e. an
intrasystem problem) or can be from outside (i.e. an intersystem problem). Some examples of both
the types are listed below. Here the sources have been termed emitters and the victims susceptors.

A. Intrasystem Causes B. Intersystem Causes
Emitters Susceptors Emitters Susceptors
Power supplies Relay Lightening stroke Radio receivers
Radar transmitters Radar relays Computers TV sets
Mobile radio Mobile radio Power lines Heart pacers
transmitters receivers
Flourescent lights Ordnance Radar transmitters Aircraft navigation systems
Car ignition systems Car radio receivers

The sources of EMI can be natural or man-made (artifical).

22.2.8 Control of EMI

There are three ways of preventing EMI and making systems compatible.

(i) Supressing the emission at the source
(ii) Making the transmission path inefficient

(iii) Making the receiver less susceptible to emission.

The first line of defence would be to avoid fast switching of the signals. This should be done
even in digital systems by switching smoothly so as to reduce the high frequency content of EMI,
thus reducing the coupling of the interference. Grounding establishes an electrically conducting
path between two points to connect electrical and electronic elements of a system to one another
or to some reference point (designated as the ground). An ideal ground plane is a zero-potential,
zero-impedance body used as reference for all signals in associated circuitry. All undesired currents
can be transferred to it for elimination of their effects. ‘Floating point ground’ is for electrical
isolation from a common ground plane. But this can cause a hazard. The single-point grounding
is used for minimizing the effects of gound currents and eliminating the effects of loop currents
in multiple-earthing.

Shielding is done to prevent radiated energy from entering a specific region or to confine
the radiated energy in a specified region (Figure 22.2). The term ‘shield’ usually refers to a metallic
enclosure that completely encloses a particular electronic device or sub-system through non-solid
and braid, as is used on cables. The shielding effectiveness is defined by:

= 10
incident power density

SE 10 log
transmitted power density (22.5)

where the incident power density is the power density measured at a point before the shield has
been installed, and the transmitted power density is the power density at the same point after
the shield has been installed. SE can also be defined in terms of electric or magnetic field
strengths, i.e.
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10SE 20 log for electric fieldsi
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E
=

and 10SE 20 log for magnetic fieldsi
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Figure 22.2 Electromagnetic shielding.

Filtering: An electrical filter is a network (either lumped or distributed) of resistors, inductors
and capacitors that allows certain frequencies to pass through while blocking the other
frequencies. Filters usually reduce the levels of conducted interference substantially. The most
important characteristic of a filter is its insertion loss which is a function of frequency.

= 10 1 2IL 20 log ( )V V
where

V1 = output voltage of a signal source, with the filter in the circuit
V2 = output voltage of the signal source, without the filter in the circuit.

22.3 TELEPHONE NETWORKS

In telephone networks, all transmission is through a pair of wires. All subscriber loops in the
telephone networks are made with a single pair of wires, using bidirectional transmission (i.e. the
users at both ends of the line talk simultaneaously, thereby superimposing their signals on the
wire pair).

For long distance transmission (i.e. between two switching offices) it is better to use
two unidirectional transmissions on different pairs of wires. The reason for this requirement is that
the long distance transmission requires amplifiers and these are unidirectional. Hence the long
distance transmission becomes a four-wire system (Figure 22.3). So for long distance connection,
at some point there has to be a conversion from two-wire to four-wire system and vice-versa. This
conversion device is called a ‘hybrid’.

Two-wire Two-wire

Hybrid Hybrid

Four-wireZ Z

Figure 22.3 Two-wire to four-wire conncetions in telephone lines using hybrids.
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In earlier days, the hybrid circuits were connected through interconnected transformers. But
nowadays, the electronic hybrids need only the impedance matching for perfect isolation between
oppositely travelling signals. When there is an impedance mismatch on the lines (due to the
variable impedance of the two-wire line in switching environment), there would be reflections on
the line causing an echo. The echoes are minimized by adaptive signal processing techniques.

22.4 LASERS

Laser is an abbreviation of the words Light Amplification by Stimulated Emission of Radiation. It
is essentially an optical maser (see below for maser). The laser produces a powerful, highly
directional, monochromatic, and coherent beam of light. Its working principle is essentially same
as that of a maser, except that the ‘active medium’, in the case, consists of or is contained in an
optically transparent cylinder with a reflecting surface at one end and a partially refltecting
surface at the other. The stimulated waves pass up and down the cylinder repeatedly, some of
them emerging as light through the partially reflecting end.

In a ‘ruby laser’, the chromium atoms of a cylindrical shaped ruby crystal are optically
pumped to an excited state by a flash lamp and then it emits pulses of highly coherent light
(population inversion). There are lasers which have been constructed by using a mixture of inert
gases (e.g. helium and neon) to produce a continuous beam. These is also another type of laser
consisting of a cube of specially treated gallium arseuide which can emit infra-red radiation when
a current is passed through it. Lasers have been used in eye surgery, holography and metal
cutting, etc.

Maser: This word is an acronym of Microwave Amplification by Stimulated Emission of
Radiation. This is a class of amplifiers and oscillators which make use of the internal energy of
atoms and molecules in order to obtain low-noise level amplification and microwave oscillations
of precisely determined frequencies. The basic principle of operation of these devices is the
stimulated emission which is the emission by an atom in an excited quantam state of a photon,
as the result of the impact of a photon from outside of exactly equal energy. Then the stimulated
photon or wave is augmented by the one emitted by the excited atom.

A maser consists of an active medium which can be either in the gaseous or solid state, in
which most of the atoms can be optically pumped to an excited state which is done by subjecting
the system to electromagnetic radiation of different frequencies to that of the stimulating
frequency.

The active medium is enclosed in a resonant cavity so that a wave is built up modally
(i.e. with only one mode of oscillation) thereby giving a single output frequency. Masers when
made to operate at optical frequencies, are referred to as lasers. (Note: ‘Population inversion’: In
a laser, when a large proportion of the emitting ions have been raised to an excited energy level
by the process of optical pumping which means that the energy has been introduced in the system
by an external light source, then the state of population inversion exists in it (the laser). This is
an essential step in the process of stimulated emission.

It should be noted that the laser is essentially an amplifier and not a light generating device.
But, since any amplifier can be converted into an oscillator by feedback with a properly selected
frequency, a laser can also be converted into a source of coherent light. The crucial component
of the laser is a frequency feedback device. This feedback is done by creating a resonant cavity
around the active (i.e. the amplifying) medium. Figure 22.4 shows the basic elements of a laser.
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Active medium
(amplifying)
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Mirror M1

Mirror M2

(partially reflecting)

Coherent light

Figure 22.4 Basic elements of a laser.

Only certain frequencies of the light would get sustained amplification as a result of repeated
reflection between the two mirrors M1 and M2. For a sustained oscillation of that frequency (= w),
the gain (= G) due to the round trip between the two mirrors should be unity and the phase
difference due to this trip would be a multiple of 2p. Hence if the reflection coefficients of the two
mirrors are denoted by R1 and R2 respectively, then

R1R2 exp(2GL) = 1 (22.6)

and 2bL = 2mp, m being an integer (22.6a)
where

 b = phase constant of the light wave of frequency w

= 
w

,
c

n
 where n = refractive index of the active medium.

\
pw =

cm

nL
(22.7)

The light coming out of a laser has random polarization to achieve normal polarization, the
light from the laser has to be reflected from a dielectric slab at the ‘Brewster angle’ as mentioned
in Chapter 17. Section 17.15.

22.5 OPTICAL FIBRE

Through the last century (20th), the basic media for transmitting radio frequency (RF) energy have
been wire-pairs (i.e. conductors), co-axial cable, waveguides and atmosphere. Radio frequency
range has been 10 kHz to 300 GHz. With increasing demands for more communication channels,
a new technology has been developing and the upper limit of the radio frequency is being pushed
to and beyond the infra-red and visible portion of the spectrum. This is the development and use
of optical fibres which are small diameter cylindrical glass filaments which transmit EM waves at
frequencies near the visible part of the spectrum. Light differs from radio in that it has both the
properties of particles called photons and the properties of EM waves. ‘Photonics’ is the term
commonly applied to optical fibres. Both particle physics and EM wave theory are necessary to
understand completely the working of optical fibre systems. Particles are characterized by their
energy, momentum, and they can be individually physically identified. EM waves, on the other
hand are characterized by frequency, wavelength, polarization, and velocity. Basically optical
fibre is a cylindrical dielectric waveguide operating at optical frequency.
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Optical fibres are specially constructed glass, plastic or ceramic cylindrical waveguides to
contain the propagating electromagnetic fields. The fibres operate at very high range of the
frequency scale, so that it has been customary to express optical energy in terms of wavelengths
(= l). The visible spectrum ranges from 0.4 ¥ 10–6 metres (blue) to 0.6 ¥ 10–6 metres (red). In terms
of frequency, it will be in tera hertz [= THz (1012)]. The most commonly used optical fibres are
constructed from silica (SiO2) which has been purified and doped in order to reduce the energy
loss. The optimum performace wavelength range for SiO2 is from 0.8 ¥ 10–6 metres to
1.6 ¥ 10– 6 metres. An obvious advantage of operating at high frequencies is the increase in
bandwidth available for transmitting information. Modulated laser bandwiths for optical fibre
transmission are about 100 GHz wide, i.e. about 0.1% of the carrier frequency.

Communication systems have a wide range of power values. A laser transmitter array might
be radiating 100 mW into a fibre whilst the detector at the end of the fibre might be receiving
one-ten thousandth of a mW—a difference of 106. So the relative powers are expressed in terms
of decibels.

The velocity of light (i.e. EM waves) in free space or vaccum is v = c = 3 ¥ 108 m/s The
velocity of light in water, glass or any media other than free space is lower and is given by
v = c/n, where n = index of refraction in the particular medium.

In every medium other than a vacuum, the velocity exhibits some degree of frequency
dependence. Most RF signals have multiple frequency components usually because of modulation
sidebands on a carrier. This dependence of velocity on frequency (or wavelength l) can present
significant problems. This phenomenon is called dispersion.

The indices of refraction of most materials used for different components of any optical fibre
system are greater than unity (this being the refractive index of free space). In circular section
optical fibres, the central section (or core) has a higher refractive index than the outer annulus
(called the cladding). Usually the core index is about 1.5 and that of the cladding is slightly lower.

The velocity of the EM optical waves is less in a medium with refractive index >1 (this being
the refractive index of free space). Hence, when two media of differing refractive indices meet, the
optical wave is refracted or bent on the interface. Thus the wave in the second medium either speeds
up or slows down depending whether its (second medium) refractive index is less than or greater
than that of the first medium. The bending (or the refraction) is either towards the normal to the
interface (n1 < n2) or away from the normal to the interface (n1 > n2). In an optical fibre, since the
central core has higher refractive index than the outer cladding, the light which impinges on the
core-cladding interface is bent back to the centre and guided along the fibre, due to total internal
reflection.

The EM wave theory is used to analyse the propagation of light in the optical fibre medium.
The particle theory is used for calculating the energy of the system by considering the energy of
the photons. The behaviour of photons is needed for describing the laser and light-detector
performances. The energy of a single photon of frequency f is

W (joules) = h ¥ f = h ¥ c/l (22.8)
where h = Planck’s constant = 6.626 ¥ 10–34 J-s

22.5.1 An Optical System

For most of the applications the system has three components (Figure 22.5):
1. An optical source: There are two types of sources: (a) lasers, and (b) LEDs (Light

Ô̧
˝
Ǫ̂
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Emitting Diodes). Both these are electrical to optical energy converter (E/O). Lasers, at
high electrical drive levels, increase their outputs through an internal oscillation.
This permits high output powers and narrow source bandwidth. LEDs are semi-
conductors, small in size and consume little power, easier to couple to fibres and
integrate, and are of low cost. Both LEDs and lasers at low drive levels emit light
through spontaneous emission, which is a random process and broadband.

2. Optical detectors: These convert optical signals to electrical signals (O/E), so that the
original signals can be recovered. These are made of semiconductor materials like Si, Ge
or InGeAs. Their choice is a function of the required wavelength l. In some detectors
like avlanche photo-detector, internal gain can be achieved by using high voltages.

3. Optical fibres (or the media) to carry the optical signals from the source to the detector.
An optical fibre is basically a cylindrical dielectric rod called core, surrounded by a
dielectric annulus called cladding. The cladding has an outer jacket (i.e. buffer or
coating). The electrical signals which modulate the carrier can be either analogue or
digital, and are referred to as baseband input signals. The digital signals, using pulses of
same level and shape (to represent the original signal) require more complicated coding,
modulation/demodulation but have better noise and cost advantages. This is because of
the tremendous progress in the integrated electronics uses for digital signal processing
(DSP) and transmission. The electrical signals will also be part of a time-division
multiplexed (TDM) bit stream, and the source might be internally or externally
modulated. The source has to be carefully coupled to the fibre and might be combined
with other optical signals using wavelength division multiplexing (WDM). The fibre
would be probably part of a cable that contains other fibres. The fibres can be either
large core multimode or small core single-mode. A long fibre would need splices at
intermediate points. At the receiver end, the components are required in the reverse
order to restore the electrical signal.

Optical source
(E/O)

Optical fibre
Optical detector

(O/E)
Base-band

signal
Signal

Figure 22.5 Optical fibre system.

22.5.2 Optical Fibre Characteristics

An optical fibre is made up of three concentric cylindrical sections, the core, the cladding and the
buffer. The core consists of one or more thin strands of glass or plastic. The cladding is plastic or
glass coating surrounding the core which may be step-index or gradient index. In the step-index
core, the refreactive index is uniform but undergoes an abrupt change at the interface of the core
and the cladding. The graded-index core is of the type in which the refractive index of the core
varies as a function of the radial distance from the central axis of the core. The jacket or the buffer
usually surrounds one or more of the cladded fibres and acts as a protection against environmental
moisture or sunshine and so on (Figures 22.6 to 22.8).
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CoreCladding

Buffer

Figure 22.6 Optical fibre structure.

Jacket (buffer)

Cladding

Core
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Figure 22.7 Behaviour of light ray in a fibre.
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Figure 22.8 Contd.
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(c) Graded-index Multimode

Figure 22.8 Optical fibres transmission modes.
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Figure 22.9 Total internal reflection, n1 > n2: (a) f1 < fc; (b) f1 = fc; (c) f1 > fc

22.5.2.1 Total internal reflection

As the light ray propagates from medium (1) to medium (2) (i.e. in the optical fibre from the core
to the cladding), at the interface, the light ray (or the wavefront) will obey the Snell’s law,
(Figure 22.9), i.e.

n1 sinf1 = n2sinf2 (22.9)

(Note: In Chapter 17, these angles have been denoted as qs and so the f mentioned here is comple-
ment of the q in Chapter 17).

Also, since the refractive index of the core (i.e. n1) is greater than the refractive index of the
cladding (i.e. n2) a ray incident in the core will be refracted away from the normal to the core–
cladding interface [Figure 22.9(a)]. As f1 increases, there will be a critical value of f1, i.e. f1 = fc,
for which f2 = 90°. For values of f1 > fc, there will be no refracted ray and all the energy will
be reflected back in the core with no leakeage in the cladding [Figures 22.9(b) and (c)].

i.e. f1 = incident angle = fc = 1 2

1

sin
n

n
- Ê ˆ

Á ˜Ë ¯
[Ref. Eq. (17.155)] (22.10)

A ray striking the interface at f1 < fc will have a large part of its energy lost in the cladding.
Since n1 and n2 are very close, a useful mathematical relationship can be written down as

2 2
1 2 1 2

2
112

n n n n

nn

- -
D = � (22.11)

or 2 1(1 )n n - D� (22.11a)
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It follows from the above that a very small D means that the critical angle fc is close to 90°. This
is typical of silica fibres. In all plastic fibre with a large core diameter, D is much greater and fc

is much smaller. Both these types have important applications.
For the present discussion, the ‘plane of incidence’ of the incident ray is as defined in Chapter

17, Section 17.13. Any linearly polarized wave of arbitrary polarization can be resolved into
parallel and perpendicular (normal) components with reference to the plane of incidence. Hence
the coefficients of energy reflection can be easily written down from the Fresnel’s laws of reflection
[Ref. Eqs. (17.153a–d)].

f f

f f
1- + -

=
+ -

2
2 2 2 2
2 1 2 1 1

P P
2 2 2 2
2 1 1 2 1 1

cos ( sin )
(Parallel polarization) =

cos ( sin )

n n n n
R R

n n n n
(22.12a)

f f

f f
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= =

+ -

2
2 2 2

1 1 2 1 1
N N

2 2 2
1 1 2 1 1

cos ( sin )
(Normal polarization)

cos ( sin )

n n n
R R

n n n

It should be noted that the glass-to-air interface has a critical angle of 41.8° and the air-to-
glass interface has no critical angle.

With parallel polarization for both of them, there is Brewster angle for which there is ZERO
reflection, a condition obtained by making the numerator of RP equal to zero, so that

f -= = 1 2

1
Brewster angle taniB

n
n (22.13)

22.5.2.2 Numerical aperture

This is one of the most important parameters of an optical fibre (or any optical device which
accepts and uses light energy). The numerical aperture is “the proportion of the impinging light
that can be accepted and used.” Figure 22.10 shows a fibre accepting light from a source. It should

A

A

1

2

3 θ1

φ1

θ
A

Air n2 cladding

n1

n0 = 1

(for air) Cladding

Core

(n1 > )n2

Figure 22.10 Numerical aperture and acceptance angle (longitudinal section of the fibre).

be noted that some rays from the source will not be guided because they enter the fibre at too
great an incident angle. (The incident angle is the angle made by the entering ray with the axis of
the core.) Their incident angle is refracted in the core and hit the core/cladding interface at an
angle less than the fibre’s critical angle. The interface between the outside air and the fibre glass
core and cladding does not have critical angle (Section AA) because in this case n1 < n2. There
are two types of rays which will propagate in the fibre i.e. meridian and skew. Meridional rays are
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confined to meridian planes which are longitudinal sections of the fibre, each containing the
central axis (the section shown in Figure 22.10 being one such plane). Skew rays are not restricted
to one such plane and follow a helical path along the guide. Skew rays probabley make up the
larger proportion of the total number of rays, but meridian rays are responsible for longer distance
transmission in the fibre.

In Figure 22.10, the ray (1) whose angle of incidence on the air/core interface is qA is a
meridian ray lying in the meridian plane coinciding with the plane of the paper. The ray (2) is
refracted out of the core into the cladding. The ray (3) is a skew ray whose point of incidence is
not on the line AA¢ (as seems to be in the figure) but lies in the plane through AA normal to the
plane of the paper and its projection on the line AA is as shown in the figure. Its plane is NOT
a meridian plane and the ray is skew relative to the central axis of the core.

For the critical angle fc of the core

f = 2

1

sin c
n

n
(22.14)

and

f -
= - =

2 2 2
2 2 1 2

2 2
1 1

cos 1c
n n n

n n
(22.15)

By Snell’s law 0 1 1sin sinAn nq q=
where fA  = acceptance angle and q1 = p /2 – f1 (22.16)

Since n0 = 1 for air outside the core,

and sinq1 = cosf1 = cosfc

\
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                  { }= - = - +2 2
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        = Numerical Aperture (NA)

Also D� 1NA 2n (22.17a)

The larger the value of NA, the greater is the fibre’s ability to capture the optical power from
a source and transmit it. Multimode fibres will have significantly larger NA than the single-mode
fibres because of their larger cores. But they will also have modal dispersion which is absent in
single-mode fibres. For the step-index fibres, NA is constant across the face of the core whereas
for the graded-index core the acceptance angle varies with the distance from the core axis.

Note: The acceptance angle qA is the maximum angle over which the light rays entering the fibre
core will be trapped in the core. It has been seen that the maximum angle occurs when fc is the
critical angle satisfying the condition for total internal reflection.

22.5.2.3 Modes

Since the fibre is basically a circular waveguide, the propagation of light, which is an
electromagnetic wave will be in the form of modes, as seen in Chapter 18. Also from the previous
discussion in that chapter, three types of modes can exist in the fibre, i.e. the transverse electric
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modes (with Ez = 0, Hz π 0, z being the direction of propagation — TE), the transverse magnetic
modes (with Hz = 0 and Ez π 0 — TM), and the hybrid modes (with Ez π 0, Hz π 0—HE). It should
also be remembered that the fields have circular symmetry when Ez = 0 or Hz = 0. When both Ez

and Hz are non-zero, there is no circular symmetry. Another point to be noted is that all the modes
excluding HE11 have finite cut-off frequencies. The HE11 mode does not have a cut-off frequency
and hence the light of any wavelength can propagate inside an optical fibre in this mode.

This phenomenon gives a basis for defining the type of fibre, i.e. if only the HE11 mode
propogates inside the fibre, then the fibre is called the single-mode fibre (SM). If other modes also
propagate the fibre is called mutlimode fibre (MM). Givien below in Figure 22.11 is the E-field
pattern in some of the lower modes of a step-index cylindrical guide. Some modes are linearly
polarized and they are labelled as LP modes.

Fundamental (lowest order) mode

HE11

First set of higher order modes—LP11

TM01 HE21TE01

Figure 22.11 E field vectors in step-index waveguide lowest order modes.

The modal performance in the core of a cylindrical, step-index, optical fibre depends on a
number of parameters, i.e.

(a) Radius of the core = a
(b) Free space wavelength = l
(c) Refractive index of the core = n1

(d) Refractive index of the cladding = n2.

A parameter called the ‘normalized frequency (=V)’ is a function of all these variables and
is used for a simplified analysis of fibre design. V is defined as:
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1 2
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A mode chart (or a b–V diagram) plots the relationship between these modes as a function
of V and the refractive index n (or b the modal phase constant where b = wn/c) between the limits
n1 and n2 (the indices of core and cladding respectively, i.e. b1 = w n1/c to b2 = w n2/c).
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Figure 22.12 Mode chart or b-V diagram of an optical fibre (step-index).

The modal phase constant (i.e. the wave number) always lies between b2 and b1. As b Æ b2

the mode approaches the cut-off and the fields spread in the cladding. As the normalized frequency
V increases, b also increases monotonically approacing asymptotically to b1, i.e. as V increases the
fields get more confined to the core. The LP11 mode group (i.e. TE01 mode) will not propagate if
V < 2.40, which is the cut-off wavelength, and decides the region of single-mode propagation. A
large difference in modal speeds would yield significant modal dispersion at the detector. The step-
index modal performance can be improved by shaping the core’s refractive index in the form of
a parabola. This type of multimode fibre is referred to as graded index (or GRIN) fibre.

A mathematical model for a parabolic core profile of the graded index multimode fibre is
given by

2
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(22.19)

where
a = radius of the core
r = radial distance from the core-axis.

An equation for the variation of NA for this fibre, as function of the radius is

NA = 
Ï ¸Ô ÔÊ ˆD -Ì ˝Á ˜Ë ¯Ô ÔÓ ˛

2

1 2 1
r

n
a

(22.20)

When    r = 0,  NA = 1 2n D (22.20a)
which is same as for the step-index type core.
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The normalized frequency parameter V for a GRIN fibre is obtained using the same equation
as the step-index fibre. The number of modes in a multimode GRIN fibre is reduced and
approximated by

  N = 
2

4

V
for V > 10 (22.21)

which is half the number obtained in a step-index fibre with same V.

22.5.3 Optical Fibre Performance

Though it is commonly thought that optical fibres do not have any degradation of transmission,
there are three basic phenomena governing the performance of the fibres. They are:

1. Attennation losses: diminished levels of light at the optical detector due to loss of
signal energy.

2. Dispersion: time of arrival differences between different wavelength components of the
signal (i.e. delay distortion or dispersion)

3. Inability of conventional silica fibres to maintain polarization

22.5.3.1 Attenuation

There are three sources of losses causing the attenuation of signals. They are:

(a) Material absorption: Small amounts of light get absorbed in an optical fibre due to the
chemical composition of glass. The energy gets converted to heat. The basic mechanism which
causes this is the excitation of molecular modes of vibration called resonance. Some of the other
sources are the metal impurities, which have now been controlled much better, and the water
vapour in the form of OH ions. Modern manufacturing techniques have been able to control this
component as well.

(b) Scattering losses: Light propagating in a fibre can be converted into unbound and back-
scattered light due to molecular level irregularities within or on the surface of the glass. This type
of attenuation is called Rayleigh scattering. The energy of this scattered light is proportional
to 1/l4.

(c) Bending losses: Bending in a fibre can lead to increased losses.

Large scale bends having radii greater than the fibre diameter are called macrobends and are
caused by pulling, sequeezing, bending of the cable during installation. Microbends are a
continuous succession of very small bends due to non-uniformity at the cladding/coating interface,
non-uniform lateral pressure from cabling process, microscopic variations in the location of the
core-axis.

These losses can be minimized during fibre/cable manufacturing.

22.5.3.2 Dispersion (Arrival time distortion)

Dispersion is defined as “a spreading in time of arrival of a received signal beyond its original
time spread.”
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Each of the components in a fibre system contributes to dispersing or spreading out the signal
energy over time as it (the signal) travels. A system which has been designed according to time
of arrival distortion caused by dispersion is called bandwidth or rise-time limited. The fibre itself
is generally the greatest contributor to the total system dispersion.

In the present generation of optical systems where only intensity (power) is modulated and
detected, phase distortions cause non-constant group velocity (= vgr) resulting in arrival time
distortions. Pulse spreading with time and distance causes interference with each other and wave-
lengths also get modulated.

In multimode fibres there are many modes (hundreds of modes) present during the signal
propagation in the steady state. The dominant cause of arrival time distortion in those fibres is the
modal dispersion (also called inter-modal dispersion) which is the spread in arrival times of these
modes. Single-mode fibres, propagating only the fundamental mode, do not have modal dispersion,
i.e. material and waveguide dispersion. When combined they are called chromatic dispersion or
intramodal dispersion. These effects are also present in multimode fibres but are minor relative to
the modal dispesion. The effects of chromatic dispersion on the signals are proportional to the
source line-width. Modal dispersion effects are not dependent on the source line-width. The
intermodal dispersion is defined as the pulse broadening per unit length of the fibre and is
expressed as

Dinter = 
-1 1 2

2

( )

c

n n n

n
(22.22a)

Dinter has unit ps/km.
The intramodal dispersion is defined as the pulse broadening per unit length of the fibre per

unit spectral width of the signal and is expressed as

Dintra = 
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where Dintra has unit ps/km/nm.
The pulse broadening,

t = Dintra slL (22.23)
where
     sl = the spectral width of the signal

L = length of the fibre.

The maximum data rate which the fibre can support is = t
1

\ For higher data rates, t and the dispersion must be as small as possible.
\ The SM fibre has much larger bandwidth (∵ Dinter >> Dintra)
But to make a fibre single-mode, the normalized frequency of the fibre, i.e. V must be £ 2.4.

This numerical value is a consequence of the root of the J0. Bessel function which comes in the
mathematical expressions of the cylindrical waveguide (Ref Chapter 18, Section 18.3.6.2).

(Note: Refering to Figure 22.12 the slope of the b-V curve is proportional to 
b
w

∂
∂

 (since V μ w).
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vgr
. Refer to Section 18.3.4, Eq. (18.100), the slope of the b-V curve is a

measure of the group-delay time.)
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22.6 LOW FREQUENCY (POWER FREQUENCY)
APPLICATIONS

22.6.1 Introduction

The applications of the electromagnetic phenomena to the development of low frequency (i.e.
mostly power frequency) devices started with the discovery of Faraday’s law of electromagnetic
induction, even before Maxwell had completed the unification of the laws of electromagnetism.
The rotating energy converting devices (i.e. rotary electric motors and generators) and the
subsequent allied generating equipment like trnasformers, switchgears, etc. are some of the earlier
examples of applications of the electromagnetic phenomena in the power frequency range. These
devices have been in use for quite some time now in different areas of applications and are quite
familiar to most of us. But there are new and not so new areas of applications which are coming
up with the developments in other fields such that what was not viable earlier, are becoming now
possible and useful. We shall briefly outline some of these new areas here. The basic elements of
the underlying theory have already been discussed in various chapters earlier (i.e. Chapters 6–15)
and hence will be referred to at relevant places.

We will now list some of the important areas of application. Though major areas have been
covered, it is not a fully comprehensive list and there may be areas which may not appear important
at present, but can be important in the future due to discoveries in other allied areas:

1. Linear transportation—both high speed long distance as well as low speed short
distance.

2. Linear pumping—linear flat as well as circular linear pumping.
3. Induction heating
4. Induction melting
5. Induction stirring
6. Controlling the flow of molten metal (i.e. steel in continuous casting of iron).
7. Transportation of metal sheets by levitation.
8. Sliding door openers.
9. Curtain openers

10. Magnetic gears
12. Electromagnetic launchers

● MHD power generation
● Superconducting motors and generators.
● Superconductivity in linear transportation.
● Electromagnetic flowmeters.
● Electromagnetic separator
● Magnetic cranes.

22.6.2 Linear Transportation

Though human mode of travel has been linear, most of the mechanical devices to aid and
accelerate motion have been rotary, i.e. due to faster rotation of wheels. All mechanical devices
like motor cars, trains, etc. and electrical devices like electric motors have achieved higher speeds
by rotating wheels faster. The rotary motion is converted into linear motion by bringing into
contact the edge of the wheel with the linear path. This process involves the use of friction
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between the two surfaces because if there was no adhesion between the two surfaces (i.e. the track
and wheel-edge) there would be no smooth rotation and instead the wheel would slip on the track.
In the case of electrically driven wheels of the electric train, the drive motor (mostly either dc or
ac induction-type), the axle is rotated by the rotating shaft of the motor. The shaft rotation is
produced by the motor electromagnetically.

The electric motor (or the generator) is basically a double cylindrical structure (Figure 22.13)
consisting of an inner shaft-mounted cylinder and an outer cylindrical annulus mounted co-axially
with the inner cylinder such that there is an air-gap between the two which is also of cylindrical

z-direction

Rotor

Air-gap

Stator

RZ plane through the axis of the machine,
through which the machine is cut and

then torn open to make it flat

Figure 22.13 Schematic of the basic structure of a rotating machine (not to scale). Slots
and windings are not shown. Also the end-structure has been omitted.
The magnetic field in the air-gap is radial, the current flow in the conductors
located in the slots is axial. The effective current sheet has axially flowing
currents. The magnetic field in the air gap is rotating circumferentially. The air
gap magnetic field and the rotor currents interact to produce a force on the rotor
such that it also rotates in the same direction as the magnetic field.

annular shape. Both are magnetic in nature (i.e. made of Si-Fe sheets stacked together) and they carry
windings for carrying currents, the windings being located near the annular air-gap between the two
members. The inner cylinder called the rotor is the rotating member and the outer member which
is stationary is called the stator. When the device is used for converting mechanical energy to
electrical energy, it is called a generator and when it converts electrical energy to mechanical energy
it is called the electric motor. The energy conversion takes place by the interaction of the travelling
(or rotating) magnetic fields, produced by the currents (or effective current-sheets) in the two sets
of windings, across the air-gap between the two members. “When the device is acting as an electrical
generater, a 3-phase current is induced in the stator winding by the rotating magnetic field in the
air-gap produced by the currents in the rotor winding.” The direction of the magnetic field is radial
and its direction of travel is circumferential. The winding on the rotor cylinder is mechanically made
to rotate so that there is a relative motion between the magnetic field in the air-gap and the stator
winding, whereby an emf is induced in the winding which feeds a current into any electrical load
connected to the winding (ref: Section 10.7.6 of Chapter 10, Sections 11.6 to 11.16.1, Chapter 11).
When the device is operating as a motor, the rotor winding is fed with a current (direct or alternating,
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depending on the type of motor) and this current in the winding interacts with the air-gap magnetic
field produced by the stator currents whereby a force is generated on the rotor winding, which then
makes the rotor to rotate in the same direction as the travelling magnetic field. This in brief is a
qualitative description of the basic principle of operation of an electric generator or motor. The
motor is connected with the shaft of the wheels which then rotate and the train thus runs on its iron
tracks. Thus the rotational motion of the motor is converted into the linear motion of the train on
its iron tracks.

However it is possible to convert the rotary motion of the electric motor to linear motion
directly without using the intermediate device of wheels. This can be better explained by looking
at Figures 22.14 and 22.15. Such devices which produce a linear force directly, are called linear
motors, and as in the case of rotary motors, there are different types of linear motors, i.e. linear direct
current motor, linear induction motor, linear synchronous motor and so on. The most commonly
used types for linear transportation are the linear induction motor and the linear synchronous
motor. Since, in these types of motors, both the stator and the rotor are flat and parallel (and not
co-axially rotating), to get the advantage of direct generation of linear force and its utilization, it
is essential that the moving object (which would be the ‘train’ in this case) is made to levitate*
to eliminate the loss due to friction. It should be noted that absolutely no friction is required in
such a device, since wheels are now not required for the linear motion. So now the vehicles have
to be both propelled as well as levitated.

Plane of cutting
(to open up the

cylindrical structure)

(A)

∫

∫

(B)

(C)

Directions of
current flow Directions

of travel

Figure 22.14 Topological manipulations to convert a cylindrical machine (A) to a flat linear
machine (B), and then to a tubular linear machine (C). The direction of
magnetic flux is radial in (A), normal to the plane of paper in (B), and again
radial in (C).

*Note: Levitate means that the object is lifted and floats in stable condition.
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Stator

Rotor

Radial
direction

z-direction

Peripheral or
circumferential direction

Air-gap

Figure 22.15 Topologically opened form of the rotating machine, converting it into flat linear
machine (the dimensions are not to scale). The windings and slots have
not been shown. (Basis for a single-sided flat linear machine).

The propulsion is done by the linear motor which has at least two sets of windings, i.e. a
primary winding on the stator and a secondary winding on the rotor. However this arrangement
is interchangable and the words stator and rotor do not have any meaning in the sense of the rotary
machines, so we shall use the words related to such schemes, i.e. one set of winding on the ‘track’
and another set of winding on the lower side of the vehicle arranged in the slots of laminated iron
sheets. Usually the three-phase primary winding is in the vehicle and the secondary winding on
the track. The vehicle is fed with single-phase ac which is converted into three-phase currents and
then fed to the primary windings of the linear motor. If the driving motor is a linear synhronous
motor, then the track winding also has to be fed with direct current. This is done by sectionalizing
the winding which makes the section of the track winding live only when the vehicle is above
it. When the driving motor is a linear induction motor, the track winding is a short-circuited
winding whose portions become live by the induced currents only when the moving vehicle is
above a particular portion of the track.

The lifting and stabilization of the vehicle above the track can be done electromagnetically
or by mechanical means, i.e. electromagnetic lifting with mechanical stabilization. The
electromagnetic lifting can be of two types, i.e. (i) attractive lifting or (2) repulsive lifting.
Furthermore if the train is suspended beneath the monorail type of track which is on an elevated
level, then the primary windings can be laid above the vehicle and it can preferably be double-
sided motor winding type. It would be clear from this brief discussion that if it is a complete
electromagnetic scheme, there would be three sets of windings on the (or under the) vehicle for
propulsion, supension and stabilization. In passing, it is worth mentioning that Prof. Laithwaite has
suggested a type of winding which he called the ‘magnetic river’ where a single set of winding
does all the three jobs, i.e. propulsion, lifting and stabilization. This was one of the late discoveries
of Late Prof. Laithwaite, and still significant work remains to be done on this scheme before it
becomes commercially viable.

At present these are linear motor driven levitated trains operating in various countries all over
the world, the oldest being in the UK and then in Germany, Japan, USA, Canada, Australia and
China. These are of both the types, i.e. high speed long distance as well as low speed short distance
(with frequent stops). Japan has made significant progress with a high speed levitated train using
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superconducting coils. The latest among the levitated trains is the one in China operating between
Shanghai airport to city centre. This runs on the ‘maglev principle’ developed in Germany using
linear synchronous motor.

22.6.3 Linear Pumps

Linear pumps are the earliest application of linear motors and were used very successfully even
before the linear motors were used for transportation purposes. Though the linear pumps can be
either dc or ac, the first successful pumping was done by using the principle of linear induction
motor. This was done in a fast breeder reactor to transport the liquid sodium-pottassium alloy at
the rate of 400 gallons per minute. The pumps were flat linear induction type (FLIP) which had
two stator windings on two sides of a rectangular pipe [see Figures 22.16 and 22.17(a)] which
replaced the rotor (or the secondary). Each stator had three-phase windings which produced
travelling magnetic fields in the direction across the width of the pipe and travelled along the
axis of the pipe (for analysis, see Problem: 11.14 of Electromagnetism: Problems with Solutions,
2nd Edition, 2008, in which a simplified problem neglecting the end effects and the transverse
edge effects has been considered). These pumps were designed and used more because of safety
considerations than their efficiency. In fact the efficiency of these pumps was only 4% but with
this type of design it was possible to isolate either the hydraulic or the electrical circuit separately
without breaking the other circuit.

It should be noted that as with the linear motors, the linear pump has lower efficiency
compared with cylindrical devices, and the end effects are most significant compared with
cylindrical devices. The reason for this is that in the cylindrical devices, there are only two ends
in the axial direction. But in the flat linear devices, there are not only two axial ends, but also
there are two transverse edges. Also the armature reaction is higher in flat linear devices compared
to that in the cylindrical machine.

Stator

Rotor

Stator

Radial direction

x-direction

Air-gap

Peripheral direction

Figure 22.16 Schematic of a double-sided flat linear machine.
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There was also a proposal for a tubular linear pump for larger capacity pumping of the alloy.
The conceptual design of such a device can be better understood from Figure 22.14(C). A possible
design of the ‘rotor’ of the pump is shown in Figure 22.17(b), which shows how and where the
secondary coils would be located. In such a structure, both the primary and the secondary windings
would be made up of circular coils which would then be arranged in a manner to produce a three-
phase coil arrangement located around the outer periphery of the pump and a short-circuited
secondary to be positioned in the inner annular space of the pump as shown in Figure 22.17(b).
However such a pump was not constructed ultimately.

Space for
rotor coils

Circular stator
coils around

the outer tube

(a) Section of rectangular tube of flat linear induction pump

(b) A possible shape of a tubular linear induction pump

Figure 22.17 Rotor tubes for linear induction pumps (not to scale).

22.6.4 Induction Heating and Melting

The theory of induction heating has been adequately discussed in Chapter 15, Sections 15.2,
15.2.1, 15.3, 15.5 and 15.17 and so it will not be repeated here. Suffice it to say that induction
heating of metal plates is a well-accepted practice in industry and ‘surface hardening’ is done by
exploiting the concept of ‘skin effect’.

Induction melting is merely a further extrapolation of induction heating. An arrangement for
a suspended metal ball melting is shown in Figure 22.18. If this is done in vaccuo or an atmosphere
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of inert gas, then highly purified liquid metal (without any oxidized surface coating,
uncontaminated by any impurities in a crucible) can be obtained. The melted metal would also
be suspended within the melthing-cum-levitating coil arrangement, though the shape of the molten
metal changes to some extent as shown in Figure 22.18(b). For stable suspension, a short-circuited
flat coil is needed to be placed at a suitable height above the crucible arrangement.

Melting coil

Levitating coil
(short-circuited)

Figure 22.18(a) Induction melting of a spherical metal ball with levitation.

Final shape of
the molten metal

Initial shape of the metal
blob before starting heating

Figure 22.18(b) Change of shape of the metal blob. (The crucible coil is not shown here.)

22.6.5 Induction Stirring and Valves

Induction stirring has been widely used in steel industry and induction stirrers are commercially
available. There are two types of stirrers possible, i.e. single-phase and three-phase. The
three-phase stirrers which produce a travelling magnetic field are preferable as the stirring is then
more uniform and evenly distributed as shown in the Figure 22.19.

(a) Single-phase stirring (b) Three-phase stirring

Figure 22.19 Induction stirring action in molten metal.
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The use of an induction valve was suggested in the process of continuous casting of steel.
When the molten alloy comes out of the bottom outlet of the tundish from where the process of
continuous casting starts, it is necessary to control and stop the outflow of liquid metal at regular
intervals. This is because at the tundish outlet there is ceramic pipe ot short axial length, which
needs to be replaced at regular time intervals since the pipe has finite life. It was felt that during
the closure periods if the metal flow could be controlled or stopped electromagnetically rather than
by a mechanical device, it would be safer and cleaner. Since this pipe has circular cross-section,
a tubular linear pump operating in reverse could do such a job in principle. It may have been
necessary to put the secondary coils in a cylindrical enclosure, so that the molten metal would then
come out of a cylindrical annulus rather than a simple cylindrical tube.

22.6.6 Transportation of Metal Sheets by Levitation

This is another direct application of linear induction motor with levitation electromagnetically.
When galvanized iron sheets come out of the galvanizing bath, these sheets are transported on the
rolling roller beds to the storage area. Since the sheets rub with the roller surface, there would be
some scratches on these sheets. The rejection rate of these sheets is a function of the number of
scratches on them. However if these sheets are levitated and propelled by linear induction motor
(the sheets being the short-circuited secondary windings of the linear induction motor), the
number on scratches on these sheets would be significantly reduced.

22.6.7 Magnetic Bearings and Gears

Magnetic bearings have been in use for quite some time now. Magnetic bearings come in a very
wide size range, i.e. from very large ones to small ones like the suspended disc of energy meters.
The bearings can be classified into two types, i.e. (a) active bearings in which balancing and
positioning of the shaft is achieved by negative feedback of amplified error signals of positions of
various points of the shaft and (b) passive bearings in which there is no negative feedback signal,
an example being the energy meter disc.

A point to note in this matter is ‘Earnshaw’s theorem’ according to which static equilibrium
is not achievable by protential energy alone. For further information on this subject, the interested
reader is recommended P.J. Geary’s “Magnetic Suspension”.

Magnetic gears are a relatively recent development and work is in progress on this subject
in different countries. One of the attractions of magnetic gears is that the wear out of the toothed
wheels in conventional gears is eliminated by these gears.

22.6.8 Electromagnetic Launchers

One of the great attractions of electromagnetic launching is that environmentally it is completely
clean and there is no chemical pollution. One of the early applications of electromagnetic
launchers was for short take-off of planes from the deck of aircraft carriers, though it was not a
commercial success. The plane was mounted on a flat trolley with primary winding of the linear
induction motor underslung from the trolley-bed and the secondary winding laid out on the take-
off surface. Subsequently a lot of work has been going on for the development of electromagnetic
launchers. One of the successful devices has been the rail gun which uses direct current.
Electromagnetic launching of rockets, missiles, etc. requires special generators with high energy
output for short durations.
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22.6.9 Electromagnetic Flowmeters

A typical electromagnetic flowmeter for measuring the velocity of fluid has been discussed in
Problem 6.36 of Electromagnetism: Problems with Solutions, 2nd Edition, 2008.

22.6.10 Electromagnetic Separator

A magnetic separator for concentrating the ore of rare earth elements was developed and
successfully tested. There are different types of separators under development and in operation in
a number of organizations.

22.6.11 General Comments

Other applications, mentioned in the list of Section 22.6.1, e.g. sliding door openers, curtain
openers, etc. are one-off devices using small linear motors, which would use even linear dc motor
or reluctance type linear motor. Another application where linear motors of small sizes have been
successfully used is the ‘pen drive’ in X-Y plotters where the pen has to move in the X-direction
as well as in the Y-direction. Magnetic cranes have been in use for quite some time now. Super-
conducting motors and generators, in spite of their early promise, have not been accepted for
general use as yet. Japan has successfully experimented with high speed levitated train with
superconducting windings for the linear motor and levitation. It may be commercially viable in
the near future.

Rotating motors and generators have been with us for quite sometime (this application uses
Faraday’s law of induction) and have to be analysed for eddy current effects. There are excellent
textbooks for the study and analysis of rotating machines and hence this application has not been
discussed in detail here. The induction devices discussed here are mostly the devices in which
‘the eddy currents’ are ‘usefully’ used and not like rotating machines where the eddy currents are
unwanted side-effects.

We have given mostly introductory comments on all these applications. Most of these
devices are now being analysed in great depth by using the numerical methods like, FEM, FDM,
FDTD, moment method, Green’s function and so on, since the availability of modern high-speed
computers. Discussion of these methods as applied to these problems would be a subject of more
advanced and specalized texts beyond the scope of this book. What we have mostly discussed here,
are the basics of electromagnetism from the point of view of applications.

22.7 MICROSTRIP TRANSMISSION LINES AND ANTENNAE

22.7.1 Microstrip Transmission Lines

These transmission lines belong to a group known as parallel plate transmission line and are very
widely used in present-day electronics, i.e. for microwave integrated circuits, and in components
like filters, couplers resonators, antennae and so on. These lines are much more flexible in
comparison to co-axial cables and aslo more compact.

It consists of an infinitely large conducting plane with a metal strip placed at a distance from
it (Figure 22.20) separated by a dielectric substrate. It is constructed by the photographic processes
used for integrated circuits. A rigorous analytical derivation of the characteristic properties of the
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line is rather tedious and cumbersome. Because of its open structure, the EM field leaks out of the
dielectric substrate [Figure 22.20(b)]. An approximate formula for its characteristic impedance is
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Figure 22.20(a) Microstrip transmission line.

Electric field

Magnetic field

Figure 22.20(b) Pattern of electromagnetic field of a microstrip line (at any
section normal to the direction of transmission).
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22.7.2 Microstrip Antenna

The derivation of microstrip antenna from the transmission line came up with the aerospace
applications, such as spacecraft and missiles. The basic rectangular microstrip antenna was first
designed in 1972. Such a device is shown in Figure 22.21. The conducting patch shown in the
figure is rectangular though it can be circular as well, or more generally it can be of any shape.

The advantages of microstrip antennae are:

(i) Low cost fabrication
(ii) Can conform to curved surface of a vehicle or product

(iii) Resistant to shock and vibration
(iv) The range of gain is considerable
(v) Antenna profile is small.
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Figure 22.21 Rectangular microstrip antenna. Patch geometry is shown to be rectangular
here, though it can be of any shape. The feed point is located at a point

which is chosen to match the antenna with a desired impedance.

Some of the disadvantages of microstrip antennae are
(i) Narrow bandwidth

(ii) Low efficiency due to large dielectric and conductor losses
(iii) Sensitive to environmental factors like temperature and humidity.

22.7.3 Printed Antenna

Due to bandwidth requirements, in some case the antenna is designed as a ‘planar antenna’. Such
antennae are referred to as ‘printed’ antennae. Figure 22.22 shows such a ‘seven-/section omni-
directional antenna’, which is a printed antenna.
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Figure 22.22 A printed antenna: seven-section omnidirectional microstrip antenna.
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A.1.1 INTRODUCTION

This principle can be best explained by considering a practical example, i.e. the relation between
the theory of the electric field of a linear charge and the magnetic field of a line current.

A.1.1.1 Line Charge

Figure A.1.1(a) represents the electric field of an infinitely long straight thin wire charged with
(+Q) coulombs per unit length.

Appendix 1

The Principle of Duality

The electric field E is given by

pe
∂= = −
∂2

Q V
E

r r
(A.1.1)

Lines of forceQ coulombs/unit length

Equipotentials

Figure A.1.1(a) Electric field of a straight, infinitely long line charge.
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\ The potential V, by integration, is
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Let U be the flux function defining the lines of force. By using the conjugate relationship
between U and V,
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It is worth noting that whilst the potential V is single-valued, the flux function is multi-valued
conaining an arbitrary constant (np). This is because even though the flux between any two lines
is a definite quantity, the absolute value of the flux is indefinite since the datum from which the
lines of force are reckoned, has been chosen arbitrarily. From Eq. (A.1.2), the equipotentials are
given by, r = constant, i.e. concentric circles, with radii in geometric progression for equal
potential drop (DV ), i.e.

peD
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From Eq. (A.1.3), the lines of force are

q = constant, which are equally spaced radial lines.

A.1.1.2 Line Current

Figure A.1.1(b) represents the magnetic field of an infinitely long, thin, straight wire carrying a
current I amps into the plane of the paper, so that the magnetic field intensity (strength) H is

p q
W∂⎛ ⎞ ⎛ ⎞= = − ⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

1
2

I
H

r r (A.1.5)

where W is the scalar magnetic potential due to the current, and the value of H is given at a
distance r from the axis of the wire, perpendicular to the radius and is related in its direction to
that of the current by the right-hand screw rule.
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\ W = - p
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The potential is thus multi-valued, and increases by an amount I which is due to the work done in
moving the unit pole round the current-carrying wire. If C is chosen as (np), then
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The conjugate flux function Y is
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where C1 is arbitrary, and is fixed by the choice of the datum line of force.
The magnetic equipotentials are given by

q = constant, which are equi-spaced radial lines.

Also, the lines of force are given by, r = constant, which are concentric circles with radii in
geometrical progression.

Thus, comparing these two problems, it is seen that the potential function for the

APPENDIX 1 THE PRINCIPLE OF DUALITY

Magnetic equipotentials

I amperes

Lines of force

Figure A.1.1(b) Magnetic field of a straight line current.
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electrostatic field of a charged wire is of the same form as the flux function of the magnetic field
due to a current in the wire, and vice-versa.

The equipotentials in one problem thereupon become the lines of force in the other and
vice-versa. This conjugate property of the two fields is an example of the ‘Principle of Duality’,
according to which the electrostatic lines of force correspond with the magnetic potentials, and
the electrostatic equipotentials with the magnetic lines of force for a comparable arrangement of
the linear charges and currents.

By virtue of this principle, a known solution of one problem may be reciprocated into that
of another problem, and conversely, simply by inverting the roles of two sets of lines and their
representative functions.



Appendix 2

The Inverse Points of a
Circle

A.2.1 INVERSE POINTS

We are given a circle with centre O, and one of its diameters COD (Figure A.2.1). If A and B are
two points on this diameter, such that one point (say, A) is inside the circle, and the other point B
is outside the circle, and they satisfy the relationship

OA ◊◊◊◊◊ OB = OC2 = OP2 (A.2.1)

where OC = OP = radius of the circle, then A and B are said to be the ‘inverse points’ with
respect to the circle.

The inverse points are such that, if two tangents to the circle are drawn from the external
point B, i.e. BT and BT ¢, then the chord T T ¢ intersects the diameter DC (DCB) at A, the inverse
point of B.

GEOMETRICAL PROOF OF (A.2.1)

Let P be a point whose locus is such that, (AP/BP) = constant.

Figure A.2.1 Inverse points of a circle and the relevant angles.
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Then, by the theorem on proportional triangles (DAPC, DBPC; and DADP, DBDP),

= =AP AC AD
BP BC BD

(A.2.2)

\ For the DAPB, CP and DP are respectively the internal and the external bisectors of the
–P, i.e. –s APB and APP¢ respectively.

\ The –CPD is a right angle.
\ The locus of P is a circle with diameter CD.

Note: If the –s of the  DAPB are denoted as –PAB = f, and –PBA = y, then –APP¢ = f + y,
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For the DOPA,
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Appendix 3

Green’s Reciprocation
Theorem in Electrostatics

A.3.1 STATEMENT OF THE THEOREM

If the charges Q1, Q2, ..., Qn on the conductors of a system give rise to the potentials
V1, V2, ..., Vn respectively, and if the charges Q1¢, Q2¢, ..., Qn¢ give rise to the potentials
V1¢, V2¢, ..., Vn¢ respectively, then:

= =
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i i i i
i i

Q V Q V (A.3.1)

Proof: We first consider a system of point charges. We then multiply one point charge by the
potential of a second charge. We now write all such quantities for the n point charges in the form
of a matrix of n2 terms, as shown below. Using Eq. (1.34) of Section 1.7.1, we write down the
sum of the columns in the bottom row, and the sum of the horizontal rows in the extreme right-
hand column. So we have
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12 32 2

1 3 2 3 3
3 3

13 23 3

1 2 3

1 2

. . .0
4 4 4

. . .0
4 4 4

. . .0
4 4 4

... . . . . . . . . . . . . . . . . . . . . . . . .

4 4 4

n

n

n

n

n

n

n n n

n n

q q q qq q
q V

r r r

q q q qq q
q V

r r r

q q q q q q
q V

r r r

q q q q q q
r r

′ ′′
′+ + + + =

′ ′′
′+ + + + =

′ ′ ′
′+ + + + =

+ +
′ ′ ′

+ +

pe pe pe

pe pe pe

pe pe pe

pe pe 3

1 1 2 2 3 3

. . . 0

. . .

n n
n

n n

q V
r

q V q V q V q V

′+ + =

′ ′ ′ ′+ + + +

pe

(obtained by adding the left-hand side columns)

As the order of the summation does not affect the final result, we can get the sum either by
adding the terms of the last row or the last column. Equating these, we get

s s s s
s 1 s 1

n n

q V q V
= =

′ ′=∑ ∑ (A.3.2)
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For these point charges, Vs is the potential at qs due to all unprimed charges except qs itself. All
charges located on the same conductor are multiplied by the same potential and hence can be
collected together. Therefore,

S S′ ′ ′= =s( )iq V V q Q V (A.3.3)

thus giving Eq. (A.3.1).
An important application of this theorem can be seen by putting

Q1¢, Q3¢, ..., Qn¢ = 0

Q2, Q3, ..., Qn = 0

and Q1 = Q2¢, and make the substitution in Eq. (A.3.1).

\ Q1V2¢ = Q2¢V2 (A.3.4)

                                      \ V2¢ = V2  (A.3.5)

\ The potential to which an uncharged conductor A is raised by putting a charge Q on B
is same as that to which B, when uncharged, is raised by putting a charge Q on A.

This theorem is valid, also in presence of dielectric boundaries.

A.3.2 GREEN’S RECIPROCATION THEOREM FOR
DIELECTRICS

We start with Gauss’ theorem for the vector A, i.e.

1

( )

j

m

j j
j S v

dS dv
=

◊ = — ◊Â ÚÚ ÚÚÚA n Aw (A.3.6)

where the vector A is a continuous function of position in space. We take the integral over a
closed surface S, and the other (m - 1) closed surfaces inside it, such that the integral of div A is
defined throughout the volume v between these surfaces. Let:

A = y (e—f) (A.3.7)

where y and f are scalar quantities which are finite and continuous in the region of integration
and can be differentiated twice, and e is a scalar which can be differentiated once and may be
discontinuous at certain boundaries in the region. These surfaces can be excluded by drawing
closely fitting surfaces on both the sides of these discontinuities. Then, if there are q such
surfaces enclosing q discontinuities, adding all such contributions due to such terms Eq. (A.3.6),
we have

1 1
j p

m q
p p

j p p p p
j p pj pS S

dS dS
n n n

f ffey e y e y
= =

¢ ¢¢∂ ∂Ê ˆ Ê ˆ Ê ˆ∂ ¢ ¢ ¢¢ ¢¢+ +Á ˜ Á ˜ Á ˜¢ ¢¢∂ ∂ ∂Ë ¯ Ë ¯ Ë ¯Â ÂÚÚ ÚÚw w

     
{ ( ) ( )} [ { ( )}]

v v

dv dv= ∇ ⋅ ∇ + ∇ ⋅ ∇∫∫∫ ∫∫∫e f y y e f
(A.3.8)

where the single and the double dashes indicate the quantities on the two sides of the
discontinuity interfaces. We can write a similar expression by interchanging f and y, and
subtracting it from (A.3.8), and thus obtain
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1
p

q
p p p p

p p p p p p p
p p p pp S

dS
n n n n

f y f y
e y f e y f

=

È ˘Ï ¸ Ï ¸¢ ¢ ¢¢ ¢¢∂ ∂ ∂ ∂Ê ˆ Ê ˆ Ê ˆ Ê ˆÔ Ô Ô Ô¢ ¢ ¢ ¢¢ ¢¢ ¢ ¢Í ˙- + -Ì ˝ Ì ˝Á ˜ Á ˜ Á ˜ Á ˜¢ ¢ ¢¢ ¢ ¢∂ ∂ ∂ ∂Ë ¯ Ë ¯ Ë ¯ Ë ¯Í ˙Ô Ô Ô ÔÓ ˛ Ó ˛Î ˚
Â ÚÚw

1
j

m

j
j jj S

dS
n n
f ye y f

=

È ˘Ï ¸Ê ˆ Ê ˆ∂ ∂Ô ÔÍ ˙+ -Ì ˝Á ˜ Á ˜∂ ∂Ë ¯ Ë ¯Í ˙Ô ÔÓ ˛Î ˚
Â ÚÚw

[ ( ) ( )]
v

dv= ∇ ⋅ ∇ − ∇ ⋅ ∇∫∫∫ y e f f e y
(A.3.9)

where n¢s denote the unit normals at the specific places.
In Eq. (A.3.9), let y = V be the potential of one distribution of the charges, and f = V ¢ be

that of another, and e be the permittivity.
If the interface discontinuities have no charges (i.e. uncharged), then:

p p p
p p pn n n

⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′′ ′′∂ ∂ ∂′ ′′ ′′= = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ ′ ′′∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

f f fe e e (A.3.10)

and yp¢ = yp¢¢ and fp¢ = fp¢¢, and a similar set of relations for y ¢s.
\ The integrals over the surfaces of discontinuity are all zero.
If there are no charges throughout the volume,

— ◊◊◊◊◊ (e—y) = 0 and — ◊◊◊◊◊ (e—f) = 0 (A.3.11)

\ The volume integral of Eq. (A.3.9) on its right-hand side = 0.
\ From this equation, we have

1

0

j

m

j j j
j jj S

V V
V V dS

n n
e e

=

È ˘Ê ˆ Ê ˆ¢∂ ∂¢- =Í ˙Á ˜ Á ˜∂ ∂Ë ¯ Ë ¯Í ˙Î ˚
Â ÚÚw

or

1

0

j j

m

j j j
j S S

V dS Vj dSs s
=

È ˘
Í ˙¢ ¢- =Í ˙
Í ˙Î ˚

Â ÚÚ ÚÚw w

\
= =

′ ′=∑ ∑
1 1

m m

j j j j
j j

Q V Q V

Thus the Green’s Reciprocation theorem holds when the dielectrics are present.
The Reciprocation theorem can also be extended to its magnetic analogue, i.e.:

If, when a series of electrodes are kept at the potentials V1, V2, ..., the currents leaving them are
i1, i2, ..., and if the potentials are changed to V1¢, V2¢, ..., the currents being i1¢, i2¢, ..., then

S iV ¢ = S i¢V

APPENDIX 3 GREEN’S RECIPROCATION THEOREM IN ELECTROSTATICS



Appendix 4

Vectors in Different
Coordinate Systems

A.4.1 UNIT VECTORS
A vector, whose magnitude is unity, is called a ‘unit vector’. Such vectors are dimensionless
quantities, used to specify directions only. The symbol i with various subscripts is used to denote
unit vectors. The unit vector can be oriented in two different ways: (1) by specifying any two
points in space and designating the vector in the direction specified by a straight line connecting
one point to the other; or, (2) with reference to a coordinate system.

A.4.2 COORDINATE SYSTEMS
Many coordinate systems are possible for the definition of the location of a point in space. If at
every point P in space, a coordinate system is chosen so that the coordinate curves at that point
are mutually perpendicular, then the coordinates are called orthogonal.

In fact, there are, in use, 40 orthogonal coordinate systems, out of which only in 11
systems, simple separation of Helmholtz and Laplace’s equations is possible, another 10 systems
which permit R-separation of only Laplace’s equation, and the remaining 18 systems permit the
separation of the Laplace’s equation in two dimensions only. (Note: The term separation is being
used here to mean that the ‘method of separation of variables’ can be used in these coordinate
systems to solve the Laplacian field problems). For further information on this topic, the
interested reader is recommended to refer to Field Theory for Engineers and Field Theory
Handbook by Moon & Spencer, and Methods of Theoretical Physics by Morse & Feshbach.

Consider the coordinate curves as shown in Figure A.4.1, where u1, u2, u3 are the
orthogonal coordinates. Let i1, i2, i3 be the unit vector tangents to the respective coordinate curves
at the point P. The unit vectors chosen are positive in the directions in which the corresponding
coordinates increase.

Such a coordinate system is called orthogonal curvilinear coordinate system, since the
coordinate lengths are not necessarily straight lines (in general ‘curves’). Let ds1, ds2, ds3, be the
differential components which are lengths measured as positive along the coordinate curves in the
positive directions of the coordinates. The derivatives of these arcs with respect to the
coordinates shall be expressed as

= = =31 2
1 2 3

1 2 3
, ,

dsds ds
h h h

du du du
(A.4.1)
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We remember that, in rectangular two-dimensional coordinates, in the limit

ds2 = dx2 + dy2

and in two-dimensional polar coordinates (r, f), the corresponding length element is

ds2 = dr2 + r2df2

So if our curvilinear coordinate system is two-dimensional, then the length element is

ds2 = h1
2 du1

2 + h2
2 du2

2

And in a three-dimensional system, the length element will be

ds2 = h1
2 du1

2 + h2
2 du2

2 + h3
2 du3

2 (A.4.2)

The quantities h1, h2, h3 are called the ‘scale factors’, for a change du1 in the coordinate variable
u1 (say) produces a corresponding displacement (h1du1) along the coordinate line. In general, h
can vary from point to point in space. At times these scale factors are also expressed as

h1 = = =11 2 22 3 33, ,g h g h g (A.4.3)

where g11, g22, and g33 are called the ‘metric coefficients’. It is important to remember that du1,
du2, du3 are not in general distances. The distances are (h1 du1), (h2 du2), (h3 du3) or

( )⎡ ⎤
⎢ ⎥⎣ ⎦11 1 ,g du  ( ) ( )⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦22 2 33 3, .g du g du

A.4.3 DEVELOPMENT OF METRIC COEFFICIENTS

We shall now develop a formula by means of which we can calculate the metric coefficients for
any coordinate system. Let us consider the system most familiar to us, i.e. a rectangular Cartesian

APPENDIX 4 VECTORS IN DIFFERENT COORDINATE SYSTEMS

Figure A.4.1 Orthogonal curvilinear coordinates.

i3 u3 coordinate

i2

u1 coordinate

i1

u2 coordinate
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coordinate system (x, y, z), and a general curvilinear coordinate system (u1, u2, u3). Then the
functional relationship between the two systems, in general terms can be written as

x = x(u1, u2, u3), y = y(u1, u2, u3), z = z(u1, u2, u3) (A.4.4)

Differentiating Eqs. (A.4.4), we get

1 2 3
1 2 3

x x x
dx du du du

u u u

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
(A.4.5a)

1 2 3
1 2 3

y y y
dy du du du

u u u

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
(A.4.5b)

1 2 3
1 2 3

z z z
dz du du du

u u u

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
(A.4.5c)

But in the rectangular coordinates,

ds2 = dx2 + dy2 + dz2 (A.4.5d)
Hence, substituting, we have

            

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎢ ⎥= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

2 2 2

2 2
1

1 1 1

x y z
ds du

u u u

                  

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎢ ⎥+ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

2 2 2

2
2

2 2 2

x y z
du

u u u

                  

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎢ ⎥+ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

2 2 2

2
3

3 3 3

x y z
du

u u u

       
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂+ + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

1 2
1 2 1 2 1 2

2
x x y y z z

du du
u u u u u u

        
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂+ + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

2 3
2 3 2 3 2 3

2
x x y y z z

du du
u u u u u u

       
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂+ + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

3 1
3 1 3 1 3 1

2
x x y y z z

du du
u u u u u u

(A.4.6)

It is obvious geometrically from (Figure A.4.2), the theorem of Pythagoras, that the cross-
products in the above equation must be zero, if u1, u2, and u3 are mutually orthogonal.

In fact, the vanishing of the last three cross-product terms in Eq. (A.4.6) constitutes the
necessary and sufficient conditions for the orthogonality.

Comparison of Eq. (A.4.6) with Eqs. (A.4.2) and (A.4.3) shows that for the orthogonal
coordinate systems,
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∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2 2 2

ii
i i i

x y z
g

u u u
(A.4.7)

where i = 1, 2, 3.

A.4.4 TENSOR NOTATION

The expressions of the previous section can be expressed in a very simple manner if they are
expressed as ‘tensors’ (though the knowledge of tensors is not really necessary to understand the
present material).

When there are two coordinate systems (say) (u1, u2, u3) and (u1¢, u2¢, u3¢), the relations
corresponding to Eqs. (A.4.5) are

′ ′ ′∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ = + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

1 1 1
1 1 2 3

1 2 3

u u u
du du du du

u u u

′ ′ ′∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ = + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2 2 2
2 1 2 3

1 2 3

u u u
du du du du

u u u

′ ′ ′∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ = + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

3 3 3
3 1 2 3

1 2 3

u u u
du du du du

u u u

or

=

′∂⎛ ⎞′ = ⎜ ⎟∂⎝ ⎠∑
3

1

i
i i

ii

u
du du

u
(A.4.8a)

APPENDIX 4 VECTORS IN DIFFERENT COORDINATE SYSTEMS

Figure A.4.2 Length elements in a general curvilinear coordinate system.
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where i = 1, 2, 3, and i¢ = 1, 2, 3. The ‘Einstein summation convention’ omits the summation (S)
when the same index is used above and below. Thus the three equations can be written very
simply as

′∂⎛ ⎞′ = ⎜ ⎟∂⎝ ⎠
i

i i
i

u
du du

u
(A.4.8b)

So corresponding to Eq. (A.4.5d),

ds2 = gij dui duj (A.4.9)

where the metric coefficients are

=

′ ′⎛ ⎞∂ ∂⎛ ⎞= ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
∑

3

1

k k
ij

i jk

u u
g

u u
(A.4.10)

The matrix of the metric coefficients is

gij = ⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

11 12 13

21 22 23

31 32 33

g g g

g g g

g g g

(A.4.11)

and its determinant is called g

g = 11 12 13

21 22 23

31 32 33

g g g

g g g

g g g

(A.4.12)

The inverse metric coefficient gij (which is sometimes useful) is defined by the equation

gijgjk = dk
i (A.4.13)

where dk
i is the Kronecker delta

dk
i = 1, if i = k

    = 0, if i π k (A.4.14)

For the ‘orthogonal coordinate systems’, gij = 0, if i π j, and hence

gij = ⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

11

22

33

0 0

0 0

0 0

g

g

g

gij = 
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

11

22

33

1
0 0

1
0 0

1
0 0

g

g

g

(A.4.15)

and
g = g11 g22 g33
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and
ds2 = gii(dui)

2 (A.4.16)

where gii =
=

′∂⎛ ⎞
⎜ ⎟⎜ ⎟∂⎝ ⎠

∑
23

1

k

ik

u

u
.

A.4.5 LENGTH, AREA, VOLUME

Infinitesimal distances expressed in the generalized coordinates are

ds1 = h1 du1 = ( )11g du1, ds2 = h2 du2 = ( )22g du2, ds3 = h3du3 = ( )33g du3

so that

ds2 = g11 du1
2 + g22 du2

2 + g33 du3
2 (A.4.17)

The directions of ds1, ds2, ds3 are given by the directions of the unit vectors i1, i2, and i3

respectively.
Similarly, the differential areas are

dA3 = h1h2 du1 du2 = ( )11 22g g du1 du2 (A.4.18a)

 dA1 = h2h3 du2 du3 = ( )22 33g g du2 du3 (A.4.18b)

dA2 = h3h1 du3 du1 = ( )33 11g g du3 du1 (A.4.18c)

The differential volume

   dv = h1h2h3 du1 du2 du3 = ( )11 22 33g g g du1 du2 du3 (A.4.19)

A.4.6 SPECIFIC ORTHOGONAL COORDINATE SYSTEMS AND
ASSOCIATED UNIT VECTORS

The most common orthogonal coordinate systems are Rectangular Cartesian, Cylindrical Polar,
Spherical Polar. In the present text, only the right-handed systems are used, i.e. if the unit vector
i1 is rotated into i2, the resulting direction of advance of a right-handed screw thread establishes
the direction of the third unit vector i3 as

i3 = i1 ¥ i2

A.4.6.1 Rectangular Cartesian Coordinate System

In Cartesian system of coordinates, the unit vectors may be denoted as

ix— unit vector in the +x direction

iy— unit vector in the +y direction

iz—unit vector in the +z direction

The unit vectors are shown in Figure A.4.3.

APPENDIX 4 VECTORS IN DIFFERENT COORDINATE SYSTEMS
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In the above system, the differential components of the general arc ds are identical with the
differentials of the coordinates.

\ u1 = s1 = x, u2 = s2 = y, u3 = s3 = z (A.4.20)
and as a consequence:

h1 = h2 = h3 = 1 and g11 = g22 = g33 = 1 (A.4.21)

ds1 = dx, ds2 = dy, ds3 = dz (A.4.22)

dA1 = dy dz, dA2 = dz dx, dA3 = dx dy (A.4.23)

dv = dx dy dz (A.4.24)

A.4.6.2 Cylindrical Polar Coordinate System

A radial distance (in x-y or parallel plane), an angular displacement (in the same plane as the
radius above), and an axial displacement may be used to describe a cylindrical polar coordinate
system which is orthogonal. Figure A.4.4 illustrates the cylindrical coordinates (r, f, z), and the
corresponding unit vectors in the positive directions are ir, if, iz. Note that iz is still a unit vector
in the z-direction, and is same as the iz in the Cartesian coordinate system.

From Figure A.4.4,

ds1 = dr, ds2 = df, ds3 = dz (A.4.25)

\ u1 = r, u2 = f, u3 = z (A.4.26)

du1 = dr, du2 = df, du3 = dz (A.4.27)
and

h1 = 
dr
dr

 = 1, h2 = 
f
f

rd
d

 = r, h3 = 
dz
dz

 = 1 (A.4.28a)

\ g11 = 1, g22 = r2, g33 = 1, g  = r (A.4.28b)

Figure A.4.3 Rectangular Cartesian coordinate system.

x

y

z iz

iy

ix

P
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ds2 = dr2 + r2df2 + dz2 (A.4.29)

dA1 = r df dz, dA2 = dz dr, dA3 = r dr df (A.4.30)

dv = r dr df dz (A.4.31)

A.4.6.3 Spherical Polar Coordinate System

A radial displacement (about the origin), and two angular displacements may be used to establish
a spherical coordinate system which is also orthogonal.

Figure A.4.5 illustrates the spherical polar coordinate system (r, f, q), and the unit vectors
in the directions of the coordinate axes are ir, if, iq. Note that if is same in both the cylindrical
and the spherical coordinate systems.

From Figure A.4.5,

ds1 = dr, ds2 = rdq, ds3 = r sin q df (A.4.32)

\ u1 = r, u2 = q, u3 = f (A.4.33)

du1 = dr, du2 = dq, du3 = df (A.4.34)
and

h1 = 
r
r

d
d

 = 1, h2 = 
r f

f
⎛ ⎞
⎜ ⎟⎝ ⎠

d
d

 = r, h3 = r sin q 
f
f

⎛ ⎞
⎜ ⎟⎝ ⎠

d
d

 = r sin q (A.4.35a)

\ g11 = 1, g22 = r2, g33 = r2 sin2q, g  = r2 sin q (A.4.35b)

ds2 = dr2 + r2dq2 + r2 sin2q df2 (A.4.36)

APPENDIX 4 VECTORS IN DIFFERENT COORDINATE SYSTEMS

Figure A.4.4 Cylindrical polar coordinate system.

z

rdf

dr

dz

dz

z

y
f

r

x

df

dr



900 ELECTROMAGNETISM: THEORY AND APPLICATIONS

dA1 = r2 sin q dq df, dA2 = r sin q dr df, dA3 = r dr dq (A.4.37)

dv = r2 sin q dr dq df (A.4.38)

A.4.7 RADIUS VECTORS AND ELEMENTS OF LENGTHS

In Cartesian coordinates,
r = ix x + iyy + izz (A.4.39)

dr or dl = ix dx + iy dy + iz dz (A.4.40)
In cylindrical coordinates,

r = irr + izz (A.4.41)

dr or dl = irdr + ifr df + iz dz (A.4.42)
In spherical coordinates,

r = irr (A.4.43)

dr or dl = ir dr + iqr dq + ifr sin q df (A.4.44)

A.4.8 VECTOR OPERATOR —————

As we have seen earlier, the vectors, in general, may be functions of both space and time. The
operator ‘del’ (= —) is a vector function space operator which, when expressed in ‘differential
terms’ can be defined through the partial derivatives with respect to space. Physically what the
partial differentiation implies is that during this space operation, we are holding the instant of
time fixed, while investigating their spatial behaviour.

Figure A.4.5 Spherical polar coordinate system (showing the details of the volume elements).

z

y

df

f

q

x
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R

S
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–POR = dq
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In any orthogonal coordinate system, the vector operator — is

∂ ∂ ∂⎛ ⎞⎛ ⎞ ⎛ ⎞∇ = + + ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
1 2 3

1 2 3s s s
i i i (A.4.45)

or, in terms of the coordinates (u1, u2, u3), since, in general, the spatial differential ds = h du,

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂∇ = + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
1 2 3

1 1 2 2 3 3

1 1 1
h u h u h u

i i i (A.4.46)

or, in terms of the metric coefficients,

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎜ ⎟⎜ ⎟ ⎜ ⎟∇ = + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
1 2 3

1 2 311 22 33

1 1 1
u u ug g g

i i i (A.4.47)

In Cartesian coordinates,

∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞∇ = + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
x y zx y z

i i i (A.4.48)

In cylindrical coordinates,

f f
∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∇ = + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

1
r zr r z

i i i (A.4.49)

In spherical coordinates,

r q fr r q r q f
∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∇ = + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

1 1
sin

i i i (A.4.50)

Note: For Cartesian coordinates,

h1 = h2 = h3 = 1 = = =11 22 33g g g (A.4.51a)

and
u1 = x, u2 = y, u3 = z (A.4.51b)

For cylindrical coordinates,

h1 = 1 = 11g , h2 = r = 22g , h3 = 1 = 33g (A.4.52a)

and
u1 = r, u2 = f, u3 = z (A.4.52b)

For spherical coordinates,

h1 = 1 = 11g , h2 = r = 22g , h3 = r sin q = 33g (A.4.53a)

and
u1 = r, u2 = q, u3 = f (A.4.53b)

A.4.9 GRADIENT OF A SCALAR FUNCTION (= —j)

In the curvilinear coordinate system,

j j jj
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂∇ = + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

1 2 3
1 1 2 2 3 3

1 1 1
h u h u h u

i i i (A.4.54)
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In terms of the metric coefficients,

j j jj
⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎜ ⎟⎜ ⎟ ⎜ ⎟∇ = + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

1 2 3
1 2 311 22 33

1 1 1
u u ug g g

i i i (A.4.55)

In the three orthogonal coordinate systems, this will be

Cartesian: —j = 
j j j∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

x y zx y z
i i i (A.4.56)

Cylindrical: —j = 
1

r zr r zf
j j j

f
∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

i i i (A.4.57)

Spherical: —j = r q f
j j j
r r q r q f

∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
1 1

sin
i i i (A.4.58)

(Note: j is a scalar space function.)

A.4.10 DIVERGENCE OF A VECTOR (= — ◊ A)

In the curvilinear coordinate system,

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎛ ⎞∇ ⋅ = + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
2 3 1 3 1 2 1 2 3

1 2 3 1 2 3

1
( ) ( ) ( )h h A h h A h h A

h h h u u u
A (A.4.59)

or, in terms of the metric coefficients,

  ( )
1/21/2 1/2

1 2 3
1 11 2 22 3 33

g g g
g A A A

u g u g u g

⎡ ⎤⎧ ⎫⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥∇ ⋅ = + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎣ ⎦
A (A.4.60)

where
A = i1A1 + i2A2 + i3A3 (A.4.61)

The above expressions simplify to:

Cartesian: — ◊◊◊◊◊ A = 
∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

x y zA A A

x y z
(A.4.62)

Cylindrical: — ◊◊◊◊◊ A = ff
⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

1
( ) ( ) ( )r zrA A rA

r r z

                         = 
1r r zA A A A

r r r z
f

f
∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

(A.4.63)

Spherical: — ◊◊◊◊◊ A = r q fr q r q rr q fr q
⎛ ⎞ ⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠

2
2

1
( sin ) ( sin ) ( )

sin
A A A

      = 
r r q f

q
q

r r r q r r q f
∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

2 1 cot 1
sin

A A A A
A (A.4.64)
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A.4.11 CURL OF A VECTOR (= — ¥ A)

In the curvilinear coordinate system, the curl of a vector can be expressed in differential form, as
the following determinant,

— ¥ A = 
⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠1 2 3

1
h h h

1 1 2 2 3 3

1 2 3

1 1 2 2 3 3

h h h

u u u

h A h A h A

∂ ∂ ∂
∂ ∂ ∂

i i i (A.4.65)

or expressing in terms of the metric coefficients,

— ¥ A = 
⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

1

g
( ) ( ) ( )

( ) ( ) ( )

1 11 2 22 3 33

1 2 3

11 1 22 2 33 3

g g g

u u u

g A g A g A

∂ ∂ ∂
∂ ∂ ∂

i i i (A.4.66)

This simplifies to the following in the three orthogonal coordinate systems:

Cartesian: — ¥ A = x y z

x y z

x y z

A A A

∂ ∂ ∂
∂ ∂ ∂

i i i  (A.4.67)

Cylindrical: — ¥ A = 
⎛ ⎞
⎜ ⎟⎝ ⎠

1
r

r z

r z

r z

A rA A

∂ ∂ ∂
∂ ∂ ∂

i i if

f

f

(A.4.68)

Spherical: — ¥ A = 
r q

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

2

1

sin

sin

sinA A A

∂ ∂ ∂
∂ ∂ ∂

i i ir q f

r q f

r r q

r q f
r r q

(A.4.69)

A.4.12 (SCALAR) LAPLACIAN —2 = DIVERGENCE OF THE
GRADIENT OF A SCALAR FUNCTION j

From Eq. (A.4.54), in the curvilinear coordinates,

APPENDIX 4 VECTORS IN DIFFERENT COORDINATE SYSTEMS
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  div grad j = — ◊◊◊◊◊ —j = —2j

                     = 
j⎡ ⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂⎪ ⎪⎢⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭⎣

2 3

1 2 3 1 1 1

1 h h

h h h u h u

j j ⎤⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎪ ⎪ ⎪ ⎪⎥+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ⎥⎪ ⎪ ⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭⎦

3 1 1 2

2 2 2 3 3 3

h h h h

u h u u h u (A.4.70)

Or in terms of metric coefficients,

           —2j = 
j⎡ ⎧ ⎫⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂⎪ ⎪⎢⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎢⎝ ⎠ ⎝ ⎠⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭⎣ 1 11 1

1 g

u g ug

j j ⎤⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎪ ⎪ ⎪ ⎪⎥⎜ ⎟ ⎜ ⎟+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪ ⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭⎦2 22 2 3 33 3

g g

u g u u g u
(A.4.71)

Either of these two expressions will reduce to the following in the three orthogonal coordinate
systems:

Cartesian:       —2j = 
j j j⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2 2 2

2 2 2x y z
(A.4.72)

Cylindrical: —2j = 
1 1r r
r r r r z z

⎡ ⎤⎧ ⎫∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎩ ⎭⎣ ⎦

j j j
f f

                  = 
j j j j

f
⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2 2 2

2 2 2 2

1 1
r r r r z

(A.4.73)

Spherical:    —2j = 
r q

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

2

1

sin

jr qr r
⎡ ⎧ ⎫∂ ∂⎛ ⎞ ⎛ ⎞
⎢ ⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎩ ⎭⎣

2( sin )

                
j jqq q f q f

⎤⎧ ⎫ ⎧ ⎫∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + ⎥⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎥⎩ ⎭ ⎩ ⎭⎦

1
sin

sin

              
j j q j j

r r r r q r q f
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2 2 2

2 2 2 2 2 2

2 cot 1

sin (A.4.74)

A.4.13 RELATIONS BETWEEN THE THREE ORTHOGONAL
COORDINATE SYSTEMS

A.4.13.1 Cartesian (x, y, z) and Cylindrical (r, f, z)

                          x = r cos f,   y = r sin f,     z = z (A.4.75a)

r2 = x2 + y2, f = tan-1 
⎛ ⎞
⎜ ⎟⎝ ⎠

y
x

, z = z (A.4.75b)
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A.4.13.2 Cartesian (x, y, z) and Spherical (r, q, f)

x = r sin q cos f, y = r sin q sin f, z = r cos q (A.4.76a)

r2 = x2 + y2 + z2, f = tan-1 ⎛ ⎞
⎜ ⎟⎝ ⎠

y
x

, q = tan-1 
⎛ ⎞+⎜ ⎟
⎜ ⎟
⎝ ⎠

2 2x y

z
(A.4.76b)

A.4.13.3 Cylindrical (r, f, z) and Spherical (r, q, f)

                         r sin q = r,  f = f, r cos q = z (A.4.77a)

r2 + z2 = r2, f = f, q = tan-1 ⎛ ⎞
⎜ ⎟⎝ ⎠

r
z

(A.4.77b)

A.4.14 PARTIAL DERIVATIVES OF THE UNIT VECTORS OF
THE THREE ORTHOGONAL COORDINATE SYSTEMS

The unit vectors of a Cartesian coordinate system (ix, iy, iz) are oriented in a fixed direction,
irrespective of the variations of any of the coordinates x, y, or z. Hence all the partial derivatives
are zero, i.e.

∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂
= = = = = = = = =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
0y y y z z zx x x

x y z x y z x y z

i i i i i ii i i
(A.4.78)

Let us now consider the variation of another unit vector, (say) ir in two-dimensional cylindrical
coordinate system (for simplicity of understanding), with respect to f (see Figure A.4.6) .

APPENDIX 4 VECTORS IN DIFFERENT COORDINATE SYSTEMS

ir

∂⎛ ⎞+ ⎜ ⎟∂⎝ ⎠
ff

r
r d

i
i

rdf

x

r

r

(a)

f

df

∂⎛ ⎞+ ⎜ ⎟∂⎝ ⎠
ff

r
r d

i
i ∂⎛ ⎞

⎜ ⎟∂⎝ ⎠
ff

r d
i

(b)

ir

df

Figure A.4.6 Vector diagram for evaluating ∂ir /∂f.

From the above figure, it should be noted that the change in ir as f changes is f
∂⎛ ⎞

⎜ ⎟∂⎝ ⎠
ri df,

and this change is in the direction of if.

The magnitude of the partial derivative f
∂⎛ ⎞

⎜ ⎟∂⎝ ⎠
ri df divided by the magnitude of the unit

vector ir is df, i.e.
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ff
f

∂
∂

=

r

r

d

d

i

i
(A.4.79)

\ f
∂
∂

ri  = 1 (A.4.80)

and its direction is that of if.

\ f
∂
∂

ri  = if (A.4.81)

Hence the 9 derivatives of the cylindrical coordinate system can be shown to be:

                           0, 0, 0zr

r r r

∂ ∂∂ = = =
∂ ∂ ∂

i ii f (A.4.82a)

f
ff f f

∂ ∂∂ = = − =
∂ ∂ ∂

, , 0zr
r

i ii
i i (A.4.82b)

                           0, 0, 0zr

z z z

∂ ∂∂ = = =
∂ ∂ ∂

i ii f
(A.4.82c)

Similarly in the spherical coordinate system,

                           0, 0, 0
∂ ∂∂

= = =
∂ ∂ ∂
i iir fq
r r r (A.4.83a)

r fq
q rq q q

∂ ∂∂
= = − =

∂ ∂ ∂
, , 0

i ii
i i (A.4.83b)

r fq
f fq qf f f

∂ ∂∂
= =

∂ ∂ ∂
sin , cos ,

i ii
i i  = ir sin q - iq cos q (A.4.83c)

A.4.15 CURL OF THE CURL OF A VECTOR

In general, in the curvilinear orthogonal coordinate system, the curl curl A is

— ¥ — ¥ A = 
⎡ ⎤⎡ ⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎪ ⎪⎢ ⎥−⎢⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎢ ⎥⎢ ⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎩ ⎭⎣ ⎦
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i

                             

⎤⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎪ ⎪ ⎥⎢ ⎥− −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ⎥⎢ ⎥⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭⎣ ⎦⎦

2
1 1 3 3
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( ) ( )

h
h A h A
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⎡ ⎤⎡ ⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎪ ⎪⎢ ⎥+ −⎢⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎢ ⎥⎢ ⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎩ ⎭⎣ ⎦
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⎤⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎪ ⎪ ⎥⎢ ⎥− −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ⎥⎢ ⎥⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭⎣ ⎦⎦

3
2 2 1 1

1 1 2 1 2
( ) ( )

h
h A h A

u h h u u
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⎡ ⎤⎡ ⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎪ ⎪⎢ ⎥+ −⎢⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎢ ⎥⎢ ⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎩ ⎭⎣ ⎦

2
3 1 1 3 3

1 2 1 3 1 3 1

1
( ) ( )

h
h A h A

h h u h h u u
i

                             
⎤⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎪ ⎪ ⎥⎢ ⎥− −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ⎥⎢ ⎥⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭⎣ ⎦⎦

1
3 3 2 2

2 2 3 2 3
( ) ( )

h
h A h A

u h h u u
(A.4.84)

Or in metric coefficient form,

curl curl A = G G
⎧ ⎫⎛ ⎞ ⎛ ⎞∂ ∂⎪ ⎪−⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ∂⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
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1 3 2

2 3

g
g u u

i

                                    G G
⎧ ⎫⎛ ⎞ ⎛ ⎞∂ ∂⎛ ⎞ ⎪ ⎪+ −⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
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                                    G G
⎧ ⎫⎛ ⎞ ⎛ ⎞∂ ∂⎛ ⎞ ⎪ ⎪+ −⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
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1 2

g
g u u

i

where

 ( ) ( )G
⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂⎜ ⎟= −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠
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⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂⎜ ⎟= −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠
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g
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⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂⎜ ⎟= −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠
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(A.4.85)

In the three orthogonal coordinate systems:

Cartesian: — ¥ — ¥ A = 
⎡ ⎤∂ ∂∂ ∂
⎢ ⎥− − +

∂ ∂ ∂ ∂∂ ∂⎢ ⎥⎣ ⎦

2 22 2

2 2

y zx x
x

A AA A
x y z xy z

i

                  
⎡ ⎤∂ ∂∂ ∂
⎢ ⎥+ − − +

∂ ∂ ∂ ∂∂ ∂⎢ ⎥⎣ ⎦

2 22 2

2 2

y yz x
y

A AA A
y z x yz x

i

                  
⎡ ⎤∂∂ ∂∂
⎢ ⎥+ − − +

∂ ∂ ∂ ∂∂ ∂⎢ ⎥⎣ ⎦

22 22

2 2

yz zx
z

AA AA
z x y zx y

i (A.4.86)

Cylindrical: — ¥ — ¥ A = 
f f

f f f

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂⎛ ⎞ ∂∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟ + − − + ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ∂ ∂ ⎟ ∂ ∂ ∂⎢ ⎥∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
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1 1 1 zr r
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r r r zr r z
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f f f f

f f

⎡ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ∂ ∂ ∂⎛ ⎞∂⎛ ⎞ ⎛ ⎞⎢ ⎜ ⎟ ⎜ ⎟+ − − − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ⎜ ⎟ ⎜ ⎟ ∂⎢ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣

2 22
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1 1z A A A AA
r z r rz r r

i
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                                    f f
⎤⎛ ⎞∂ ∂⎛ ⎞⎛ ⎞ ⎛ ⎞+ − ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎥⎝ ⎠ ⎦

2

2

1 1r rA A
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⎡ ⎛ ⎞⎛ ⎞ ∂ ∂⎛ ⎞∂ ∂⎛ ⎞⎛ ⎞ ⎛ ⎞⎢+ + − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂∂⎝ ⎠ ⎝ ⎠⎢ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣
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1 1z zr r
z

A AA A
z r r z r rr

i
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ff

⎤⎛ ⎞⎛ ⎞ ∂∂⎛ ⎞ ⎛ ⎞ ⎥⎜ ⎟− +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ∂ ∂ ⎟⎥∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎦
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2 2

1 1z AA

r zr (A.4.87)

Spherical: — ¥ — ¥ A = ir

2

2 2

1 cot cot 1A A A
A

⎡ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ + +⎢ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎣
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⎡ ⎛ ⎞⎧ ⎫ ⎧ ⎫⎛ ⎞∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ∂⎪ ⎪ ⎪ ⎪⎢ ⎜ ⎟ + − ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎨ ⎬ ⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ∂ ∂ ⎟ ∂⎢ ∂⎪ ⎪ ⎪ ⎪⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭⎝ ⎠⎣
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⎡ ⎛ ⎞ ⎛ ⎞ ⎧ ⎫∂ ∂ ⎛ ⎞⎧ ⎫ ∂⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎪ ⎪⎢ ⎜ ⎟ ⎜ ⎟− − + ⎜ ⎟⎨ ⎬ ⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ∂ ∂ ⎟ ∂ ⎜ ⎟⎢ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎪ ⎪⎝ ⎠⎩ ⎭⎝ ⎠ ⎝ ⎠⎣
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⎛ ⎞ ⎧ ⎫ ⎛ ⎞∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ∂⎪ ⎪⎜ ⎟− − + ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ⎜ ⎟ ∂ ∂∂ ⎪ ⎪⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭⎝ ⎠
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⎤⎧ ⎫⎛ ⎞ ∂⎛ ⎞⎪ ⎪ ⎥− ⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟ ∂ ⎥⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭ ⎦
2

cot

sin

A
(A.4.88)

A.4.16 VECTOR LAPLACIAN (= —2A)

The vector Laplacian, when applied to a vector is

—2A = grad div A - curl curl A

and using the scalar operator —2 on the vector, we get in the curvilinear coordinate system:

—2A = 
⎡ ⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂⎪ ⎪+ +⎢⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎩ ⎭

2 3
1 1 2 2 3 3

1 2 3 1 1 1

1
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h h
A A A

h h h u h u
i i i
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i i i (A.4.89)

Or in terms of metric coefficients,

—2A = 
GG⎡ ⎤⎛ ⎞ ⎧ ⎫⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂∂∂ ⎪ ⎪⎢ ⎥⎜ ⎟ + −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ∂ ∂ ∂⎢ ⎥⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎩ ⎭⎝ ⎠⎣ ⎦

311 2
1

1 3 211

1 gT
u g u ug

i

                        
G G⎡ ⎤⎛ ⎞ ⎧ ⎫⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂∂ ⎪ ⎪⎢ ⎥⎜ ⎟+ + −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ∂ ∂ ∂⎢ ⎥⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎩ ⎭⎝ ⎠⎣ ⎦
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G G⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂∂ ⎪ ⎪⎢ ⎥⎜ ⎟+ + −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭⎝ ⎠⎝ ⎠⎣ ⎦

33 1 2
3

3 2 133

1 gT
u g u ug

i (A.4.90)

where

11 22 33
1 11 2 22 3 33

1 g g g
T A A A

u g u g u gg

⎡ ⎤⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥⎜ ⎟= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎣ ⎦
and G1, G2, G3 are as in Eq. (A.4.85).

In the Cartesian coordinates:

—2A = 
⎛ ⎞∂ ∂ ∂

+ +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

2 2 2

2 2 2
x x x

x
A A A

x y z
i

                                    
⎛ ⎞∂ ∂ ∂
⎜ ⎟+ + +
⎜ ⎟∂ ∂ ∂⎝ ⎠

2 2 2

2 2 2

y y y
y

A A A

x y z
i

                                    
⎛ ⎞∂ ∂ ∂

+ + +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

2 2 2

2 2 2
z z z

z
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i (A.4.91)

In the cylindrical coordinae system:

—2A = 
f

ff

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ∂⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪+ − + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎪ ⎝ ⎠⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭
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⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎪+ + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭
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i (A.4.92)
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In the spherical coordinate system:

—2A = 
2 2

2 2 2 2

2 2 1A A A
A
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i r r r
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2 2 2 2
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q q
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⎡⎛ ⎞ ⎛ ⎞∂ ∂⎛ ⎞⎛ ⎞+ + −⎢⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂∂ ⎝ ⎠ ⎝ ⎠⎢ ⎝ ⎠⎝ ⎠⎣
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q q qq
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                        2 2
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⎡⎛ ⎞∂ ∂ ⎛ ⎞⎛ ⎞⎛ ⎞⎢⎜ ⎟+ + − ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂⎢ ∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎣
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A A A⎛ ⎞ ⎛ ⎞⎧ ⎫∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎪ ⎪⎜ ⎟ ⎜ ⎟+ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂ ⎜ ⎟∂ ∂⎪ ⎪⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭⎝ ⎠ ⎝ ⎠

f f fq
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AA ⎤⎧ ⎫ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂⎛ ⎞⎪ ⎪ ⎥+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ⎥⎝ ⎠⎪ ⎪ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎦

rqq
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A.4.17 GRADIENT OF THE DIVERGENCE OF A VECTOR

In the curvilinear coordinate system:

grad div A = —(— ◊◊◊◊◊ A) = 1 2 3 1
1 1 1 2 3 1

1 1
( )h h A

h u h h h u

⎡ ⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂⎪
⎢⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎩
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                                       3 1 2 1 2 3
2 3

( ) ( )h h A h h A
u u

⎤⎫⎛ ⎞ ⎛ ⎞∂ ∂ ⎪⎥+ +⎜ ⎟ ⎜ ⎟ ⎬⎜ ⎟ ⎜ ⎟∂ ∂ ⎥⎪⎝ ⎠ ⎝ ⎠ ⎭⎦

                     2 2 3 1
2 2 1 2 3 1

1 1
( )h h A

h u h h h u

⎡ ⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂⎪+ ⎢⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎩
i

                              3 1 2 1 2 3
2 3

( ) ( )h h A h h A
u u

⎤⎫⎛ ⎞ ⎛ ⎞∂ ∂ ⎪⎥+ +⎜ ⎟ ⎜ ⎟ ⎬⎜ ⎟ ⎜ ⎟∂ ∂ ⎥⎪⎝ ⎠ ⎝ ⎠ ⎭⎦
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                     3 2 3 1
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( )h h A

h u h h h u

⎡ ⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂⎪+ ⎢⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎩
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                             3 1 2 1 2 3
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( ) ( )h h A h h A
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⎤⎫⎛ ⎞ ⎛ ⎞∂ ∂ ⎪⎥+ +⎜ ⎟ ⎜ ⎟ ⎬⎜ ⎟ ⎜ ⎟∂ ∂ ⎥⎪⎝ ⎠ ⎝ ⎠ ⎭⎦
(A.4.94)

In terms of the metric coefficients,

grad div A = —(— ◊◊◊◊◊ A) = 
⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

31 2

1 211 22 33

T T T
u u ug g g

ii i
(A.4.95a)

where

T = 1 2 3
1 11 2 22 3 33

1 g g g
A A A

u g u g u gg

⎡ ⎤⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥⎜ ⎟ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂ ∂ ∂⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎣ ⎦
(A.4.95b)

In the three orthogonal coordinate systems:

Cartesian: —(— ◊◊◊◊◊ A) = 
⎛ ⎞∂ ∂∂⎜ ⎟+ +
⎜ ⎟∂ ∂ ∂ ∂∂⎝ ⎠

2 22

2

y zx
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2 22
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x y y zy
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⎛ ⎞∂ ∂∂⎜ ⎟+ + +
⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

2 22
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y zx
z

A AA
x z y z z

i (A.4.96)

Cylindrical: —(— ◊◊◊◊◊ A) = 
⎧⎛ ⎞∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞⎪ + −⎜ ⎟⎨ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ∂∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪⎝ ⎠⎩
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1r r r
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2 2

2 2

1 1 zA A
r zr

                             
f

f
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Spherical: —(— ◊◊◊◊◊ A) = 
r r

r rr rr r
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A.4.18 DIVERGENCE OF THE CURL OF A VECTOR
This is a vector identity, which in curvilinear coordinates is:

— ◊◊◊◊◊ (— ¥ A) = 
⎛ ⎞
⎜ ⎟
⎝ ⎠1 2 3

1
h h h
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u u u u u u

        = 0 (A.4.99)

(Note that the order of differentiation is immaterial.)

A.4.19 CURL OF THE GRADIENT OF A SCALAR
This is another vector identity, i.e.

  — ¥ (—j) = 
j j⎡ ⎛ ⎞∂ ∂⎛ ⎞ −⎢ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎢ ⎝ ⎠⎣

2 2

1 1
1 2 3 2 3 3 2

1
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h h h u u u u
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j j j j ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂+ − + − ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ⎥⎝ ⎠ ⎝ ⎠⎦

2 2 2 2

2 2 3 3
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u u u u u u u u

i i

             = 0 (A.4.100)



Appendix 5

Some Important
Physical Constants

Permittivity of free space

e0 = 8.854 ¥ 10-12 
p

−⎛ ⎞
≈⎜ ⎟⎜ ⎟⎝ ⎠

910
36

 farads/metre

Permeability of free space (absolute permeability)

m0 = 4p ¥ 10-7 henry/metre

Velocity of light in vacuum, c0 = 
m e0 0

1

       = 2.998 ¥ 108 (ª 3 ¥ 108) metres/sec

Intrinsic impedance of vacuum, Z0 = 
m
e

0

0

                                 = 376.7 (ª 120p) W

Charge of an electron, e = 1.60202 ¥ 10-19 coulomb

Electron rest mass, me = 9.1083 ¥ 10-31 kg = 0.511 MeV

(Charge/mass) of electron (e/me) = 1.7589 ¥ 1011 coulombs/kg

Proton rest mass, mp = 1.6724 ¥ 10-27 kg = 938 MeV

Classical electron radius, 
p e

2

2 2
04 e

e

m c
 = 2.8178 ¥ 10-15 metres

Bohr radius, 
pe

p

2
0

2 2

4

4 e

h

m e
 = 5.2917 ¥ 10-11 metres

Planck’s constant, h = 6.6252 ¥ 10-34 joules-sec

Boltzmann’s constant, k = 1.3804 ¥ 10-23 joules/K

Avogadro’s number, NA = 6.0249 ¥ 1026 /kg
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Appendix 6

A Circuit for Experimental
Verification of One of the
Maxwell’s Equations
(Faraday’s Law of Induction)

A.6.1 INTRODUCTION

The subject-matter discussed here is based on the material contained in Chapters 6, 12, 13, 15,
and 17.

The basic elements in circuit theory are two-terminal generators, resistors, capacitors, and
inductors (coils). Any number of these elements, connected by conducting wires, makes an
electrical network. From the approach of field theory, the analysis of such a network would be
extremely complicated because the spatial distribution of the elements and the orientation of the
connecting conducting wires can be geometrically highly irregular. The boundaries would have no
simple regular shapes and the medium would be in-homogeneous. In most of the cases no closed-
form analytical solution would be possible.

Yet very large number of such networks have been and are being solved by the methods of
circuit theory; and the solutions thus obtained have been the basis of the designs of many
practical devices which we encounter everyday. The agreement between the practice and the
predictions based on this simple theory has been excellent. That the circuit theory is an
approximate theory is very obvious, and yet the accuracy of its results in a very large number of
cases has been so high, that no better solution is required. As with any approximate theory, the
circuit theory is valid, only under certain circumstances. A knowledge of the range of its validity
is important for the engineers dealing with it.

A.6.2 THE CIRCUIT THEORY AND ITS LIMITATIONS

The circuit theory is essentially a one-dimensional simplification of the field theory which deals
with two- and three-dimensional spatial distributions. It (circuit theory) cannot consider the
effects of space boundary conditions as is done in field theory problems.

The circuit theory is based on the two following assumptions:
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1. No charges are accumulated in the regions of the nodes of a circuit and on the
interconnecting conductors. This condition then permits the validity of the Kirchhoff’s
first law to be extended to time-varying currents. This law is effectively a special case
of the equation of continuity in integral form, i.e.

0
S

d◊ =ÚÚ J Sw (A.6.1)

For circuits, it is expressed as

=∑
any node

( ) 0i t
(A.6.2)

which is an extension of Eq. (6.26), now taking account of the time-varying currents as
well.

2. Kirchhoff’s second law is for the potential differences in a circuit. It can be stated as
“the line-integral of the ‘total’ electric field intensity and can now be associated
uniquely with any pairs of nodes of two-terminal network elements from which the
network is built”. Under this condition, the mathematical statement of the law can be
written in a slightly different form from Eq. (6.38), as

∑ E(t) – ∑ [Vi(t) – Vj(t)] = 0 (for any closed loop) (A.6.3)

where the difference [Vi(t) – Vj(t)] is the potential difference between the terminals
i and j of two-terminal elements along a given closed contour.

Both, this equation and Eq. (6.38) are effectively special cases of the integral form of the
Maxwell’s equation for Faraday’s induction law, i.e.

0
C

d◊ =Ú E lv (A.6.4)

When only resistors, capacitors, and inductors are present in the circuit, Eq. (A.6.3) takes the
form

( ) 1
( ) ( ) ( ) 0

di t
t Ri t L i t dt

dt C
⎡ ⎤− + + =⎢ ⎥⎣ ⎦∑ ∑ ∫E (A.6.5)

When the source emf produces sinusoidal time-varying currents, by using the complex notation,
the above equation becomes

w w
⎡ ⎤− + + =⎢ ⎥⎣ ⎦∑ ∑ 1

0R L CV RI j LI I
j C

(A.6.6)

where V’s and I’s represent complex amplitudes.
There are two limitations implicitely assumed in these two laws. Since it was assumed that

no charges are present on interconnecting conductors, it implies that the electric field is localized
inside the elements themselves. This means that the displacement current density
(= ∂D/∂t) is negligible, and hence the retardation effects are ignored. Hence for sinusoidally time-
varying currents of frequency f(= w/2p), the largest dimension of the circuit (= d, say) must be

<< w me1/ .
So it could be seen that the Kirchhoff’s two laws would enable us to analyze such circuits

or networks to evaluate the branch currents and the potential differences (P.D’s.) between any

APPENDIX 6 A CIRCUIT FOR EXPERIMENTAL VERIFICATION ...
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two nodes uniquely. This means that in such a network, the P.D. between any two points (or
nodes) depends only on the potential values of the nodes and is independent of the path traversed
by the contour, i.e. for the two nodes A and B on a contour of the network,

B

AB A B

A

V d V V= − ⋅ = −∫ E l (A.6.7)

A.6.3 CIRCULATING CURRENT CIRCUIT

This (the above) is in general true for circuits in which the energy source is a battery or ac
generator (or oscillator). But there are circuits in which the time-varying currents can be produced
by, say, a time-varying magnetic field distributed in a region which is enclosed by a contour
along which a circuit containing passive elements can be constructed. In such a circuit, it will be
found that the P.D. between the two nodes (of an element) would not be a unique function of the
potentials of the concerned nodes, but would also depend on the orientation and location of the
contour along which the distance between the nodes is being traversed. What is being implied is
that up to Chapter 6 and in the present discussion (in this Appendix so far), from Eq. (A.6.4), the
relationship of the electric intensity vector E with the potential V is given by the equation

E = – grad V = – —V (A.6.8)

which holds true for both steady currents (time-invariant) as well as for time-varying currents
(which includes sinusoidally time-varying currents as well). However we will now consider a
circuit whose behaviour cannot be fully explained by the equations considered so far, and can
only be explained rigorously by the integral form of Maxwell’s equation for Faraday’s law of
induction. This circuit was first discussed by Haus and Melcher[1] and then by Woodson and
Melcher[2].

The circuit under consideration consists of two resistors Ra and Rb (where Ra πππππ Rb) looped
round one limb of a rectangular laminated core, around the other limb of which is wound an
exciting coil supplied from an alternating current source which in this case is a single-phase
transformer (Figure A.6.1). The current in the exciting coil produces an alternating magnetic flax
in the iron core, which links the loop of the circuit PRaQRbP, as shown in the Figure A.6.2. Since
the core is made up of highly permeable iron laminations (CRGO steel), the alternating magnetic
flux in it (the core), generated by the alternating current [= i exp( jw t)] in the exciting coil, would
be inside the iron laminations and there would be no leakage flux in the surrounding air-space.
As the loop circuit is enclosing an alternating magnetic flux [of density B exp( jw t)] in the iron
core, there would be a ‘circulating current’ in it, even though there is no emf or alternating
current source connected to it. The current and the induced emf in the circuit is given by the
integral form of Maxwell’s equation for Faraday’s law of induction, i.e.

C

d
d d

dt
◊ = - ◊Ú ÚÚE l B Sv (A.6.9)

where C is the contour enclosing the surface S.
In the present situation, C is the loop PRaQRbP and S is the area enclosed by the contour of

this loop. Since all the magnetic flux is in the iron core and there is no leakage flux in the
surrounding air-space, the effective value of S would be the cross-sectional area of the rectangular
core (= A, say) where the average flux density is B exp( jw t) produced by an N-turn coil
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enclosing the other limb of the core, and carrying a current i exp( jw t).
\ The total flux linked by the loop C (PRaQRbP) = F = AB exp( jw t)
\ The emf in the contour C due to the alternating flux linked by it

[ ]= ( ) exp( ) exp ( )a b

C

d
V d R R I j t AB j t

dt
w w= = ◊ + = -Ú E lv (A.6.10)

where I exp( jw t) is the current flowing in the loop due to the induced emf (Figure A.6.2).
To find the P.D. between the points P and Q—the joints of the resistors Ra and Rb, we

connect two voltmeters to these two points and position them as indicated in Figure A.6.3, i.e.
Va and Vb. To obtain the values Va and Vb (i.e. the voltmeter readings), we need to consider the
line integrals of E along the contours Ca and Cb as shown in Figure A.6.3. Since these two
contours enclose no magnetic flux at all, we get

exp( ) exp( ) 0

a

a a

C

d V j t R I j tw w◊ = + =Ú E lv (A.6.11a)

exp( ) exp( ) 0

b

b b

C

d V j t R I j tw w◊ = - =Ú E lv (A.6.11b)

APPENDIX 6 A CIRCUIT FOR EXPERIMENTAL VERIFICATION ...
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Figure A.6.1 Pictorial view of a magnetic circuit for generating circulating current.

Figure A.6.2 Cross-section of the magnetic flux area within the circulating current circuit.
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From Eq. (A.6.10),

I = –
w

+a b

AB
R R

(A.6.12)

anda b
a b

a b a b

R AB R AB
V j V j

R R R R
w w

\ = = -
+ + (A6.13)

Since , .a b a bR R V Vπ π
Thus it is seen that VPQ measured by two voltmeters (of identical nature), both connected to

the points P and Q but following different contours (and hence following different contours for
the line-integrals as well) Ca and Cb (Figure A.6.3), does not produce a unique value. We obtain
two values Va and Vb which are unequal. An experimental verification of this double-valued
nature of the P.D. is shown in Plates 4 and 5 which show the actual experimental set-up using a
rectangular laminated core, and the two resistors are Ra = 5 W and Rb = 10 W. The two voltmeters
Va and Vb have been replaced by the two beams of a double-beam CRO in which both beams are
supplied from the points P and Q but the connecting leads follow the different contours Ca and
Cb. From Plate 5, it is seen that the magnitudes of the two ‘P.D’s’ are such that Va = 1/2Vb. So it
is obvious that in a circuit as this, the ‘P.D.’ between any two points is very much a function of
the contour along which it is measured, and does not satisfy Eqs. (A.6.7) and (A.6.8).

Since the current in the circuit is produced by a time-varying magnetic field (distributed in
space), the relationship between the electric field intensity E and the potential V is given by

∂= − ∇ −
∂

V
t
A

E (13.49)

where A is the magnetic vector potential of the magnetic field, as we have seen earlier in
Chapter 13. This equation defines the ‘total electric field intensity E’, and the time-integral of the
total electric field intensity is referred to as the “voltage between the two points P and Q” (for
want of a better nomenclature). We designate it as

12

Q Q

P P

V d V d
t

∂⎛ ⎞= ⋅ = − ∇ + ⋅⎜ ⎟∂⎝ ⎠∫ ∫ A
E l l (A.6.14)

Area A

P

Va VbBejw t Iejwt

Q

+

–

+

–

Ra

Ie jwt

Ca

Cc

Cb

Rb

Figure A.6.3 Circulating current circuit with measuring voltmeters, and showing
the contours for integration.
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The first term on the right-hand side is precisely the ‘potential difference’ between the two points,
i.e.

12 ( )P QV V V d
t
�� � � �
� � A l (A.6.15)

Hence the concepts of ‘voltage between two points’ and ‘potential difference between two points’
are different and not equal. Only in the static case, they become identical. The P.D.
(VP – VQ) is a function of the two points P and Q only. But the second term on the right-hand
side is a function of the particular path between the points P and Q. Thus in the circuit of the
Figures A.6.2 and A.6.3,

along alongb a

Q P

P Q
R R

l d d �⋅ + ⋅ = ⋅ =∫ ∫ ∫∫A d A l B S

so that

along alongb a

Q Q

P P
R R

d d �⋅ = ⋅ +∫ ∫A l A l (A.6.16)

� V12 along Rb
 = V12 along Ra

 – 
�∂
∂t

(A.6.17)

where � is the magnetic flux through the contour PRaQRbP. This means that for such circuits, the
voltmeter readings for measuring the voltage between two points on the circuit, would be
different for different shapes of the connecting leads. This is an important conclusion for the
time-varying electromagnetic fields. This conclusion violates the basic assumption of the circuit
theory that the voltage between the two points in a circuit is unique because the magnetic field
due to the circuit elements is concentrated inside the elements and can be ignored elsewhere. This
assumption is thus seen to be incorrect when the current in the circuit is produced by a space
distributed time-varying electromagnetic field.

This type of current, commonly known as circulating current (Pramanik[3]), is seen in many
practical situations, such as the rotor bar currents in the short-circuited cage of squirrel cage
induction motors, currents in the secondary windings of transformers under short-circuited
conditions, alternating currents in the shafts of either induction or synchronous (turbo-generators
and hydrogenerators) machines, arising out of magnetic dissymmetry in their cores. Other
examples are the more commonly known eddy current loops in solid structures of metals (or
conducting media) in the immediate vicinity of any generated alternating magnetic fields in
different devices. Even the currents for cooking generated in the microwave cookers are examples
of circulating currents.

Measurement of such currents poses some problems. When there are distributed multiple
loops of currents in solid structures, measuring the total current in the structure is a near
impossibility and it is only the surface current density which can be measured by eithor J-probes
or current-density probes. Where the total current is measurable (i.e. in the shaft of synchronous
machines or rotor bars of induction machines), it is preferable to use a non-contact, non-invasive
device like Rogowski coil which is essentially a toroidal search coil, fixed around the current-
carrying conductor (Figure A.6.4).
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A.6.4 NON-CONSERVATIVE FIELDS: SOME FURTHER
THOUGHTS (Later Addition)

It is obvious that in the problem we have been discussing in the previous section (i.e. Section A.6.3),
the circuit enclosing the region where the time-varying magnetic field (Bejwt) is distributed
spatially (Figures A.6.2 and A.6.3) is a region of non-conservative field, because in this region

0 i.e.
C

d
d d

dt
Ê ˆ◊ π = - ◊Á ˜Ë ¯Ú ÚÚE l B S (A.6.9a)

It has been shown that the ‘voltage drop’ between any two points on a circuit along the
contour enclosing the region of time-varying magnetic field is not uniquely defined. This has been
shown both by mathematical analysis (based on the physics of the problem) and by experimental
measurements. However there has been one idealization assumption implicit in that analysis
[i.e. Eqs. (A.6.11a) and (A.6.11b), and Figure A.6.3]. It is that the two voltmeters Va and Vb are
assumed to have infinite internal resistance (i.e. Ri Æ •) so that there is no current flow through
them. But in real-life the internal resistance of the voltmeters would be quite large compared with
the circuit resistances (i.e. in this case Ra and Rb), still Ri would have a finite value and there would
be a current-flow through these two voltmeters. Hence to be rigorous, we should consider current-
flow in all the three loops under consideration in Figure A.6.3. But this does not mean that the
conclusions based on that analysis are incorrect. In fact we shall show that the conclusions based
on this rigorous analysis also support the earlier conclusions. Furthermore the present analysis
would give us a deeper insight into the behaviour of such non-conservative field regions.

Hence we will re-analysis the circuit of Figure A.6.3 and we shall consider the loop currents
in the contours of complete circuit. Since we are now considering the loop currents in the
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l

Figure A.6.4 Toroidal search coil (or Rogowski coil) for non-contact measurement of current.
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three loops, it is necessary that all the three loop currents have the same sense (i.e. in this case all
the three currents be shown clockwise) and the same diagram is redrawn as Figure A.6.5. This was
not an essential requirement as the currents through the voltmeters were assumed to be zero.

Va

Ri

Ia( )t

Ra

I( )t

P

Q

Area AArea A

Be
j tw

Be
j tw

Ib( )t

Rb

Vb

Ri

Figure A.6.5 Circulating current circuit showing the loop currents.

Since the magnetic field is time-varying, we are considering an instant of time t, when the
sense of the current in each loop is the same. The central loop has two resistors Ra and Rb, whereas
the voltmeters in the two side loops have the same internal resistance Ri. The loop currents are as
shown in the figure. Of the three closed loops in the figure, in the two extreme loops (i.e. the one
on the left and one on the right), the Kirchhoff’s second law can be applied as

0
C

d◊ =Ú E lv (A.6.4)

whereas for the central loop which physically encloses the region where the time-varying magnetic
field exists, the Faraday’s law of electromagnetic induction has to be used, i.e.

C

d
d d

dt
◊ = ◊ =Ú ÚÚv E I B S E (A.6.9a)

The results would be:

Left loop: IaRi + (Ia – I) Ra = 0 (A.6.18)

Right loop: IbRi + (Ib – I) Rb = 0 (A.6.19)

Central loop: (I – Ia) Ra + (I – Ib) Rb = E (A.6.20)

Now Ri >> Ra and Ri >> Rb, and hence Ia << I and Ib << Ib. Thus Eqs. (A.6.18)–A.6.20)
simplify to

 IaRi – IRa � 0 (A.6.21)

 IbRi – IRb � 0 (A.6.22)

I (Ra + Rb) � E (A.6.23)

Since each of the two voltmeters (i.e. Va and Vb) would show reading proportional to the
current passing through it, then

Va = IaRi � IRa (A.6.24)
and

Vb = IbRi � IRb (A.6.25)

APPENDIX 6 A CIRCUIT FOR EXPERIMENTAL VERIFICATION ...
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If the positive side of both the voltmeters is connected to the Q-side of the circuit and the
negative side with the P-side, then the recorded values of Va and Vb will be opposite in sign (as
is confirmed in Plate 5 showing the Va and Vb traces from the experiment). It should be noted that

a a

b b

V R
V R

=  (and independent of the current through the control circuit) (A.6.26)

                                       and is π 1 (∵ Ra π Rb)

Thus the ‘voltage’ between the two points P and Q is different and depends on the contour
along which it is measured.

This is an important property of the non-conservative fields. Thus if we traverse on the central
loop from Q to P (Q having a higher potential than P) through the resistor Ra, then the P.D. between
Q and P = (VQ – VP) � I Ra as registered by the voltmeter on the left (= Va). Then we complete
our journey by traversing through the resistor Rb and now the P.D. between P and Q � I Rb. So we
have traversed through the whole loop in the centre, starting from and ending at, and we find that

VQ – VQ π 0 (∵ Ra π Rb) (A.6.27)

This curious feature of non-conservative fields can be further exemplified by studying the
following two circuits which are simple extrapolations of the circuit which we have been analysing
so far.

In Figure A.6.6, two identical voltmeters with the same internal resistance Ri, have been
apparently (?) short-circuited with the short-circuiting wire passing through the point Q as in the
figure. The voltmeter Vc would show ‘zero deflection’, but what would be the reading of the
voltmeter Vd?

In Figure A.6.7, what would be the reading of the voltmeter Vb compared to Va with the
connections to the points P and Q as shown?

V
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R
a

Area AArea A
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j tw

Be
j tw

R
b

V
b

R
i
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Q

V
c

V
d

R
iR

i

Figure A.6.6 Circulating current circuit with two additional voltmeters apparently
shorted at the point Q.
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Area A

Bej tw

P

Q

Ri

Va Vb

Ra Rb

Ri

Figure A.6.7 Circulating current circuit with the voltmeter Va connected with an additional
loop around the non-conservative field region.

A.6.5 SELF-INDUCTANCE AND NON-CONSERVATIVE FIELDS

The concept of self-inductance has been discussed in reasonable detail in Sections 10.6 to 10.6.3,
Sections 11.15 to 11.15.1, as well as Sections 13.4 to 13.4.6 from different approaches, i.e.
Kirchhoff’s Law, Law of Induction, Energy considerations as well as based on the magnetic
vector potential. However now we shall have a relook at the concept from the consideration of
non-conservative fields.

So we start with time-varying magnetic fields where the closed line-integral of the associated
(time-varying) electric field is ‘no longer’ zero, i.e. for any open surface,

B S
d

d d
dt

◊ = - ◊Ú ÚÚE lv (A.6.28)

Now, it is known that in any circuit which carries time-varying currents will have associated
time-varying magnetic fields which would produce induced electric fields. So even a simple circuit
with such currents would have to take account of these effects (i.e. account for the inductance of
the circuit).

The main point to be appreciated in such circuit where time-varying magnetic fields have
been introduced, is that the ‘electric potential difference’ between any two points in the circuit is
no longer uniquely defined (as we have seen in our earlier discussions of Sections A.6.3 to A.6.4).
This is because since the line integral of the electric field around a closed contour in such a region
is no-longer zero, the potential difference between any two (non-coincident) points on such
contours (say points a and b or P and Q) is no longer independent of the path used to traverse from
a to b or P to Q; i.e. the electric field is no longer conservative and the electric potential is no more
a uniquely defined concept (since E cannot be expressed as ‘–—————V’). So we will now derive the
equation for the behaviour of the current.

Hence consider a circuit as shown in Figure A.6.8 consisting of a single-turn loop, a battery
and a resistor R both connected in series, with a switch S also in series with the other elements, and
is closed at the instant t = 0.

APPENDIX 6 A CIRCUIT FOR EXPERIMENTAL VERIFICATION ...
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dl

dS

B

iR

E
+

–

Switch S

closed at t = 0

Figure A.6.8 Single-turn loop circuit.

For t > 0, a current would flow in the loop in the direction as shown in the figure (from the
positive terminal of the battery to the negative). Then the Faraday’s law is applied to this circuit,
i.e. Eq. (A.6.28). The direction of traverse along the circuit is from positive plate of the battery to
the negative plate (through the single-turn loop). Inside the battery, the direction of traverse
(through the inside electric field of the battery) is against the field and hence its contribution to the
line integral of E would be – E. There is also an electric field inside the resistor R and so the
contribution to E ◊◊◊◊◊ dl would be + iR. If the loop wire has a small resistence r << R then tis
contribution to the line integral would be + ir and this can be compounded with iR so that R now
is redefined to include the external resistance as well as the resistance of the loop wire. Hence the
L.H.S. of Eq. (A.6.28) is now

d iR◊ = - +Úv E l E (A.6.29)

Next, the magnetic flux f through the open surface bounded by the single turn loop is to be
evaluated [for the R.H.S. of Eq. (A.6.28)] From the direction of the current round the loop, the flux
f is entering the plane of the paper normally which is also the assumed direction for dS, and hence
B ◊◊◊◊◊ dS is +ve. It should be carefully noted that the magnetic field B in this region is due to the
current in the loop and is NOT an externally imposed field. At any point in this region under
consideration, B is proportional to the current i, as B can also be calculated by using Biot–Savart’s
law, i.e.

0
34

d
i

r

m
p

¥
= Ú l r

B v (A. 6.30)

(The contribution to f comes mostly from the single-turn loop, as the straight portion
containing the battery and and the resistor R can be made as small as possible.) Hence it follows
that for a given geometry of the loop, B is directly proportional to i. So f can be expressed as

f = Li (A.6.31)

where Li is a constant for a given geometry of the wire forming the loop, Li is called the self-
inductance (or simply, the inductance) of the circuit. Hence Faraday’s law gives

d di
d iR L

dt dt
f

◊ = - + = - = -Úv E l E (A.6.32)

Thus the behaviour of the current is given by the equation

di R
i

dt L L
E

+ = (A.6.33a)
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\ ( ) 1 exp
R

i t t
R L

⎧ ⎫⎛ ⎞= − −⎨ ⎬⎜ ⎟⎝ ⎠⎩ ⎭

E
(A.6.33b)

where =
L
R

t  — characteristic time of the inductor = inductive time constant

This is the effect of non-zero inductance in the circuit.

A.6.5.1 Modified Form of Kirchhoff’s Second Law (for Inductors)

Equation (A.6.32) for the current i(t) can be rewritten as

0
di

iR L
dt

− − =E (A.6.34)

and this equation looks like that of Kirchhoff’s second law, i.e. the sum of potential drops around
a complete circuit is zero.

The rule ‘implicit’ in the derivation of the above equation is:

When an inductor is traversed in the direction of current-flow through it, the change in

potential is –
di

L
dt

. If the direction of travese is opposite to the direction of current flow, then

the change in potential is +
di

L
dt

.

While this approach produces the correct circuit equation for the current, the underlying
physics of the phenomenon can be confusing. To say that there is a ‘potential drop’, across the

inductor equal to –
di

L
dt

, implies that the line integral of E through the inductor has a magnitude

equal to 
di

L
dt

 which is based on the implicit assumption of an electric field existing in the inductor.

But we have seen in the derivation of (A.6.32) that the line-integral of E through the one-loop
inductor is zero (or nearly equal to zero). The question that needs to be looked into is that “even
when there is a time-varying magnetic field here how does E field become zero”?

To answer this question, let there be a circular loop of wire, of radius a and total resistance
R, which is positioned in a region where an externally imposed magnetic field, directed normally
to the plane of the loop, exists and the field is increasing with time, as shown in Figure A.6.9.

In the present case, the externally imposed magnetic field (= Bext) is assumed to be much
greater than the magnetic field due to current in the wire and hence the internal field can be
neglected. So only the effects of the external field need be considered.

The time-varying, externally imposed magnetic field gives rise to an induced electric field in
the wire-loop.

The line integral of this induced electric field around the loop

= 2pa Einduced = –pa2 extd
dt

←
B

 by Faraday’s law

or

Einduced = – ext

2
da

dt
B

APPENDIX 6 A CIRCUIT FOR EXPERIMENTAL VERIFICATION ...
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Figure A.6.9 A loop of wire positioned in an externally imposed time-varying magnetic field.

The direction of the induced electric field would be circumferential and it would be uniformly
distributed along the contour of the circular loop (i.e. when only the contour is being considered
or when the loop has open ends and has not been closed to allow any current to flow through it).
But when the current is allowed to flow in the loop, the situation changes and becomes dependent
on the resistance of the path along the circular wire-loop. If the resistance of the loop is uniformly
distributed along the whole circumferential length (= 2pa), then there is a uniform Einduced in the
loop, this value being same at every point in the loop and circulating clockwise for Bext increasing
with time. This induced field causes a current to flow through the loop, the current density at every
point by J = Einduced/r, r being the elemental resistance at every point of the loop. The total current
in the uniform loop would be given by the total potential drop around the circular loop (i.e. P.D.
= 2paEinduced) divided by the total resistance of the loop (= R). Hence

induced2 a E
I

R
p

=

and would circulate in the clockwire sense, i.e. same as that of Einduced for increasing Bext

[Figure A.610(a)]. Thus, when the resistance of the wire-loop is distributed uniformly along its
circumference, then Einduced would be same at every point on the loop and would be circulating
clockwise for Bext increasing with time

The next question that needs looking into is, what happens when the resistance of the wire
is not uniform along its length. The simplest situation of non-uniform resistance of the loop would
be when the left-half of the loop has a resistance R1 and the right-half has a resistance R2 where
R2 > R1 such that R = R1 + R2. Under this condition what would be the distribution of the E field
in these two parts of the loop? Now the emf of the circuit is same as in the previous case as the
total circuit resistance has not changed. But the electric field on the left-half of the loop (= E1)
would be different from the right-half (= E2).

This must be so because the line-integral of the E-field on the left side, over the left side =
paE1 which would be equal to iR1 (by Ohm’s law). Similarly for the right side, paE2 = iR2. Thus

1 1

2 2

E R
E R

=

and so E1 < E2 as R1 < R2. This should be correct as the loop wire would carry the same current,
even though the resistances of the two halves are different. To maintain a unique value of the
current through the whole loop, the E-field on two sides would get adjusted. Then what has
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happened to the uniform electric field induced around the contour of the loop? It should be
remembered that Faraday’s law of electromagnetic induction still holds and the induced emf is a
function of the time-changing magnetic field and does not depend on the resistance of different
parts of the wire-loop positioned on the contour under consideration. What has been overlooked so
far is that in the present situation there is another source of E-field apart from the field induced by
the time-varying magnetic field. This second source of E-field is due to electric charges at the
junctions separating wire segments of different resistances. Hence the resultant E-field in each of
the two parts of the loop consists of (a) the induced E-field as a consequence of the Faraday’s law,
and (b) the charge field (= Echarge) at the junctions directed from the +ve junction at the top
[in Figure A.6.10(b)] to the –ve junction at the bottom of the loop.

+
+

–
–

Bext

Resistance
R

Einduced Einduced

Einduced Einduced
R R1 2<

E E1 2<

Echarge Echarge

(a) Uniform resistance (b) Non-uniform resistance

.

Figure A.6.10 Circular wire-loop in the externally imposed time-varying magnetic field.

The consequence of this field is to reduce the resultant electric field in the segment of lower
resistance (= E1) and increase the resultant E-field (= E2) in the segment of higher resistance. This
modification of the resultant E-field enables the same current to be maintained through the whole
loop, as well as satisfy the requirement of the Faraday’s law (i.e. the line integral of E over the

whole loop be = –pa2 extd
dt
B

.)

Thus the non-uniform E-field in an inductor having non-uniform resistance along its length
does not mean a breakdown of Faraday’s law. According to Faraday’s law, the induced E would
be uniform over the ‘whole circular contour’ and the non-uniformity of the E-field is a consequence
of the E-field produced by the junction charges.

If now a voltmeter is connected to the terminals of an inductor with very small resistance,
what does the voltmeter indicate?

It needs a voltage drop of L
di
dt

. But this is not due to an electric field in the inductor. A

current flows is the voltmeter because there is a large internal resistance in the voltmeter and the

potential drop across that resistor ⎛ ⎞
⎜ ⎟⎝ ⎠

of
di

L
dt

, by Faraday’s law applied to the voltmeter circuit, is

what is read by the voltmeter.
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Appendix 7

Graphical Method of
Analyzing Waveguide
Problems (Smith Chart)

A.7.1 INTRODUCTION

Before the advent of computers, a number of graphical methods had been developed to solve or
to assist in solving different types of waveguide problems. One of the most popular (if not the
most widely used) methods has been the ‘Smith Chart’ which was developed by P.H. Smith in
1939, originally intended to analyze and design transmission line circuits. The initial intention of
the inventor was to provide a handy graphical means for doing complex (variable) impedance
calculations. This has now very wide applications in spite of the use of computers, and is now
used as a presentation medium in computer-aided design (CAD) software for demonstrating the
microwave circuit performances. Though there is a general impression that Smith chart is used for
analyzing both lossy as well as loss-less transmission lines, it should be understood that it
(Smith chart) can be used for solving all guided wave problems whose system terminal
characteristics can be represented in terms of effective impedances. A further point to be noted is
that even though in most of the elementary books on electromagnetism (including the
present one), the transmission line problems are solved in terms of terminal impedances as
circuit problems, it is possible to analyze the lines (either twin parallel lines, or eccentrically
mounted parallel coaxial cables, or in general when the two parallel cylinders are not coaxial)
in terms of their electromagnetic field distributions, by using a bi-cylindrical coordinate system
(see Figure A.7.1). But since this coordinate system is not a part of undergraduate curriculum, the
problem is treated as one of equivalent circuit analysis.

Since the Smith chart enables us to make a direct determination of the complex (voltage)
reflection coefficient G (of the transmission line) by plotting in the complex plane, we shall
generalize G for other waveguides such as rectangular waveguides. So before going into the
principles of construction and usage of the chart, we shall extend the concept of the reflection
coefficient to waveguides in general, and thus establish the validity of the chart to a wider range
of problems.

929
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A.7.2 REFLECTION COEFFICIENT (VOLTAGE)

This has been already defined for lossless transmission lines on p. 598 as

G
−

=
+

L c

L c

Z Z
Z Z (18.19)

where ZL is the terminating load impedance and Zc is the characteristic impedance of the line.
For the lossy line, we have denoted the reflection coefficient as GR on p. 601, which is

G
−

=
+

L c
R

L c

Z Z
Z Z

[since the load impedance is ZL = ZR of Eq. (18.31)] (18.31a)

It is also seen that in these equations, the numerator is proportional to the reflected voltage wave
and the denominator to the incident wave, i.e.

G = 2
R

1

V
V

Now we shall generalize this coefficient to include the behaviour of guided electric and
magnetic waves (i.e. waveguides in TE and TM modes). For a TE wave, the coefficient Ge for the
E-wave for (say) rectangular waveguides (as shown in Figure A.7.2) is

, refl.
e

, inc.

x

x

E

E
G = (A.7.1)

and for the corresponding magnetic wave:

, refl.
m

, inc.

y

y

H

H
G = (A.7.2)

Figure A.7.1 TEM wave between parallel conductors. Bi-cylindrical coordinates are
used for all three cases.

(a) (b)

(c)

H

E

H E

E

H

H
E

a aa a
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For the simplicity of analysis, instead of considering a general mn mode of operation, we
consider the simplest TE10 mode. In this mode, the E wave can be expressed as, starting with the
incident wave (Ex, inc.) as

Ex, inc. = A sin 
p y
b

 exp (–jbz) (A.7.3)

(Note: exp ( jw t) is implicit in all these expressions.)

  
pwm b b

∂∂
∴ − = − = − −

∂ ∂
sin exp ( )zx

y
EE y

j H j A j z
z x b

 (by Maxwell’s equations) (A.7.4)

b
wm∴ =, inc. , inc.y xH E (A.7.5)

Likewise for the reflected wave, we get

Ex, refl. = B sin 
p y
b

 exp (+ jbz) (A.7.6)

and

Hy, refl. = – 
b

wm
 Ex, refl. (A.7.7)

, refl. , refl.
m e

, inc. , inc.

y x

y x

H E

H E
G G∴ = = − = − (A.7.8)

So we shall use the notation, Ge = G (A.7.9)

A.7.2.1 Variation of Reflection Coefficient along the Waveguide

We have the incident wave as
p b−sin exp ( )

y
A j z

b

where z is the distance measured from the source (say). To express this in terms of the distance l
from the load, we have

Ex, inc. = A sin 
p y
b

 exp (+jbl) (A.7.10)

Figure A.7.2 Section of a rectangular waveguide.

x

a

z

b
y

APPENDIX 7 GRAPHICAL METHOD OF ANALYZING WAVEGUIDE PROBLEMS
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Let the reflected wave set up at the load be of magnitude

pG sin
y

A
b

Then at a point distant l from the load, this becomes

Ex, refl. = GA sin 
p y
b

 exp (–jbl) (A.7.11)

(i.e. there is a relative phase lag)

Ex, total = A sin 
p y
b

{exp (+jbl) + G exp (–jb l)} (A.7.12)

But the reflection coefficient G may be complex, i.e.

G = G  exp ( jf) (A.7.13)

where f is the phase change of E on reflection, and a function of load impedance only.

Then G at the point l = 
j j

j
f b

bG
exp ( ) exp ( )

exp ( )
l

l
−

+

\ G = G  exp [ j(f – 2bl)] (A.7.14)

A.7.2.2 Standing Wave Pattern

We have

Ex, total = A sin 
p y
b

 [exp (+jbl) + G exp (+jb l)]

   = A sin 
p y
b

 exp ( jb l) [1 + G  exp {j(f – 2b l)}] [from Eq. (A.7.13)] (A.7.15)

For graphical representation, since |G | < 1, we can consider a circle as shown in
Figure A.7.3, in which l = b, |G | = c and Ex, total = a.

Figure A.7.3 Graphical representation of components of E wave.

Ex, total = a

b = l

C

O

a = f – 2bl

c = |G|

From this DAOC,    a2 = (b + c cos a)2 + c2 sin2a
= b2 + c2 + 2bc cos a, where a = f – 2b l

A
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\ { }
2

22
, total sin 1 2 cos ( 2 )x

y
E A l

b
G G⎛ ⎞= + + −⎜ ⎟⎝ ⎠

p f b (A.7.16)

This has a maximum, when cos 2
fb⎛ ⎞−⎜ ⎟⎝ ⎠2

l  = 1.

i.e.
fb =
2

l (A.7.17)

\ The voltage maximum (for E field) = A sin 
p y
b

(1 + G ) (A7.18a)

and

the E-field minimum = A sin 
p y
b

(1 – G ) (A7.18b)

\ VSWR = 
G
G

+
= =

−
max

min

1

1

E
s

E
(A.7.19)

\ G  = 
−
+

1
1

s
s

(A.7.20)

A.7.2.3 Impedances

At any point in the wave, at a distance l from the load,

Ex, total = A sin 
p y
b

 exp ( jbl) [1 + G  exp {j(f – 2b l)}] (A.7.21)

Hy, total = 

p

0

sin
y

A
b

Z
 exp ( jb l)[1 – G  exp {j(f – 2b l)}] (A.7.22)

(Note: The –ve sign in the above expression is due to magnetic G.)
and

wm
b=0Z

\ Zl = Z0 
b
b

G
G

+ −
− −

t

t

1 exp ( 2 )
1 exp ( 2 )

j l
j l

(A.7.23)

and

Z t = Z0 
G
G

+
−

t

t

1
1

and hence Gt = 
−
−

t 0

t 0

Z Z
Z Z

(A.7.24)

(The subscript t above denotes the termination point at the load.)

\ From (A.7.23) and (A.7.24), impedance at any point (= Zl) is

b b
b b

+ + − −
=

+ − − −
t 0 t 0

0
t 0 t 0

( ) exp ( ) ( ) exp ( )
( ) exp ( ) ( ) exp ( )l
Z Z j l Z Z j l

Z Z
Z Z j l Z Z j l

                      
b
b

+
=

+
t 0

0
0 t

tan
tan

Z jZ l
Z

Z jZ l (A.7.25)

APPENDIX 7 GRAPHICAL METHOD OF ANALYZING WAVEGUIDE PROBLEMS
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\ Normalized impedance, ′ = l

0
l

Z
Z

Z
(A.7.26a)

and

         Normalized admittance, 
0

(1/ )
(1/ )

l
l

Z
Y

Z
′ = (A.7.26b)

The vectorial representations of E and H are shown in Figure A.7.4.

A.7.3 SMITH CHART

As mentioned earlier, the Smith chart helps us to make a direct determination of the complex
reflection coefficient for a given load impedance ZL and the characteristic impedance Z0. Hence
we start with

G l [or G(l)] = G t exp (–j2bl) (A.7.27)
                                (= reflection coeff. at the point l)

Any reflection coefficient G  can be represented by a point on the graph (of the complex plane).

\
f b
f b

G G
GG

+ −⎡ ⎤ +⎣ ⎦′ = = =
−− −⎡ ⎤⎣ ⎦0

1 exp ( 2 ) 1 ( )
1 ( )1 exp ( 2 )

l
l

j lZ l
Z

Z lj l
 = r + jx (A.7.28)

(Note: Here r is the real part and not to be confused with the r-axis of polar coordinate system.)

Let
G(l) = u + jv (A.7.29)

\ r + jx = 
2 2

2 2

1 (1 ) 2
1 (1 )

u jv u v j v
u jv u v

+ + − − +=
− − − +

\ r = 
− − =
− + − +

2 2

2 2 2 2

1 2
,

(1 ) (1 )

u v v
x

u v u v
 (= reactance component) (A.7.30)

Considering the real part,

[(1 – u)2 + v2]r = 1 – u2 – v2

or

u2 – 
−+

+ +
2 1

1 1
ur r

r r
 + v2 = 0

\
2 2 2

2 1 1
1 1 1 1

r r r
u v

r r r r
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + = − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

(A.7.31)

The above equation represents a family of coaxial circles with centres at 
⎛ ⎞
⎜ ⎟+⎝ ⎠

, 0
1

r
r

, and radii

+
1

1r  (Figure A.7.5).

Figure A.7.4 Vectorial representation of E and H waves.

E wave

H wave
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Next considering the coefficients of j from Eq. (A.7.30)

(u – 1)2 + v2 = 
2v
x

or

(u – 1)2 + 
⎛ ⎞ ⎛ ⎞− =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

2 2
1 1

v
x x

(A.7.32)

These take the form of circles, for different values of x, of centres (1/x), x being +ve or –ve, and

radii 1/ x  (Figure A.7.6).

Figure A.7.5 Representation of real part of G(l) in Smith chart.

r = 0
r = 0.5

r = 1
r = 2

These two families of circles, superimposed form the Smith chart. The charts can be of both
impedances as well as admittances, as shown in Figures A.7.7 and A.7.8.

Figure A.7.6 Representation of coefficient of j in Smith chart.

x
=

0.5

x
=

1.0

x = 0
0°

180°

x
=

–
0.

5

x
=

–
1.

0
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Some examples with solutions are given below for practice:

1. A normalized impedance Z¢l = 0.5 + j0.5
corresponds to a reflection coefficient 0.45 exp ( j115).

2. Calculate the impedance at a distance of 30° from the previous point, closer to the
generator = 1.4 + j1.1.

Check from the formula, Z¢l = 
b
b

′ + −
′+ −

2 1

2 1

( ) tan ( )
1 ( ) tan ( )
Z l j l l

Z l l l

p = 
l
4

and 30° = 
l
24

3. VSWR = 0.25, the first voltage minimum is 0.3 cm from the load, lg = 3 cm. Find the
load.

Procedure: Enter the Smith chart at the voltage minimum at VSWR = 0.25,

f corresponds to 
l = 0.3 cm

10 3 cm
,       l = 4p°

\
l →

10
 72° on Smith chart towards the load.

This gives ′ =
0

l
l

Z
Z

Z
 = 0.37 – j0.66

Admittance corresponding to this impedance is given by joining the point to the origin,
and continuing the line an equal distance beyond the origin.

In this case, the impedance = 0.7 + j1.1 = ′ =
0

l
l

Y
Y

Y
.
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Figure A.7.7 Impedance or admittance coordinates.

The Complete Smith Chart
Black Magic Design
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Figure A.7.8 Normalized impedance and admittance coordinates.

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES
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(A)

In electrostatics, on an interface of discontinuity between two media of different permittivities, the
conditions are

   S
ˆ ◊ -1n (D D) = r

(A.8.1)
and

1 2ˆ ( ) 0¥ - =n E E

where n̂ is the unit vector normal to the interface plane separating the two media, and D1, D2 and
E1, E2 are the relevant electrostatic field vectors (i.e. the electric flux density and the electric field
intensity respectively), and rS is the charge density on the interface plane.

Similarly, in magnetostatics, on an interface of discontinuity between two media of different
permeabilities, the conditions are

( )1 2 Sˆ ¥ - =n H H J

(A.8.2)and

   ( )1 2ˆ 0◊ - =n B B

where, as before n̂ is the normal unit vector, and H1, H2 and B1, B2 are the relevant
magnetostatic field vectors (i.e. the magnetic intensity vector and the magnetic flux density vector
respectively), and JS is the surface current density on the interface plane.

Appendix 8

A Proof of the Fact that
There are only Two
Independent Boundary
Conditions for
Electromagnetic Field
Problems

¸
Ô
˝
Ô
˛

¸
Ô
˝
Ǫ̂
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So we take a surface S and consider a small area DA on it (Figure A.8.1),

n̂

�l

�

�A

S
1

2

Figure A.8.1 The interface surface S and a small elemental area DA on S.

where
Dl = the contour enclosing DA
n̂ = the outward (normal to S) unit vector
t = the outward (normal to Dl) unit vector, and tangential to S.

We define:

1 2 1 2, ;D D= − = −H H H D D D
and

1 2v v vD = −J J J
(A.8.3)

where Jv1
 and Jv2

 are the volume current densities on two sides of the interface surface S under
consideration.

Now, we have
(curl ) ,

S C

da d◊ = ◊ÚÚ ÚA n A S 
where S is the surface enclosed by the contour C.

In the present problem,

{ } { }ˆ
A l

dS dl
D D

— ¥ D ◊ = D ◊ÚÚ Ú H n H l ˆ( is the unit vector in the direction of )lDl

ˆ( )v

A

j dSw
D

= D + D ◊ÚÚ D J n
  

by Maxwell’s equations

( ) ˆ
t

l

dl
D

= D ◊Ú H l
(A.8.4)

where DHt is the tangential component of DH and jw = 
t
∂
∂

�H
n

�Ht

^ ^( . )n n H�

Figure A.8.2 Directions of the unit vectors.

¸
Ô
˝
Ô
˛
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â

Now,

S S

ˆ ˆ ˆ ˆ( )

ˆ , being the surface current density on the interface surface .

t

S

D = - ¥ ¥ D = D - ◊ D

= - ¥

H n n H H n(n H)

n J J

From Eq. (A.8.4),

w
D D D

D ◊ = - D - ¥ ◊ÚÚ ÚÚ Úv S
ˆˆ ˆ ˆ. ( )v

A A l

j dS dS dlD n J n n J l (A.8.5)

We take the last term to change it into an area integral,

S S S
ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( )¥ ◊ = ◊ ¥ = ¥ ◊n J l l n J l n J = ttttt . JS

( )Sˆ .
l

t
D
Ú J dl is the measure of the divergence or outward flow of charge from the region DA.

From the continuity of current and charge,

S S S
ˆˆ ˆ( . ) ( )S

l A l

dl q dS j q dS dl
t

w¢ ¢

D D D

∂
= - = - = ¥ ◊

∂Ú ÚÚ ÚÚ ÚJ n J lt (A.8.6)

where q¢S is the charge generated by the surface divergence of the current flow.

S

ˆ
ˆ( ) v

A A A

dS dS q dS
jw

D D D

D ◊
D ◊ = - =ÚÚ ÚÚ ÚÚJ n

D n (A.8.7)

where –
⋅ ˆv

jw
DJ n

 = qS, the surface charge density due to the volume divergence of the current flow.

n̂
Jv

�A

S

1

Jv2

Figure A.8.3 Current density vectors.

          rS = q¢S  + qS (A.8.8)

\ Sˆ

A

dS dSr
D

D ◊ =ÚÚ ÚÚD n
(A.8.9)

This is true for any DA; hence

        Sˆ rD ⋅ =D n

or 1 2 Sˆ ( ) r◊ - =n D D

as a consequence of 1 2 Sˆ ( )¥ - =n H H J (A.8.10)
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Similarly it can be shown that

⋅ − =1 2ˆ ( ) 0n B B  is a consequence of × − =1 2ˆ ( ) 0n E E (A.8.11)

\ The essential boundary conditions are:

× − =1 2ˆ ( ) 0n E E and 1 2 Sˆ ( )× − =n H H J (A.8.12)

and these are generally the best to use.

For metals only, × =1ˆ 0n E and 1 Sˆ × =n H J (A.8.13)

For dielectrics, × − =1 2ˆ ( ) 0n E E and 1 2 Sˆ ( )× − =n H H J (A.8.14)

Note: This proof is due to Dr. J.R. Wait, then of N.B.S. and was given to me by Dr. T.S.M.
McLean, Reader in Electromagnetism, Department of Electronic & Electrical Engineering,
University of Birmingham, who had got it from Dr. Wait while attending one of the summer
schools at Washington.

(B) A COMPACT FORM OF THE PROOF OF THE PREVIOUS
THEOREM

Starting from the Continuity Equation,
(and using the differential notation, while remembering that all these equations have been derived
from their integral forms and hence do not require the continuity implicit in the differential form
of these equations)

r wr

wrSsurface
( )n t

j
t

j

∂
∇ ⋅ = = −

∂

∇ ⋅ − = −⎤⎦

J

J J

or

wr

wr

����������

1 2

Ssurface surface

S S

n t

n n

j

J J j

↓

∇ ⋅ + ∇ ⋅ = −⎤ ⎤⎦ ⎦

− + ∇ ⋅ = −

J J

J

From the Maxwell’s equations,

— ¥ (H1 – H2) = jw (D1 – D2) + (J1 – J2)
or

n ◊ {— ¥ (H1 – H2)} = jw (D1n – D2n) + (J1n – J2n)

Using a vector identity for the L.H.S., we get:

—◊{(H1 – H2) ¥ n} + (H1 – H2) ◊ (— ¥ n) = jw (D1n – D2n) + (J1n – J2n)

Now, — ¥ n = 0

{Note: The given boundary condition is n ¥ (H1 – H2) = JS}

From the above equation, it reduces to



—◊(– JS) = jw (D1n – D2n) + (J1n – J2n)
or

– [— × JS + (J1n – J2n)] = jw (D1n – D2n)
or

jwrS = jw (D1n – D2n)

If w πππππ 0, rS = D1n – D2n Q.E.D.

Note: This compact proof was derived by Prof. Eugene Kopp of the University of California who
was then a Visiting Fellow in the Department of Electrical & Electronics Engineering, the
University of Leeds from the rigourous proof derived by Dr. J.R. Wait. Prof. Kopp had borrowed
the Wait’s proof from me and in return gave me this proof a few days later.

943APPENDIX 8 A PROOF OF THE FACT THAT THERE ARE ONLY TWO INDEPENDENT...



Appendix 9

Bessel Functions and
Legendre Functions

A.9.1 INTRODUCTION

Bessel functions of different kinds are used in cylindrical geometry problems of electrostatic
fields (Chapter 4), magnetic fields as well as of electromagnetic waves (e.g. cylindrical wave-
guides in Chapter 18). Legendre functions are used in problems of spherical geometry over the
whole range of electromagnetism [i.e. electrostatic fields in spherical capacitors to those of
antennae (Chapter 19)]. It should be appreciated that the use of these functions for these two
types of geometries is not on any arbitrary basis but because these two functions are the solutions
of the differential equations obtained by the method of separation of variables from the Laplace’s
equation (or more generally from the Laplacian operator of the more general type of Helmholtz
equation) in these two coordinate systems. The derivation of two ODE’s (i.e. Bessel’s equations
and Legendre equation) has been given in Chapter 4 (Sections 4.2.5 and 4.2.7). So we will briefly
summarize the expressions for the series solutions, their various properties and their recurrence
relations used for simplifying the expressions algebraically. For both the equations, the series
solutions are represented by functions having an order and an argument.

A.9.2 BESSEL FUNCTIONS

Bessel functions are solutions of the ordinary differential equation of the second order (known as
Bessel’s equation),

22
2

2 2

1
0z

kd R dR
k R

r drdr r

fÊ ˆ
+ + - =Á ˜

Ë ¯

where R = R (r)

Its solutions are Bessel’s functions of the first kind Jkf(kzr) and of the second kind Ykf(kzr), both
of order kf and argument kzr

R (r) = A Jkf (kzr) + B Ykf (kzr)

where
( ) 2

2

0

/
( ) ( 1)

( 1) ( 1)

k r
zr

k z

r

k r
J k r

r k r

f

f
fG G

+∞

=

= −
+ + +∑
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where G is a gamma function defined as

1

0

( ) ( 1) ( 1) ( 1)!x tx t e dt x x x

•
- -G = = - G - = -Ú

and
cos ( ) ( ) ( )

( )
sin ( )
k z k z

k z

k Y k r J k r
Y k r

k
f f

f

f

f

p
p

--
=

For kf integer ( ) ( 1) ( )
k

k z k zJ k r J k rf
f f− = −

where the general solution of the Laplace’s equation is:

{ } { } { }f f

f

f ff f f= + + +ÂÂ( , , ) ( ) ( ) cos ( ) sin ( ) cosh ( ) sinh ( )
z

k z k z z z
k k

V r z A J k r BY k r C k D k E k z F k z

and when kz = 0

( ) { } { }0 0 0cos( ) sin( )
k k

k

V A r B r C k D k E z Ff f

f

f ff f-= + + +Â
and when both kz = 0, kf = 0

Voo = (Aoo lnr + Boo) (Cof + Do) (Eoz + Fo)

Notes: 1. Ykf (kzr) is also known as the “Neumann function”.
2. Bessel’s functions in general terms are also called cylinder functions.

When the constant kz
2 has a negative sign, the differential equation becomes:

22
2

2 2

1
0z

kd R dR
k R

r drdr r

fÊ ˆ
+ + - - =Á ˜

Ë ¯

This equation is called the modified Bessels equation and its solutions are the modified
Bessel function of the first kind Ikf (kzr) and of the second kind Kkf (kzr), both of order kf and
argument (kzr), which are

2
2

0

( / )
( ) ( )

( 1) ( 1)

( ) ( )
( )

2 sin ( )

k r
kz

k z k z

r

k z k z
k z

k r
I k r j J j k r

r k r

I k r I k r
K k r

k

f
f

f f

f f

f

f

f

p
p

+•
-

=

-

= =
G + G + +

-Ï ¸Ô Ô= Ì ˝
Ô ÔÓ ˛

Â

For kf integer, ( ) ( ) ( )
k

k z k z k zI k r j J jk r I k rf
f f f- -= =

So we will write these two equations in the more general terms in y and x, i.e.

Ê ˆ
+ + - =Á ˜Ë ¯

2 2

2 2

1
1 0

d y dy n
y

x dxdx x

whose solutions are y = A Jn(x) + B Yn(x)
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and
2 2

2 2

1
1 0

d y dy n
y

x dxdx x

Ê ˆ
+ - + =Á ˜Ë ¯

whose solutions are y = AIn(x) + BKn(x)

(These functions are of the order n and argument x.)

Next, we will first consider the properties of (ordinary) Bessel functions.

A.9.3 ORDINARY BESSEL FUNCTIONS

A.9.3.1 Asymptotic Forms

AS n Æ • through real +ve values, other variables remaining constant

1
( )

22

2
( )

2

n

n

n

n

ex
J x

nn

ex
Y x

n n

p

p

-

Ê ˆ
Á ˜Ë ¯

Ê ˆ- Á ˜Ë ¯

∼

∼

Limiting forms for small arguments; when n is fixed and x Æ 0

p
-

π - - -
G +

G >

∼

∼

( /2)
( ) ( 1, 2, 3, ...)

( 1)

1
( ) ( ) ( /2) Real 0

n

n

n
n

x
J x n

n

Y x n x n

In particular,

( )

( ) 1

2
( ) ln ln 2

o

o

J x

Y x x Cp + -

∼

∼

where C is constant.

For x >> 1, the asymptotic expressions are

2
( ) cos

2 4

2
( ) sin

2 4

n

n

n
J x x

x

n
Y x x

x

p p
p

p p
p

Ê ˆ- -Á ˜Ë ¯

Ê ˆ- -Á ˜Ë ¯

∼

∼

A.9.3.2 Differentiation and Integration of Bessel Functions

From the series definition of these functions,



Jo
¢ (x) = – J1(x)

and
Yo

¢ (x) = – Y1(x)

If we use Cn to denote Jn or Yn or Hn
(1) or Hn

(2) {i.e. Hankel functions of the two kinds (to be
defined later)} or any linear combination of these functions,

0 1

1 0 1

( ) ( )

1
( ) ( ) ( )

C x C x

C x C x C x
x

¢

¢

=

= -
More generally

{ }

{ }

1
( ) ( )

1
( ) ( 1) ( )

k
n n k

n n k

k
n k n k

n n k

d
x C x x C x

x dx

d
x C x x C x

x dx

-
-

- - -
+

Ê ˆ =Á ˜Ë ¯

Ê ˆ = -Á ˜Ë ¯

The integrals are:

1 0

0

2 1

2 0 2 1
00 0

2 1 0 2
10

1 1

0 0

( ) 1 ( )

( ) ( ) 2 ( )

( ) 1 ( ) 2 ( )

( ) ( ) 2 ( ), 0

x

x x n

n k
k

x n

n k
k

x x

n n n

C t dt C x

C t dt C t dt J x

C t dt C x J x

C t dt C t dt C x n

-

+
=

+
=

+ -

= -

= -

= - -

= - >

Ú

ÂÚ Ú

ÂÚ

Ú Ú

A.9.3.3 Wronskians

{ }

{ }

1 ( 1)

1 ( 1)

( ), ( ) ( ) ( ) ( ) ( )

2 sin ( )

( ), ( ) ( ) ( ) ( ) ( )

2

n n n n n n

n n n n n n

W J x J x J x J x J x J x

n
x

W J x Y x J x Y x J x Y x

x

p
p

p

- + - - +

+ +

= +

= -

= -

=
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A.9.3.4 Recurrence Relations

1 1

1 1

1

1

2
( ) ( ) ( )

( ) ( ) 2 ( )

( ) ( ) ( )

( ) ( )

n n n

n n n

n n n

n n

n
C x C x C x

x

C x C x C x

n
C x C x C x

x

n
C x C x

x

- +

¢
- +

¢
-

+

+ =

- =

= -

= - +

A.9.4 MODIFIED BESSEL FUNCTIONS

A.9.4.1 Asymptotic Forms

For n fixed and x Æ 0

( )
0

( / 2)
( ) , 1, 2, ...

( 1)

( ) ln

1
( ) ( ) / 2

2

n

n

n
n

x
I x n

n

K x x

K x n x
-

π - -
G +

-

G

∼

∼

∼

When x >> 1, In(x) Æ • and Kn(x) Æ 0.

A.9.4.2 Wronskians

{ }

{ }

( 1) 1

1 1

( ), ( ) ( ) ( ) ( ) ( )

2 sin ( )

( ), ( ) ( ) ( ) ( ) ( )

1

n n n n n n

n n n n n n

W I x I x I x I x I x I x

n
x

W K x I x I x K x I x K x

x

p
p

- - + + -

+ +

= -

= -

= +

=

A.9.4.3 Recurrence Relations

1 1
2

( ) ( ) ( )n n n
n

I x I x I x
x- +- =

1 1( ) ( ) ( ) ( ) ( )n n n n n
n n

I x I x I x I x I x
x x

¢
- += - = +

1 1( ) ( ) 2 ( )n n nI x I x I x¢
- ++ =



1 1( ) ( ) ( ) ( ) ( )n n n n n
n n

K x K x K x K x K x
x x

¢
+ -= - = - -

0 1 0 1( ) ( ), and ( ) ( )I x I x K x K x′ ′= = −

{ }1
( ) ( )

k
n n k

n n k
d

x C x x C x
x dx

−
−

⎛ ⎞ =⎜ ⎟⎝ ⎠

{ }1
( ) ( )

k
n n k

n n k
d

x C x x C x
x dx

- - -
+

Ê ˆ =Á ˜Ë ¯

A.9.5 BESSEL FUNCTIONS OF THE THIRD KIND

These solutions are also called Hankel functions and are solutions of the ordinary Bessel’s equation.
They are defined as

{ } { }

{ } { }

(1)

(2)

( ) ( ) ( )

cosec ( ) exp ( ) ( ) ( )

( ) ( ) ( )

cosec ( ) ( ) exp ( ) ( )

p p

p p

-

-

= +

= - -

= -

= - -

n n n

n n

n n n

n n

H x J x j Y x

j n jn J x J x

H x J x j Y x

j n J x jn J x

These are Hankel functions of the first and second kind respectively.

{ } { }(1) (1) (2) (2)( ) exp ( ) ( ) and ( ) exp ( ) ( )n n n nH x jn H x H x jn H xp p- -= = -

The recurrence relations of ordinary Bessel functions (i.e. Section A.9.3.4) apply to Hankel
functions.

These functions are useful in solving eddy current problems in circular cylindrical geometry.

A.9.6 KELVIN FUNCTIONS

When the Bessel functions have complex arguments, then the solution functions are known as
‘Kelvin functions’. In this case the differential equation is of the form:

2 2

2 2

1
0

d y dy n
j y

x dxdx x

Ê ˆ
+ - + =Á ˜Ë ¯

Its solutions are:

y = bern(x) + j bein(x), ber–n(x) + j bei–n(x)

     kern(x) + j kein(x), ker–n(x) + j kei–n(x)
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where

 

ber ( ) bei ( ) exp 3 exp ( ) exp
4 4

1
exp exp exp 3 exp 3

2 4 4 4

1
ker ( ) kei ( ) exp exp

2 4

n n n n

n n

n n n

x j x J x j jn J x j

j n I x j j n I x j

x j x j n K x j

j

p pp

p p pp

pp

p

Ï ¸ Ï ¸Ê ˆ Ê ˆ+ = = -Ì ˝ Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Ó ˛ Ó ˛

Ï ¸ Ï ¸Ï ¸ Ê ˆ Ê ˆ Ê ˆ= = -Ì ˝ Ì ˝ Ì ˝Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Ó ˛ Ó ˛ Ó ˛

Ï ¸Ï ¸ Ê ˆ+ = -Ì ˝ Ì ˝Á ˜Ë ¯Ó ˛ Ó ˛

= (1) (2)exp 3 exp
2 4 2 4n nH x j j H x j

p p pÏ ¸ Ï ¸Ê ˆ Ê ˆ= - -Ì ˝ Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Ó ˛ Ó ˛

When n is a +ve integer or zero,

ber–n(x) = (–1)n bern(x), bei–n(x) = (–1)n bein(x)

ker–n(x) = (–1)n kern(x), kei–n(x) = (–1)n kein(x)

When n is real, and x is real and non-negative

2
ber ( ) cos ( ) ber ( ) sin ( ) bei ( ) sin ( ) ker ( )

2
bei ( ) sin ( ) ber ( ) cos ( ) bei ( ) sin ( ) kei ( )

ker ( ) cos ( ) ker ( ) sin ( ) kei ( )

kei ( ) sin ( ) ker ( ) cos ( ) kei ( )

n n n n

n n n n

n n n

n n n

x n x n x n x

x n x n x n x

x n x n x

x n x n x

p p pp

p p pp
p p

p p

-

-

-

-

= + +

= - + +

= -

= +

A.9.7 LEGENDRE FUNCTIONS

By solving the three-dimensional Laplace’s equation in spherical polar coordinate system by the
method of separation of variables, the ODE in q-variable is the Legendre equation (this has been
derived in Section 4.2.7). So we write this equation directly as {i.e. Eq. (4.72)}:

2 2
2

2 2
(1 ) 2 ( 1) 0

1

d d m
n n

dd
m m mm m

Ï ¸Q Q Ô Ô- - + + - Q =Ì ˝
-Ô ÔÓ ˛

where m = cosq and Q = Q(q).
The two solutions of this second order differential equation are the “Associated Legendre

Functions of the First and the Second Kinds. They are denoted as Pn
m(m) and Qn

m(m) respectively.
As with the Bessel functions, these functions are of degree n, order m and the argument is m.

To solve the above equation, it can be simplified by a convenient substitution given
below as

Q = (1 – m2)m/2 F

whereby the differential equation becomes:



2
2

2
(1 ) 2 ( 1) ( ) ( 1) 0

d d
m n m n m

dd
m m mm

F F
- - + + - - + F =

which is very similar to the Legendre equation in two dimensions when there is no f variation and
hence m = 0. The associated Legendre equation then simplifies to the ordinary Legendre equation
which is

2
2

2
(1 ) 2 ( 1) 0

d d
n n

dd
m m mm

Q Q- - + + Q =

Its solutions are the ordinary Legendre functions of the first and second kind respectively and are
denoted by Pn(m) and Qn(m) respectively, having degree n and argument m. The values of Pu(m)
and Qu(m) are given in Eqs. (4.74) and (4.75) respectively.

The values of first few Legendre functions (or Legendre polynomials) are:

0

1

2
2

2
3

4 2
4

1
0

1 0

2 2 0

2

3 3 0

3

4 4 0

( ) 1

( )

1
( ) (3 1)

2

1
( ) (5 3 )

2

1
( ) (35 30 3)

8

1 1
( ) tanh ln

2 1

( ) ( ) 1

3
( ) ( ) ( )

2

5 2
( ) ( ) ( )

2 3

35 55
( ) ( ) ( )

8 24

P

P

P

P

P

Q

Q Q

Q P Q

Q P Q

Q P Q

m

m m

m m

m m m

m m m

mm m m

m m m

mm m m

mm m m

m mm m m

-

=

=

= -

= -

= - +

+Ê ˆ= = Á ˜-Ë ¯

= -

= -

= - +

= - +

The associated functions are:

{ }

{ }

m m m
m

m m m
m

m

= -

= -

<

2 / 2

2 / 2

( ) (1 ) ( )

( ) (1 ) ( )

for 1

m
m m

n nm

m
m m
n nm

d
P P

d

d
Q Q

d
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A.9.8 ORTHOGONAL FUNCTIONS

Definition of Orthogonality: Given a set of functions, fo(x), f1(x), f2(x), ... which is denoted by
{fn(x)}. The set is said to be orthogonal in the interval (a, b) if

( ) ( ) 0

b

m n

a

x x dxf f◊ =Ú
for any two distinct values of m and n, i.e. – m π n.

This orthogonality condition is used in the evaluation of coefficients of Fourier series
expansions whereby all terms of the summation except one come out to be zero. Another point to
be noted is that orthogonal functions would be oscillatory in nature. So the trigonometric functions,
ordinary Bessel functions, Legendre functions are orthogonal, whereas hyperbolic functions and
modified Bessel functions are not orthogonal.



Appendix 10

Bicylindrical Coordinate
System

A.10.1 INTRODUCTION

It has been mentioned in Chapter 18, that the transmission lines, which are one way of guiding
the electromagnetic waves, have been analysed by using the circuit concepts in terms of the
potential drops across the lines and the current flowing through them (i.e. by using the terminal
characteristics like the impedances and the admittances instead of the field vectors
E and H). This approach made the analysis much simpler and it was also shown that the
operating equation in terms of V and I comes out to be a one-dimensional wave equation (which
indirectly proves the correctness of the equivalent circuit of the system). In fact, transmission
lines consisting of two parallel circular cylindrical conductors (even of differing diameters) can be
analysed as a field problem, but the coordinate system required for such analyses is the
“Bicylindrical coordinate system”, which consists of two families of orthogonal circles in the
x–y plane. So we shall now briefly discuss the derivation of such a system.

A.10.2 Derivation of Bicylindrical Coordinate System

This coordinate system is generated by taking two families of orthogonal circles lying in the
x–y plane (i.e. one family having their centres on the x-axis, and the other family (intersecting the
circles of the first family orthogonally) having their centres on the y-axis), and translating these
circles parallel to the z-axis, thereby forming sets of right circular cylinders.

Of the two families of circles, one family consists of two sets of non-intersecting circles, with
all their centres collinear on the x-axis. The circles on the left side of the y-axis (i.e. x < 0) are the
mirror image of the circles on the right side (i.e. x > 0), with the centres of the circles of zero-radius
being located at x = + a which are the two poles of the system (Figure A.10.1). The second family,
which consists of circles orthogonal to the circles of the first family, has all the centres collinear
on the y-axis. All the circles of this family pass through the poles x = + a, i.e. they all intersect at
x = + a. A rigorous way of producing such circles (which are the sections of the coordinate
surfaces) is by a suitable conformal transformation, which in this case is:

( 1)
*

1

w

w

a e
z

e

+=
- (A.10.1)
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where z = x + jy, w = u + jv; and

z* = complex conjugate of z = x – jy

(Figure A.10.1 shows this transformation.)
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Figure A.10.1 Bipolar coordinates obtained by the transformation 
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-
( 1)

*
1

w

w

a e
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e
 and inversion

of polar coordinates.

\
+ += - =

+ -
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e v e v
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2

Numerator [ { cos 1} sin ] [ sin { cos 1} sin { cos 1} ]

[ { 1} { 2 sin }]
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u
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2 2 2 2

2

Denominator cos 2 cos 1 sin

( 1) 2 cos

2 (cosh cos )

u u u

u u

u

e v e v e v

e e v

e u v

= - + +

= + -

= -

\ Equating the real and the imaginary parts,

sinh sin
,

cosh cos cosh cos
a u a v

x y
u v u v

= =
- - (A.10.2)

Figure A.10.1 shows the two families of circles characterized by the above equations, where
u = constant circles have their centres on the x-axis and the poles of the family are x = + a (i.e.
u Æ + • respectively).

So now we define a new coordinate system, which has been obtained from the rectangular
coordinates in the z-plane, as the orthogonal circles system in the w plane and is given the new
notation (h, q, z) where u above has been replaced by h and v by q. Thus, the circles in the
bicylindrical coordinate system are characterized by:

sinh sin
,

cosh cos cosh cos
a a

x y
h q

h q h q= =
- - (A.10.3)

In the x–y plane, the circles h = constant are drawn about the two poles x = + a and the
orthogonal circles of the other family (i.e. q = constant) have their centres on the y-axis and they
all pass through the poles x = + a.

The cylindrical coordinate system is generated by translating all the circles parallel to
the z-axis, so that the two orthogonal families of right circular cylinders are produced. The
three mutually perpendicular coordinate surfaces are: the cylinders h = constant, the cylinders
q = constant, and the planes z = constant. The new coordinates (h, q, z) are called the bicylindrical
coordinates and are designated by the equations (which relate them to the Cartesian coordinates):

sinh sin
, ,

cosh cos cosh cos
a a

x y z z
h q

h q h q= = =
- - (A.10.4)

Figure A.10.2 shows the details of this coordinate system.

A.10.2.1 Some Geometrical Aspects (Figure A.10.2)

The equation of any circle of radius r, not necessarily a member of the coordinate surface
h = constant, with its centre on the x-axis at the point x = w is:

(x – w)2 + y2 = r2 (A.10.5)

For this circle to be a member of the coordinate surfaces, i.e. one of the circles h = constant,
we substitute for x and y from the equations (A.10.3) in the above equation and get:

2 2 2
2

2

sinh sin
cosh cos (cosh cos )

a a
w r

h q
h q h q

Ê ˆ- + =Á ˜-Ë ¯ -
This gives

w = a coth h,         
sinh

a
r

h
= (A.10.6)

where, of course, a = semi-polar distance (on the x-axis) for the specified coordinate system.
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z = const

y

q
q
= const

( > 0)

h = 0

r
1

q

h
h
= const

( < 0)

h •–
q p= ±

a a

h •=
h = 0

q
q
= const

( < 0)

z

x

q = 0

w

w

Figure A.10.2 Bicylindrical coordinates. The surfaces h = const are circular cylinders with axes
in the xz-plane, surfaces q = const are portions of circular cylinders with

axes in the yz-plane, surfaces z = const are parallel planes.

Thus, both the position of the centre (w, 0) the radius (= r) of the circle depend on the polar
distance (= 2a) and on h. So, as h Æ 0 the radius r Æ •, and as h Æ • the radius r Æ 0. Hence
the centres of the h = constant circles get translated along the x-axis as h changes; and when the



radius r becomes zero (i.e. r Æ 0) the centre of the zero-radius circle gets located at the pole
x = a for which h Æ •. On the other hand, as x Æ •, h Æ 0.

So, it is seen that since these three geometrical parameters a, w and r are interrelated, it is
possible to draw h = constant circles with their centres (w, 0) located relative to the position of the
pole, and also obtain the radius of the circle. The relationship between these three quantities can
be expressed as:

2
2 2 2 2 2 2

2

1 sinh
coth

sinh
w a a r a

hh
h

Ê ˆ+
= = = +Á ˜Ë ¯

(A.10.7)

r
a

ww

Figure A.10.3 Relationship between w, a and r (for h = constant circles).

Thus, if for a given h, its centre is specified, then the pole and the radius can be found; or
if the pole is specified, then the centre of the circle and its radius can be obtained; or if the radius
of the circle is specified, then the pole and the centre of the circle can be located. Usually the polar
distance 2a is specified for a given coordinate system. Another point to be noted about the h circles
is that since for h = 0, the radius r is infinite, the yz-plane (i.e. x = 0) is the h = 0 surface and the
centre of this circle (h Æ 0) also tends to infinity on the x-axis. A physical basis for the
construction of these circles will be discussed later.

Next, for q = constant circles, any circle (not necessarily q-circle only) with its centre on the
y-axis is given by

x2 + (y – w¢)2 = r¢2 (A.10.8)

For this circle to be a member of the coordinate surfaces q-const., we substitute for x and y
from the equations (A.10.3) (and it can be checked that)

w¢ = a cot q and
sin

a
r

q
¢ = (A.10.9)

All these circles (i.e. sections of q = constant cylinders) pass through the two poles x = + a
and intersect the (h = constant) circles orthogonally. (All the angular and linear relationships are
shown in Figure A.10.4.)

Thus, w¢ = distance of the centre of a (q = constant) circle from the origin of the co-
ordinate system = a coth q;

and r = the radius of a (q = constant) circle .
sin

a

q
=

It is obvious from the above figure that the parameter q represents the angle subtended by
the bi-polar distance AA¢ (= 2a) on to the part of the circle (q = constant) on the +ve side of the
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y-axis. Hence, as the angle AOA¢ = p, the strip of width AA¢ (= 2a) in the xz-plane would represent
q = p.

q1q2

r1�r1�

q1

w1�w1�

r2�r2�

q2

w2�w2�

O
p

–a +a x

y

q q= 1

A� A

q q= 2

Figure A.10.4 Relationship for (q = constant) circles.

The rest of the xz-plane (i.e. from x = a to x Æ + • and x = –a to x Æ – •) would then
represent q = 0.

The portions of the cylinders (q = constant) above the xz-plane, for positive values of y, are
designated by the positive values of q, and those below the xz-plane are designated by the negative
values of q.

Thus (h = constants) represent a system of co-axial circles of the non-intersecting type,
having limiting points at x = + a, and the radical axis is y = 0 (i.e. x = + a are the two poles, and
x-axis is the common axis on which the centres of the system of these co-axial circles lie with the
poles (x = + a) being the centres of the zero-radius circles).

The (q = constants) circles are another system of co-axial circles of the intersecting type
having x = + a as common points for all the members of this set. The radical axis (i.e. the line on
which the centres of the these circles lie) for this system is x = 0.

These two systems of co-axial circles are orthogonal.

A.10.3 SOLUTION OF THE FIELD IN THE BICYLINDRICAL
COORDINATE SYSTEM

The metric coefficients (i.e. gir and gij) are obtained from equations (A.10.4) as



2

11 22 332
; 1

(cosh cos )

a
g g g g

h q
= = = =

- (A.10.10)

It should be noted that the Laplace’s equation is not separable in this coordinate system,
but in two-dimensions, if the function (say f) is independent of z, then the Laplace’s equation
simplifies to:

2 2

2 2
0

f f
h q

∂ ∂+ =
∂ ∂ (A.10.11)

whose solutions are of the form:

sin

cos

sin

cos

p

p

e p

e p

q

h

f h

f q

±

±

Ê ˆ
= Á ˜Ë ¯

Ê ˆ
= Á ˜Ë ¯

(A.10.12)

When f is a function of one variable only, the operating equation reduces to:

or

2

2

2

2

0,

0,

d
A B

d

d
A B

d

f f h
h

f f q
q

= = +

= = +

(A.10.13)

A.10.4 AN ALTERNATIVE PHYSICAL BASIS FOR THE
DERIVATION OF (h = CONSTANT) CIRCLES IN
THE COORDINATE SYSTEM

So far we have derived this coordinate system on a rigorous basis purely from mathematical
considerations (i.e. conformal transformation and geometrical concepts). However it is possible to
derive this system starting from a physical problem as well. We shall now discuss such an approach
briefly.

We consider a system of two parallel wires, each of circular cross-section of radius r0, the
distance between their centres being 2w as shown in Figure A.10.5.

The two wires carry surfaces charges + rL per unit length. These two wires can be replaced
by two line charges +rL and –rL (per unit length). The exact location of these two line charges can
be found from the condition that the surfaces of the two metal wires (of radius r0) remain
equipotential surfaces. Also all the other cylindrical equipotential surfaces, surrounding each of
these wires (though not concentrically), remain unchanged. These requirements imply that the
tangential electric fields on these surfaces will always be equal to zero. (The same results would
be obtained if instead of treating this problem as that of electrostatics, we considered the conductors
to carry currents + I and applied the required conditions to the magnetic field of the currents).

The potential V (x, y) at the point P (in Figure A.10.5) is given by

L L L 1

2 1 2
( , ) ln ln ln

2 2 2
ra a

V x y
r r r

r r r
pe pe pe

-
= + = (A.10.14)
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Equipotential
contours V = 0

+rL –rL

2a2a

2w2w

y P
V x  y( , )

x

r1

r0

r2

Figure A.10.5 Equipotential contours surrounding two line charges +rL and –rL.
The surfaces at r = a are equipotential surfaces, therefore the electric field will

always be normal to the metal surfaces.

where r1 and r2 are the distances of the point P from the locations of the equivalent line charges
+ rL at the points x = + a as shown. The x-axis of the used coordinate system is the line passing
through the centres of the conductors, and the y-axis is passing through the mid-point of the section
joining the centres. So the y-axis (or yz-plane) would be also an equipotential surface at zero
potential. All other equipotential contours can be obtained by applying the condition that

2 2
1

2 22

{( ) }

{( ) }

a x yr
k

r a x y

+ +
= =

+ +
(A.10.15)

where k is any arbitrary constant (at this stage).
This can be re-written as:

(a + x)2 + y2 = k2 {(a – x)2 + y2}

or (after a bit of algebraic manipulations)

2 22
2

2 2

1 2

1 1

k ka
x a y

k k

Ê ˆ Ê ˆ+
- + =Á ˜ Á ˜- -Ë ¯Ë ¯ (A.10.16)

This form is obtained by adding the term 

2
2

2

1

1

k
a

k

Ê ˆ+
Á ˜-Ë ¯  to both sides of the equation.

Thus, Eq. (A.10.16) is the equation to a circle whose centre lies on the x-axis at the point (w,
0), where

2

2

1

1

k
w a

k

+=
-

and whose radius is r0 where (A.10.17)

0 2

2

1

ka
r

k
=

-
Since k is any arbitrary constant, we can put



k = eh

(remembering that h is constant for such circles), and then

2

2

1
1

11

cosh
coth

sinh

kk e ekw a a a
k e ek

k

a a

h h

h h

h hh

-

-

++ +
= = =

- --

= =
(A.10.18)

                                 

0 2

2 2 2
11

sinh

ka a a
r

k e ek
k

a

h h

h

-= = =
- --

=
(A.10.19)

which are the same, as derived in Section A.10.2.
So, as before

2 2
2 2 2 2 2

02

(1 sinh )
coth

sinh

a
w a r a

hh
h

+= = = +

Thus if the radius of the two wires and the distance between their centres (i.e. r0 and w
respectively) are known, then the position of the equivalent line charges (i.e. x + a) can be
determined as shown above. The (h = constant) circles are the equipotential lines, and the
orthogonal (q = constant) circles, passing through the two poles at x = + a are the lines of force
(or flow lines or flux lines) and they can be determined as before.

The use of this coordinate system has been demonstrated in a number of problems (i.e.
Problems 2.48, 12.52, 12.53) in the companion volume Electromagnetism: Problems and Solutions,
2nd Edition, 2008, ranging from low frequency power engineering to high frequency transmission
lines.
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Appendix 11

Method of Moments

A.11.1 INTRODUCTION
The method of moments (MoM) was first used by R.F. Harrington who called it ‘moment
method’. The method is conceptually simple and is commonly used in solving integral equations
in regions which are open. It has wide applications in electromagnetics, particularly for designing
and analysing problems pertaining to antennae, problems of scattering, transmission-line
capacitance calculations as well as metallic object capacitances, interpretation of high frequency
signals from aircraft during flight. In electrostatics, this method is used (for example) for
determining the unknown charge distribution on conductors when their potentials are specified. It
is thus seen that this method has been and is being used for integral solutions of Poisson’s
equation and wave equation.

So we start with the general definition of “integral equation” which involves an unknown
function in its integrand and has the general form

( ) ( , ) ( )

b

a

f x K x t t dtf= Ú (A.11.1)

where the functions f(x), K(x, t) and the integral limits a, b are known quantities. The quantity to
be determined is the unknown function f(t), and the known function K(x, t) is called the ‘kernel’
of the equation. MoM is a common numerical technique to solve such equations.

Before we discuss the general steps of the method, we will explain it by solving a simple
problem by MoM so as to make it easier to understand. So we choose a Poissonian field problem
in electrostatics. Generally, if the charge distribution r is known, then the potential V, the electric
field E and the total charge Q can be evaluated in a straightforward manner. The converse problem
is: finding the charge distribution r, when the potential V is known. The integral expressing the
relationship between r and V is given by

4
dv

V
r

r
pe= ÚÚÚ (A.11.2)

However to make the problem easier for our understanding we will replace the triple integral
of the three-dimensional problem by a one-dimensional one. Instead of volume charge density r,
we shall consider a line charge density rL on a thin conducting wire of length L, i.e.

0
0

0
4

L

Ldl
V

r
r
pe= Ú (A.11.3)
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We position the wire along the x-axis, keeping one end at the origin and since the
above equation applies to any observation point along the x-axis, we choose an observation
point xk (which is known as the match point). (see Figure A.11.1) and the integral can then be
expressed as

0
0

0

( )1
4

L

L

k

x dx
V

x x

r
pe=

-Ú (A.11.4)

z

y
x = 0

V0

Width 2a

x L=
x

Figure A.11.1 Conducting wire maintained at constant potential V0.

Since integration is finding the area under c curve, then in the present problem,

1 2

1

...( ) ( ) ( ) ( )

( )
=

= D + D + + D

= D

Ú

Â

N

N

k
k

f x dx f x x f x x f x x

f x x (A.11.5)

Dx being a small elemental length along the x-axis. Here the length L has been sub-divided in N
elements each of length D. Substituting from Eq. (A.11.5) into Eq. (A.11.4), we get

0 0
1 2

...4
k k k N

V
x x x x x x

r r rpe D D D
= + + +

- - - (A.11.6)

where
L

x
N

D = = D (Figure A.11.2)

The implicit assumption in the above equation is that unknown charge density on each
segment of the wire is constant.

Since Eq. (A.11.6) holds for any point xk on the wire, by giving xk all values from x1 to xN,
we get N similar equations, i.e.
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r1

r2

rN

rk

x1 x2 �
xk xN

Figure A.11.2 Charged wire sub-divided into N segments.

1 2
0 0

1 1 1 2 1

...4 N

N

V
x x x x x x

rr rpe DD D
= + + +

- - - (A.11.7a)

1 2
0 0

2 1 2 2 2

...4 N

N

V
x x x x x x

rr rpe DD D
= + + +

- - - (A.11.7b)

  
1 2

0 0
1 2

...4 N

N N N N

V
x x x x x x

rr rpe DD D
= + + +

- - - (A.11.7c)

The idea of matching the LHS of Eq. (A.11.4) with the RHS (match points) of the above
equation is equivalent to taking moments in mechanics (and this is the reason for the name of the
method). If the observation points are located at the centres of the segments, then the above set of
equations can be expressed in matrix form as

[B] = [A] [r] (A.11.8)
where

11 12 1

0 0 21 22 2

1 2

1

1

1[ ] 4 ,

1

N

N

N N NN

A A A

B V A A A A

A A A

pe

È ˘
Í ˙

È ˘Í ˙
Í ˙Í ˙= = = Í ˙Í ˙
Í ˙Í ˙ Î ˚Í ˙

Í ˙Î ˚

#
(A.11.9a)

               where ( )mn
m n

A m n
x x

D
= π

-

and

1

2[ ]

N

r
r

r

r

È ˘
Í ˙
Í ˙= Í ˙
Í ˙
Í ˙Î ˚

# (A.11.9b)

[r] is the matrix with unknown elements, and it can be determined by either matrix inversion or
Gaussian elimination.



i.e. [r] = [A]–1 [B] (A.11.10)

Care must be taken in evaluating Ann—the diagonal terms. Since the conducting wire carries
charge, the observation points have been chosen at the centre of the segment so that the limits of

integration in x-direction will be .
2

x
D= ±  To evaluate Ann,

1
2

2 /2

S
centre /2 20

0 /2

2 2 1 / 2
S

2 2 1 / 2
0

1
4 ( )

2 /2 {( /2) }
ln

4 / 2 {( /2) }

ad dx
V

a x

a a

a

p
r f

pe

p r
pe

+D

- D

=
+

È ˘D + D += Í ˙
-D + D +Í ˙Î ˚

Ú Ú

where rS is the surface charge density on the conductor.

Assuming D >> a,

S
centre S

0 0

2 2
2 ln ln , 2

4 4
L

L
a

V a
a a

p r r r p rpe pe
D DÊ ˆ Ê ˆ= = =Á ˜ Á ˜Ë ¯ Ë ¯ (A.11.10a)

\ 2 lnnna
a
DÊ ˆ= Á ˜Ë ¯ (A.11.10b)

A.11.2 GENERAL CONCEPTS

Now that an actual problem has been solved, it will be easier to appreciate the general approach
to the method.

Expressing the problem as an operator equation which has to be solved, we have

L f = g (A.11.11)
where

L = linear operator (i.e. integro-differential operator)
f = the unknown function (i.e. field or induced current)

g = known function (i.e. the excitation).

The first step to determine f is to approximate it by a linear combination of functions, i.e. fn,
n = 1, 2, ..., N which are called ‘Expansion’ or ‘Basis’ functions.

1

N
a

N n n
n

f f fa
=

ª = Â (A.11.12)

where (an) are constants, and the S term is the N term approximation to f. [Refer to Eq. (A.11.5)
of the Poissonian field problem solved by MoM.]

The next step is to substitute for f in the operator Eq. (A.11.11), from Eq. (A.11.12), and we
obtain:

a
=

= ªÂ
1

N
a

N n n
n

L f L f g (A.11.13)
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The substitution for f is an approximate one which does not make the LHS exactly equal to
the RHS (i.e. = g) of this equation. The difference between the two is called the “Residual” (= RN),
which is

1

N
a

N N n n
n

R g L f g L f�

�

� � � �� (A.11.14)

Making the residual orthogonal to the set of functions (= Wm) called the weighting functions,
we get:

1

( , ) ( , ), 1, 2, 3, ...,
N

n m n m
n

W L f W g m M�

�

� �� (A.11.15)

where we define

Inner product: ,f h  = *( ) ( )
D

f x h x dx� (A.11.16a)

and for real f,

Inner product: ,f h  = ( ) ( )�
D

f x h x dx (A.11.16b)

Now, Eq. (A.11.14) can be written in matrix form as

A� = g (A.11.17)

{Ref.: Compare Eqs. (A.11.14) and (A.11.15) with Eq. (A.11.7), and Eq. (A.11.8) with
Eq. (A.11.17)}

where

11 12 1

21 22 2

1 2

...

...

... ... ... ...

...

N

N

M M MN

A A A

A A A
A

A A A

� �
� �
� �� � �
� �
� �� �

 = Moment matrix

  g = [g1 g2 ... gM]T � excitation vector

and � �� = [�1 �2 ... �N]T

, and ,mn m n m mA W Lf g W g� �

This can be solved provided the expansion function is known.
So now we discuss briefly some of the types and the properties of different expansion

functions and then weighting functions.
The requirements of any expansion function are:

1. It should be few and simple
2. It should approximate well with f.

There are two kinds of expansion functions, which are

(a) Sub-domain type
(b) Entire domain type



A. Sub-domain Expansion Functions

We consider first some of the sub-domain types of expansion functions.

1. ddddd-function Expansion Function

The unknown function f can be approximated by placing a number of Dirac d -functions at
discrete points along f. Hence it is applicable to (say) wire-grid model of electromagnetic surfaces.
When the d -function is being used as the expansion function, the method of Green’s function is an
alternative method and may be a preferable choice because of its greater generalization.

2. Pulse Function Expansion Function

This is the staircase approximation and mathematically the pulse function is:

1, ;
( )

0, otherwise
n

n

x x
P x

Œ DÏ
= Ì

ÔÓ
This function is quite popular as the integration is quite simple, but it can be used only if the

operator L does not have derivatives (because the derivative of a pulse is an impulse).

3. Triangular Function

This is a piece-wise linear approximation and is more accurate than the pulse functions.
Another advantage of this approximation is that, it is effective even when the operator L contains

derivative terms, i.e. 
f
x

∂
∂ . But it is unsuitable for problems which contain points where f Æ •.

The mathematical representation of triangular functions with equal as well as unequal
segment lengths are stated herewith:

(a) Dlar function with equal segment length

1
1 2

1

1

1 ,
( )

0, otherwise

1 , , 1, 2, 3, ,
( )

0, otherwise

1 ,
( )

0, otherwise

n
n

n

N
N N

N

x x
x x x

T x

x x
x x n N

T x

x x
x x x

T x -

-Ï - £ £Ô D= Ì
ÔÓ

Ï -
Ô - - £ D == DÌ
ÔÓ

-Ï - £ £Ô D= Ì
ÔÓ

…

(b) Dlar function with unequal segments

1
1 2

11

1 ,
( )

0, otherwise

x x
x x x

T x

-Ï - £ £Ô D= Ì
ÔÓ
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1
1

1

1
1

1 ,

( ) 1 , 2, 3, ..., 1

0, otherwise

1 ,
( )

0, otherwise

n
n n

n

n
n n n

n
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N N

NN

x x
x x x

x x
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where Dn = xn + 1 – xn for n = 1, 2, 3, ..., N – 1.

4. Piece-wise Simusoidal Function

This is a higher-order fit. (There can be quadratic and other higher-order functions as well.)
Here sinusoidal function has been chosen. It should be noted that the period of each sinusoidal
function is one wavelength. This function is defined as

( )sin
,

( ) sin ( )

0, otherwise

n
n

n

k x x
x x

f x k

Ï D - -
Ô - £ D= DÌ
Ô
Ó

where 2D = half wavelength

This function is normally used in wire antennae.

B. Entire Domain Expansion Functions

1. Trigonometric Functions, e.g.

sin { ( )} cos{ ( )},
( )

0, otherwise
n n n n n n

n

A B k x x C k x x x x
F x

Ï + - + - - £ DÔ= Ì
ÔÓ

2. Chebyshev Polynomials and Other Polynomials

These are:

Chebyshev polynomial of the First kind:

Tn (cos q) = cos nq,     n = 0, 1, 2, ...

Chebyshev polynomial of the second kind

sin ( 1)
(cos ) , 0, 1, 2, ...

sinn
n

U n
qq q

+
= =

These are used for wire antennae, strip lines, slot lines, etc.

3. Wave Functions

The solution of the Helmholtz equation is



fn = Zn (kr)ejny

where

Zn = cylindrical Bessel functions for two-dimension problems

and = spherical Bessel functions or Legendre functions in three-dimensions

Next we consider weighting functions.

Weighting Functions

As in the case of expansion functions, there exists a wide choice of weighting functions. We will
consider the following methods.

1. Point Matching Method

This is used when the boundary conditions are imposed only at finite isolated points. In this
case, the weighting functions are “Dirac Delta functions”.

Wm = d (x – xm), m = 1, 2, 3, ..., N

This method is simple to use. The accuracy of the method improves with closely spaced
points which are spaced non-uniformly. This method is also known as “Collocation method”.
However, care must be taken while using the technique as the solution (of the Point matching
method) does not always converge to the true solution.

2. Galerkin’s Method

In this case, the weighting function is same as the expansion function.

The main advantage of this method is that a small number of functions is sufficient to produce
an accurate result.

3. Least Square Method

In this case, the norm of the residual is minimized.

2 2

1

N

N n n
n

R g L fa
=

= - Â
where the norm of f is

f  = (f . f)1/2

At the minimum, 
∂

∂ na NR
2  = 0, which gives

1

, , , 1, 2, ...,
N

n m n m
n

Lf Lf Lf g m Na
=

= =Â
The moment matrix A has elements

,mn m nA Lf Lf=

Note: 1. A is positive definite Hermitian matrix.
2. LS method requires longer computing time than the point matching.
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Plate 1 A view of the reactor subjected to high current short-circuit test.

Plates
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Plate 3 Effect of radial magnetization on an alnico ring.

972 PLATES

Plate 2 Another view of a section of the reactor shown in Plate 1.



PLATES 973

Plate 4 A view of the model experiment to demonstrate the double-valued P.D.
in the circulating current circuit.

Plate 5 Wave shapes of Va and Vb from the demonstration experiment (Plate 4) as
observed on the CRO screen.

Vb Æ
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Absolute
elsewhere, 791
future, 791
past, 791
permeability of free space, 212
permittivity of free space, 42

Admittance, normalized, 938
Agarwal, 520, 521, 523
Algebra

four-dimensional vector, 793–794
vector, 1–7

Ampere’s
circuital law, generalized form, 251–253
law, 226–230, 498

generalization of magnetic circuit law,
385–386

law of forces, 351–354
Ampere–Laplace law, 351–354
Anisotropic dielectric, 72
Anomalous eddy current loss, 520
Antenna

arrays, 734–739
electric dipole, 704–716
half-wave, 718–722
microstrip, 880
printed, 880–881
quarter-wave monopole, 722–723
receiving, 751–754
thin linear, 716–718

Antenna characteristics (radiation parameters)
729–734

antenna pattern (radiation pattern) 729–734
directive gain GP, 732–733
directivity D, 733
(power) gain GP, 733–734
radiation intensity, 731–732

Antenna receiving
Hertzian dipole, parameters as, 753

directive gain, 755–756

Index

effective aperture, 755
equivalent circuit, 754–755
K, 756–758
radiation pattern and polarization, 753–754

Approximate methods, 309
of solving electrostatic field problems, 160–194

Area coordinates, 818
Areal coordinate system and 2D linear triangular

areal coordinate system, 844–846
elements, 844
shape functions and 2D linear triangular

elements, 846–847
Array

broadside, 738, 739, 747, 749, 750
end-fire, 739, 745, 747, 749, 750
factor (AF), 744, 746
factors, 739
gabled, 745
linear, 744–746
direction of maximum radiation, 746–747
direction of nulls, 747
directivity, 750
HPBW, 748–749
parasitic elements of, 746
principal maximum of, 745
two element, 734–739

of isotropic antenna, 739–744
effect of amplitude ratio, 743–744
effect of phase difference, 741–742
inter-element spacing, 742–743

Uda-Yagi, 746
Asano’s problem, 549–552
Attenuation

constant, 645, 661, 669
distance, 577
due to lossy dielectric and imperfect conducting

walls in rectangular waveguides, 668–671
Avogadro’s constant, 42, 913
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Bar-bouncing forces, 354
Barkhausen effect, 257
Basis functions, 965
Beam width between first nulls (BWFN), 731
Ber and Bei functions, 484
Bessel functions, 944–950
Bessel functions, modified, 948–949

asymptotic forms, 948
recurrence relations, 942–943
wronskians, 948

Bessel functions, ordinary, 946–948
asymptotic forms, 946
differentiation and integration of, 946–947
recurrence relations, 948
wronskians, 947

Bessel functions in polar form, 485, 486
Bessel functions of the third kind, 949
Bessel’s

differential equation, 119
equation, modified, 120

Betatron, 788–789
B-H

curve of iron, 260–265
distinction between, 233

Bhargava, S.C., 326
Bi-cylindrical coordinate system, 953–961

an alternative physical basis for, 959–961
derivation of, 953–955
some geometrical aspects, 955–958
solution of the field in, 958–959

Biot–Savart’s law (magnetic field of electric
current), 215–218

Bohr radius, 913
Boltzmann’s constant, 913
Bound charges, 73
Boundary

conditions, 205–206
conditions (generalizations), 397–399
conditions (independent), 939–943
conditions (surfaces of discontinuity), 258–259
conditions in electrostatics, 85–88
conditions, functional and, 190–191
surfaces and conditions, 112–113
surfaces of two dielectrics, pressure on the,

105–108
surfaces, pressure on, 104–108

Brailsford, 520
Brewster angle, 599–605, 677
Bullard’s equation, 499
Busbars (parallel rectangular) in a slot, 820–825

Capacitance (capacitors), 77
in series and parallel, 84–85

Capacitance, calculation of
concentric cylinders, 80–81

with mixed dielectric, 89–90
concentric spheres with

mixed dielectric, 92–94
single dielectric, 90–92

of N conductors, 94–95
parallel circular cylinders, 81–82
parallel plate capacitor, 78–79

with mixed dielectric, 88–89
sphere and a conducting plane, 84
two plate tapered capacitor, 79–80
two spheres of equal diameter, 83–84
wire and parallel plane, 82–83

Capacitance, definition, 68
of an isolated conductor, 68
methods of evaluating, 69
of two bodies with equal charges, 68–69

Capacitor, parallel plate, 140–141
taking account of fringing, 144–148

Carter, G.W., 337, 343
Cauchy–Riemann equations (conditions), 137
Cavities, resonant (see Cavity resonators)
Cavity resonators, 693–701
Characteristic impedance

of free space, 568, 573, 638
of line (transmission), 645
of material, 568

Charge decay, 551–552
Charge density in conducting medium, 546–552
Charge of an electron, 913
Charge/mass of an electron, 913
Charge relaxation, 545

as electrical transient, 546
with motion and sinusoidal excitation, 557–559
with steady motion, 554–556
(travelling wave) in a moving conductor,

559–561
Circuit theory and its limitations, 914–916
Circular conductor in open space, 819–820
Circulating

circuit, 916–920
current, 916, 919, 920

Coaxial cable
(ideal) carrying a time-varying current, 452–457
(ideal) power transmission in, 447–448, 648
having resistance, carrying direct current, power

transmission, 451–452
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Coefficient of coupling, 332–333
Coefficient (voltage) reflection, 643
Coefficients of energy reflection R, energy

transmission T, 604, 643
Coercive field intensity, 263
Common generators and motors, 347
Commutator, 325
Commutatorless dc generator, 337–339
Complex

potential, 138–140
potential junction, 139
Poynting vector, 457–459
propagation constant, 645

Complex representation
magnitudes of vectors in, 34–35
of rotating vectors, 33
of time-harmonic vectors, 32–33
of a vector rotating in Cartesian plane, 35–36

Complex variables
conformal transformations and, 135–148
and conjugate functions, functions of, 135–137

Computational methods (FDM), 178–186
Gauss–Seidel method, 181
Jacobi method, 181
S.O.R. method, 181

Concentric spheres with single dielectric, 90–92
Conducting paper analogue, 296–308
Conductors, 66

in electrostatic field, 66–68
good, 572

Conformal transformation, 137–138, 275
and complex variables, 135–148

Conjugate
functions, 137
functions of complex variables and, 135–137

Conservation of (electric) charge, 199–200, 383–384
Conservative fields, 54
Consistent ordering, 185–186
Constitutive relations (equations), 387–388
Continuity equation, a note on, 384–385
Continuity, equation of (or equation), 199–200,

383–384, 541
Conversion of vector from one coordinate system

to another, 38–40
between cylindrical polar and spherical polar, 40
between rectangular Cartesian and cylindrical

polar, 39–40
between rectangular Cartesian and polar

spherical, 38–39
coordinate systems, 7, 113–114, 892–893
development of metric coefficients of, 893–895

development of metric coefficients of (tensor
notation), 895–897

partial derivatives of unit vectors of orthogonal,
905–906

relations between orthogonal, 904–905
Coordinates,

cylindrical polar, 8, 898–899
rectangular Cartesian, 7, 897–898
spherical polar, 8, 899–900

Copper plate moving in a uniform magnetic field, 339
Corona, 75
Corson and Lorrain, 321
Coulomb gauge (condition), 424
Coulomb’s law, 43
Covariant gauge, 424, 426
Critical angle (total reflection), 608
CRGO, 266
CRNGO, 266
Cullwick experiment, 805–807
Curl

in rectangular Cartesian coordinates, derivation
of, 18–20

of SA, divergence and, 23–24
of a vector, 17–20

Curl curl, operator (see Operator)
Curl grad, operator (see Operator)
Current between two infinite parallel permeable

surfaces, 278–279
Current loop, 215

equivalence with magnetic dipole, 215
Curvilinear squares, 56

a note on, 161–162
rectangles, 162

Cut-off frequency, 623–624, 652–653, 655, 661–
662, 665, 679

Cut-off wavelength, 665
Cyclotron frequency, 359

DC generator (heteropolar), 324–325
Depth of penetration, 471, 472
Diamagnetic substance, 253, 254–255
Dielectric

breakdown, 75–76
constant, 75
relaxation, 76
strength, 75–76

Dielectrics, 69
physical properties of, 75–76

Differentiation
partial, 10
of vectors (see Vectors)



982 INDEX

Diffusion, 471
time, 497
time constant, 495, 497, 502
(travelling wave) in moving medium, 506–521

Dipole
electric, 63–64
Hertzian (oscillating), (electric), 704–716
moment, 728
(oscillating magnetic), E and H vectors of,

726–727
(radiation), magnetic (oscillating), 723–729

Directional derivative, 15
Dirichlet boundary condition, 818
Dispersion

equation, 505
wave, 505, 510

Displacement current, 385–386
Distinction between potential energy and stored

energy, 365–366
Div curl operator, 25
Divergence

and curl of SA, 23–24
of gradient of a scalar, 903–904
of a vector (see Vector)
of vector product, 22–23

Domain, 520
Double Fourier Series, 132
Duality, principle of, 883–886

Earnshaw’s theorem, 108–109, 379
Eddy current

loss, 477
losses and saturation effects in iron, 520–523

Eddy currents, 477, 481
inductance-limited, 481
resistance-limited, 481

Electric current, 196
and current density, 197–198
and electric flux, analogy between, 200–202
and electric force, 198–199

Electric
dipole, 63–64

antenna, 704–716
and magnetic field, transformation of, 769–771
permittivity, relative, 75
potential (electrostatic), 51–54
Reynold’s number, 545
scalar potential, 402
susceptibility, 72
vector potential, 424–426

Electric field
calculation of, due to

charges distributed uniformly over an
infinitely plane surface, 62–63

a group of charged particles, 57
a group of parallel line charges, 61–62
a hollow charged sphere, 58–59
infinitely long straight line charge, 61
uniformly distributed charge or infinite

circular cylinder, 60
concept of, 45–46
of continuous space distribution of charges,

46–47
and electric potential, 54–55
of free charges, 545, 554
within a hollow charged sphere, 125–126
intensity, total, 918

Electric force, 45–46
Electrokinetic momentum vector, 402
Electromagnetic

field, physical meaning of, 312–313
field tensor, 795, 796, 797
momentum vector, 402
oscillatory system, flow of energy in the field

of, 442–446
phenomena as viewed by different observers,

766–769
waves, 563–632
waves (plane) in free space, 392–397, 564–571
waves, radiation and reception of, 703–762
waves, uniform plane, definition, 564

Electromagnetic induction, 313–314
applications of, 322–326

DC generator, 324–325
search coils, 325–326
transformer, 322–324

difficulties in interpretation of laws of, 333–343
Faraday’s law of, 314–318
by flux cutting, 798, 799
general law and its proof, 320–322
relativistic aspects of, 798–807

concept of moving field, 799–800
Cullwick experiment, 805–807
Herrings experiment, 804–805
homopolar induction (Faraday’s disc),

800–804
Electromagnetic interference and compatability

(EMI and EMC), 855–857
Electromagnetic flowmeters, 878
Electromagnetic separators, 878
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Electromagnetic shielding, 856–857
Electromagnetism,

first order relativistic effects in, 784–786
four-dimensional, 794–796

Electromechanical systems
energy and forces in, 375–379
force-coenergy relations of, 378–379

Electromotive force (emf), 202–203
induced in conductors moving in a static

magnetic field, 318–320
Electron gun, 358
Electron rest-mass, 913
Electrostatic

fields, general methods of determining forces in,
102–104

forces on dielectrics, 102
Energy

an alternative derivation for the, 99–100
of a charged moving particle, 883–884
loss associated with hysteresis in iron,

369, 371
(potential) of a circuit in a magnetic field,

347–348
required to establish a magnetic field, 346–347
storage

in the field of a coil, 362–363
in the field of several coils, 363–364
in a region containing irons, 367–368

(stored) of a circuit, 349
stored in the electric field, 98–99
(stored) in terms of magnetic field vectors,

366–367
of a system of charged conductors, 97–98
transmission in rectangular waveguides,

662–664
of a uniform plane wave, 447–448

Equipotential line, 55–56
Euler equation of the functional, 188, 190, 814, 815
Euler–Lagrange equation, 188, 189
Expansion functions, 965, 966–969
Expansion functions (sub-domain)

d-function, 967
piece-wise sinusoidal, 968
pulse function, 967
Triangular function, 967–968

Expansion functions (entire domain)
Chebyshev polynomials, 968
trigonometric functions, 968
wave functions, 968–969

Experimental methods (for magnetic fields),
294–308

conducting paper analogue, 287–308
Hall effect probes, 295–296

Experimental methods (of solving electrostatic field
problems), 168–171

conducting paper analogue, 170
elastic membrane method, 170
electrolytic tank method, 168–170
hydrodynamic analogy, 171

Faraday, M. 314, 315
Faraday disc, 342–343, 712–714
Faraday’s law of induction, 498, 521

experimental verification of, 773–779
Faraday tube, 68
Ferromagnetic substance, 253, 256
Field

conservative, 20, 54
irrotational, 29
irrotational but not solenoidal, 30
neither irrotational nor solenoidal, 30
lamellar, 15
Laplacian, 29
of a moving charge, 787–788
Poissonian, 29
scalar potential, 15
of a single current loop (magnetic dipole),

249–250
solenoidal, 17
solenoidal and irrotational (lamellar), 29
solenoidal but not irrotational, 29
vector potential, 30

Finite difference
integration method, 175–177
methods, 173–186
representation, 173
Taylor series expansion, 174–175

Finite-Difference Time-Domain Method (F-D T-D)
a short note on, 847–849

Finite element method (F.E.M.), 180–193
for eddy current problems, 818–824
applied to electromagnetic field problems,

812–818
for transformers and DC machines, 825–828

Finite element method (procedure details), 832
assembling all element equations, 839–942
element governing equation, 834–839
finite element discretization, 833–834
formulation of the problem, 832–833
solving the resulting global equations, 842–844

Fitzgerald contraction, 773, 785, 786
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Flux
cutting, 798, 799, 800
cutting rule, 318–320
density residual or remnant, 263
of E across a surface, 48
function, potential function and, 55–56
linkage, definition of, 333–336
linking, 324, 798

Force
between charged particles, law of, 43
between magnetized iron surfaces, 368–369
on a moving charge, 788
on a moving charge in a magnetic field,

350–351
between two small charges in arbitrary state of

motion, 312
between two small moving charges, total, 311,

312
Forces

between armature and magnet of a contactor,
275–278

bar-bouncing, 354
on circuits with associated iron, 369
on circuits, calculation of, 351
on conductors and dielectrics, 100–108
on a current-carrying circuit in a magnetic field,

349–350
on dielectrics, electrostatic, 102
in electrostatic fields, general, 102–104
and pressures on conductors, 100–102
between stationary current systems, 353–355
due to time-varying currents, 354
between the turns of a coil, 355–357
between two circuits in terms of the mutual

inductance, 366
Four-dimensional

space-time, 790–791
vector algebra, 793–794

Frame of reference, inertial, 766
Frequency, cut-off, 622, 654, 661, 662, 665
Fresnel’s equations, 595, 597, 598, 604, 605, 607,

612
in total reflection, 609–611

Fringing (edge effects), 492
Friis transmission formula, 758
Functional

and boundary conditions, 190–191
for electrostatic fields, 190
and extremum, 187–188
minimization, 192–193
in two variables, 188–190, 723

Functionals and some P.D.E.’s, 831

Galilean relativity, 765–766
Gauge

coulomb, 422
covariant, 423
invariance, 422–423
Lorentz, 421–423
transformation, 422

Gauss’ theorem, 20, 48–50, 149
an alternative proof of, 50–51
electric field of continuous space distribution,

46–47
generalized form of, 74–75

Gaussian surface, 50
Geometrical velocity, 663
Gibbs, J. Willard, 388
Gilbert, William, 211
Grad div, operator, 25
Gradient

of divergence of a vector, 910–912
of a scalar, 13–15, 901–902

Graphical method(s)
for magnetic problems, 292–294
of solving electrostatic problems, 160–168

Green’s
first identity, 21, 149
function, 126–129

for an infinite conducting plane, 134–135
for a rectangular region with Poissonian

field, 131–134
for a two-dimensional region, 130–131

reciprocation theorem, 889–890
for dielectrics, 890–891
for magnetics, 891

second identity, 21, 128
theorem, 20, 128

vector analogue of, 21–22
Group velocity, 654
Guided wave, 621, 622

Half power beam width (HPBW), 730
Hall, E.H., 296
Hall coefficient, 295
Hall effect probes, 294
Hamilton, W.H., 389
Hammond, 523
Hankel functions, 949
Harrington R.F., 962
Haus, H.A., 916, 928
Heating

induction, 475–478, 526–537
microwave, 851
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Heaviside, O., 388
Helmholtz

coils, 241–242
equations, vector, 390–391
theorem, a proof of, 30–31

Helmholtz, H. von, 563
Herring’s experiment, 804–805
Hertz, H., 382, 433
Hertz electric vector, 434
Hertz magnetic vector, 438
Hertz vector, 433–438
Hertzian dipole, 704–716, 752

E, V and A lines of, 714–715
electromagnetic field of, 704–707
field components for, 707–710

Homogeneous coordinates, 846
Homopolar

generator, 342–343
generator (induction), 800–804

Howe, G.W.O., 337
Hyper-cone, 791
Hysteresis loop, 263, 264–265

rotational, 371

Images
of current loops and current elements, 285–287
an introductory note on method of, 83
method of, 149–158, 279–280

applied to end-windings of electrical
machines, 286, 288–292

Impedance
of free space, characteristic (wave), 573, 638
normalized, 934
surge, 638
of waves, 933–934

Index of refraction, 575, 577
Inductance, 326–333

limited, 482
mutual-, 326, 412

Neumann’s formula for, 413–414
between parallel conductors, 414–415

reciprocal property of mutual, 364
self-, 326

internal, of a straight cylindrical conductor,
373–375

of parallel conductors, 415–418
self- and  non-conservative fields, 923–925
of a system of several circuits, 418–419
in terms of induced emfs, 328–329
in terms of storage energy, a definition of, 373

in terms of vector potential, 411–412
unit of, 327–328

Inductances, calculation of, 329–332
Induction heating of flat plates

bilateral, 533–537
unilateral, 528–533
unilateral and bilateral, 526–537

Induction heating and melting, 875–876
Induction stirring and valves, 876–877
Insulators, 66

(dielectrics) in a static electric field, behaviour
of, 69–71

Integral theorems of vectors, 20–22
Integration—line, surface and volume integrals, 11–

13
Intrinsic impedance of free space, 395, 913
Inverse point of a circle, 155, 283, 887–888

Joule’s law, 205

Kelvin functions, 484, 949–950
Kelvin, Lord, 149
Kirchhoff, G.R., 563
Kirchhoff’s laws, 208, 915

first law, 208, 915
second law, 208, 915, 925
second law (modified form), 925–927

Kopp, E., 942

Laithwaite (magnetic river principle), 380
Laplace’s equation, direct solving of, 111–159
Laplace’s equations, potential field expressed as

Poisson and, 56–57
Laplacian (scalar), 903–904
Laplacian (vector), 908–910
Lasers, 858–859
Law of conservation of magnetic flux, 224–226
Le Chatelier’s principle, 315
Legendre functions, 950–951
Legendre functions, associated, 950
Legendre functions, ordinary, 951
Lenz’s law, 315
Levitation, transportation of metal sheets by, 877
Light cone, 791
Line charge

of an infinitely long straight thin wire, 883
near a circular boundary, 154–156
parallel to the surface of a semi-infinite

dielectric, 151–152
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Line current
of an infinitely long, thin straight wire, 884
inside the circular cylinder, 282–285
parallel to the face of a semi-infinite magnetic

slab, 280–282
Line integral, 11
Linear pumps, 874–875
Linear transportation, 870–874
Lines of

force, 140
magnetic flux density vector and the magnetic

flux, 223–224
Lorentz force, 214, 321, 769
Lorentz gauge (condition), 421, 422, 423, 426,

704, 726
Lorentz transformation, 773, 784, 792

consequences of, 773–783
contraction of lengths, 773
dilatation of time, 773–774
moving conductors, 781
transformation of charge density and current

density, 692–693
transformation of mass and momentum,

775–778
transformation of velocities, 774–775

four space aspect of, 792
invariance of Maxwell’s equations under,

797–798
Loss calculation

in circular conductors, 486–488
in conducting block, 506–520

Macdonald vector, 466
MacLean, 519
Macroscopic currents and magnetic substance,

equivalence, 251
Magnetic

bearings and gears, 877
circuit, 266–268
flux density of planar currents, 222–223
focussing of electron beam, 790
force law between two moving charges,

212–214
moment density vector (magnetization vector),

250–251
Reynold’s number, 502, 505, 511
scalar potential, 230–232, 424–427

at a point, due to a current loop,
232–233

shielding, 266

susceptibility, 250, 253
vector potential in time-varying fields, 419–423

Magnetic diffusion, 497
as an electrical transient, 492–497
as a result of relative motion of conducting

medium, 497–500
Magnetic dipole, 211, 215, 249–250

moment, 248, 253, 254
oscillating, E and H vectors of, 726–729
oscillating, Poynting vector and radiated power,

727–728
radiation, 723–726

Magnetic field
on the axis of a

circular coil, 221, 241
short circular solenoid, 222
square coil, 220

of a current in a
coaxial cable, 235–237
parallel go-and-return circuit, 237–239
straight circular cylindrical conductor,

234–235
externally applied on material substance,

253–256
of an infinitely long solenoid, 240
inside a circular hole in a cylindrical conductor,

237
intensity vector, 257
of a planar current sheet, 242–243
of a short straight length of wire, 218–219
(sinusoidally time-varying) in presence of

motion, 503–506
(steady-state) in a fixed frame, 500–503
of a torodial solenoid, 239–240

Magnetically
hard, 263
soft, 263

Magnetron effect, 362
Masers, 859
Maxwell’s equations, 252, 468, 469, 507, 545,

760, 798
complex representation of, 388
consequences of, 389–392
in differential form, 388
historical comments, 388
integral form of, 387
under Lorentz transformation, invariance of,

797–798
Maxwell’s stresses in magnetic field, 371–372
McConnel, 520
Mechanical integrator, 307–308
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Medium,
homogeneous, 573
isotropic, 573
linear isotropic, 573

Melcher, J.R., 916, 928
Metric coefficients of coordinate systems

development of, 893–895
tensor notation, 895–897

Michaelson and Morley experiment, 772
Microstrip antenna, 880
Microstrip transmission lines, 878–879
Milne-Thompson circle theorem, 285
Moment dipole, 64, 248, 253, 254, 728
Moore, A.D., 326
Motion of

a charged particle
in magnetic and electric fields, 357–362
in static magnetic field, 358–360
under simultaneous magnetic and electric

fields, 360–362
electric charges in electric field, 357–358

Moving field, 799–800
pattern, 805
problems of concept of, 337

Multiply connected region, 656
Mutual inductance, 413

Neumann’s formula for, 413–414
between parallel conductors, 414–415
reciprocal property of, 364

Neumann’s law, 337, 342
Non-conservative fields; some further thoughts,

920–922
Non-conservative fields, self-inductance and,

923– 925
Normal incidence of plane waves

with a conducting sheet, 590–592
at a perfectly conducting boundary, 582–590
reflection from a dielectric, 585–588
three dielectrics, 588–590
three region problem, 590–592

Numerical methods
finite difference methods, 172–186
finite element method, 186–193

Oblique incidence of plane waves, 613–625
on a perfectly conducting surface E

normal to the plane of incidence, 616–625
parallel to the plane of incidence, 614–616

polarized with E
normal to the plane of incidence, 594–595
in the plane of incidence, 596–597

Oersted’s discovery, 740
Ohm’s law, 204, 545
Operator

curl curl, 26
curl grad, 24–25
curl of a vector product, 28–29
div curl, 25
div of a vector product, 22
div grad, 22
div and curl of SA, 23–24
grad of a scalar product, 26–28

Operator —, applications of, 22–29
Operator —2 with vector operand, 25
Optical fibre, 859–869

characteristics, 861–863
dispersion in (arrival time distortion), 868–869
intermodal, 869
intramodal, 869
modes of, 865–868

hybrid, 866
transverse electric, 866
transverse magnetic, 866

numerical aperture of, 864–865
acceptance angle, 865

Optical fibre types, 866–867
graded index (GRIN), 867
multimode (MM), 866
single mode (SM), 866
step index, 866

Orthogonal functions, 952
Orthogonality, definition of, 952
Oscillating dipoles (electric doublets), 286

Page, L., 764
Paramagnetic substance, 253, 255–256
Partial differentiation, 10
Pattern multiplication, 744
Penetration of flux in a plate of finite thickness,

475–478
Perfect matching, 603, 604
Permanent magnets (and applications), 265–266
Permeability

differential, 264
of free space (absolute), 913
incremental, 264
initial, 264
normal, 264
relative, 253
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Permittivity
of free space (absolute), 44, 913
relative, 75

Phase  constant (phase shift constant), 645, 661,
668, 670

Phase velocity, 575, 576, 577, 623, 666
and group velocity, 666, 668

Planck’s constant, 913
Plane of incidence, 581, 593
Plane waves on cylindrical conductors, 625–629
Plotting technique, 164–166
Point charge near

a conducting sphere, 156–159
an infinite grounded conducting plane, 152–154

Poisson and Laplace’s equations, potential field
expressed as, 56–57

Poissonian field, representation of, 306–308
Polar

insulating materials (dielectrics), 72
molecules (of dielectries), 71

Polarization, 70
charges, 73
horizontal, 571
linear, 566
plane of a wave, 571
vector, 71–72
vertical, 571

Polarizing angle, 600
Population inversion, 858
Potential

difference between two points, 777–778
in electric circuit, 203–204
electric scalar, 402
energy of circuit in a magnetic field, 347–348
field expressed as Poisson and Laplace’s

equations, 56–57
of a field plot consisting of curvilinear

rectangles satisfies Laplace’s equation, a
proof of, 162–164

function, 139
and flux function, 55–56

inside a hollow cylindrical ring, 121–123
magnetic vector, 248, 249, 250, 314, 346–347,

402–427
Potentials, retarded, 423–424, 706
Power transmission in

a coaxial cable having resistance, 451–452
an ideal coaxial cable, 447–448

Poynting, J.H., 467
Poynting vector, 448–451, 569, 576, 586, 713,

716, 721, 728

complex, 457–459, 474, 710
general comments about the significance of,

460–461
Pramanik, A., 919, 928
Pressure on

boundary surfaces, 104–108
of two dielectrics, 105–108

surfaces of charged conductors, 104–105
Principle of

duality, 883–886
reciprocity, 133
superposition, 44–45

Propagation constant (complex), 645, 661, 669
Propagation equation in cylindrical coordinates,

solution of, 630–632
Propagation in a medium of finite conductivity,

629–630
Propagation modal, 651
Propagation of plane electromagnetic waves

in conducting media, 576–577
in good conductors, 577–580
in insulators and dielectrics, 575–576
in perfect loss-less non-conductors, 570–571

Proper mass, 883
Property A, 184–185
Proton rest-mass, 913
Proximity

effect, 523, 526
loss, 523, 526

Pulsating current sheet on stationary conducting
block, 514–516

Quadrupole moment, 728
Quadrupoles, electric and magnetic, 728–729
Quality factor, Q,

of  a rectangular resonant cavity, 697–699
of waveguides 682–683

Radar
side looking (SLR), 853
synthetic aperture (SAR), 853

Radar cross-section, 862
Radar systems, 852–853

definition, 852
Radiation resistance, 712–713, 722

definition, 713
Radio astronomy, 853–854
Radio telescopes, 853

fixed radio interferometer type, 853
parabolic reflector type, 853
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Radius vectors, 900
Receiving antenna, the electric and magnetic

(oscillating) dipoles as, 751–752
Reciprocity theorem, 758–762
Rectangular loop

(expanding) in a time-varying uniform magnetic
field, 337–341

rotating in a uniform magnetic field, 341–342
Reflection

coefficient, variation along a waveguide,
931–932

coefficient (voltage), 643, 930–931
laws of, 581, 582, 605

Reflection and refraction
at a good conductor, 611–613
between non-magnetic, loss-less, dielectrics,

597–599
Refraction, Snell’s law of, 581, 582, 605
Relation between self- and mutual-inductance,

332–333

Relationship between and
d

dt t

∂
∂

A A
, 36–38

Relative velocity, 764
Relativity of space and time (special relativity),

772–773
Relaxation

charge, 545
dielectric, 76, 547
time, 76, 547

in a partly filled tank, 549–552
Remote sensing, 853
Residual (remnant) flux density, 263
Resistance limited, 482
Resistors, series and parallel connections of, 209
Resonant cavities, 693–701
Resonant cavity (cavity resonator)

cylindrical, 699–701
TE mode, 699, 700
TM mode, 699, 700
rectangular, 693–699

TE mode, 693–694
TE mode from the fundamentals, 694–695
TM mode from the fundamentals, 695–697
dominant mode, 695
stored energy and quality factor, 697–699

Rest mass, 777
electron, 913
proton, 913

Reynold’s number
electric, 554, 559
magnetic, 502, 505, 511

Rogowski
coils, 332
electrodes, 148

Rotating vectors, complex representation of, 33
Rotational hysteresis loss, 371

Satellite communication, 854–855
Satellites for communication (communication

satellites), 854
active, 854
geostationary, 854
passive, 854

Saturation effects in iron, 520
Scalar

gradient of, 912
product, triple, 6
quantities, 1

Schwarz–Christoffel transformation, 144, 145
Search coils, 325–326
Search loop antenna (for locating transmitters),

752, 753
Self-inductance, internal (due to alternating

currents), 539
Self-inductance and non-conservative fields,

923–925
Searle, G.F.C., 280
Separating surface, 521
Separation of variables in a

cylindrical polar coordinate system, 118–122
hollow cylinder in a magnetic field, 270–274
rectangular Cartesian system, 114–118
spherical polar coordinate system, 123–125

Shielding effectiveness (SE), 856–857
Signal velocity (group velocity), 668
Sillars’ vector, 466
Singly-connected region, 659
Skin depth (depth of penetration), 478, 491, 505,

524, 579
Skin effect, 472, 473, 523

in an isolated circular conductor, 482–488
in plated conductors, 488–492

Skin effect (and eddy currents)
in solid cylindrical conductors, 539
in tubular conductors, 537

Slepian
vector, 466
vectors for energy flow, alternative, 464–465

Slepian, J., 462, 464
Smith chart, 934–938
Snell’s law, 581, 582, 605
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Special relativity
electromagnetism and, 764–810
the principle of, 885

Stability of the
electrostatic system (Earnshaw’s theorem), 108–109
magnetic systems, 379–380

Standing wave pattern, 932–933
Steinmetz constant, 371
Stokes’ theorem, 20, 494
Stratton, J.A., 21, 279
Stream function, 139, 140
Sumpner, 466
Superposition, principle of, 44–45
Surface integral, 12
Surge impedance, 456, 638
Synchronous orbit (stationary orbit), 854

Types
bidirectional, 863
unidirectional, 863
hybrid, 863

Tensors, electromagnetic field, 795, 796
Tesla (T), 214
Time-varying currents in parallel conductors (forces

on), 354
Tolman, 777
Tolman’s experiment, 777–779
Torque on a

circular coil placed in a uniform magnetic field,
355

current loop in a uniform magnetic field,
245–248

Total
electric field intensity, 918
reflection, 605–611

definition, 605
Transformation of electric and magnetic fields,

769–771
Transformation equations for force, 782–783
Transformer, 322, 324

effect on end-turns of coils, 357
induction, 798

Transition surface, 521
Transmission formula, Friis, 758
Transmission lines, 636–648

loss-less, 636–643
lossy, 643–648
steady-state ac operation, 639–643
stripline, 648
transient shock conditions, 638–640

Transportation of metal sheets by levitation, 877
Transportation, linear, 870–873
Transverse

electric magnetic wave (TEM), 656
electric wave (mode of operation of guide) (TE),

655
electric waves in cylindrical waveguide,

678–682
electric waves in rectangular waveguides,

658–661
magnetic wave (TM), 655
magnetic waves in rectangular waveguides,

664–666
Travelling

current sheet imposed on a stationary conduct-
ing medium, 512–514

wave diffusion in moving medium, 506–511
Tribolectricity, 76
Triple product

scalar, 6
vector, 6

Two-concentric cylindrical conductors, 141–144
Two-dimensional multi-dielectric fields, 166–168

Uda-Yagi array (see Array)
Uniform plane waves

energy of 446–447
in free space, 564–571
some general comments on, 571–573

Unit vectors of orthogonal coordinate systems,
partial derivatives of, 905–906

Van-de-Graff generator, 555–557
Vector

calculus, 9–26
curl of, 17–20, 883
curl of the curl of, 906–908
divergence of, 15–17, 902
electrokinetic momentum, 402
electromagnetic momentum, 402
fields, types of, 29–30
gradient of divergence of, 910–912
operator —, 13–20, 900–901

Vector potential, 402
electric, 424–427
inductance in terms of, 411–413
in rectangular cartesian coordinates, 429
in cylindrical polar coordinates, 430–431
in spherical polar coordinates, 431
magnetic, 403–405
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of eddy currents, 431–433
orthogonal expansions for, 428–429
potential 402
some comments on useful types of 438–439
potential, 402
of the field of current in a circuit, 405–407

(magnetic) in time varying fields, 419–423
of system of parallel current-carrying

conductors, 407–411
product, divergence of, 22–23
product, triple, 6

Vector potentials, 402–439
Vector, Hertz, 433–438
Vector, Hertz electric, 434
Vector, Hertz magnetic, 438
Vectors

addition and subtraction of, 2
associative law, 2, 5
commutative law, 2, 4, 5
components of, 3
differentiation of, 9
distributive law, 4
integral theorems of, 20–22
multiplication of, 3
parallelogram law, 2
scalar product of, 3
time variation of, 31–36
vector product of, 4

Vectors, complex representation of
magnitudes of, 34–35
rotating, 33

in a Cartesian plane, 35
time-harmonic, 32–33

Velocity
geometrical (in waveguides), 663
relative, 764
of wave propagation in waveguide, 661, 666

Vertical dipole antenna, 763
Virtual

displacement, 103
work, 103

Voltage between two points, 918, 919
Voltage Standing Wave Ratio (VSWR), 643, 933
Volume integral, 13

Wait, J.R., 942, 943
Wave-front, 572
Waveguides, 622, 648

analysis from fundamentals, rectangular,
656–621

circular (cylindrical) dielectric, 687–693
cylindrical, 674–682
dielectric slab, 683–687
mathematical analysis from fundamentals,

rectangular 656–666
plane parallel, 649–653
plane parallel (as a limiting case of rectangular

waveguide), 672–673
rectangular, 653–666
modes

hybrid, 691–693
transverse electric, 625, 651, 655, 658, 664,

678, 678–682
transverse electric and magnetic, 625, 656
transverse magnetic, 625, 651, 655 656,

658, 664–666, 673, 689–691
quality factor of, 682–683

Wave impedance
of free space, 395, 573
material, 568

Wavelength, 396, 576
cut-off, 661, 665
free space, 653

Wave number, 396, 511, 568, 575, 622, 666
Weighting functions, 966, 969

point matching method, 969
Galerkin’s method, 969
last square method, 969

Woodson, H.H., 916, 928
World-line, 791
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