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Preface to the Third Edition

The first edition of this text appeared in 1950, and it was so well received that
it went through a second printing the very next year. Throughout the next three
decades it maintained its position as the acknowledged standard text for the
introductory Classical Mechanics course in graduate level physics curricula
throughout the United States, and in many other countries around the world.
Some major institutions also used it for senior level undergraduate Mechanics.
Thirty years later, in 1980, a second edition appeared which was “a through-going
revision of the first edition.” The preface to the second edition contains the fol-
lowing statement: “I have tried to retain, as much as possible, the advantages of
the first edition while taking into account the developments of the subject itself,
its position in the curriculum, and its applications to other fields.” This is the
philosophy which has guided the preparation of this third edition twenty more
years later.

The second edition introduced one additional chapter on Perturbation The-
ory, and changed the ordering of the chapter on Small Oscillations. In addition it
added a significant amount of new material which increased the number of pages
by about 68%. This third edition adds still one more new chapter on Nonlinear
Dynamics or Chaos, but counterbalances this by reducing the amount of material
in several of the other chapters, by shortening the space allocated to appendices,
by considerably reducing the bibliography, and by omitting the long lists of sym-
bols. Thus the third edition is comparable in size to the second.

In the chapter on relativity we have abandoned the complex Minkowski space
in favor of the now standard real metric. Two of the authors prefer the complex
metric because of its pedagogical advantages (HG) and because it fits in well with
Clifford Algebra formulations of Physics (CPP), but the desire to prepare students
who can easily move forward into other areas of theory such as field theory and
general relativity dominated over personal preferences. Some modern notation
such as 1-forms, mapping and the wedge product is introduced in this chapter.

The chapter on Chaos is a necessary addition because of the current interest
in nonlinear dynamics which has begun to play a significant role in applications
of classical dynamics. The majority of classical mechanics problems and appli-
cations in the real world include nonlinearities, and it is important for the student
to have a grasp of the complexities involved, and of the new properties that can
emerge. It is also important to realize the role of fractal dimensionality in chaos.

New sections have been added and others combined or eliminated here and
there throughout the book, with the omissions to a great extent motivated by the
desire not to extend the overall length beyond that of the second edition. A section

ix



Preface to the Third Edition

was added on the Euler and Lagrange exact solutions to the three body problem.
In several places phase space plots and Lissajous figures were appended to illus-
trate solutions. The damped-driven pendulum was discussed as an example that
explains the workings of Josephson junctions. The symplectic approach was clar-
ified by writing out some of the matrices. The harmonic oscillator was treated
with anisotropy, and also in polar coordinates. The last chapter on continua and
fields was formulated in the modern notation introduced in the relativity chap-
ter. The significances of the special unitary group in two dimensions SU(2) and
the special orthogonal group in three dimensions SO(3) were presented in more
up-to-date notation, and an appendix was added on groups and algebras. Special
tables were introduced to clarify properties of ellipses, vectors, vector fields and
1-forms, canonical transformations, and the relationships between the spacetime
and symplectic approaches.

Several of the new features and approaches in this third edition had been men-
tioned as possibilities in the preface to the second edition, such as properties of
group theory, tensors in non-Euclidean spaces, and “new mathematics” of theoret-
ical physics such as manifolds. The reference to “One area omitted that deserves
special attention—nonlinear oscillation and associated stability questions” now
constitutes the subject matter of our new Chapter 11 “Classical Chaos.” We de-
bated whether to place this new chapter after Perturbation theory where it fits
more logically, or before Perturbation theory where it is more likely to be covered
in class, and we chose the latter. The referees who reviewed our manuscript were
evenly divided on this question.

The mathematical level of the present edition is about the same as that of the
first two editions. Some of the mathematical physics, such as the discussions of
hermitean and unitary matrices, was omitted because it pertains much more to
quantum mechanics than it does to classical mechanics, and little used notations
like dyadics were curtailed. Space devoted to power law potentials, Cayley-Klein
parameters, Routh’s procedure, time independent perturbation theory, and the
stress-energy tensor was reduced. In some cases reference was made to the second
edition for more details. The problems at the end of the chapters were divided into
“derivations” and “exercises,” and some new ones were added.

The authors are especially indebted to Michael A. Unseren and Forrest M.
Hoffman of the Oak Ridge National laboratory for their 1993 compilation of
errata in the second edition that they made available on the Internet. It is hoped
that not too many new errors have slipped into this present revision. We wish to
thank the students who used this text in courses with us, and made a number of
useful suggestions that were incorporated into the manuscript. Professors Thomas
Sayetta and the late Mike Schuette made helpful comments on the Chaos chapter,
and Professors Joseph Johnson and James Knight helped to clarify our ideas
on Lie Algebras. The following professors reviewed the manuscript and made
many helpful suggestions for improvements: Yoram Alhassid, Yale University;
Dave Ellis, University of Toledo; John Gruber, San Jose State; Thomas Handler,
University of Tennessee; Daniel Hong, Lehigh University; Kara Keeter, Idaho
State University; Carolyn Lee; Yannick Meurice, University of Iowa; Daniel
Marlow, Princeton University; Julian Noble, University of Virginia; Muham-
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mad Numan, Indiana University of Pennsylvania; Steve Ruden, University of
California, Irvine; Jack Semura, Portland State University; Tammy Ann Smecker-
Hane, University of California, Irvine; Daniel Stump, Michigan State University;
Robert Wald, University of Chicago; Doug Wells, Idaho State University.

We thank E. Barreto, P. M. Brown, C. Chien, C. Chou, F. Du, R. F. Gans,
I. R. Gatland, C. G. Gray, E. J. Guala, Jr, S. Gutti, D. H. Hartmann, M. Horbatsch,
J. Howard, K. Jagannathan, R. Kissmann, L. Kramer, O. Lehtonen, N. A.
Lemos, J. Palacios, R. E. Reynolds, D. V. Sathe, G. T. Seidler, J. Suzuki,
A. Tenne-Sens, J. Williams, and T. Yu for providing us with corrections in
previous printings. We also thank Martin Tiersten for pointing out the errors in
Figures 3.7 and 3.13 that occurred in the earlier editions and the first few printings
of this edition.

A list of corrections for all printings are on the Web at (http://astro.physics.sc.
edu/goldstein/goldstein.html). Additions to this listing may be emailed to the
address given on that page.

It has indeed been an honor for two of us (CPP and JLS) to collaborate as
co-authors of this third edition of such a classic book fifty years after its first
appearance. We have admired this text since we first studied Classical Mechan-
ics from the first edition in our graduate student days (CPP in 1953 and JLS in
1960), and each of us used the first and second editions in our teaching through-
out the years. Professor Goldstein is to be commended for having written and later
enhanced such an outstanding contribution to the classic Physics literature.

Above all we register our appreciation and acknolwedgement in the words of
Psalms (19:1):

O( ovpavor Sinyovvral SoEav Oeod

Flushing, New York HERBERT GOLDSTEIN
Columbia, South Carolina CHARLES P. POOLE, JR.
Columbia, South Carolina JOHN L. SAFKO

July, 2002

The publishers would like to thank Dr R. Jagannathan, Deputy Registrar
(Education), Vinayaka Missions University, Chennai, for his valuable sugges-
tions and inputs in enhancing the content of this book to suit the requirements
of Indian and other Asian universities.
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Preface to the Second Edition

The prospect of a second edition of Classical Mechanics, almost thirty years after
initial publication, has given rise to two nearly contradictory sets of reactions.
On the one hand it is claimed that the adjective “classical” implies the field is
complete, closed, far outside the mainstream of physics research. Further, the
first edition has been paid the compliment of continuous use as a text since it
first appeared. Why then the need for a second edition? The contrary reaction
has been that a second edition is long overdue. More important than changes in
the subject matter (which have been considerable) has been the revolution in the
attitude towards classical mechanics in relation to other areas of science and tech-
nology. When it appeared, the first edition was part of a movement breaking with
older ways of teaching physics. But what were bold new ventures in 1950 are the
commonplaces of today, exhibiting to the present generation a slightly musty and
old-fashioned air. Radical changes need to be made in the presentation of classical
mechanics.

In preparing this second edition, I have attempted to steer a course some-
where between these two attitudes. I have tried to retain, as much as possible,
the advantages of the first edition (as I perceive them) while taking some account
of the developments in the subject itself, its position in the curriculum, and its
applications to other fields. What has emerged is a thorough-going revision of the
first edition. Hardly a page of the text has been left untouched. The changes have
been of various kinds:

Errors (some egregious) that I have caught, or which have been pointed out to
me, have of course been corrected. It is hoped that not too many new ones have
been introduced in the revised material.

The chapter on small oscillations has been moved from its former position
as the penultimate chapter and placed immediately after Chapter 5 on rigid body
motion. This location seems more appropriate to the usual way mechanics courses
are now being given. Some material relating to the Hamiltonian formulation has
therefore had to be removed and inserted later in (the present) Chapter 8.

A new chapter on perturbation theory has been added (Chapter 11). The last
chapter, on continuous systems and fields, has been greatly expanded, in keeping
with the implicit promise made in the Preface to the first edition.

New sections have been added throughout the book, ranging from one in Chap-
ter 3 on Bertrand’s theorem for the central-force potentials giving rise to closed
orbits, to the final section of Chapter 12 on Noether’s theorem. For the most part
these sections contain completely new material.
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In various sections arguments and proofs have been replaced by new ones that
seem simpler and more understandable, e.g., the proof of Euler’s theorem in Chap-
ter 4. Occasionally, a line of reasoning presented in the first edition has been
supplemented by a different way of looking at the problem. The most important
example is the introduction of the symplectic approach to canonical transforma-
tions, in parallel with the older technique of generating functions. Again, while the
original convention for the Euler angles has been retained, alternate conventions,
including the one common in quantum mechanics, are mentioned and detailed
formulas are given in an appendix.

As part of the fruits of long experience in teaching courses based on the book,
the body of exercises at the end of each chapter has been expanded by more than
a factor of two and a half. The bibliography has undergone similar expansion,
reflecting the appearance of many valuable texts and monographs in the years
since the first edition. In deference to—but not in agreement with—the present
neglect of foreign languages in graduate education in the United States, references
to foreign-language books have been kept down to a minimum.

The choices of topics retained and of the new material added reflect to some
degree my personal opinions and interests, and the reader might prefer a different
selection. While it would require too much space (and be too boring) to discuss
the motivating reasons relative to each topic, comment should be made on some
general principles governing my decisions. The question of the choice of math-
ematical techniques to be employed is a vexing one. The first edition attempted
to act as a vehicle for introducing mathematical tools of wide usefulness that
might be unfamiliar to the student. In the present edition the attitude is more one
of caution. It is much more likely now than it was 30 years ago that the student
will come to mechanics with a thorough background in matrix manipulation.
The section on matrix properties in Chapter 4 has nonetheless been retained,
and even expanded, so as to provide a convenient reference of needed formu-
las and techniques. The cognoscenti can, if they wish, simply skip the section.
On the other hand, very little in the way of newer mathematical tools has been
introduced. Elementary properties of group theory are given scattered mention
throughout the book. Brief attention is paid in Chapters 6 and 7 to the manip-
ulation of tensors in non-Euclidean spaces. Otherwise, the mathematical level
in this edition is pretty much the same as in the first. It is more than adequate
for the physics content of the book, and alternate means exist in the curriculum
for acquiring the mathematics needed in other branches of physics. In particular
the “new mathematics” of theoretical physics has been deliberately excluded. No
mention is made of manifolds or diffeomorphisms, of tangent fibre bundles or
invariant tori. There are certain highly specialized areas of classical mechanics
where the powerful tools of global analysis and differential topology are use-
ful, probably essential. However, it is not clear to me that they contribute to
the understanding of the physics of classical mechanics at the level sought in
this edition. To introduce these mathematical concepts, and their applications,
would swell the book beyond bursting, and serve, probably, only to obscure
the physics. Theoretical physics, current trends to the contrary, is not merely
mathematics.
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In line with this attitude, the complex Minkowski space has been retained for
most of the discussion of special relativity in order to simplify the mathematics.
The bases for this decision (which it is realized goes against the present fashion)
are given in detail on pages 292-293.

It is certainly true that classical mechanics today is far from being a closed
subject. The last three decades have seen an efflorescence of new developments
in classical mechanics, the tackling of new problems, and the application of the
techniques of classical mechanics to far-flung reaches of physics and chemistry. It
would clearly not be possible to include discussions of all of these developments
here. The reasons are varied. Space limitations are obviously important. Also,
popular fads of current research often prove ephemeral and have a short lifetime.
And some applications require too extensive a background in other fields, such
as solid-state physics or physical chemistry. The selection made here represents
something of a personal compromise. Applications that allow simple descriptions
and provide new insights are included in some detail. Others are only briefly men-
tioned, with enough references to enable the student to follow up his awakened
curiosity. In some instances I have tried to describe the current state of research
in a field almost entirely in words, without mathematics, to provide the student
with an overall view to guide further exploration. One area omitted deserves
special mention—nonlinear oscillation and associated stability questions. The
importance of the field is unquestioned, but it was felt that an adequate treatment
deserves a book to itself.

With all the restrictions and careful selection, the book has grown to a size
probably too large to be covered in a single course. A number of sections have
been written so that they may be omitted without affecting later developments
and have been so marked. It was felt however that there was little need to mark
special “tracks” through the book. Individual instructors, familiar with their own
special needs, are better equipped to pick and choose what they feel should be
included in the courses they give.

I am grateful to many individuals who have contributed to my education in
classical mechanics over the past thirty years. To my colleagues Professors Frank
L. DiMaggio, Richard W. Longman, and Dean Peter W. Likins I am indebted for
many valuable comments and discussions. My thanks go to Sir Edward Bullard
for correcting a serious error in the first edition, especially for the gentle and gra-
cious way he did so. Professor Boris Garfinkel of Yale University very kindly
read and commented on several of the chapters and did his best to initiate me
into the mysteries of celestial mechanics. Over the years I have been the grateful
recipient of valuable corrections and suggestions from many friends and strangers,
among whom particular mention should be made of Drs. Eric Ericsen (of Oslo
University), K. Kalikstein, J. Neuberger, A. Radkowsky, and Mr. W. S. Pajes.
Their contributions have certainly enriched the book, but of course I alone am
responsible for errors and misinterpretations. I should like to add a collective
acknowledgment and thanks to the authors of papers on classical mechanics that
have appeared during the last three decades in the American Journal of Physics,
whose pages I hope I have perused with profit.
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The staff at Addison-Wesley have been uniformly helpful and encouraging.
I want especially to thank Mrs. Laura R. Finney for her patience with what must
have seemed a never-ending process, and Mrs. Marion Howe for her gentle but
persistent cooperation in the fight to achieve an acceptable printed page.

To my father, Harry Goldstein 9”1, 1 owe more than words can describe for
his lifelong devotion and guidance. But I wish at least now to do what he would
not permit in his lifetime—to acknowledge the assistance of his incisive criticism
and careful editing in the preparation of the first edition. I can only hope that
the present edition still reflects something of his insistence on lucid and concise
writing.

I wish to dedicate this edition to those I treasure above all else on this earth,
and who have given meaning to my life—to my wife, Channa, and our children,
Penina Perl, Aaron Meir, and Shoshanna.

And above all I want to register the thanks and acknowledgment of my heart,
in the words of Daniel (2:23):

TN M2 RTI NNAR 198 77
Y2 N3 RNM2M BNNOM YT

Kew Gardens Hills, New York HERBERT GOLDSTEIN
January 1980
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Preface to the First Edition

An advanced course in classical mechanics has long been a time-honored part
of the graduate physics curriculum. The present-day function of such a course,
however, might well be questioned. It introduces no new physical concepts to
the graduate student. It does not lead him directly into current physics research.
Nor does it aid him, to any appreciable extent, in solving the practical mechanics
problems he encounters in the laboratory.

Despite this arraignment, classical mechanics remains an indispensable part
of the physicist’s education. It has a twofold role in preparing the student for
the study of modern physics. First, classical mechanics, in one or another of
its advanced formulations, serves as the springboard for the various branches
of modern physics. Thus, the technique of action-angle variables is needed for
the older quantum mechanics, the Hamilton-Jacobi equation and the principle
of least action provide the transition to wave mechanics, while Poisson brackets
and canonical transformations are invaluable in formulating the newer quantum
mechanics. Secondly, classical mechanics affords the student an opportunity to
master many of the mathematical techniques necessary for quantum mechanics
while still working in terms of the familiar concepts of classical physics.

Of course, with these objectives in mind, the traditional treatment of the sub-
ject, which was in large measure fixed some fifty years ago, is no longer adequate.
The present book is an attempt at an exposition of classical mechanics which
does fulfill the new requirements. Those formulations which are of importance
for modern physics have received emphasis, and mathematical techniques usually
associated with quantum mechanics have been introduced wherever they result
in increased elegance and compactness. For example, the discussion of central
force motion has been broadened to include the kinematics of scattering and the
classical solution of scattering problems. Considerable space has been devoted to
canonical transformations, Poisson bracket formulations, Hamilton-Jacobi theory,
and action-angle variables. An introduction has been provided to the variational
principle formulation of continuous systems and fields. As an illustration of the
application of new mathematical techniques, rigid body rotations are treated from
the standpoint of matrix transformations. The familiar Euler’s theorem on the
motion of a rigid body can then be presented in terms of the eigenvalue problem
for an orthogonal matrix. As a consequence, such diverse topics as the inertia
tensor, Lorentz transformations in Minkowski space, and resonant frequencies of
small oscillations become capable of a unified mathematical treatment. Also, by
this technique it becomes possible to include at an early stage the difficult con-
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cepts of reflection operations and pseudotensor quantities, so important in modern
quantum mechanics. A further advantage of matrix methods is that “spinors” can
be introduced in connection with the properties of Cayley-Klein parameters.

Several additional departures have been unhesitatingly made. All too often,
special relativity receives no connected development except as part of a highly
specialized course which also covers general relativity. However, its vital impor-
tance in modern physics requires that the student be exposed to special relativ-
ity at an early stage in his education. Accordingly, Chapter 6 has been devoted
to the subject. Another innovation has been the inclusion of velocity-dependent
forces. Historically, classical mechanics developed with the emphasis on static
forces dependent on position only, such as gravitational forces. On the other hand,
the velocity-dependent electromagnetic force is constantly encountered in modern
physics. To enable the student to handle such forces as early as possible, velocity-
dependent potentials have been included in the structure of mechanics from the
outset, and have been consistently developed throughout the text.

Still another new element has been the treatment of the mechanics of continu-
ous systems and fields in Chapter 11, and some comment on the choice of material
is in order. Strictly interpreted, the subject could include all of elasticity, hydro-
dynamics, and acoustics, but these topics lie outside the prescribed scope of the
book, and adequate treatises have been written for most of them. In contrast, no
connected account is available on the classical foundations of the variational prin-
ciple formulation of continuous systems, despite its growing importance in the
field theory of elementary particles. The theory of fields can be carried to consid-
erable length and complexity before it is necessary to introduce quantization. For
example, it is perfectly feasible to discuss the stress-energy tensor, microscopic
equations of continuity, momentum space representations, etc., entirely within
the domain of classical physics. It was felt, however, that an adequate discussion
of these subjects would require a sophistication beyond what could naturally be
expected of the student. Hence it was decided, for this edition at least, to limit
Chapter 11 to an elementary description of the Lagrangian and Hamiltonian for-
mulation of fields.

The course for which this text is designed normally carries with it a prerequisite
of an intermediate course in mechanics. For both the inadequately prepared grad-
uate student (an all too frequent occurrence) and the ambitious senior who desires
to omit the intermediate step, an effort was made to keep the book self-contained.
Much of Chapters 1 and 3 is therefore devoted to material usually covered in the
preliminary courses.

With few exceptions, no more mathematical background is required of the
student than the customary undergraduate courses in advanced calculus and
vector analysis. Hence considerable space is given to developing the more
complicated mathematical tools as they are needed. An elementary acquaintance
with Maxwell’s equations and their simpler consequences is necessary for
understanding the sections on electromagnetic forces. Most entering graduate
students have had at least one term’s exposure to modern physics, and frequent
advantage has been taken of this circumstance to indicate briefly the relation
between a classical development and its quantum continuation.
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Preface to the First Edition

A large store of exercises is available in the literature on mechanics, easily
accessible to all, and there consequently seemed little point to reproducing an
extensive collection of such problems. The exercises appended to each chapter
therefore have been limited, in the main, to those which serve as extensions of
the text, illustrating some particular point or proving variant theorems. Pedantic
museum pieces have been studiously avoided.

The question of notation is always a vexing one. It is impossible to achieve
a completely consistent and unambiguous system of notation that is not at the
same time impracticable and cumbersome. The customary convention has been
followed by indicating vectors by bold face Roman letters. In addition, matrix
quantities of whatever rank, and tensors other than vectors, are designated by
bold face sans serif characters, thus: A. An index of symbols is appended at the
end of the book, listing the initial appearance of each meaning of the important
symbols. Minor characters, appearing only once, are not included.

References have been listed at the end of each chapter, for elaboration of the
material discussed or for treatment of points not touched on. The evaluations
accompanying these references are purely personal, of course, but it was felt nec-
essary to provide the student with some guide to the bewildering maze of literature
on mechanics. These references, along with many more, are also listed at the end
of the book. The list is not intended to be in any way complete, many of the older
books being deliberately omitted. By and large, the list contains the references
used in writing this book, and must therefore serve also as an acknowledgement
of my debt to these sources.

The present text has evolved from a course of lectures on classical mechanics
that I gave at Harvard University, and I am grateful to Professor J. H. Van Vleck,
then Chairman of the Physics Department, for many personal and official encour-
agements. To Professor J. Schwinger, and other colleagues I am indebted for many
valuable suggestions. I also wish to record my deep gratitude to the students in
my courses, whose favorable reaction and active interest provided the continuing
impetus for this work.

Ya%win

Cambridge, Mass. HERBERT GOLDSTEIN
March 1950



CHAPTER

1.1

Survey of the
Elementary Principles

The motion of material bodies formed the subject of some of the earliest research
pursued by the pioneers of physics. From their efforts there has evolved a vast
field known as analytical mechanics or dynamics, or simply, mechanics. In the
present century the term “classical mechanics” has come into wide use to denote
this branch of physics in contradistinction to the newer physical theories, espe-
cially quantum mechanics. We shall follow this usage, interpreting the name to
include the type of mechanics arising out of the special theory of relativity. It is
the purpose of this book to develop the structure of classical mechanics and to
outline some of its applications of present-day interest in pure physics. Basic to
any presentation of mechanics are a number of fundamental physical concepts,
such as space, time, simultaneity, mass, and force. For the most part, however,
these concepts will not be analyzed critically here; rather, they will be assumed as
undefined terms whose meanings are familiar to the reader.

MECHANICS OF A PARTICLE

Let r be the radius vector of a particle from some given origin and v its vector
velocity:

dr

V= (1.1)

The linear momentum p of the particle is defined as the product of the particle
mass and its velocity:

p =mv. (1.2)

In consequence of interactions with external objects and fields, the particle may
experience forces of various types, e.g., gravitational or electrodynamic; the vec-
tor sum of these forces exerted on the particle is the total force F. The mechanics
of the particle is contained in Newton’s second law of motion, which states that
there exist frames of reference in which the motion of the particle is described by
the differential equation

F=""=p, (1.3)
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or

d
F:Emw. (1.4)

In most instances, the mass of the particle is constant and Eq. (1.4) reduces to

d
F=m2 = ma, (1.5)
a1

where a is the vector acceleration of the particle defined by

d’r L6

a—= ok (1.6)

The equation of motion is thus a differential equation of second order, assuming
F does not depend on higher-order derivatives.

A reference frame in which Eq. (1.3) is valid is called an inertial or Galilean
system. Even within classical mechanics the notion of an inertial system is some-
thing of an idealization. In practice, however, it is usually feasible to set up a co-
ordinate system that comes as close to the desired properties as may be required.
For many purposes, a reference frame fixed in Earth (the “laboratory system”)
is a sufficient approximation to an inertial system, while for some astronomical
purposes it may be necessary to construct an inertial system (or inertial frame) by
reference to distant galaxies.

Many of the important conclusions of mechanics can be expressed in the form
of conservation theorems, which indicate under what conditions various mechan-
ical quantities are constant in time. Equation (1.3) directly furnishes the first of
these, the

Conservation Theorem for the Linear Momentum of a Particle: If the total force,
F, is zero, then p = 0 and the linear momentum, p, is conserved.

The angular momentum of the particle about point O, denoted by L, is defined
as

L=rxp, 1.7

where r is the radius vector from O to the particle. Notice that the order of the
factors is important. We now define the moment of force or torque about O as

N=rxF. (1.8)

The equation analogous to (1.3) for N is obtained by forming the cross product of
r with Eq. (1.4):

d
rxF=N=rx E(mv). (1.9)
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Equation (1.9) can be written in a different form by using the vector identity:
d ( ) + d (mv) (1.10)
—(rxmv) =vxmv+rx —(mv), .
dt dt

where the first term on the right obviously vanishes. In consequence of this iden-
tity, Eq. (1.9) takes the form

N d(r ) dL L (1.11)
e r— Xmv) = — = . N
dt dt

Note that both N and L depend on the point O, about which the moments are
taken.

As was the case for Eq. (1.3), the torque equation, (1.11), also yields an imme-
diate conservation theorem, this time the

Conservation Theorem for the Angular Momentum of a Particle: If the total
torque, N, is zero then L = 0, and the angular momentum L is conserved.

Next consider the work done by the external force F upon the particle in going
from point 1 to point 2. By definition, this work is

2
W12=/ F-ds. (1.12)
1

For constant mass (as will be assumed from now on unless otherwise specified),
the integral in Eq. (1.12) reduces to

dv m d ,
F-ds=m | — .-vdt =— | —(v")dt,
dt 2 dt

and therefore

m
Wip = 3(1;5 —v}). (1.13)

The scalar quantity mv?/2 is called the kinetic energy of the particle and is
denoted by T, so that the work done is equal to the change in the kinetic energy:

Wi =T, —T. (1.14)

If the force field is such that the work W, is the same for any physically
possible path between points 1 and 2, then the force (and the system) is said to be
conservative. An alternative description of a conservative system is obtained by
imagining the particle being taken from point 1 to point 2 by one possible path
and then being returned to point 1 by another path. The independence of Wy, on
the particular path implies that the work done around such a closed circuit is zero,
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ie.
%F-ds:O. (1.15)

Physically it is clear that a system cannot be conservative if friction or other dis-
sipation forces are present, because F - ds due to friction is always positive and
the integral cannot vanish.

By a well-known theorem of vector analysis, a necessary and sufficient condi-
tion that the work, Wi,, be independent of the physical path taken by the particle
is that F be the gradient of some scalar function of position:

F=-VV({), (1.16)

where V is called the potential, or potential energy. The existence of V can be
inferred intuitively by a simple argument. If Wy, is independent of the path of
integration between the end points 1 and 2, it should be possible to express Wia
as the change in a quantity that depends only upon the positions of the end points.
This quantity may be designated by —V, so that for a differential path length we
have the relation

F.ds=—-dV
or
A%
Fy=——,
as

which is equivalent to Eq. (1.16). Note that in Eq. (1.16) we can add to V any
quantity constant in space, without affecting the results. Hence the zero level of V
is arbitrary.

For a conservative system, the work done by the forces is

Wi =V — Vs (1.17)
Combining Eq. (1.17) with Eq. (1.14), we have the result
+Vi=1T+V,, (1.18)

which states in symbols the

Energy Conservation Theorem for a Particle: If the forces acting on a particle
are conservative, then the total energy of the particle, T + V, is conserved.

The force applied to a particle may in some circumstances be given by the
gradient of a scalar function that depends explicitly on both the position of the
particle and the time. However, the work done on the particle when it travels a
distance ds,
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is then no longer the total change in —V during the displacement, since V also
changes explicitly with time as the particle moves. Hence, the work done as the
particle goes from point 1 to point 2 is no longer the difference in the function V
between those points. While a total energy 7 + V may still be defined, it is not
conserved during the course of the particle’s motion.

MECHANICS OF A SYSTEM OF PARTICLES

In generalizing the ideas of the previous section to systems of many particles,
we must distinguish between the external forces acting on the particles due to
sources outside the system, and internal forces on, say, some particle i due to all
other particles in the system. Thus, the equation of motion (Newton’s second law)
for the ith particle is written as

Y F;i+F =, (1.19)
j

where Fl(e) stands for an external force, and Fj; is the internal force on the ith
particle due to the jth particle (F;;, naturally, is zero). We shall assume that the
F;; (like the Ffe) ) obey Newton’s third law of motion in its original form: that the
forces two particles exert on each other are equal and opposite. This assumption
(which does not hold for all types of forces) is sometimes referred to as the weak
law of action and reaction.

Summed over all particles, Eq. (1.19) takes the form

2
%Zmiri =Y F+> Fj (1.20)
i i ij

i£j

The first sum on the right is simply the total external force F©), while the second
term vanishes, since the law of action and reaction states that each pair F;; +F;
is zero. To reduce the left-hand side, we define a vector R as the average of the
radii vectors of the particles, weighted in proportion to their mass:

_domiri ) omr
Z n; M '
The vector R defines a point known as the center of mass, or more loosely as the

center of gravity, of the system (cf. Fig. 1.1). With this definition, (1.20) reduces
to

R

(1.21)

M— = ZF@ =F®©, (1.22)
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o

FIGURE 1.1 The center of mass of a system of particles.

which states that the center of mass moves as if the total external force were
acting on the entire mass of the system concentrated at the center of mass.
Purely internal forces, if the obey Newton’s third law, therefore have no effect
on the motion of the center of mass. An oft-quoted example is the motion of
an exploding shell—the center of mass of the fragments traveling as if the
shell were still in a single piece (neglecting air resistance). The same princi-
ple is involved in jet and rocket propulsion. In order that the motion of the
center of mass be unaffected, the ejection of the exhaust gases at high veloc-
ity must be counterbalanced by the forward motion of the vehicle at a slower
velocity.
By Eq. (1.21) the total linear momentum of the system,

dr; dR
P:ZmiE:MZ, (1.23)

is the total mass of the system times the velocity of the center of mass. Conse-
quently, the equation of motion for the center of mass, (1.23), can be restated as
the

Conservation Theorem for the Linear Momentum of a System of Particles: If the
total external force is zero, the total linear momentum is conserved.

We obtain the total angular momentum of the system by forming the cross
product r; x p; and summing over i. If this operation is performed in Eq. (1.19),
there results, with the aid of the identity, Eq. (1.10),

: d -
> o xpy) = Za(ri xp)=L=)"r x F +) i xFji. (1.24)
i i

i i
i#]
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0

FIGURE 1.2 The vector r;; between the ith and jth particles.

The last term on the right in (1.24) can be considered a sum of the pairs of the
form

r,'XFji—i-l'jXFl‘j=(I‘i—l‘j)XFji, (1.25)

using the equality of action and reaction. But r; — r; is identical with the vector
r;; from j to i (cf. Fig. 1.2), so that the right-hand side of Eq. (1.25) can be written
as

rij XFj,'.

If the internal forces between two particles, in addition to being equal and
opposite, also lie along the line joining the particles—a condition known as
the strong law of action and reaction—then all of these cross products vanish.
The sum over pairs is zero under this assumption and Eq. (1.24) may be written in
the form
dL

— =N, 1.26
r (1.26)
The time derivative of the total angular momentum is thus equal to the moment
of the external force about the given point. Corresponding to Eq. (1.26) is the

Conservation Theorem for Total Angular Momentum: L is constant in time if the
applied (external) torque is zero.

(It is perhaps worthwhile to emphasize that this is a vector theorem; i.e., L,
will be conserved if Nz(e) is zero, even if N. ;e) and N;e) are not zero.)

Note that the conservation of linear momentum in the absence of applied forces
assumes that the weak law of action and reaction is valid for the internal forces.
The conservation of the total angular momentum of the system in the absence of
applied torques requires the validity of the strong law of action and reaction—that
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the internal forces in addition be central. Many of the familiar physical forces,
such as that of gravity, satisfy the strong form of the law. But it is possible to
find forces for which action and reaction are equal even though the forces are not
central (see below). In a system involving moving charges, the forces between
the charges predicted by the Biot-Savart law may indeed violate both forms of
the action and reaction law.* Equations (1.23) and (1.26), and their corresponding
conservation theorems, are not applicable in such cases, at least in the form given
here. Usually it is then possible to find some generalization of P or L that is
conserved. Thus, in an isolated system of moving charges it is the sum of the
mechanical angular momentum and the electromagnetic “angular momentum” of
the field that is conserved.

Equation (1.23) states that the total linear momentum of the system is the same
as if the entire mass were concentrated at the center of mass and moving with it.
The analogous theorem for angular momentum is more complicated. With the
origin O as reference point, the total angular momentum of the system is

L:Zri X Pi-
i

Let R be the radius vector from O to the center of mass, and let r§ be the radius
vector from the center of mass to the ith particle. Then we have (cf. Fig. 1.3)

ri=r,+R (1.27)

Center
of mass

FIGURE 1.3 The vectors involved in the shift of reference point for the angular
momentum.

*If two charges are moving uniformly with parallel velocity vectors that are not perpendicular to the
line joining the charges, then the net mutual forces are equal and opposite but do not lie along the
vector between the charges. Consider, further, two charges moving (instantaneously) so as to “cross
the T,” i.e., one charge moving directly at the other, which in turn is moving at right angles to the first.
Then the second charge exerts a nonvanishing magnetic force on the first, without experiencing any
magnetic reaction force at that instant.
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and
Vi=V, 4V
where
dR
V= —
dt

is the velocity of the center of mass relative to O, and

J
V{_ﬂ
! dt

is the velocity of the ith particle relative to the center of mass of the system. Using
Eq. (1.27), the total angular momentum takes on the form

d
L:IZRxmiV—i-er; X m;v; + (Zm,ri) xv—i—RxElZmir;,

The last two terms in this expression vanish, for both contain the factor ) mir;,
which, it will be recognized, defines the radius vector of the center of mass in the
very coordinate system whose origin is the center of mass and is therefore a null
vector. Rewriting the remaining terms, the total angular momentum about O is

L=RxMv+)» rxpj. (1.28)

1

In words, Eq. (1.28) says that the total angular momentum about a point O is
the angular momentum of motion concentrated at the center of mass, plus the
angular momentum of motion about the center of mass. The form of Eq. (1.28)
emphasizes that in general L depends on the origin O, through the vector R. Only
if the center of mass is at rest with respect to O will the angular momentum be
independent of the point of reference. In this case, the first term in (1.28) vanishes,
and L always reduces to the angular momentum taken about the center of mass.

Finally, let us consider the energy equation. As in the case of a single particle,
we calculate the work done by all forces in moving the system from an initial
configuration 1, to a final configuration 2:

2 2 2
lezzfl F; - ds; =Zfl F,?e)-ds,-JrZ/1 Fj; -ds;. (1.29)
i i ij
i#

Again, the equations of motion can be used to reduce the integrals to

2 2 2 /1
Z/ F; - ds; =Z/ miVi-Vidt=Z/ d<§mivl-2).
— J1 — )1 — )1
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Hence, the work done can still be written as the difference of the final and initial
kinetic energies:

Wo=1-T,

where T, the total kinetic energy of the system, is
1 2
T=§Zm,-vi. (1.30)
14

Making use of the transformations to center-of-mass coordinates, given in
Eq. (1.27), we may also write T as

1
T = zZm,-(erv;)-(erv;)
1

1 1 d
= EXi:mivz—i- EXi:miv?—}-v-E (Xl:m,r;)

and by the reasoning already employed in calculating the angular momentum, the
last term vanishes, leaving

1 1
T:EMvz—i—EZmiv{z (1.31)
1

The kinetic energy, like the angular momentum, thus also consists of two parts:
the kinetic energy obtained if all the mass were concentrated at the center of mass,
plus the kinetic energy of motion about the center of mass.

Consider now the right-hand side of Eq. (1.29). In the special case that the
external forces are derivable in terms of the gradient of a potential, the first term
can be written as

Z/IZFE‘Z).ds,-=—Z‘/12Vivi.dsi=_z‘/i
i i

i

2

’

1

where the subscript i on the del operator indicates that the derivatives are with
respect to the components of r;. If the internal forces are also conservative, then
the mutual forces between the ith and jth particles, F;; and F;, can be obtained
from a potential function V;;. To satisfy the strong law of action and reaction, V;;
can be a function only of the distance between the particles:

Vij = Vij(l ri —x;]). (1.32)
The two forces are then automatically equal and opposite,

Fj,'Z—ViV,'jZ—i-VjV,‘jZ—FU, (1.33)
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and lie along the line joining the two particles,
VVii(lri —xj|) = (ri —xj) f, (1.34)

where f is some scalar function. If V;; were also a function of the difference of
some other pair of vectors associated with the particles, such as their velocities
or (to step into the domain of modern physics) their intrinsic “spin” angular mo-
menta, then the forces would still be equal and opposite, but would not necessarily
lie along the direction between the particles.

When the forces are all conservative, the second term in Eq. (1.29) can be
rewritten as a sum over pairs of particles, the terms for each pair being of the
form

2
—/ (ViVij-ds; + V;Vij - dsj).
1

If the difference vector r; —r; is denoted by r;;, and if V;; stands for the gradient
with respect to r;;, then

ViVij = VijVij = =V;Vij,
and
ds; —dsj = dr; — dr; = dr;j,

so that the term for the ij pair has the form
— / ViiVij -dl‘,'j.
The total work arising from internal forces then reduces to

(1.35)

i#j i#j

The factor % appears in Eq. (1.35) because in summing over both i and j each
member of a given pair is included twice, first in the i summation and then in the
J summation.

From these considerations, it is clear that if the external and internal forces are
both derivable from potentials it is possible to define a fotal potential energy, V,
of the system,

1
v=ZVi+§Zv,-,~, (1.36)
’ i%j

such that the total energy T + V is conserved, the analog of the conservation
theorem (1.18) for a single particle.
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The second term on the right in Eq. (1.36) will be called the internal potential
energy of the system. In general, it need not be zero and, more important, it may
vary as the system changes with time. Only for the particular class of systems
known as rigid bodies will the internal potential always be constant. Formally,
a rigid body can be defined as a system of particles in which the distances 7;;
are fixed and cannot vary with time. In such case, the vectors dr;; can only be
perpendicular to the corresponding r;;, and therefore to the F;;. Therefore, in a
rigid body the internal forces do no work, and the internal potential must remain
constant. Since the total potential is in any case uncertain to within an additive
constant, an unvarying internal potential can be completely disregarded in dis-
cussing the motion of the system.

CONSTRAINTS

From the previous sections one might obtain the impression that all problems in
mechanics have been reduced to solving the set of differential equations (1.19):

m;r; = Fge) + ZF/,’.
J

One merely substitutes the various forces acting upon the particles of the system,
turns the mathematical crank, and grinds out the answers! Even from a purely
physical standpoint, however, this view is oversimplified. For example, it may be
necessary to take into account the constraints that limit the motion of the system.
We have already met one type of system involving constraints, namely rigid bod-
ies, where the constraints on the motions of the particles keep the distances 7;;
unchanged. Other examples of constrained systems can easily be furnished. The
beads of an abacus are constrained to one-dimensional motion by the supporting
wires. Gas molecules within a container are constrained by the walls of the ves-
sel to move only inside the container. A particle placed on the surface of a solid
sphere is subject to the constraint that it can move only on the surface or in the
region exterior to the sphere.

Constraints may be classified in various ways, and we shall use the following
system. If the conditions of constraint can be expressed as equations connecting
the coordinates of the particles (and possibly the time) having the form

fry,r,r3,...,1) =0, (1.37)

then the constraints are said to be holonomic. Perhaps the simplest example of
holonomic constraints is the rigid body, where the constraints are expressed by
equations of the form

22 _

(I‘,’ — I‘j) — Cij =0.

A particle constrained to move along any curve or on a given surface is another
obvious example of a holonomic constraint, with the equations defining the curve
or surface acting as the equations of a constraint.
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Constraints not expressible in this fashion are called nonholonomic. The walls
of a gas container constitute a nonholonomic constraint. The constraint involved
in the example of a particle placed on the surface of a sphere is also nonholo-
nomic, for it can be expressed as an inequality

rz—azzO

(where a is the radius of the sphere), which is not in the form of (1.37). Thus, in
a gravitational field a particle placed on the top of the sphere will slide down the
surface part of the way but will eventually fall off.

Constraints are further classified according to whether the equations of con-
straint contain the time as an explicit variable (rheonomous) or are not explicitly
dependent on time (scleronomous). A bead sliding on a rigid curved wire fixed
in space is obviously subject to a scleronomous constraint; if the wire is moving
in some prescribed fashion, the constraint is rheonomous. Note that if the wire
moves, say, as a reaction to the bead’s motion, then the time dependence of the
constraint enters in the equation of the constraint only through the coordinates
of the curved wire (which are now part of the system coordinates). The overall
constraint is then scleronomous.

Constraints introduce two types of difficulties in the solution of mechanical
problems. First, the coordinates r; are no longer all independent, since they are
connected by the equations of constraint; hence the equations of motion (1.19)
are not all independent. Second, the forces of constraint, e.g., the force that the
wire exerts on the bead (or the wall on the gas particle), is not furnished a pri-
ori. They are among the unknowns of the problem and must be obtained from the
solution we seek. Indeed, imposing constraints on the system is simply another
method of stating that there are forces present in the problem that cannot be spec-
ified directly but are known rather in terms of their effect on the motion of the
system.

In the case of holonomic constraints, the first difficulty is solved by the intro-
duction of generalized coordinates. So far we have been thinking implicitly in
terms of Cartesian coordinates. A system of N particles, free from constraints,
has 3N independent coordinates or degrees of freedom. If there exist holonomic
constraints, expressed in k equations in the form (1.37), then we may use these
equations to eliminate k of the 3N coordinates, and we are left with 3N — k inde-
pendent coordinates, and the system is said to have 3N — k degrees of freedom.
This elimination of the dependent coordinates can be expressed in another way,

by the introduction of new, 3N — k, independent variables g1, q2, ..., g3ny—k In
terms of which the old coordinates ri, rp, ..., ry are expressed by equations of
the form
ri =ri(q1,92, ..., 43Nk 1)
(1.38)

ry =ry(q1,92, .., @3Nk, 1)
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FIGURE 1.4 Double pendulum.

containing the constraints in them implicitly. These are transformation equations
from the set of (r;) variables to the (g;) set, or alternatively Eqgs. (1.38) can
be considered as parametric representations of the (r;) variables. It is always
assumed that we can also transform back from the (g;) to the (r;) set, i.e., that
Eqgs. (1.38) combined with the k equations of constraint can be inverted to obtain
any g; as a function of the (r;) variable and time.

Usually the generalized coordinates, g;, unlike the Cartesian coordinates, will
not divide into convenient groups of three that can be associated together to
form vectors. Thus, in the case of a particle constrained to move on the surface
of a sphere, the two angles expressing position on the sphere, say latitude and
longitude, are obvious possible generalized coordinates. Or, in the example of
a double pendulum moving in a plane (two particles connected by an inexten-
sible light rod and suspended by a similar rod fastened to one of the particles),
satisfactory generalized coordinates are the two angles 9y, 6. (Cf. Fig. 1.4.) Gen-
eralized coordinates, in the sense of coordinates other than Cartesian, are often
useful in systems without constraints. Thus, in the problem of a particle moving
in an external central force field (V = V(r)), there is no constraint involved,
but it is clearly more convenient to use spherical polar coordinates than Cartesian
coordinates. Do not, however, think of generalized coordinates in terms of con-
ventional orthogonal position coordinates. All sorts of quantities may be invoked
to serve as generalized coordinates. Thus, the amplitudes in a Fourier expansion
of r; may be used as generalized coordinates, or we may find it convenient to
employ quantities with the dimensions of energy or angular momentum.

If the constraint is nonholonomic, the equations expressing the constraint can-
not be used to eliminate the dependent coordinates. An oft-quoted example of
a nonholonomic constraint is that of an object rolling on a rough surface with-
out slipping. The coordinates used to describe the system will generally involve
angular coordinates to specify the orientation of the body, plus a set of coordi-
nates describing the location of the point of contact on the surface. The constraint
of “rolling” connects these two sets of coordinates; they are not independent.
A change in the position of the point of contact inevitably means a change in
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0 X
FIGURE 1.5 Vertical disk rolling on a horizontal plane.

its orientation. Yet we cannot reduce the number of coordinates, for the “rolling”
condition is not expressible as a equation between the coordinates, in the manner
of (1.37). Rather, it is a condition on the velocities (i.e., the point of contact is
stationary), a differential condition that can be given in an integrated form only
after the problem is solved.

A simple case will illustrate the point. Consider a disk rolling on the horizontal
xy plane constrained to move so that the plane of the disk is always vertical.
The coordinates used to describe the motion might be the x, y coordinates of the
center of the disk, an angle of rotation ¢ about the axis of the disk, and an angle
0 between the axis of the disk and say, the x axis (cf. Fig 1.5). As a result of the
constraint the velocity of the center of the disk, v, has a magnitude proportional

to ¢,
v =ad,

where a is the radius of the disk, and its direction is perpendicular to the axis of
the disk:

X = vsinb,
y = —vcosf.
Combining these conditions, we have two differential equations of constraint:

dx —asinfdg¢ =0,
dy +acosfdep =0.

(1.39)

Neither of Egs. (1.39) can be integrated without in fact solving the problem; i.e.,
we cannot find an integrating factor f(x, y, 8, ¢) that will turn either of the equa-
tions into exact differentials (cf. Derivation 4).* Hence, the constraints cannot be
reduced to the form of Eq. (1.37) and are therefore nonholonomic. Physically we

*In principle, an integrating factor can always be found for a first-order differential equation of con-
straint in systems involving only two coordinates and such constraints are therefore holonomic. A
familiar example is the two-dimensional motion of a circle rolling on an inclined plane.
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can see that there can be no direct functional relation between ¢ and the other
coordinates x, y, and 6 by noting that at any point on its path the disk can be
made to roll around in a circle tangent to the path and of arbitrary radius. At the
end of the process, x, y, and 6 have been returned to their original values, but ¢
has changed by an amount depending on the radius of the circle.

Nonintegrable differential constraints of the form of Eqgs. (1.39) are of course
not the only type of nonholonomic constraints. The constraint conditions may
involve higher-order derivatives, or may appear in the form of inequalities, as we
have seen.

Partly because the dependent coordinates can be eliminated, problems involv-
ing holonomic constraints are always amenable to a formal solution. But there is
no general way to attack nonholonomic examples. True, if the constraint is nonin-
tegrable, the differential equations of constraint can be introduced into the prob-
lem along with the differential equations of motion, and the dependent equations
eliminated, in effect, by the method of Lagrange multipliers.

We shall return to this method at a later point. However, the more vicious cases
of nonholonomic constraint must be tackled individually, and consequently in the
development of the more formal aspects of classical mechanics, it is almost invari-
ably assumed that any constraint, if present, is holonomic. This restriction does
not greatly limit the applicability of the theory, despite the fact that many of the
constraints encountered in everyday life are nonholonomic. The reason is that the
entire concept of constraints imposed in the system through the medium of wires
or surfaces or walls is particularly appropriate only in macroscopic or large-scale
problems. But today physicists are more interested in atomic and nuclear prob-
lems. On this scale all objects, both in and out of the system, consist alike of
molecules, atoms, or smaller particles, exerting definite forces, and the notion of
constraint becomes artificial and rarely appears. Constraints are then used only
as mathematical idealizations to the actual physical case or as classical approxi-
mations to a quantum-mechanical property, e.g., rigid body rotations for “spin.”
Such constraints are always holonomic and fit smoothly into the framework of the
theory.

To surmount the second difficulty, namely, that the forces of constraint are
unknown a priori, we should like to so formulate the mechanics that the forces
of constraint disappear. We need then deal only with the known applied forces.
A hint as to the procedure to be followed is provided by the fact that in a particular
system with constraints, i.e., a rigid body, the work done by internal forces (which
are here the forces of constraint) vanishes. We shall follow up this clue in the
ensuing sections and generalize the ideas contained in it.

D’ALEMBERT’S PRINCIPLE AND LAGRANGE’S EQUATIONS

A virtual (infinitesimal) displacement of a system refers to a change in the con-
figuration of the system as the result of any arbitrary infinitesimal change of the
coordinates dor;, consistent with the forces and constraints imposed on the system
at the given instant t. The displacement is called virtual to distinguish it from an
actual displacement of the system occurring in a time interval d¢, during which
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the forces and constraints may be changing. Suppose the system is in equilibrium;
i.e., the total force on each particle vanishes, F; = 0. Then clearly the dot product
F; - 6r;, which is the virtual work of the force F; in the displacement dr;, also
vanishes. The sum of these vanishing products over all particles must likewise be
Zero:

> Fi-6r; =0. (1.40)
i

As yet nothing has been said that has any new physical content. Decompose F;
into the applied force, Ffa), and the force of constraint, f;,

F, =F 4+, (1.41)

so that Eq. (1.40) becomes

ZFE‘Z) 2ot + ) f; -8 =0. (1.42)

i i

We now restrict ourselves to systems for which the net virtual work of the
forces of constraint is zero. We have seen that this condition holds true for rigid
bodies and it is valid for a large number of other constraints. Thus, if a particle is
constrained to move on a surface, the force of constraint is perpendicular to the
surface, while the virtual displacement must be tangent to it, and hence the virtual
work vanishes. This is no longer true if sliding friction forces are present, and we
must exclude such systems from our formulation. The restriction is not unduly
hampering, since the friction is essentially a macroscopic phenomenon. On the
other hand, the forces of rolling friction do not violate this condition, since the
forces act on a point that is momentarily at rest and can do no work in an infinites-
imal displacement consistent with the rolling constraint. Note that if a particle is
constrained to a surface that is itself moving in time, the force of constraint is
instantaneously perpendicular to the surface and the work during a virtual dis-
placement is still zero even though the work during an actual displacement in the
time dt does not necessarily vanish.

We therefore have as the condition for equilibrium of a system that the virtual
work of the applied forces vanishes:

> F@ . sr; =0. (1.43)
i

Equation (1.43) is often called the principle of virtual work. Note that the coef-
ficients of ér; can no longer be set equal to zero; i.e., in general Fl@ # 0, since
the ér; are not completely independent but are connected by the constraints. In
order to equate the coefficients to zero, we must transform the principle into a
form involving the virtual displacements of the g;, which are independent. Equa-
tion (1.43) satisfies our needs in that it does not contain the f;, but it deals only
with statics; we want a condition involving the general motion of the system.
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To obtain such a principle, we use a device first thought of by James Bernoulli
and developed by D’ Alembert. The equation of motion,

F; =pi,
can be written as
F; —p; =0,

which states that the particles in the system will be in equilibrium under a force
equal to the actual force plus a “reversed effective force” —p;. Instead of (1.40),
we can immediately write

> (F; — )-8 =0, (1.44)

i

and, making the same resolution into applied forces and forces of constraint, there

results
Y EY —pi)esr+ Y £ -6r; =0,
i i

We again restrict ourselves to systems for which the virtual work of the forces of
constraint vanishes and therefore obtain

> EFD —pi)-sri =0, (1.45)
i

which is often called D’Alembert’s principle. We have achieved our aim, in that
the forces of constraint no longer appear, and the superscript ¥ can now be
dropped without ambiguity. It is still not in a useful form to furnish equations
of motion for the system. We must now transform the principle into an expression
involving virtual displacements of the generalized coordinates, which are then
independent of each other (for holonomic constraints), so that the coefficients of
the §¢; can be set separately equal to zero.

The translation from r; to ¢; language starts from the transformation equations
(1.38),

r, =r;(q1,92, ..., Gn, 1) (1.45")

(assuming n independent coordinates), and is carried out by means of the usual
“chain rules” of the calculus of partial differentiation. Thus, v; is expressed in
terms of the gy by the formula

0 5
i _ Z iqk r’ (1.46)

Similarly, the arbitrary virtual displacement r; can be connected with the virtual
displacements §g; by

or;
sri=Y_ ﬁéq, (1.47)
i
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Note that no variation of time, 8¢, is involved here, since a virtual displacement
by definition considers only displacements of the coordinates. (Only then is the
virtual displacement perpendicular to the force of constraint if the constraint itself
is changing in time.)

In terms of the generalized coordinates, the virtual work of the F; becomes

ar;
ZF,‘ -51‘,' = ZF,‘ . _1qu
i i 9q;
= ZQjaq,-, (1.48)
j

where the Q ; are called the components of the generalized force, defined as

or;
0; _ZF a; (1.49)

J

Note that just as the ¢’s need not have the dimensions of length, so the Q’s do
not necessarily have the dimensions of force, but Q ;dg; must always have the
dimensions of work. For example, Q ; might be a torque N; and dg; a differential
angle d0;, which makes N; d0; a differential of work.

We turn now to the other other term involved in Eq. (1.45), which may be

written as
Zpi -5I‘i = Zmiii -(SI‘,'.
i i
Expressing ér; by (1.47), this becomes
. or;

Z m;r; « T&]j.

ij
Consider now the relation

or; . d ([ 0r;
Zm,rl _Z[d[ < iri @) —mil'i'a(gj)}. (150)

In the last term of Eq. (1.50) we can interchange the differentiation with respect
to t and g/, for, in analogy to (1.46),

d al‘i 8f'i 821‘,' . 321‘,'
dt( ~)_ ‘_Xk: : q"+8qj8t’

dq, 9q 904
av;
= ﬁj’
by Eq. (1.46). Further, we also see from Eq. (1.46) that

aVl' _ 31‘,‘

LA . (1.51)
dq;  9q;
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Substitution of these changes in (1.50) leads to the result that

. av; av;
Zmiri.__z[dt (m Vl-—> —mIV,'-—l:|,
i

0q;

and the second term on the left-hand side of Eq. (1.45) can be expanded into

d| o L2\ |_ 8 1 .
w4 Lo (Tam) g (Zamet) - oo

Identifying ) ; %m ,-vi2 with the system kinetic energy 7', D’ Alembert’s principle
(cf. Eq. (1.45)) becomes

;{[% (8_T> 8T] Q,}aquo. (1.52)

0q; 0q;

Note that in a system of Cartesian coordinates the partial derivative of T with
respect to g; vanishes. Thus, speaking in the language of differential geometry,
this term arises from the curvature of the coordinates g;. In polar coordinates,
e.g., it is in the partial derivative of T with respect to the angle coordinate that the
centripetal acceleration term appears.

Thus far, no restriction has been made on the nature of the constraints other
than that they be workless in a virtual displacement. The variables g; can be any
set of coordinates used to describe the motion of the system. If, however, the con-
straints are holonomic, then it is possible to find sets of independent coordinates
¢ that contain the constraint conditions implicitly in the transformation equations
(1.38). Any virtual displacement ¢ is then independent of dgy, and therefore the
only way for (1.52) to hold is for the individual coefficients to vanish:

d (dT aT
d_<_.>__:Qj_ (1.53)
1 \9q; 9q;

There are n such equations in all.
When the forces are derivable from a scalar potential function V,

F,=-V;V.
Then the generalized forces can be written as
8rl
0; = Z Fi.—=— Z ViVego
J

which is exactly the same expression for the partial derivative of a function
—V(ry,r2,...,ry,t) with respect to g;:

v
Qj=——. (1.54)
aq;
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See Eq. (1.47). Equations (1.53) can then be rewritten as

d (dT\ T -V)
S =)o, (1.55)
dr \ 9q, g,

The equations of motion in the form (1.55) are not necessarily restricted to conser-
vative systems; only if V is not an explicit function of time is the system conserva-
tive (cf. p. 4). As here defined, the potential V does not depend on the generalized
velocities. Hence, we can include a term in V' in the partial derivative with respect

t0gj:

d (o(T—-V) 8(T—V)_O
e\ 9q; dqj
Or, defining a new function, the Lagrangian L, as
L=T-YV, (1.56)
the Egs. (1.53) become
d (0dL oL
—|—=—)—-——=0, (1.57)
dt \dq;) 9q,

expressions referred to as “Lagrange’s equations.”

Note that for a particular set of equations of motion there is no unique choice
of Lagrangian such that Egs. (1.57) lead to the equations of motion in the given
generalized coordinates. Thus, in Derivations 8 and 10 it is shown thatif L(q, ¢, t)
is an approximate Lagrangian and F(q, t) is any differentiable function of the
generalized coordinates and time, then

S ) dF ,

L(qvq’t)zl‘(qqut)_‘_% (157)

is a Lagrangian also resulting in the same equations of motion. It is also often

possible to find alternative Lagrangians beside those constructed by this prescrip-

tion (see Exercise 20). While Eq. (1.56) is always a suitable way to construct a

Lagrangian for a conservative system, it does not provide the only Lagrangian
suitable for the given system.

VELOCITY-DEPENDENT POTENTIALS
AND THE DISSIPATION FUNCTION

Lagrange’s equations can be put in the form (1.57) even if there is no potential
function, V, in the usual sense, providing the generalized forces are obtained from
a function U (g, g;) by the prescription

U  d (U
=L (). 1.58
Q) dq; T <3q'j> (1:59)
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In such case, Egs. (1.57) still follow from Egs. (1.53) with the Lagrangian given
by

L=T-U. (1.59)

Here U may be called a “generalized potential,” or “velocity-dependent poten-
tial.” The possibility of using such a “potential” is not academic; it applies to one
very important type of force field, namely, the electromagnetic forces on moving
charges. Considering its importance, a digression on this subject is well worth-
while.

Consider an electric charge, g, of mass m moving at a velocity, v, in an other-
wise charge-free region containing both an electric field, E, and a magnetic field,
B, which may depend upon time and position. The charge experiences a force,
called the Lorentz force, given by

F=g[E+ (vxB)]. (1.60)
Both E(x, y, z, t) and B(x, y, z, t) are continuous functions of time and position

derivable from a scalar potential ¢ (x, y, z, ) and a vector potential A(x, y, z, 1)
by

E=-V¢— - (1.61a)

and
B=VxA. (1.61b)

The force on the charge can be derived from the following velocity-dependent
potential energy

U=qd—qA-v, (1.62)
so the Lagrangian, L =T — U, is
L=1Imv—q¢+qA-v. (1.63)
Considering just the x-component of Lagrange’s equations gives

0A, 0A, 8AZ> (Bd) dAx>

— ,—— 1.64
X Ty 0x T 0x 8x+ dt ( )

m)'é:q(ux 5

The total time derivative of A, is related to the partial time derivative through

dA,  dA,
- VA
dt oy TV VA
0A,  8A,  dA,  0A,
e T e ST QY 1.65
ar Ty Ty T (1.65)
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Equation (1.61b) gives

(v x B) 0A,  0Ax n A, 0A,
v X =vy | — — v | — — .
* Y\ ox ay “\ oax 9z

Combining these expressions gives the equation of motion in the x-direction
mi = q[Ex + (v x B),]. (1.66)

On a component-by-component comparison, Egs. (1.66) and (1.60) are identical,
showing that the Lorentz force equation is derivable from Egs. (1.61) and (1.62).

Note that if not all the forces acting on the system are derivable from a poten-
tial, then Lagrange’s equations can always be written in the form

d ( oL ) aL 0

—(=)-—==0,

dr \ 9q j aq j
where L contains the potential of the conservative forces as before, and Q ; rep-
resents the forces not arising from a potential. Such a situation often occurs when

frictional forces are present. It frequently happens that the frictional force is pro-
portional to the velocity of the particle, so that its x-component has the form

Fpy = —kyvy.

Frictional forces of this type may be derived in terms of a function F, known as
Rayleigh’s dissipation function, and defined as

1 ) ) 5
F = E Z (kxvix + kyvl-y + kaiz) , (1.67)

l

where the summation is over the particles of the system. From this definition it is
clear that

Fe — oF
Fi = vy,
or, symbolically,
F;=-V,F. (1.68)

We can also give a physical interpretation to the dissipation function. The work
done by the system against friction is

AWy = —Fy-dr = —F;-vdt = (kxvf +kyvy +"Z”§) dr.

Hence, 2F is the rate of energy dissipation due to friction. The component of the
generalized force resulting from the force of friction is then given by

or; or;
-:EF_._:_E V,F. L
Qj : fi qu v BCIj
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or;
=—Y VuF.—=-, by (L5D),
ey
oF
=——. (1.69)
g,

An example is Stokes’ law, whereby a sphere of radius a moving at a speed v,
in a medium of viscosity 7 experiences the frictional drag force Fy = —6mnav.
The Lagrange equations with dissipation become

d (0L oL oF
_<_,)__+—,=0, (1.70)
dr \dq;) 9q; 34,

so that two scalar functions, L and F, must be specified to obtain the equations
of motion.

SIMPLE APPLICATIONS OF THE LAGRANGIAN FORMULATION

The previous sections show that for systems where we can define a Lagrangian,
i.e., holonomic systems with applied forces derivable from an ordinary or gen-
eralized potential and workless constraints, we have a very convenient way of
setting up the equations of motion. We were led to the Lagrangian formulation
by the desire to eliminate the forces of constraint from the equations of motion,
and in achieving this goal we have obtained many other benefits. In setting up the
original form of the equations of motion, Egs. (1.19), it is necessary to work with
many vector forces and accelerations. With the Lagrangian method we only deal
with two scalar functions, T and V, which greatly simplifies the problem.

A straightforward routine procedure can now be established for all problems
of mechanics to which the Lagrangian formulation is applicable. We have only to
write T and V in generalized coordinates, form L from them, and substitute in
(1.57) to obtain the equations of motion. The needed transformation of 7 and V
from Cartesian coordinates to generalized coordinates is obtained by applying the
transformation equations (1.38) and (1.45"). Thus, T is given in general by

2

TZZ%miviZZZ%mi Zﬁq]_{_%
i i

a.
;04

It is clear that on carrying out the expansion, the expression for 7' in generalized
coordinates will have the form

o1 -
T=Mo+) Mig;+5 > Mgk, (1.71)
J ik

where My, M;, M j; are definite functions of the r’s and ¢ and hence of the ¢’s
and ¢. In fact, a comparison shows that

1 ar; \ 2
Mo =Y g (5
- 2 at
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8r,~ Br,
M; 1.72
Zm, o g, (1.72)

and

8r, Br,
M =
Tk Xl: 8QJ 8Qk

Thus, the kinetic energy of a system can always be written as the sum of three
homogeneous functions of the generalized velocities,

T=To+ T + T, (1.73)

where Ty is independent of the generalized velocities, 77 is linear in the velocities,
and 7> is quadratic in the velocities. If the transformation equations do not contain
the time explicitly, as may occur when the constraints are independent of time
(scleronomous), then only the last term in Eq. (1.71) is nonvanishing, and 7 is
always a homogeneous quadratic form in the generalized velocities.

Let us now consider simple examples of this procedure:

1. Single particle in space
(a) Cartesian coordinates
(b) Plane polar coordinates

2. Atwood’s machine
3. Time-dependent constraint—bead sliding on rotating wire

1. (a) Motion of one particle: using Cartesian coordinates. The generalized
forces needed in Eq. (1.53) are obviously Fy, Fy, and F;. Then

T = gm(i* + 37 + %),

or 0T 9T
ax  dy 9z
aT . oT ) oT .
— = mx, . :mya — =mz,
ox ay 0z
and the equations of motion are
d( ) = d( y) = F d( ) = F, (1.74)
—(mx X —m = Iy, —(mz) = . .
di ar T g YT

We are thus led back to the original Newton’s equations of motion.

(b) Motion of one particle: using plane polar coordinates. Here we must
express T in terms of 7 and 6. The transformation equations, Eqgs. (1.38), are

X =rcosé

y =rsiné.
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By analogy to (1.46), the velocities are given by
X =rcosO —rfsinb,
y = Fsinf 4+ ré cos .

The kinetic energy 7' = %m()&z + ) then reduces formally to
T=1m [iz + (ré)z] . (1.75)

An alternative derivation of Eq. (1.75) is obtained by recognizing that the plane
polar components of the velocity are 7 along r, and 7@ along the direction per-
pendicular to r, denoted by the unit vector 0. Hence, the square of the velocity
expressed in polar coordinates is simply 72+ (#6)2. With the aid of the expression

dr = tdr +r0do +kdz

for the differential position vector, dr, in cylindrical coordinates, restricted to the
plane z = 0 where T and € are unit vectors in the r and @-directions, respec-
tively, the components of the generalized force can be obtained from the defini-
tion, Eq. (1.49),

ar

0,=F.— =F.-ft=F,,
ar

00 =F- 2 _F.rd=rF
0 = 89_ ro=rroy,

since the derivative of r with respect to 6 is, by the definition of a derivative, a
vector in the direction of 6 (cf. Fig. 1.6). There are two generalized coordinates,
and therefore two Lagrange equations. The derivatives occurring in the r equation

are

aT 5 oT . d (0T ..
— =mro-, — =mr, — | — ) = mr,
ar or dt \ or

rAbn

r(6+A6)
'AD r(6)
0

FIGURE 1.6 Derivative of r with respect to 6.
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and the equation itself is
mi — mr6? = F,,

the second term being the centripetal acceleration term. For the 6 equation, we
have the derivatives

oT oT . d . . .
50 =0, % = mr29, o (mr29> = mr2f + 2mrro,

so that the equation becomes

d 5 5 .
— (mr 0) =mr<0 4+ 2mrrf =rFy.

dt

Note that the left side of the equation is just the time derivative of the angular
momentum, and the right side is exactly the applied torque, so that we have simply
rederived the torque equation (1.26), where L = mr20 and N© = rF,.

2. Atwood’s machine—(See Fig. 1.7) an example of a conservative system
with holonomic, scleronomous constraint (the pulley is assumed frictionless and
massless). Clearly there is only one independent coordinate x, the position of
the other weight being determined by the constraint that the length of the rope
between them is /. The potential energy is

V=-Mgx — Myg(l —x),
while the kinetic energy is

T =5 (M + M) 2.

4[]

MZ_!

FIGURE 1.7 Atwood’s machine.
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Combining the two, the Lagrangian has the form
L=T-V =21+ M)i®+ Mgx+ Mgl —x).

There is only one equation of motion, involving the derivatives
oL
— =M — Mg,
ax
oL .
—— =M+ M) x,
ax

so that we have

(M +My)x = (M — M) g,

or
. M —M
X=—"g,
My + M
which is the familiar result obtained by more elementary means. This trivial prob-
lem emphasizes that the forces of constraint—here the tension in the rope—

appear nowhere in the Lagrangian formulation. By the same token, neither can
the tension in the rope be found directly by the Lagrangian method.

3. A bead (or ring) sliding on a uniformly rotating wire in a force-free space.
The wire is straight, and is rotated uniformly about some fixed axis perpendicular
to the wire. This example has been chosen as a simple illustration of a constraint
being time dependent, with the rotation axis along z and the wire in the xy plane.
The transformation equations explicitly contain the time.

X =rcoswt, (w = angular velocity of rotation)

y = rsinwt. (r = distance along wire from rotation axis)

While we could then find T (here the same as L) by the same procedure used to
obtain (1.71), it is simpler to take over (1.75) directly, expressing the constraint
by the relation 6 = w:

T = %m(i’2 +r2 2).

Note that T is not a homogeneous quadratic function of the generalized velocities,
since there is now a term not involving 7. The equation of motion is then

mi —mrw?® =0
or
F=ro°,

which is the familiar simple harmonic oscillator equation with a change of sign.
The solution r = e®' for a bead initially at rest on the wire shows that the
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bead moves exponentially outwards. Again, the method cannot furnish the force
of constraint that keeps the bead on the wire. Equation (1.26) with the angular
momentum, L = mr’w = mwr§e2“” , provides the force F = N/r, which pro-
duces the constraint force, F = 2mrow’e® , acting perpendicular to the wire and
the axis of rotation.

DERIVATIONS

1. Show that for a single particle with constant mass the equation of motion implies the
following differential equation for the kinetic energy:

dT
— =FK-v,
dt
while if the mass varies with time the corresponding equation is
dmT)
dt

2. Prove that the magnitude R of the position vector for the center of mass from an
arbitrary origin is given by the equation

M*R? = MZmiri2 - %Zmimjr?j.
i i#]

3. Suppose a system of two particles is known to obey the equations of motion,
Egs. (1.22) and (1.26). From the equations of the motion of the individual parti-
cles show that the internal forces between particles satisfy both the weak and the
strong laws of action and reaction. The argument may be generalized to a system with
arbitrary number of particles, thus proving the converse of the arguments leading to
Eqgs. (1.22) and (1.26).

4. The equations of constraint for the rolling disk, Egs. (1.39), are special cases of
general linear differential equations of constraint of the form

n
Zg,-(xl, o xp)dx; = 0.
i=1
A constraint condition of this type is holonomic only if an integrating function

f(x1,...,x,) can be found that turns it into an exact differential. Clearly the func-
tion must be such that

d(fgi)  9(fg))
axj - 8x,~

for all i # j. Show that no such integrating factor can be found for either of
Egs. (1.39).

5. Two wheels of radius a are mounted on the ends of a common axle of length b such
that the wheels rotate independently. The whole combination rolls without slipping on
a plane. Show that there are two nonholonomic equations of constraint,

cosfdx + sinfdy =0
sinfdx — cos0dy = Ya (d¢ +d¢'),
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10.

(where 6, ¢, and ¢’ have meanings similar to those in the problem of a single vertical
disk, and (x, y) are the coordinates of a point on the axle midway between the two
wheels) and one holonomic equation of constraint,

0=C-2—¢)
=C-26 -9,

where C is a constant.

. A particle moves in the xy plane under the constraint that its velocity vector is always

directed towards a point on the x axis whose abscissa is some given function of time
f(¢). Show that for f(¢) differentiable, but otherwise arbitrary, the constraint is non-
holonomic.

. Show that Lagrange’s equations in the form of Eqgs. (1.53) can also be written as

aT aT
g aq;

These are sometimes known as the Nielsen form of the Lagrange equations.

. If L is a Lagrangian for a system of n degrees of freedom satisfying Lagrange’s equa-

tions, show by direct substitution that

+dF(q1,...,qn,t)
dt

L'=L

also satisfies Lagrange’s equations where F is any arbitrary, but differentiable, func-
tion of its arguments.

. The electromagnetic field is invariant under a gauge transformation of the scalar and

vector potential given by

A—-A+Vy,t),
> d——-—,

where 1 is arbitrary (but differentiable). What effect does this gauge transformation
have on the Lagrangian of a particle moving in the electromagnetic field? Is the motion
affected?

Let g1, ...,qn be a set of independent generalized coordinates for a system of n
degrees of freedom, with a Lagrangian L(g, ¢, t). Suppose we transform to another
set of independent coordinates s1, .. ., s, by means of transformation equations

qi = qi(s1, ..., 5n,1), i=1,...,n.

(Such a transformation is called a point transformation.) Show that if the Lagrangian
function is expressed as a function of s, 5 ;, and ¢ through the equations of transfor-
mation, then L satisfies Lagrange’s equations with respect to the s coordinates:

d ( oL ) oL _,
dr \ 9s j as j

In other words, the form of Lagrange’s equations is invariant under a point transfor-

mation.
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EXERCISES

11.
12.

13.

14.

15.

16.

17.

Check whether the force F = yzf + zxf + xylg is conservative or not.

Compute the orbital period and orbital angular velocity of a satellite revolving around
the Earth at an altitude of 720 km. [Given: radius of Earth R = 6000 km and
§=9.83m/s? ]

Rockets are propelled by the momentum reaction of the exhaust gases expelled from
the tail. Since these gases arise from the reaction of the fuels carried in the rocket, the
mass of the rocket is not constant, but decreases as the fuel is expended. Show that the
equation of motion for a rocket projected vertically upward in a uniform gravitational
field, neglecting atmospheric friction, is
dv ,dm
o T VT

where m is the mass of the rocket and v’ is the velocity of the escaping gases relative to
the rocket. Integrate this equation to obtain v as a function of m, assuming a constant
time rate of loss of mass. Show, for a rocket starting initially from rest, with v’ equal
to 2.1 km/s and a mass loss per second equal to 1/60th of the initial mass, that in
order to reach the escape velocity the ratio of the weight of the fuel to the weight of
the empty rocket must be almost 300!

Two points of mass m are joined by a rigid weightless rod of length [, the center of
which is constrained to move on a circle of radius a. Express the kinetic energy in
generalized coordinates.

A point particle moves in space under the influence of a force derivable from a gener-
alized potential of the form

Ur,v)=V(@)+o-L,

where r is the radius vector from a fixed point, L is the angular momentum about that
point, and o is a fixed vector in space.

(a) Find the components of the force on the particle in both Cartesian and spherical
polar coordinates, on the basis of Eq. (1.58).

(b) Show that the components in the two coordinate systems are related to each other
as in Eq. (1.49).

(c) Obtain the equations of motion in spherical polar coordinates.

A particle moves in a plane under the influence of a force, acting toward a center of
force, whose magnitude is
o, 2 — 2ir
=2 2 :

where r is the distance of the particle to the center of force. Find the generalized
potential that will result in such a force, and from that the Lagrangian for the motion
in a plane. (The expression for F represents the force between two charges in Weber’s
electrodynamics.)

A nucleus, originally at rest, decays radioactively by emitting an electron of momen-
tum 1.73 MeV/c, and at right angles to the direction of the electron a neutrino with
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18.

19.

20.

21.

22,

23.

24.

momentum 1.00 MeV/c. (The MeV, million electron volt, is a unit of energy used in
modern physics, equal to 1.60 x 10-13 5. Correspondingly, MeV/c is a unit of lin-
ear momentum equal to 5.34 x 10-22 kg - m/s.) In what direction does the nucleus
recoil? What is its momentum in MeV/c? If the mass of the residual nucleus is
3.90 x 1075 kg what is its kinetic energy, in electron volts?

A Lagrangian for a particular physical system can be written as

L = % (a)'cz + 2bxy + C)'Jz) — g (ax2 + 2bxy + cyz) s
where a, b, and c are arbitrary constants but subject to the condition that b2 —ac # 0.
What are the equations of motion? Examine particularly the two cases a = 0 = ¢
and b = 0, ¢ = —a. What is the physical system described by the above Lagrangian?
Show that the usual Lagrangian for this system as defined by Eq. (1.56) is related to L’
by a point transformation (cf. Derivation 10). What is the significance of the condition
on the value of b2 — ac?

Obtain the Lagrange equations of motion for a spherical pendulum, i.e., a mass point
suspended by a rigid weightless rod.

A particle of mass m moves in one dimension such that it has the Lagrangian

m*t 2
L=——+mx“V(x)—V-(x),
12
where V is some differentiable function of x. Find the equation of motion for x(¢) and
describe the physical nature of the system on the basis of this equation.

Two mass points of mass m| and m, are connected by a string passing through a
hole in a smooth table so that m rests on the table surface and m, hangs suspended.
Assuming my moves only in a vertical line, what are the generalized coordinates for
the system? Write the Lagrange equations for the system and, if possible, discuss
the physical significance any of them might have. Reduce the problem to a single
second-order differential equation and obtain a first integral of the equation. What is
its physical significance? (Consider the motion only until 7| reaches the hole.)

Obtain the Lagrangian and equations of motion for the double pendulum illustrated in
Fig. 1.4, where the lengths of the pendula are /1 and /, with corresponding masses m
and my.

Two masses 2kg and 3 kg, respectively, are tied to the two ends of a massless,
inextensible string passing over a smooth pulley. When the system is released,
calculate the acceleration of the masses and the tension in the string.

A spring of rest length L, (no tension) is connected to a support at one end and has

amass M attached at the other. Neglect the mass of the spring, the dimension of the

mass M, and assume that the motion is confined to a vertical plane. Also, assume that
the spring only stretches without bending but it can swing in the plane.

(a) Using the angular displacement of the mass from the vertical and the length
that the string has stretched from its rest length (hanging with the mass m), find
Lagrange’s equations.

(b) Solve these equations for small stretching and angular displacements.

(c) Solve the equations in part (a) to the next order in both stretching and angular
displacement. This part is amenable to hand calculations. Using some reasonable
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(d)

(e)

assumptions about the spring constant, the mass, and the rest length, discuss the
motion. Is a resonance likely under the assumptions stated in the problem?

(For analytic computer programs.) Consider the spring to have a total mass
m <« M. Neglecting the bending of the spring, set up Lagrange’s equations
correctly to first order in m and the angular and linear displacements.

(For numerical computer analysis.) Make sets of reasonable assumptions of the
constants in part (a) and make a single plot of the two coordinates as functions of
time.
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Variational Principles and
Lagrange’s Equations

2.1 B HAMILTON'’S PRINCIPLE

The derivation of Lagrange’s equations presented in Chapter 1 started from a
consideration of the instantaneous state of the system and small virtual
displacements about the instantaneous state, i.e., from a “differential principle”
such as D’ Alembert’s principle. It is also possible to obtain Lagrange’s equations
from a principle that considers the entire motion of the system between times
t; and f, and small virtual variations of this motion from the actual motion.
A principle of this nature is known as an “integral principle.”

Before presenting the integral principle, the meaning attached to the phrase
“motion of the system between times #; and 7" must first be stated in more
precise language. The instantaneous configuration of a system is described by the
values of the n generalized coordinates ¢, . . ., g5, and corresponds to a particular
point in a Cartesian hyperspace where the ¢’s form the n coordinate axes. This
n-dimensional space is therefore known as configuration space. As time goes
on, the state of the system changes and the system point moves in configuration
space tracing out a curve, described as “the path of motion of the system.” The
“motion of the system,” as used above, then refers to the motion of the system
point along this path in configuration space. Time can be considered formally as
a parameter of the curve; to each point on the path there is associated one or more
values of the time. Note that configuration space has no necessary connection
with the physical three-dimensional space, just as the generalized coordinates
are not necessarily position coordinates. The path of motion in configuration
space has no resemblance to the path in space of any actual particle; each point
on the path represents the entire system configuration at some given instant
of time.

The integral Hamilton’s principle describes the motion of those mechanical
systems for which all forces (except the forces of constraint) are derivable from a
generalized scalar potential that may be a function of the coordinates, velocities,
and time. Such systems will be denoted as monogenic. Where the potential is an
explicit function of position coordinates only, then a monogenic system is also
conservative (cf. Section 1.2).

For monogenic systems, Hamilton’s principle can be stated as

The motion of the system from time t| to time ty is such that the line
integral (called the action or the action integral),
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15}
1:/‘Lm, 2.1
I

where L = T — V, has a stationary value for the actual path of the
motion.

That is, out of all possible paths by which the system point could travel from
its position at time #1 to its position at time #,, it will actually travel along that
path for which the value of the integral (2.1) is stationary. By the term “station-
ary value” for a line integral, we mean that the integral along the given path has
the same value to within first-order infinitesimals as that along all neighboring
paths (i.e., those that differ from it by infinitesimal displacements). (Cf. Fig. 2.1.)
The notion of a stationary value for a line integral thus corresponds in ordinary
function theory to the vanishing of the first derivative.

We can summarize Hamilton’s principle by saying that the motion is such that
the variation of the line integral I for fixed #; and 1, is zero:

15}
M:é/ L1, qns 1y Gn, 1) dt =0. (2.2)
n

Where the system constraints are holonomic, Hamilton’s principle, Eq. (2.2),
is both a necessary and sufficient condition for Lagrange’s equations, Egs. (1.57).
Thus, it can be shown that Hamilton’s principle follows directly from Lagrange’s
equations. Instead, however, we shall prove the converse, namely, that Lagrange’s
equations follow from Hamilton’s principle, as being the more important theorem.
That Hamilton’s principle is a sufficient condition for deriving the equations of
motion enables us to construct the mechanics of monogenic systems from Hamil-
ton’s principle as the basic postulate rather than Newton’s laws of motion. Such
a formulation has advantages; e.g., since the integral [ is obviously invariant to
the system of generalized coordinates used to express L, the equations of motion
must always have the Lagrangian form no matter how the generalized coordinates

X

FIGURE 2.1 Path of the system point in configuration space.
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are transformed. More important, the formulation in terms of a variational prin-
ciple is the route that is generally followed when we try to describe apparently
nonmechanical systems in the mathematical clothes of classical mechanics, as in
the theory of fields.

SOME TECHNIQUES OF THE CALCULUS OF VARIATIONS

Before demonstrating that Lagrange’s equations do follow from (2.2), we must
first examine the methods of the calculus of variations, for a chief problem of this
calculus is to find the curve for which some given line integral has a stationary
value. (See website for necessary comments.)

Consider first the problem in an essentially one-dimensional form: We have a
function f(y, y, x) defined on a path y = y(x) between two values x; and x»,
where y is the derivative of y with respect to x. We wish to find a particular path
y(x) such that the line integral J of the function f between x| and x7,

. dy

y= ax
X2

J =/ f(y,y,x)dx, (2.3)
X1

has a stationary value relative to paths differing infinitesimally from the correct
function y(x). The variable x here plays the role of the parameter 7, and we con-
sider only such varied paths for which y(x1) = y1, y(x2) = y». (Cf. Fig. 2.2.)
Note that Fig. 2.2 does not represent configuration space. In the one-dimensional
configuration space, both the correct and varied paths are the segment of the
straight line connecting y; and y;; the paths differ only in the functional rela-
tion between y and x. The problem is one-dimensional, y is not a coordinate, it is
a function of x.

y (xg,yz)

(xl’yl)

X

FIGURE 2.2 Varied paths of the function of y(x) in the one-dimensional extremum
problem.
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We put the problem in a form that enables us to use the familiar apparatus of
the differential calculus for finding the stationary points of a function. Since J
must have a stationary value for the correct path relative to any neighboring path,
the variation must be zero relative to some particular set of neighboring paths
labeled by an infinitesimal parameter «. Such a set of paths might be denoted by
y(x, o), with y(x, 0) representing the correct path. For example, if we select any
function 7 (x) that vanishes at x = x; and x = xp, then a possible set of varied
paths is given by

y(x, ) = y(x,0) + an(x). (2.4)

For simplicity, it is assumed that both the correct path y(x) and the auxiliary
function n(x) are well-behaved functions—continuous and nonsingular between
x1 and xp, with continuous first and second derivatives in the same interval. For
any such parametric family of curves, J in Eq. (2.3) is also a function of «:

x2
@ = [ rowanita. dx 5)
X1
and the condition for obtaining a stationary point is the familiar one that
dJ
(—) =0. (2.6)
da a=0
By the usual methods of differentiating under the integral sign, we find that
dJ 2 /af o af 9y
_Z/ <_f_y+_f_y) dx. @7
da x \0yda 0y da

Consider the second of these integrals:

2ofay  [of 9%y
L dx = - dx.
v, 0y 0 0y 0x da

1 1

Integrating by parts, the integral becomes

Mmoo emog 9\ 9
—f £ (—f> 2 dx. (2.8)
x, dx \9y/) du

X1

[ 0y _3fdy
el x = L 2
v 0y 0x dx dy do

1

The conditions on all the varied curves are that they pass through the points
(x1, y1), (x2, ¥2), and hence the partial derivative of y with respect to « at x; and
xp must vanish. Therefore, the first term of (2.8) vanishes and Eq. (2.7) reduces to

dJ /” aof d of ayd
i 2 ) 2 ax
da x, \0y dx0dy/ du

The condition for a stationary value, Eq. (2.6), is therefore equivalent to the equa-
tion
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2 79 dd a
/ (_f - __f> <—y> dx = 0. (2.9)
x, \dy dxady da /g
Now, the partial derivative of y with respect to o occurring in Eq. (2.9) is a
function of x that is arbitrary except for continuity and end point conditions. For
example, for the particular parametric family of varied paths given by Eq. (2.4),

it is the arbitrary function n(x). We can therefore apply to Eq (2.9) the so-called
“fundamental lemma” of the calculus of variations, which says if

/xz Mx)n(x)dx =0 (2.10)
X1

for all arbitrary functions n(x) continuous through the second derivative, then
M (x) must identically vanish in the interval (x1, x2). While a formal mathemat-
ical proof of the lemma can be found in texts on the calculus of variations, the
validity of the lemma is easily seen intuitively. We can imagine constructing a
function 7 that is positive in the immediate vicinity of any chosen point in the
interval and zero everywhere else. Equation (2.10) can then hold only if M (x)
vanishes at that (arbitrarily) chosen point, which shows M must be zero through-
out the interval. From Eq. (2.9) and the fundamental lemma, it therefore follows
that J can have a stationary value only if

0 d (9
o _ 4 —f =0. (2.11)
dy dx \dy
The differential quantity,
d
<—y> da = 5y, 2.12)
da /g

represents the infinitesimal departure of the varied path from the correct path
y(x) at the point x and thus corresponds to the virtual displacement introduced in
Chapter 1 (hence the notation éy). Similarly, the infinitesimal variation of J about
the correct path can be designated

<d—J) da=38J. (2.13)
0

da

The assertion that J is stationary for the correct path can thus be written

x2
57 =/ (ﬁ - i%)(Sydx —0,
Y dy dx dy

1

requiring that y(x) satisfy the differential equation (2.11). The §-notation, intro-
duced through Egs. (2.12) and (2.13), may be used as a convenient shorthand
for treating the variation of integrals, remembering always that it stands for the
manipulation of parametric families of varied paths such as Eq. (2.4).
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Some simple examples of the application of Eq. (2.11) (which clearly
resembles a Lagrange equation) may now be considered:

1. Shortest distance between two points in a plane. An element of length in a

plane is
ds = \/dx? + dy?

and the total length of any curve going between points 1 and 2 is

2 X2 d 2
I=/ds=/ ”1+<_y> dx.
1 X1 dx

The condition that the curve be the shortest path is that / be a minimum. This is
an example of the extremum problem as expressed by Eq. (2.3), with

=41+

Substituting in (2.11) with

of _, U _ 3

ady Ty JT+32

we have

or

V1+y?

where c is constant. This solution can be valid only if

y=a,
where a is a constant related to ¢ by
c
a=—.
V1 —c?

But this is clearly the equation of a straight line,

y=ax +b,
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where b is another constant of integration. Strictly speaking, the straight line has
only been proved to be an extremum path, but for this problem it is obviously also
a minimum. The constants of integration, a and b, are determined by the condition
that the curve pass through the two end points, (x1, y1), (x2, ¥2).

In a similar fashion we can obtain the shortest distance between two points
on a sphere, by setting up the arc length on the surface of the sphere in terms of
the angle coordinates of position on the sphere. In general, curves that give the
shortest distance between two points on a given surface are called the geodesics
of the surface. (See website about part 2 below.)

2. Minimum surface of revolution. Suppose we form a surface of revolution
by taking some curve passing between two fixed end points (x1, y1) and (x2, ¥2)
defining the xy plane, and revolving it about the y axis (cf. Fig. 2.3a). The problem
then is to find that curve for which the surface area is a minimum. The area of a
strip of the surface is 2w x ds = 2w x+/1 + y2 dx, and the total area is

2
27r/ xy/ 1+ y2dx.
1

The extremum of this integral is again given by (2.11) where

f=xy14y?

and

oy W

oy 0y Jig?

Equation (2.11) becomes in this case

(x27y2)

(xl,y])

¥4

FIGURE 2.3a Minimum surface of revolution. Note that this figure is drawn for y; and
¥ having the same sign relative to the rotation axis. This is not assumed in the general
solution.
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d Xy —0
dx \ 1+ y?
or
Xy

V1+y? N

where a is some constant of integration clearly smaller than the minimum value
of x. Squaring the above equation and factoring terms, we have

Vel —a’) =a,
or solving,

dy a

dx ~ Jx2 _ 42

The general solution of this differential equation, in light of the nature of a, is

+b=aarccosh£+b
a

/ dx
y=a| =
/2 — a2
or

—-b
x=acoshy ,
a

which is the equation of a catenary. Again the two constants of integration, a and
b, are determined in principle by the requirements that the curve pass through the
two given end points, as shown in Fig. 2.3b.

Curves satisfying the preceding equation all scale as x/a and y/a with one
independent parameter b/a. This suggests that when the solutions are examined in
detail they turn out to be a great deal more complicated than these considerations

(Xza YQ)

(X1, 1)

a

FIGURE 2.3b General catenary solution for minimum surface of revolution.
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suggest. For some pairs of end points, unique constants of integration a and b
can be found. But for other end points, it is possible to draw two different cate-
nary curves through the end points, while for additional cases no possible values
can be found for a and b. Further, recall that Eq. (2.11) represents a condition
for finding curves y(x) continuous through the second derivative that render the
integral stationary. The catenary solutions therefore do not always represent min-
imum values, but may represent “inflection points” where the length of the curve
is stationary but not minimum.

For certain combinations of end points (an example is x; and x; both pos-
itive and both much smaller than y, — yp), the absolute minimum in the sur-
face of revolution is provided (cf. Exercise 8) by a curve composed of straight
line segments—ifrom the first end point parallel to the x axis until the y axis is
reached, then along the y axis until the point (0, y) and then out in a straight
line to the second end point corresponding to the area 7T(x12 + x%). This curve
results when a = 0, forcing either x = 0 or y = constant. Since this curve has
discontinuous first derivatives, we should not expect to find it as a solution to
Eq. (2.11).

This example is valuable in emphasizing the restrictions that surround the
derivation and the meaning of the stationary condition. Exercises 7 and 8 exam-
ine the conditions for the pathological behavior for a symmetric example. More
information can be found in many texts on the calculus of variations.

3. The brachistochrone problem. (See Fig. 2.4a.) This well-known problem
is to find the curve joining two points, along which a particle falling from rest
under the influence of gravity travels from the higher to the lower point in the
least time.

If v is the speed along the curve, then the time required to fall an arc length ds
is ds /v, and the problem is to find a minimum of the integral

2 ds
1) = —.
1 v

‘ 2

FIGURE 2.4a The brachistochrone problem.
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If y is measured down from the initial point of release, the conservation theorem
for the energy of the particle can be written as

1 2
3mv° =mgy
or

2gy.

Then the expression for 717 becomes

1+y
t12—/ X,
1

and f is identified as

1+ 52

f =
2gy

The integration of Eq. (2.11) with this form for f is straightforward and is left as
an exercise.
The parametric solution in terms of its one parameter, a, given by

x =a(¢ —sing), y =a(l —cos¢),

is sketched in Fig. 2.4b for the first cycle (0 < x < 2ma) and the beginning of the
second cycle. Three cases of solutions are indicated. A power-series expansion of
the solution for the limit y < a gives

=a ,3/ ;(x/a)z.

The brachistochrone problem is famous in the history of mathematics, for
it was the analysis of this problem by John Bernoulli that led to the formal
foundation of the calculus of variations.

X150 na 2ma

N <, x>y,

-,
=720

FIGURE 2.4b Cycloid solution to the brachistochrone problem showing positions on
the curve for the three cases xp < yp, xp = % v, and xp > y;.
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DERIVATION OF LAGRANGE’S EQUATIONS
FROM HAMILTON’S PRINCIPLE

The fundamental problem of the calculus of variations is easily generalized to the
case where f is a function of many independent variables y;, and their derivatives
vi. (Of course, all these quantities are considered as functions of the parametric
variable x.) Then a variation of the integral J,

2
8J 25/1 SO1(x): y200), .0 y1(x); y2(x), ..., x) dx, (2.14)

is obtained, as before, by considering J as a function of parameter « that labels a
possible set of curves y; (x, «). Thus, we may introduce o by setting

yi(x, @) = yi(x, 0) +ani (x),
y2(x, @) = y2(x, 0) + ama(x), (2.15)

where y;(x, 0), y2(x, 0), etc., are the solutions of the extremum problem (to be
obtained) and 71, 1, etc., are independent functions of x that vanish at the end
points and that are continuous through the second derivative, but otherwise are
completely arbitrary.

The calculation proceeds as before. The variation of J is given in terms of

af a af dy;
/ Z DT 0% oy 4 2T 0% 4o\ g, (2.16)
ay; 80{ 8 Vi 0o
Again we integrate by parts the integral involved in the second sum of Eq. (2.16):
29 0
_ oYi f dx,
1 da dx \ 9y, Vi

where the first term vanishes because all curves pass through the fixed end points.
Substituting in (2.16), §J becomes

af d af
8J = — — — —— | éy;i dx, 2.17
/1 ;(ayi dxay',») e @17

where, in analogy with (2.12), the variation §y; is

/2 8f %y, _ f ayi [®
—_ X =
1 0y; da dx By, 80[

Since the y variables are independent, the variations §y; are independent (e.g.,
the functions n;(x) will be independent of each other). Hence, by an obvious
extension of the fundamental lemma (cf. Eq. (2.10)), the condition that §J is zero
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requires that the coefficients of the §y; separately vanish:
— - ———=0, i=1,2,...,n. (2.18)

Equations (2.18) represent the appropriate generalization of (2.11) to sev-
eral variables and are known as the Euler-Lagrange differential equations. Their
solutions represent curves for which the variation of an integral of the form given
in (2.14) vanishes. Further generalizations of the fundamental variational prob-
lem are easily possible. Thus, we can take f as a function of higher derivatives
¥, y, etc., leading to equations different from (2.18). Or we can extend it to cases
where there are several parameters x; and the integral is then multiple, with f
also involving as variables derivatives of y; with respect to each of the parameters
x . Finally, it is possible to consider variations in which the end points are not
held fixed.

For present purposes, what we have derived here suffices, for the integral in
Hamilton’s principle,

2
I =f L(gi. i, 1) dt, 2.19)
1

has just the form stipulated in (2.14) with the transformation

X — 1
Yi = gi
fQi,yix) = L(gi, gi, 1).

In deriving Egs. (2.18), we assumed that the y; variables are independent. The
corresponding condition in connection with Hamilton’s principle is that the gen-
eralized coordinates g; be independent, which requires that the constraints be
holonomic. The Euler-Lagrange equations corresponding to the integral / then
become the Lagrange equations of motion,

and we have accomplished our original aim, to show that Lagrange’s equa-
tions follow from Hamilton’s principle—for monogenic systems with holonomic
constraints.

EXTENDING HAMILTON'’S PRINCIPLE

TO SYSTEMS WITH CONSTRAINTS

In Section 1.3 we solved problems with holonomic constraints by choosing
coordinates such that the constraint equations (1.37) become a trivial 0 = 0 set of
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equations. In this section we show that Hamilton’s principle can be used to solve
systems with holonomic constraints as well as certain types of non-holonomic
systems.

First consider holonomic constraints. When we derive Lagrange’s equations
from either Hamilton’s or D’Alembert’s principle, the holonomic constraints
appear in the last step when the variations in the g; were considered independent
of each other. However, the virtual displacements in the §g;’s may not be consis-
tent with the constraints. If there are n variables and m constraint equations fy
of the form of Eq. (1.37), the extra virtual displacements are eliminated by the
method of Lagrange undetermined multipliers.

We modify the integral in Eq. (2.19) to be

2 m
I = / (L + Zxafa) dt, (2.20)
1 a=1

and allow the g, and the A4 to vary independently to obtain n + m equations. The
variations of the A,’s give the m constraint equations. The variations of the ¢;’s

give
2 m
d oL oL afy
8l = dt E _——— E Aa i | =0. 2.21
/1 (i:l (dt 94 dqi ) ) =20

However, the §g;’s are not independent. We choose the A,’s so that m of the
equations are satisfied for arbitrary ¢g;, and then choose the variations of the §g;
in the remaining n — m equations independently. Thus we obtain m equations of
the form

m

d 0L oL 0
4L L, Ja _ . (2.22)
dt aqk 3qk o aqk
fork =1, ..., m. The equality follows from the choice of the A,’s. We also have
the same expressions as Eq. (2.22) for k = m + 1, ..., n, where the equality

follows from the virtual variations of the §g;’s

This solves the system at the expense of introducing m functions ,. We can
understand this by considering that Egs. (2.22), for k = 1, ..., n, can be written
as

d 3L  IL —ik Afa

di dgx  dqk “9qi

= Ok, (2.23)
where the Oy are generalized forces. The functions, Q,, have the magnitudes of
the forces needed to produce the individual constraints; however, since the choice
of the “+” in the third term of Eq. (2.22) is arbitrary, we can mathematically
determine only the magnitudes of these generalized forces. You need to under-
stand the physics to determine their directions.
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As an example, consider a smooth solid hemisphere of radius a placed with
its flat side down and fastened to the Earth whose gravitational acceleration is g.
Place a small mass M at the top of the hemisphere with an infinitesimal displace-
ment off center so the mass slides down without friction. Choose coordinates
X, y, z centered on the base of the hemisphere with z vertical and the x-z plane
containing the initial motion of the mass.

Let 6 be the angle from the top of the sphere to the mass. The Lagrangian is
L = %M (X% + y% + %) — mgz. The initial conditions allow us to ignore the
y coordinate, so the constraint equation is @ — +/x2 + z2 = 0. Expressing the
problem in terms of 72 = x? + z? and x/z = cos 6, Lagrange’s equations are
Mab* — Mgcos6 + » = 0, and Ma?0 + Mgasin® = 0. Solve the second
equation and then the first to obtain

32 28 2g
0 =——cos@+— and A= Mg3cosh —?2).
a a

So A is the magnitude of the force keeping the particle on the sphere and since
A =0 when 6 = cos™! (%), the mass leaves the sphere at that angle.

In general, nonholonomic constraints cannot be expressed by a variational
principle. One of the exceptions is semi-holonomic constraints where the con-
straints can be written as a set of functions of the form

fa(Ql:-«an;q.l,--an;t)=O, (224)
where o = 1, 2, ..., m. Equation (2.24) commonly appears in the restricted form
n
Jo = Z%ké}k +ag=0, (2.25)
k=1

where the f, are a set of nonintegrable differential expressions and the aq; and
ap are functions of the ¢, and ¢. In these cases, since we cannot integrate the
constraints, there are more variables than equations. However, we can treat the
variations in the same fashion as before by writing*

¢ m
5 / 2 (L + Z,uafa) dt =0, (2.26)
n

a=l1

where the symbol p is used to distinguish these multipliers from the holonomic
Lagrange multipliers. If we assume that i, = w4 (¢), the equations resulting from
the virtual displacements are

m

d 3L  dL f,
AL L Y
a=1

. = (2.27)
dt 0gr gy Gk

*J. Ray, Amer. J. Phys. 34 (1202), 1969; E. J. Saletan & A. H. Comer, Amer. J. Phys. 38 (892-897),
1970.
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and the duy give the equations of constraint (2.23). These two sets (Eq. (2.26)
and (2.27)) together constitute n 4+ m equations for the n + m unknowns. Hence
they can be interpreted as equivalent to an n + m holonomic system with gen-
eralized forces Q. The generalization to (g = o (g1, ---»Gn; q1s--->qn; t) 18
straightforward.

As an example, consider a particle with the Lagrangian

I ST SIS S N
L= Em(x +y +2)-Vx,y,2) (2.28)
subject to the nonholonomic constraint
fo, %, 9,9, 2) =iy> +xy +kz =0, (2.29)

with k a constant. The resulting equations of motion are

. , 0V
mx + uy- — — =0, (2.30a)
ax
. aVv
my + ux — — =0, (2.30b)
dy
and
. aV
mz — — =0. (2.30c)
9z

We now solve the four equations ((2.29) and (3.30)) to find x(¢), y(¢), z(¢), and
the multiplier w(z).

In this process we have obtained more information than was originally sought.
Not only do we get the gx’s we set out to find, but we also get mA;’s. What
is the physical significance of the A;’s? Suppose we remove the constraints
on the system, but instead apply external forces Q) in such a manner as to
keep the motion of the system unchanged. The equations of motion likewise
remain the same. Clearly these extra applied forces must be equal to the forces
of constraint, for they are the forces applied to the system so as to satisfy the
condition of constraint. Under the influence of these forces Q;, the equations of
motion are

— - _ T . 2.31
FTETRE R 30

But these must be identical with Eqs. (2.24). Hence, we can identify (2.25) with
Q. the generalized forces of constraint. In this type of problem we really do not
eliminate the forces of constraint from the formulation. They are supplied as part
of the answer.

Although it is not obvious, the version of Hamilton’s principle adopted here
for semiholonomic systems also requires that the constraints do no work in virtual
displacements. This can be most easily seen by rewriting Hamilton’s principle in
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the form

%) 15) 15
8/ Ldt:cS/ Tdt—S/ Udt =0. (2.32)
131 I 11

If the variation of the integral over the generalized potential is carried out by the
procedures of Section 2.3, the principle takes the form

3/ Tdt = / Z[@ - = (g;j)}éqkdt; (2.33)

or, by Eq. (1.58),

8 f Tdt = f ZQk(qudt (2.34)

In this dress, Hamilton’s principle says that the difference in the time integral of
the kinetic energy between two neighboring paths is equal to the negative of the
time integral of the work done in the virtual displacements between the paths.
The work involved is that done only by the forces derivable from the generalized
potential. The same Hamilton’s principle holds for both holonomic and semi-
holonomic systems, it must be required that the additional forces of semiholo-
nomic constraints do no work in the displacements §g. This restriction parallels
the earlier condition that the virtual work of the forces of holonomic constraint
also be zero (cf. Section 1.4). In practice, the restriction presents little handi-
cap to the applications, as many problems in which the semiholonomic formal-
ism is used relate to rolling without slipping, where the constraints are obviously
workless.

Note that Eq. (2.20) is not the most general type of nonholonomic constraint;
e.g., it does not include equations of constraint in the form of inequalities. On
the other hand, it does include holonomic constraints. A holonomic equation of
constraint,

f(CIl,CIZsCBa---’CInvt):Os (235)

is equivalent to (2.20) with no dependence on ¢. Thus, the Lagrange multiplier
method can be used also for holonomic constraints when (1) it is inconvenient to
reduce all the ¢g’s to independent coordinates or (2) we might wish to obtain the
forces of constraint.

As another example of the method, let us consider the following somewhat
trivial illustration—a hoop rolling, without slipping, down an inclined plane. In
this example, the constraint of “rolling” is actually holonomic, but this fact will
be immaterial to our discussion. On the other hand, the holonomic constraint that
the hoop be on the inclined plane will be contained implicitly in our choice of
generalized coordinates.
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IRND

FIGURE 2.5 A hoop rolling down an inclined plane.

¢

The two generalized coordinates are x, 6, as in Fig. 2.5, and the equation of
rolling constraint is

rdd =dx.

The kinetic energy can be resolved into kinetic energy of motion of the center
of mass plus the kinetic energy of motion about the center of mass:

T = IMi* + I mr?6%,
The potential energy is
V =Mg( —x)sing,
where [ is the length of the inclined plane and the Lagrangian is

L=T-V
_ Mi? N Mr26?
2 2

— Mg(l — x)sin¢. (2.36)

Since there is one equation of constraint, only one Lagrange multiplier A is
needed. The coefficients appearing in the constraint equation are:

ag =vr, ay=—1.
The two Lagrange equations therefore are

Mx — Mgsing + 1 =0, 2.37)
Mr2§ —ar =0, (2.38)

which along with the equation of constraint,
ro = x, (2.39)

constitutes three equations for three unknowns, 9, x, A.
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Differentiating (2.39) with respect to time, we have

ro = .
Hence, from (2.38)
Mx = A,
and (2.37) becomes
_8 sin ¢
2
along with
- Mg sin ¢
2
and
.. sin
6= ?

Thus, the hoop rolls down the incline with only one-half the acceleration it would
have slipping down a frictionless plane, and the friction force of constraint is
A= Mgsing/2.

ADVANTAGES OF A VARIATIONAL PRINCIPLE FORMULATION

Although we can extend the original formulation of Hamilton’s principle (2.2) to
include some nonholonomic constraints, in practice this formulation of mechanics
is most useful when a Lagrangian of independent coordinates can be set up
for the system. The variational principle formulation has been justly described
as “elegant,” for in the compact Hamilton’s principle is contained all of the
mechanics of holonomic systems with forces derivable from potentials. The
principle has the further merit that it involves only physical quantities that
can be defined without reference to a particular set of generalized coordi-
nates, namely, the kinetic and potential energies. The formulation is there-
fore automatically invariant with respect to the choice of coordinates for the
system.

From the variational Hamilton’s principle, it is also obvious why the Lagrangian
is always uncertain to a total time derivative of any function of the coordinates
and time, as mentioned at the end of Section 1.4. The time integral of such a total
derivative between points 1 and 2 depends only on the values of the arbitrary
function at the end points. As the variation at the end points is zero, the addition
of the arbitrary time derivative to the Lagrangian does not affect the variational
behavior of the integral.
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Another advantage is that the Lagrangian formulation can be easily extended
to describe systems that are not normally considered in dynamics—such as
the elastic field, the electromagnetic field, and field properties of elementary
particles. Some of these generalizations will be considered later, but as three
simple examples of its application outside the usual framework of mechanics, let
us consider the cases of an RL circuit, an LC circuit, and coupled circuits.

We consider the physical system of a battery of voltage V in series with an
inductance L and a resistance of value R and choose the electric charge g as
the dynamical variable. The inductor acts as the kinetic energy term since the
inductive effect depends upon the time rate of change of the charge. The resistor
provides a dissipative term and the potential energy is ¢ V. The dynamic terms in
Lagrange’s equation with dissipation (1.70) are

T =1L F=1iR,
and potential energy = g V. The equation of motion is
V=Lj+RG=LI+RI, (2.40)

where I = ¢ is the electric current. A solution for a battery connected to the
circuit at time t = 0 is

I =11 —e Ry

where Ip = V/R is the final steady-state current flow.

The mechanical analog for this is a sphere of radius a and effective mass m’
falling in a viscous fluid of constant density and viscosity n under the force of
gravity. The effective mass is the difference between the actual mass and the mass
of the displaced fluid, and the direction of motion is along the y axis. For this
system,

T = %m/y'z, F =3mnay?,
and potential energy = m’gy, where the frictional drag force, Fy = 6mnay,
called Stokes’ law, was given at the end of Section 1.5.

The equation of motion is given by Lagrange’s equations (1.70) as
m'g =m'y + 6mnay.
Using v = y, the solution (if the motion starts from rest at t = 0), is
v =v,(1 —e 7

where T = m’/(6wna) is a measure of the time it takes for the sphere to reach
1/e of its terminal speed of vy = m'g /67 na.

Another example from electrical circuits is an inductance, L, in series with
a capacitance, C. The capacitor acts as a source of potential energy given by
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g*/C where g is the electric charge. The Lagrangian produces the equation of
motion,

. q
Lj+— =0, 241
q+ C (2.41)

which has the solution
q = qo cos wot,

where ¢ is the charge stored in the capacitor at ¢ = 0, and the assumption is that
no charge is flowing at + = 0. The quantity

1
w) = —

VvLC

is the resonant frequency of the system.
The mechanical analog of this system is the simple harmonic oscillator
described by the Lagrangian L = %m)'cz — %kx2, which gives an equation of

motion,
mi +kx =0,
whose solution for the same boundary conditions is

X = Xx( COS wot with  wg = /k/m.

These two examples show that an inductance is an inertial term, the electrical
analog of mass. Resistance is the analog of Stokes’ law type of frictional drag,
and the capacitance term 1/C represents a Hooke’s law spring constant. With this
background, a system of coupled electrical circuits of the type shown in Fig. 2.6
has a Lagrangian of the form

E2~ ~E3

FIGURE 2.6 A system of coupled circuits to which the Lagrangian formulation can be
applied.
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2
ZLJCIJ+ ZMjkqjqk qu—C’_JrZej(t)qj,
i

/;ﬁk

and a dissipation function
1 .
J

where the mutual inductance terms, M jkC} j 4, are added to take into account the
coupling between inductors. The Lagrange equations are

dqy dqgj = q;j
L; d2 +ZM,k T TRt C—j:Ej(t). (2.42)

where the E(¢) terms are the external emf’s.

This description of two different physical systems by Lagrangians of the same
form means that all the results and techniques devised for investigating one of the
systems can be taken over immediately and applied to the other. In this particular
case, the study of the behavior of electrical circuits has been pursued intensely
and some special techniques have been developed; these can be directly applied
to the corresponding mechanical systems. Much work has been done in formulat-
ing equivalent electrical problems for mechanical or acoustical systems, and vice
versa. Terms hitherto reserved for electrical circuits (reactance, susceptance, etc.)
are now commonly found in treatises on the theory of vibrations of mechanical
systems.

Additionally, one type of generalization of mechanics is due to a subtler
form of equivalence. We have seen that the Lagrangian and Hamilton’s principle
together form a compact invariant way of obtaining the mechanical equations of
motion. This possibility is not reserved for mechanics only; in almost every field
of physics variational principles can be used to express the “equations of motion,”
whether they be Newton’s equations, Maxwell’s equations, or the Schrodinger
equation. Consequently, when a variational principle is used as the basis of the
formulation, all such fields will exhibit, at least to some degree, a structural anal-
ogy. When the results of experiments show the need for alterating the physical
content in the theory of one field, this degree of analogy has often indicated
how similar alterations may be carried out in other fields. Thus, the experiments
performed early in this century showed the need for quantization of both elec-
tromagnetic radiation and elementary particles. The methods of quantization,
however, were first developed for particle mechanics, starting essentially from the
Lagrangian formulation of classical mechanics. By describing the electromag-
netic field by a Lagrangian and corresponding Hamilton’s variational principle,
it is possible to carry over the methods of particle quantization to construct a
quantum electrodynamics (cf. Sections 13.5 and 13.6).
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CONSERVATION THEOREMS AND SYMMETRY PROPERTIES

Thus far, we have been concerned primarily with obtaining the equations of
motion, but little has been said about how to solve them for a particular problem
once they are obtained. In general, this is a question of mathematics. A system
of n degrees of freedom will have n differential equations that are second order
in time. The solution of each equation will require two integrations resulting, all
told, in 2n constants of integration. In a specific problem these constants will be
determined by the initial conditions, i.e., the initial values of the ng;’s and the
ng;’s. Sometimes the equations of motion will be integrable in terms of known
functions, but not always. In fact, the majority of problems are not completely
integrable. However, even when complete solutions cannot be obtained, it is often
possible to extract a large amount of information about the physical nature of
the system motion. Indeed, such information may be of greater interest to the
physicist than the complete solution for the generalized coordinates as a function
of time. It is important, therefore, to see how much can be stated about the motion
of a given system without requiring a complete integration of the problem.*

In many problems a number of first integrals of the equations of motion can be
obtained immediately; by this we mean relations of the type

f(q1,92,---,41, G2, --.,t) = constant, (2.43)

which are first-order differential equations. These first integrals are of interest
because they tell us something physically about the system. They include, in fact,
the conservation laws obtained in Chapter 1.

Let us consider as an example a system of mass points under the influence of
forces derived from potentials dependent on position only. Then

oL or oV 0T a 1 (.2_’_ ~2+_2)
% 9n av o a% —m; (x; : .
FITR T T TR A AV e IR

=m;Xj = Dix,

which is the x component of the linear momentum associated with the ith
particle. This result suggests an obvious extension to the concept of momentum.
The generalized momentum associated with the coordinate ¢; shall be defined as

oL

=, (2.44)
9q;

Pj

The terms canonical momentum and conjugate momentum are often also used for
pj- Notice that if g; is not a Cartesian coordinate, p; does not necessarily have
the dimensions of a linear momentum. Further, if there is a velocity-dependent
potential, then even with a Cartesian coordinate g; the associated generalized

*In this and succeeding sections it will be assumed, unless otherwise specified, the system is such that
its motion is completely described by a Hamilton’s principle of the form (2.2).
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momentum will not be identical with the usual mechanical momentum. Thus,
in the case of a group of particles in an electromagnetic field, the Lagrangian is
(cf. 1.63)

L=) %mir}z =D aidG) + Y GAGD) - i

(g; here denotes charge) and the generalized momentum conjugate to x; is

Pix = oF = midi + i, (2.45)
3)6,'
i.e., mechanical momentum plus an additional term.

If the Lagrangian of a system does not contain a given coordinate g; (although
it may contain the corresponding velocity ¢;), then the coordinate is said to be
cyclic or ignorable. This definition is not universal, but it is the customary one
and will be used here. The Lagrange equation of motion,

d oL _
dt 36}]'
or
dpj _
dt ’
which mean that
pj = constant. (2.46)

Hence, we can state as a general conservation theorem that the generalized
momentum conjugate to a cyclic coordinate is conserved.

Note that the derivation of Eq. (2.46) assumes that g; is a generalized coordi-
nate; one that is linearly independent of all the other coordinates. When equations
of constraint exist, all the coordinates are not linearly independent. For exam-
ple, the angular coordinate 6 is not present in the Lagrangian of a hoop rolling
without slipping in a horizontal plane that was previously discussed, but the angle
appears in the constraint equations rd6 = dx. As aresult, the angular momentum,
po = mr20, is not a constant of the motion.

Equation (2.46) constitutes a first integral of the form (2.43) for the equa-
tions of motion. It can be used formally to eliminate the cyclic coordinate
from the problem, which can then be solved entirely in terms of the remain-
ing generalized coordinates. Briefly, the procedure, originated by Routh, consists
in modifying the Lagrangian so that it is no longer a function of the general-
ized velocity corresponding to the cyclic coordinate, but instead involves only
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its conjugate momentum. The advantage in so doing is that p; can then be
considered one of the constants of integration, and the remaining integrations
involve only the noncyclic coordinates. We shall defer a detailed discussion of
Routh’s method until the Hamiltonian formulation (to which it is closely related)
is treated.

Note that the conditions for the conservation of generalized momenta are more
general than the two momentum conservation theorems previously derived. For
example, they furnish a conservation theorem for a case in which the law of action
and reaction is violated, namely, when electromagnetic forces are present. Sup-
pose we have a single particle in a field in which neither ¢ nor A depends on x.
Then x nowhere appears in L and is therefore cyclic. The corresponding canoni-
cal momentum p, must therefore be conserved. From (1.63) this momentum now
has the form

px = mx + qA, = constant. (2.47)

In this case, it is not the mechanical linear momentum mx that is conserved but
rather its sum with g A,.* Nevertheless, it should still be true that the conser-
vation theorems of Chapter 1 are contained within the general rule for cyclic
coordinates; with proper restrictions (2.46) should reduce to the theorems of
Section 1.2.

We first consider a generalized coordinate ¢, for which a change dg; repre-
sents a translation of the system as a whole in some given direction. An example
would be one of the Cartesian coordinates of the center of mass of the system.
Then clearly ¢; cannot appear in T, for velocities are not affected by a shift in the
origin, and therefore the partial derivative of T with respect to g; must be zero.
Further, we will assume conservative systems for which V is not a function of the
velocities, so as to eliminate such complications as electromagnetic forces. The
Lagrange equation of motion for a coordinate so defined then reduces to

d oT | A 248

drag; VT Tag =9 (249

We will now show that (2.48) is the equation of motion for the total linear

momentum, i.e., that Q; represents the component of the total force along

the direction of translation of g;, and p; is the component of the total linear

momentum along this direction. In general, the generalized force Q; is given by
Eq. (1.49):

al‘,'
0= TR
i 99;
Since dg corresponds to a translation of the system along some axis, the vectors
ri(g;) and r;(g; + dgq;) are related as shown in Fig. 2.7. By the definition of a
*It can be shown from classical electrodynamics that under these conditions, i.e., neither A nor ¢

depending on x, that g Ay is exactly the x-component of the electromagnetic linear momentum of the
field associated with the charge gq.
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dgqjn
r;(q)

f,»(qj +dq’-)

FIGURE 2.7 Change in a position vector under translation of the system.

derivative, we have

or; ri (g +dq;) —vi(q;)  dg;
My i tde) mrile) _dey (2.49)
8qj dqj—0 dqj dqj

where n is the unit vector along the direction of the translation. Hence,

Qj=)Y Fi-n=n-F

which (as was stated) is the component of the total force in the direction of n. To
prove the other half of the statement, note that with the kinetic energy in the form

T = %Zmii’iz,

the conjugate momentum is

aT . O
pj=— = mikj-—
i

Il
N
3
=
.QJ
=

using Eq. (1.51). Then from Eq. (2.49)
pj=nmn- Z miVi,
i

which again, as predicted, is the component of the total system linear momentum
along n.

Suppose now that the translation coordinate g that we have been discussing is
cyclic. Then g; cannot appear in V and therefore

oV
qj
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But this is simply the familiar conservation theorem for linear momentum—that
if a given component of the total applied force vanishes, the corresponding com-
ponent of the linear momentum is conserved.

In a similar fashion, it can be shown that if a cyclic coordinate ¢g; is such that
dgq; corresponds to a rotation of the system of particles around some axis, then
the conservation of its conjugate momentum corresponds to conservation of an
angular momentum. By the same argument used above, 7' cannot contain ¢, for
a rotation of the coordinate system cannot affect the magnitude of the velocities.
Hence, the partial derivative of T with respect to ¢ ; must again be zero, and since
V is independent of ¢;, we once more get Eq. (2.48). But now we wish to show
that with g; a rotation coordinate the generalized force is the component of the
total applied torque about the axis of rotation, and p; is the component of the total
angular momentum along the same axis.

The generalized force Q; is again given by

81‘,‘
Qj=) Fi-
i 9q;

only the derivative now has a different meaning. Here the change in g; must
correspond to an infinitesimal rotation of the vector r;, keeping the magnitude
of the vector constant. From Fig. 2.8, the magnitude of the derivative can easily
be obtained:

ar;
|dr;| =r;sinfdg; and ‘—l =r;sin0,

qj

r,(q;+dq))

FIGURE 2.8 Change of a position vector under rotation of the system.
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and its direction is perpendicular to both r; and n. Clearly, the derivative can be
written in vector form as

Bri

=nXxr;. (2.50)
g,

With this result, the generalized force becomes
Qj = Z F,‘ ‘N XTI
i
= Z n-r; x F;,
i

reducing to

Qj =n- ZN,’ ZH-N,
i

which proves the first part. A similar manipulation of p; with the aid of Eq. (2.50)
provides proof of the second part of the statement:

aT 81‘,’
pPj= % ZXi:miVi-gj ZXi:n-l‘i Xm;jvi =nN- Xi:Li =n-L.

Summarizing these results, we see that if the rotation coordinate g; is cyclic,
then Q;, which is the component of the applied torque along n, vanishes, and
the component of L along n is constant. Here we have recovered the angular
momentum conservation theorem out of the general conservation theorem relating
to cyclic coordinates.

The significance of cyclic translation or rotation coordinates in relation to the
properties of the system deserves some comment at this point. If a generalized
coordinate corresponding to a displacement is cyclic, it means that a translation
of the system, as if rigid, has no effect on the problem. In other words, if the sys-
tem is invariant under translation along a given direction, the corresponding linear
momentum is conserved. Similarly, the fact that a generalized rotation coordinate
is cyclic (and therefore the conjugate angular momentum conserved) indicates
that the system is invariant under rotation about the given axis. Thus, the momen-
tum conservation theorems are closely connected with the symmetry properties
of the system. If the system is spherically symmetric, we can say without further
ado that all components of angular momentum are conserved. Or, if the system is
symmetric only about the z axis, then only L, will be conserved, and so on for
the other axes. These symmetry considerations can often be used with relatively
complicated problems to determine by inspection whether certain constants of the
motion exist. (cf. Noether’s theorem—Sec. 13.7.)

Suppose, for example, the system consists of a set of mass points moving in
a potential field generated by fixed sources uniformly distributed on an infinite
plane, say, the z = 0 plane. (The sources might be a mass distribution if the forces
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were gravitational, or a charge distribution for electrostatic forces.) Then the sym-
metry of the problem is such that the Lagrangian is invariant under a translation
of the system of particles in the x- or y-directions (but not in the z-direction) and
also under a rotation about the z axis. It immediately follows that the x- and
y-components of the total linear momentum, P, and Py, are constants of the
motion along with L, the z-component of the total angular momentum. However,
if the sources were restricted only to the half plane, x > 0, then the symmetry for
translation along the x axis and for rotation about the z axis would be destroyed.
In that case, Py and L; could not be conserved, but P, would remain a constant of
the motion. We will encounter the connections between the constants of motion
and the symmetry properties of the system several times in the following chapters.

ENERGY FUNCTION AND THE CONSERVATION OF ENERGY

Another conservation theorem we should expect to obtain in the Lagrangian
formulation is the conservation of total energy for systems where the forces are
derivable from potentials dependent only upon position. Indeed, it is possible to
demonstrate a conservation theorem for which conservation of total energy repre-
sents only a special case. Consider a general Lagrangian, which will be a function
of the coordinates ¢; and the velocities ¢; and may also depend explicitly on the
time. (The explicit time dependence may arise from the time variation of external
potentials, or from time-dependent constraints.) Then the total time derivative of
Lis

dL dL dq; oL dg; 0L
ab _ N~ o dd) -4y 0% (2.51)
dt > dgj dt F dq; dt ot
From Lagrange’s equations,
oL d (0L
dqj  dt\dq;)’
and (2.51) can be rewritten as
dL d (oL . oL dg; 0L
dt _;dt (aqj>q/+ —04; di T
or
dL d (. oL oL
@) %
It therefore follows that
d oL oL
— ji— — L — =0. 2.52
dt 24 3q, T (252)
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The quantity in parentheses is oftentimes called the energy function* and will be
denoted by h:

. . . 0L
h(qi, .. qns q1, -5 4n; t)=§ qf_aq-_L’ (2.53)
i J
J

and Eq. (2.52) can be looked on as giving the total time derivative of A:

dh oL
= A (2.54)
If the Lagrangian is not an explicit function of time, i.e., if # does not appear
in L explicitly but only implicitly through the time variation of g and ¢, then
Eq. (2.54) says that k is conserved. It is one of the first integrals of the motion and
is sometimes referred to as Jacobi’s integral.’

Under certain circumstances, the function 7 is the total energy of the system.
To determine what these circumstances are, we recall that the total kinetic energy
of a system can always be written as

T=Ty+T + 1y, (1.73)

where Tj is a function of the generalized coordinates only, T1(q, ¢) is linear in the
generalized velocities, and T>(q, ¢) is a quadratic function of the ¢’s. For a very
wide range of systems and sets of generalized coordinates, the Lagrangian can be
similarly decomposed as regards its functional behavior in the ¢ variables:

L(g.q4,1) = Lo(g,t) + Li(q,q,1) + La(q, g, 1). (2.55)

Here L; is a homogeneous function of the second degree (not merely quadratic)
in g, while L1 is homogeneous of the first degree in g. There is no reason intrinsic
to mechanics that requires the Lagrangian to conform to Eq. (2.55), but in fact it
does for most problems of interest. The Lagrangian clearly has this form when
the forces are derivable from a potential not involving the velocities. Even with
the velocity-dependent potentials, we note that the Lagrangian for a charged par-
ticle in an electromagnetic field, Eq. (1.63), satisfies Eq. (2.55). Now, recall that
Euler’s theorem states that if f is a homogeneous function of degree n in the
variables x;, then

S L g (2:56)

Bx,-

*The energy function £ is identical in value with the Hamiltonian H (See Chapter 8). It is given
a different name and symbol here to emphasize that / is considered a function of n independent
variables g; and their time derivatives g; (along with the time), whereas the Hamiltonian will be
treated as a function of 27 independent variables, g, p; (and possibly the time).

T This designation is most often confined to a first integral in the restricted three-body problem. How-
ever, the integral there is merely a special case of the energy function 4, and there is some historical
precedent to apply the name Jacobi integral to the more general situation.
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Applied to the function %, Eq. (2.53), for the Lagrangians of the form (2.55), this
theorem implies that

h=2L,+L;—L=1Ly— Lo. 2.57)

If the transformation equations defining the generalized coordinates, Eqgs. (1.38),
do not involve the time explicitly, then by Egs. (1.73) T = T5. If, further,
the potential does not depend on the generalized velocities, then L, = T and
Lo = —V, so that

h=T+V=E, (2.58)

and the energy function is indeed the total energy. Under these circumstances,
if V does not involve the time explicitly, neither will L. Thus, by Eq. (2.54), h
(which is here the total energy), will be conserved.

Note that the conditions for conservation of 4 are in principle quite distinct
from those that identify % as the total energy. We can have a set of generalized
coordinates such that in a particular problem /% is conserved but is not the total
energy. On the other hand, / can be the total energy, in the form 7 + V, but not
be conserved. Also note that whereas the Lagrangian is uniquely fixed for each
system by the prescription L = T — U independent of the choice of generalized
coordinates, the energy function /4 depends in magnitude and functional form on
the specific set of generalized coordinates. For one and the same system, various
energy functions % of different physical content can be generated depending on
how the generalized coordinates are chosen.

The most common case that occurs in classical mechanics is one in which the
kinetic energy terms are all of the form mc]i2 /2 or pl-2 /2m and the potential energy
depends only upon the coordinates. For these conditions, the energy function is
both conserved and is also the total energy.

Finally, note that where the system is not conservative, but there are frictional
forces derivable from a dissipation function F, it can be easily shown that F
is related to the decay rate of A. When the equations of motion are given by
Eq. (1.70), including dissipation, then Eq. (2.52) has the form

dh 0L oF .
E+¥_;@qr

By the definition of F, Eq. (1.67), it is a homogeneous function of the ¢’s of
degree 2. Hence, applying Euler’s theorem again, we have

dh oL
— = -2F - —. 2.59
dt 4 dt ( )

If L is not an explicit function of time, and the system is such that / is the same
as the energy, then Eq. (2.59) says that 2F is the rate of energy dissipation,

dE
= _2F, 2.60
7 (2.60)

a statement proved above (cf. Sec. 1.5) in less general circumstances.
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DERIVATIONS

1.

Complete the solution of the brachistochrone problem begun in Section 2.2 and show
that the desired curve is a cycloid with a cusp at the initial point at which the particle
is released. Show also that if the particle is projected with an initial kinetic energy
%mv% that the brachistochrone is still a cycloid passing through the two points with a

cusp at a height z above the initial point given by v% =2gz.

Show that if the potential in the Lagrangian contains velocity-dependent terms, the
canonical momentum corresponding to a coordinate of rotation 6 of the entire system
is no longer the mechanical angular momentum Ly but is given by

po = Lg —Zlbl‘i x Vy, U,

1

where Vy is the gradient operator in which the derivatives are with respect to the
velocity components and n is a unit vector in the direction of rotation. If the forces are
electromagnetic in character, the canonical momentum is therefore

gi
Po :L@—i-zn-l‘i X ?lAi.

1
Prove that the shortest distance between two points in space is a straight line.

Show that the geodesics of a spherical surface are great circles, i.e., circles whose
centers lie at the center of the sphere.

EXERCISES

5.

A particle is subjected to the potential V(x) = —Fx, where F is a constant. The
particle travels from x = 0 to x = a in a time interval fy. Assume the motion of the
particle can be expressed in the form x(¢) = A+ Bt +C 12. Find the values of A, B,
and C such that the action is a minimum.

Find the Euler-Lagrange equation describing the brachistochrone curve for a particle
moving inside a spherical Earth of uniform mass density. Obtain a first integral for
this differential equation by analogy to the Jacobi integral . With the help of this
integral, show that the desired curve is a hypocycloid (the curve described by a point
on a circle rolling on the inside of a larger circle). Obtain an expression for the time
of travel along the brachistochrone between two points on Earth’s surface. How long
would it take to go from New York to Los Angeles (assumed to be 4800 km apart on
the surface) along a brachistochrone tunnel (assuming no friction) and how far below
the surface would the deepest point of the tunnel be?

In Example 2 of Section 2.1 we considered the problem of the minimum surface of
revolution. Examine the symmetric case x; = xp, yp = —y; > 0, and express the
condition for the parameter a as a transcendental equation in terms of the dimension-
less quantities k = xp/a, and o = y,/xp. Show that for o greater than a certain value
aq two values of k are possible, for @ = ¢ only one value of k is possible, while if
a < o no real value of k£ (or a) can be found, so that no catenary solution exists in
this region. Find the value of o, numerically if necessary.
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10.

11.

12.

. The broken-segment solution described in the text (cf. p. 42), in which the area of

revolution is only that of the end circles of radius y; and y,, respectively, is known
as the Goldschmidt solution. For the symmetric situation discussed in Exercise 7,
obtain an expression for the ratio of the area generated by the catenary solutions
to that given by the Goldschmidt solution. Your result should be a function only of
the parameters k and «. Show that for sufficiently large values of « at least one of
the catenaries gives an area below that of the Goldschmidt solution. On the other
hand, show that if « = «g, the Goldschmidt solution gives a lower area than the
catenary.

. A chain or rope of indefinite length passes freely over pulleys at heights y; and y,

above the plane surface of Earth, with a horizontal distance xp — x| between them.
If the chain or rope has a uniform linear mass density, show that the problem of
finding the curve assumed between the pulleys is identical with that of the prob-
lem of minimum surface of revolution. (The transition to the Goldschmidt solution
as the heights y| and y, are changed makes for a striking lecture demonstration. See
Exercise 8.)

Suppose it is known experimentally that a particle fell a given distance y( in a time
to = +/2yp/g. The times of fall for distances other than yg are not known. Sup-
pose further that the Lagrangian for the problem is known, but that instead of solv-
ing the equation of motion for y as a function of ¢, it is guessed that the functional
form is

y =at + bi?.

If the constants a and b are adjusted always so that the time to fall yq is correctly
given by t(, show directly that the integral

fo
/ Ldt
0

is an extremum for real values of the coefficients only when a = 0 and b = g/2.

When two billiard balls collide, the instantaneous forces between them are very large
but act only in an infinitesimal time A¢, in such a manner that the quantity

[ Far
At

remains finite. Such forces are described as impulsive forces, and the integral over
At is known as the impulse of the force. Show that if impulsive forces are present
Lagrange’s equations may be transformed into

< oL ) ( oL )

a0 -\ =S Jj»

3q; /) ¢ 9q;/;

where the subscripts i and f refer to the state of the system before and after the

impulse, S; is the impulse of the generalized impulsive force corresponding to g,
and L is the Lagrangian including all the nonimpulsive forces.

The term generalized mechanics has come to designate a variety of classical mechan-
ics in which the Lagrangian contains time derivatives of ¢; higher than the first. Prob-
lems for which X = f(x, x, ¥, ) have been referred to as “jerky” mechanics. Such
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13.

14.

15.

16.

equations of motion have interesting applications in chaos theory (cf. Chapter 11). By
applying the methods of the calculus of variations, show that if there is a Lagrangian
of the form L(q;, ¢;, ¢;, t), and Hamilton’s principle holds with the zero variation of
both ¢; and ¢; at the end points, then the corresponding Euler—Lagrange equations

are
d? (L d (9L oL
T R 78 T S
dr2 \ 3g; dr \ 9g; g

Apply this result to the Lagrangian

I — m . k2
= 2‘]‘1 2‘]-

Do you recognize the equations of motion?

A heavy particle is placed at the top of a vertical hoop. Calculate the reaction of
the hoop on the particle by means of the Lagrange’s undetermined multipliers and
Lagrange’s equations. Find the height at which the particle falls off.

A uniform hoop of mass m and radius r rolls without slipping on a fixed cylin-
der of radius R as shown in the figure. The only external force is that of gravity.
If the smaller cylinder starts rolling from rest on top of the bigger cylinder, use
the method of Lagrange mulipliers to find the point at which the hoop falls off the
cylinder.

A form of the Wheatstone impedance bridge has, in addition to the usual four resis-
tances, an inductance in one arm and a capacitance in the opposite arm. Set up L and
F for the unbalanced bridge, with the charges in the elements as coordinates. Using
the Kirchhoff junction conditions as constraints on the currents, obtain the Lagrange
equations of motion, and show that eliminating the A’s reduces these to the usual net-
work equations.

In certain situations, particularly one-dimensional systems, it is possible to incorpo-
rate frictional effects without introducing the dissipation function. As an example, find
the equations of motion for the Lagrangian

L =¢V! quz_%
2 2 )
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17.

18

19

20

How would you describe the system? Are there any constants of motion? Suppose a
point transformation is made of the form

s=e"2g.

What is the effective Lagrangian in terms of s? Find the equation of motion for s.
What do these results say about the conserved quantities for the system?

It sometimes occurs that the generalized coordinates appear separately in the kinetic
energy and the potential energy in such a manner that 7 and V may be written in the
form

T=Y filgg and V=) Vg

Show that Lagrange’s equations then separate, and that the problem can always be
reduced to quadratures.

A point mass is constrained to move on a massless hoop of radius a fixed in a vertical
plane that rotates about its vertical symmetry axis with constant angular speed w.
Obtain the Lagrange equations of motion assuming the only external forces arise from
gravity. What are the constants of motion? Show that if w is greater than a critical
value wy), there can be a solution in which the particle remains stationary on the hoop
at a point other than at the bottom, but that if ® < w(, the only stationary point for the
particle is at the bottom of the hoop. What is the value of wg?

A particle moves without friction in a conservative field of force produced by various
mass distributions. In each instance, the force generated by a volume element of the
distribution is derived from a potential that is proportional to the mass of the volume
element and is a function only of the scalar distance from the volume element. For the
following fixed, homogeneous mass distributions, state the conserved quantities in the
motion of the particle:

(a) The mass is uniformly distributed in the plane z = 0.
(b) The mass is uniformly distributed in the half-plane z = 0, y > 0.

(¢) The mass is uniformly distributed in a circular cylinder of infinite length, with
axis along the z axis.

(d) The mass is uniformly distributed in a circular cylinder of finite length, with axis
along the z axis.

(e) The mass is uniformly distributed in a right cylinder of elliptical cross section and
infinite length, with axis along the z axis.

(f) The mass is uniformly distributed in a dumbbell whose axis is oriented along the
Z axis.

(g) The mass is in the form of a uniform wire wound in the geometry of an infinite
helical solenoid, with axis along the z axis.

A particle of mass m slides without friction on a wedge of angle o and mass M that can
move without friction on a smooth horizontal surface, as shown in the figure. Treating
the constraint of the particle on the wedge by the method of Lagrange multipliers,
find the equations of motion for the particle and wedge. Also obtain an expression for
the forces of constraint. Calculate the work done in time ¢ by the forces of constraint
acting on the particle and on the wedge. What are the constants of motion for the
system? Contrast the results you have found with the situation when the wedge is
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fixed. [Suggestion: For the particle you may either use a Cartesian coordinate system
with y vertical, or one with y normal to the wedge or, even more instructively, do it in
both systems.]

M

A0 Z

21. A carriage runs along rails on a rigid beam, as shown in the figure below. The carriage

is attached to one end of a spring of equilibrium length r( and force constant k, whose
other end is fixed on the beam. On the carriage, another set of rails is perpendicular to
the first along which a particle of mass m moves, held by a spring fixed on the beam,
of force constant k and zero equilibrium length. Beam, rails, springs, and carriage are
assumed to have zero mass. The whole system is forced to move in a plane about the
point of attachment of the first spring, with a constant angular speed w. The length of
the second spring is at all times considered small compared to r(.

(a) What is the energy of the system? Is it conserved?

(b) Using generalized coordinates in the laboratory system, what is the Jacobi integral
for the system? Is it conserved?

(c) Interms of the generalized coordinates relative to a system rotating with the angu-
lar speed w, what is the Lagrangian? What is the Jacobi integral? Is it conserved?
Discuss the relationship between the two Jacobi integrals.

22. Suppose a particle moves in space subject to a conservative potential V(r) but

23

is constrained to always move on a surface whose equation is o(r,7) = 0. (The
explicit dependence on ¢ indicates that the surface may be moving.) The instan-
taneous force of constraint is taken as always perpendicular to the surface. Show
analytically that the energy of the particle is not conserved if the surface moves in
time. What physically is the reason for nonconservation of the energy under this
circumstance?

Consider two particles of masses m and m,. Let m| be confined to move on a circle
of radius a in the z = 0 plane, centered at x = y = 0. Let my be confined to move
on a circle of radius b in the z = ¢ plane, centered at x = y = 0. A light (massless)
spring of spring constant £ is attached between the two particles.
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24.

25.

26.

27.

(a) Find the Lagrangian for the system.

(b) Solve the problem using Lagrange multipliers and give a physical interpretation
for each multiplier.

The one-dimensional harmonic oscillator has the Lagrangian L = mx2/2 — kx2/2.
Suppose you did not know the solution to the motion, but realized that the motion
must be periodic and therefore could be described by a Fourier series of the form

x(t) = Zaj cos jwt,
Jj=0

(taking t+ = O at a turning point) where w is the (unknown) angular frequency of the
motion. This representation for x(¢) defines a many-parameter path for the system
point in configuration space. Consider the action integral / for two points, #; and #»
separated by the period T = 27 /w. Show that with this form for the system path, / is
an extremum for nonvanishing x only if a; = 0, for j # 1, and only if w* =k/m.

A disk of radius R rolls without slipping inside the stationary parabola y = ax?. Find
the equations of constraint. What condition allows the disk to roll so that it touches
the parabola at one and only one point independent of its position?

A particle of mass m is suspended by a massless spring of length L. It hangs, without
initial motion, in a gravitational field of strength g. It is struck by an impulsive hor-
izontal blow, which introduces an angular velocity w. If @ is sufficiently small, it is
obvious that the mass moves as a simple pendulum. If w is sufficiently large, the mass
will rotate about the support. Use a Lagrange multiplier to determine the conditions
under which the string becomes slack at some point in the motion.

(a) Show that the constraint Eq. (2.29) is truly nonholonomic by showing that it can-
not be integrated to a homonomic form.

(b) Show that the corresponding constraint forces do no virtual work.

(c) Find one or more solutions to (2.29)—(2.30) for V = 0 and show that they
conserve energy.
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3.1

The Central Force Problem

In this chapter we shall discuss the problem of two bodies moving under the
influence of a mutual central force as an application of the Lagrangian formu-
lation. Not all the problems of central force motion are integrable in terms of
well-known functions. However, we shall attempt to explore the problem as thor-
oughly as is possible with the tools already developed. In the last section of this
chapter we consider some of the complications that follow by the presence of a
third body.

REDUCTION TO THE EQUIVALENT ONE-BODY PROBLEM

Consider a monogenic system of two mass points, m and m (cf. Fig. 3.1), where
the only forces are those due to an interaction potential U. We will assume at first
that U is any function of the vector between the two particles, ro — ry, or of their
relative velocity, r, — ¥y, or of any higher derivatives of ro — rj. Such a system
has six degrees of freedom and hence six independent generalized coordinates.
We choose these to be the three components of the radius vector to the center of
mass, R, plus the three components of the difference vector r = r — ry. The
Lagrangian will then have the form

L=T®R,1)—U(r,T,...). (3.1

my

FIGURE 3.1 Coordinates for the two-body problem.
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The kinetic energy T can be written as the sum of the kinetic energy of the
motion of the center of mass, plus the kinetic energy of motion about the center
of mass, T’:

T=1%m +m)R*+ T
with

2 1 -2

/ 1 :

Here r} and r), are the radii vectors of the two particles relative to the center of
mass and are related to r by

/ m3
rj=————-r,
mi + my
/ mji
=™ (3.2)
mi +my

Expressed in terms of r by means of Eq. (3.2), T’ takes on the form

- 5 mi +my
and the total Lagrangian (3.1) is

mi +m2R2 1 mimy
2 2m) +ma

L=

P —U(,F,...). (3.3)

It is seen that the three coordinates R are cyclic, so that the center of mass
is either at rest or moving uniformly. None of the equations of motion for r will
contain terms involving R or R. Consequently, the process of integration is par-
ticularly simple here. We merely drop the first term from the Lagrangian in all
subsequent discussion.

The rest of the Lagrangian is exactly what would be expected if we had a fixed
center of force with a single particle at a distance r from it, having a mass

mimy
=—, 34
" p—a— (3.4)

where u is known as the reduced mass. Frequently, Eq. (3.4) is written in the form
—-—=— 4+ —. (3.5)

Thus, the central force motion of two bodies about their center of mass can always
be reduced to an equivalent one-body problem.
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THE EQUATIONS OF MOTION AND FIRST INTEGRALS

We now restrict ourselves to conservative central forces, where the potential is
V(r), a function of r only, so that the force is always along r. By the results of
the preceding section, we need only consider the problem of a single particle of
reduced mass m moving about a fixed center of force, which will be taken as the
origin of the coordinate system. Since potential energy involves only the radial
distance, the problem has spherical symmetry; i.e., any rotation, about any fixed
axis, can have no effect on the solution. Hence, an angle coordinate representing
rotation about a fixed axis must be cyclic. These symmetry properties result in a
considerable simplification in the problem.

Since the problem is spherically symmetric, the total angular momentum
vector,

L=rxp,

is conserved. It therefore follows that r is always perpendicular to the fixed direc-
tion of L in space. This can be true only if r always lies in a plane whose normal
is parallel to L. While this reasoning breaks down if L is zero, the motion in that
case must be along a straight line going through the center of force, for L = 0
requires r to be parallel to r, which can be satisfied only in straight-line motion.*
Thus, central force motion is always motion in a plane.

Now, the motion of a single particle in space is described by three coordi-
nates; in spherical polar coordinates these are the azimuth angle 6, the zenith
angle (or colatitude) ¥, and the radial distance r. By choosing the polar axis to be
in the direction of L, the motion is always in the plane perpendicular to the polar
axis. The coordinate i then has only the constant value /2 and can be dropped
from the subsequent discussion. The conservation of the angular momentum vec-
tor furnishes three independent constants of motion (corresponding to the three
Cartesian components). In effect, two of these, expressing the constant direction
of the angular momentum, have been used to reduce the problem from three to
two degrees of freedom. The third of these constants, corresponding to the con-
servation of the magnitude of L, remains still at our disposal in completing the
solution.

Expressed now in plane polar coordinates, the Lagrangian is

L=T-V
= Im(F* +r20%) — V(). (3.6)

As was forseen, 6 is a cyclic coordinate, whose corresponding canonical momen-
tum is the angular momentum of the system:

oL

= — =mr29.
a0

Po

*Formally: ¥ = 7n, + rfng, hence r x i = 0 requires § = 0.
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One of the two equations of motion is then simply

d .
po= (mr29) —0. 3.7)
with the immediate integral
24 _
mr<6 =1, (3.8)

where [ is the constant magnitude of the angular momentum. From (3.7) is also

follows that
d (1 26) =0 (3.9)
dl‘ 2}" = U. .

The factor % is inserted because %rzé is just the areal velocity—the area swept
out by the radius vector per unit time. This interpretation follows from Fig. 3.2,
the differential area swept out in time dt being

dA = 3r(rao),

and hence

dA 1 ,df

— = —r —.

dt 2 dt

The conservation of angular momentum is thus equivalent to saying the areal

velocity is constant. Here we have the proof of the well-known Kepler’s second
law of planetary motion: The radius vector sweeps out equal areas in equal times.
It should be emphasized however that the conservation of the areal velocity is a

general property of central force motion and is not restricted to an inverse-square
law of force.

rdf

do

FIGURE 3.2 The area swept out by the radius vector in a time dt.
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The remaining Lagrange equation, for the coordinate r, is

L i) ENNCAGE (3.10)
—mr) —mr — = U. .
dt ar

Designating the value of the force along r, —9V /dr, by f(r) the equation can be
rewritten as

mi —mré* = f(r). (3.11)

By making use of the first integral, Eq. (3.8), 6 can be eliminated from the equa-
tion of motion, yielding a second-order differential equation involving r only:

12
mi — — = f(r). (3.12)
mr

There is another first integral of motion available, namely the total energy,

since the forces are conservative. On the basis of the general energy conservation
theorem, we can immediately state that a constant of the motion is

E = 3im(i* +r°0%) + V(r), (3.13)

where E is the energy of the system. Alternatively, this first integral could be
derived again directly from the equations of motion (3.7) and (3.12). The latter

can be written as
d 12
F=——(\V+-——=1]. 3.14
mr dr ( + 2mr2) ( )

If both sides of Eq. (3.14) are multiplied by 7 the left side becomes

d (1 ,
rr =—\-zmr- ).
m dt 2'"

The right side similarly can be written as a total time derivative, for if g(r) is any
function of r, then the total time derivative of g has the form

Hence, Eq. (3.14) is equivalent to
d (1 , d (, N 12
— | =mF7 ) = —— ——
dr \2 dt 2 mr?

A (L S LA
dt 2mr 2 mr? -

or
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and therefore

1 12
Emr'2 + 2 + V = constant. (3.15)

Equation (3.15) is the statement of the conservation of total energy, for by
using (3.8) for /, the middle term can be written
12 1 : 292
o m2te2 =

Emr2 T 2mr2 2

and (3.15) reduces to (3.13).

These first two integrals give us in effect two of the quadratures necessary to
complete the problem. As there are two variables, r and 6, a total of four inte-
grations are needed to solve the equations of motion. The first two integrations
have left the Lagrange equations as two first-order equations (3.8) and (3.15); the
two remaining integrations can be accomplished (formally) in a variety of ways.
Perhaps the simplest procedure starts from Eq. (3.15). Solving for 7, we have

a 2 E-V e (3.16)
F= = -V - )
m 2mr? )’

dr
dt = . (3.17)

2 2
\/z(E—V—W)

At time ¢ = 0, let r have the initial value ro. Then the integral of both sides of the
equation from the initial state to the state at time ¢ takes the form

or

" dr

t = . (3.18)

o [2 2

\/E (E -V- 2mr2>

As it stands, Eq. (3.18) gives ¢ as a function of r and the constants of integration
E, [, and ro. However, it may be inverted, at least formally, to give r as a function
of ¢ and the constants. Once the solution for r is found, the solution 0 follows
immediately from Eq. (3.8), which can be written as

_ ldt

dg = —. (3.19)

mr

If the initial value of 6 is 6y, then the integral of (3.19) is simply

gt
0 =1/ — 4+ 6. (3.20)
0

mr2(t)
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Equations (3.18) and (3.20) are the two remaining integrations, and formally
the problem has been reduced to quadratures (evaluating integrals), with four
constants of integration E, I, rg, 6p. These constants are not the only ones that
can be considered. We might equally as well have taken rg, 69, ro, 6o, but of
course E and / can always be determined in terms of this set. For many appli-
cations, however, the set containing the energy and angular momentum is the
natural one. In quantum mechanics, such constants as the initial values of » and
0, or of  and é, become meaningless, but we can still talk in terms of the sys-
tem energy or of the system angular momentum. Indeed, two salient differences
between classical and quantum mechanics appear in the properties of E and /
in the two theories. To discuss the transition to quantum theories it is important
that the classical description of the system be in terms of its energy and angular
momentum.

THE EQUIVALENT ONE-DIMENSIONAL PROBLEM,
AND CLASSIFICATION OF ORBITS

Although we have solved the one-dimensional problem formally, practically
speaking the integrals (3.18) and (3.20) are usually quite unmanageable, and in
any specific case it is often more convenient to perform the integration in some
other fashion. But before obtaining the solution for any specific force laws, let
us see what can be learned about the motion in the general case, using only the
equations of motion and the conservation theorems, without requiring explicit
solutions.

For example, with a system of known energy and angular momentum, the mag-
nitude and direction of the velocity of the particle can be immediately determined
in terms of the distance r. The magnitude v follows at once from the conservation
of energy in the form

E = %mv2 + V(r)

v:,/z(E—V(r)). (3.21)
m

The radial velocity—the component of r along the radius vector—has been given
in Eq. (3.16). Combined with the magnitude v, this is sufficient information to
furnish the direction of the velocity.* These results, and much more, can also be
obtained from consideration of an equivalent one-dimensional problem.

The equation of motion in r, with 6 expressed in terms of /, Eq. (3.12), involves
only r and its derivatives. It is the same equation as would be obtained for a

or

*Alternatively, the conservation of angular momentum furnishes 6, the angular velocity, and this
together with 7 gives both the magnitude and direction of r.
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fictitious one-dimensional problem in which a particle of mass m is subject to a
force
12
f'=r+— (3.22)

mr3’

The significance of the additional term is clear if it is written as mr6% = mvé /7,
which is the familiar centrifugal force. An equivalent statement can be obtained
from the conservation theorem for energy. By Eq. (3.15) the motion of the
particle in r is that of a one-dimensional problem with a fictitious potential
energy:

/ 1 12 l4
\% =V+§W' (3.22")
As a check, note that
, v’ 12
fr=- = f@r)+ —3
ar mr

which agrees with Eq. (3.22). The energy conservation theorem (3.15) can thus
also be written as

E=V'+ Imi? (3.15)

As an illustration of this method of examining the motion, consider a plot of
V'’ against r for the specific case of an attractive inverse-square law of force:

(For positive k, the minus sign ensures that the force is toward the center of force.)
The potential energy for this force is

V==,
;

and the corresponding fictitious potential is

vro Kk 2
Ty 2mr?

Such a plot is shown in Fig. 3.3; the two dashed lines represent the separate com-
ponents

k 12
—— and ,
r 2mr?

and the solid line is the sum V'.
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FIGURE 3.3 The equivalent one-dimensional potential for attractive inverse-square law
of force.

Let us consider now the motion of a particle having the energy E1, as shown
in Figs. 3.3 and 3.4. Clearly this particle can never come closer than ry (cf.
Fig. 3.4). Otherwise with r < r, V’ exceeds E;| and by Eq. (3.15) the kinetic
energy would have to be negative, corresponding to an imaginary velocity! On
the other hand, there is no upper limit to the possible value of r, so the orbit
is not bounded. A particle will come in from infinity, strike the “repulsive cen-
trifugal barrier,” be repelled, and travel back out to infinity (cf. Fig. 3.5). The
distance between E and V' is %mi’z, i.e., proportional to the square of the radial
velocity, and becomes zero, naturally, at the turning point ri. At the same time,
the distance between E and V on the plot is the kinetic energy %mv2 at the
given value of r. Hence, the distance between the V and V' curves is %mrzéz.
These curves therefore supply the magnitude of the particle velocity and its com-
ponents for any distance r, at the given energy and angular momentum. This
information is sufficient to produce an approximate picture of the form of the
orbit.

For the energy E; = 0 (cf. Fig. 3.3), a roughly similar picture of the orbit
behavior is obtained. But for any lower energy, such as E3 indicated in Fig. 3.6,
we have a different story. In addition to a lower bound rj, there is also a max-
imum value r, that cannot be exceeded by r with positive kinetic energy. The
motion is then “bounded,” and there are two turning points, r; and rp, also
known as apsidal distances. This does not necessarily mean that the orbits
are closed. All that can be said is that they are bounded, contained between
two circles of radius r; and r, with turning points always lying on the circles
(cf. Fig. 3.7).
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FIGURE 3.4 Unbounded motion at positive energies for inverse-square law of force.

FIGURE 3.5 The orbit for E| corresponding to unbounded motion.
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FIGURE 3.6 The equivalent one-dimensional potential for inverse-square law of force,
illustrating bounded motion at negative energies.

If the energy is E4 at the minimum of the fictitious potential as shown in
Fig. 3.8, then the two bounds coincide. In such case, motion is possible at only
one radius; r = 0, and the orbit is a circle. Remembering that the effective “force”
is the negative of the slope of the V' curve, the requirement for circular orbits is
simply that f”/ be zero, or

2
fr)y=—-——=-= —mr6?.
mr

We have here the familiar elementary condition for a circular orbit, that the
applied force be equal and opposite to the “reversed effective force” of centripetal

FIGURE 3.7 The nature of the orbits for bounded motion. (8 = 3 from Section 3.6.)
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FIGURE 3.8 The equivalent one-dimensional potential of inverse-square law of force,
illustrating the condition for circular orbits.

acceleration.* The properties of circular orbits and the conditions for them will
be studied in greater detail in Section 3.6.

Note that all of this discussion of the orbits for various energies has been at
one value of the angular momentum. Changing / changes the quantitative details
of the V'’ curve, but it does not affect the general classification of the types of
orbits.

For the attractive inverse-square law of force discussed above, we shall see
that the orbit for E; is a hyperbola, for E, a parabola, and for E3 an ellipse.
With other forces the orbits may not have such simple forms. However, the
same general qualitative division into open, bounded, and circular orbits will be
true for any attractive potential that (1) falls off slower than 1/r% as r — oo,
and (2) becomes infinite slower than 1/r%> as r — 0. The first condition
ensures that the potential predominates over the centrifugal term for large r,
while the second condition is such that for small r it is the centrifugal term that
is important.

The qualitative nature of the motion will be altered if the potential does not
satisfy these requirements, but we may still use the method of the equivalent
potential to examine features of the orbits. As an example, let us consider the
attractive potential

a . 3a
Vir)=—-=. with = ——.
/3

r4
The energy diagram is then as shown in Fig. 3.9. For an energy E, there are two
possible types of motion, depending upon the initial value of r. If rg is less than
r1 the motion will be bounded, r will always remain less than rq, and the particle
will pass through the center of force. If r is initially greater than r,, then it will

*The case E < E4 does not correspond to physically possible motion, for then #2 would have to be
negative, or r imaginary.
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FIGURE 3.9 The equivalent one-dimensional potential for an attractive inverse-fourth
law of force.

always remain so; the motion is unbounded, and the particle can never get inside
the “potential” hole. The initial condition r; < rg < ry is again not physically
possible.

Another interesting example of the method occurs for a linear restoring force
(isotropic harmonic oscillator):

f = —kr, V= %krz.
For zero angular momentum, corresponding to motion along a straight line, V' =V
and the situation is as shown in Fig. 3.10. For any positive energy the motion is
bounded and, as we know, simple harmonic. If / # 0, we have the state of affairs
shown in Fig. 3.11. The motion then is always bounded for all physically possible

FIGURE 3.10 Effective potential for zero angular momentum.
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FIGURE 3.11 The equivalent one-dimensional potential for a linear restoring force.

energies and does not pass through the center of force. In this particular case, it
is easily seen that the orbit is elliptic, for if f = —kr, the x- and y-components of
the force are

fx fy = —ky.

The total motion is thus the resultant of two simple harmonic oscillations at right
angles, and of the same frequency, which in general leads to an elliptic orbit.

A well-known example is the spherical pendulum for small amplitudes. The
familiar Lissajous figures are obtained as the composition of two sinusoidal
oscillations at right angles where the ratio of the frequencies is a rational num-
ber. For two oscillations at the same frequency, the figure is a straight line when
the oscillations are in phase, a circle when they are 90° out of phase, and an
elliptic shape otherwise. Thus, central force motion under a linear restoring force
therefore provides the simplest of the Lissajous figures.

—kx,

THE VIRIAL THEOREM

Another property of central force motion can be derived as a special case of a
general theorem valid for a large variety of systems—the virial theorem. It differs
in character from the theorems previously discussed in being statistical in nature;
i.e., it is concerned with the time averages of various mechanical quantities.
Consider a general system of mass points with position vectors r; and applied
forces F; (including any forces of constraint). The fundamental equations of
motion are then
p; =F;. (1.3)

We are interested in the quantity

GZZPi-ri,
i



84

Chapter 3 The Central Force Problem

where the summation is over all particles in the system. The total time derivative
of this quantity is

dG ) .
E:Zri-pi~l—2pi-ri. (3.23)
i i
The first term can be transformed to
ZI",' pi = Zm,‘i‘i oI = Zmivf =2T,
i i i
while the second term by (1.3) is
ZP;‘ T = ZFi -
i i

Equation (3.23) therefore reduces to

d
d—tzpi-ri=2T+ZFi-ri. (3.24)
i i

The time average of Eq. (3.24) over a time interval 7 is obtained by integrating
both sides with respect to ¢ from O to 7, and dividing by 7:

“dG  dG
— t=— =2T F; -
)y w = +Z i

or
2T+§ F; - r,= [G(7) — G(0)]. (3.25)

If the motion is periodic, i.e., all coordinates repeat after a certain time, and if t
is chosen to be the period, then the right-hand side of (3.25) vanishes. A similar
conclusion can be reached even if the motion is not periodic, provided that the
coordinates and velocities for all particles remain finite so that there is an upper
bound to G. By choosing 7 sufficiently long, the right-hand side of Eq. (3.25) can
be made as small as desired. In both cases, it then follows that

= ——ZF .r;. (3.26)

Equation (3.26) is known as the virial theorem, and the right-hand side is called
the virial of Clausius. In this form the theorem is imporant in the kinetic theory
of gases since it can be used to derive ideal gas law for perfect gases by means of
the following brief argument.
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We consider a gas consisting of N atoms confined within a container of
volume V. The gas is further assumed to be at a Kelvin temperature 7 (not
to be confused with the symbol for kinetic energy). Then by the equipartition
theorem of kinetic theory, the average kinetic energy of each atom is given by
%k BT, kp being the Boltzmann constant, a relation that in effect is the definition
of temperature. The left-hand side of Eq. (3.26) is therefore

3NkgT.

On the right-hand side of Eq. (3.26), the forces F; include both the forces of
interaction between atoms and the forces of constraint on the system. A perfect
gas is defined as one for which the forces of interaction contribute negligibly to
the virial. This occurs, e.g., if the gas is so tenuous that collisions between atoms
occur rarely, compared to collisions with the walls of the container. It is these
walls that constitute the constraint on the system, and the forces of constraint,
F,, are localized at the wall and come into existence whenever a gas atom col-
lides with the wall. The sum on the right-hand side of Eq. (3.26) can therefore be
replaced in the average by an integral over the surface of the container. The force
of constraint represents the reaction of the wall to the collision forces exerted by
the atoms on the wall, i.e., to the pressure P. With the usual outward convention
for the unit vector n in the direction of the normal to the surface, we can therefore
write

dF; = —PndA,

or
1 P
EZF,--ri :—E/n-rdA.
1

But, by Gauss’s theorem,

/n-rdA:/V-rdV:3V.

The virial theorem, Eq. (3.26), for the system representing a perfect gas can there-
fore be written

3 _ 3
ENkBT = EPV,

which, cancelling the common factor of % on both sides, is the familiar ideal
gas law. Where the interparticle forces contribute to the virial, the perfect gas
law of course no longer holds. The virial theorem is then the principal tool, in
classical kinetic theory, for calculating the equation of state corresponding to such
imperfect gases.

We can further show that if the forces F; are the sum of nonfrictional forces
F; and frictional forces f; proportional to the velocity, then the virial depends
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only on the F;; there is no contribution from the f;. Of course, the motion
of the system must not be allowed to die down as a result of the frictional
forces. Energy must constantly be pumped into the system to maintain the mo-
tion; otherwise all time averages would vanish as 7 increases indefinitely (cf.
Derivation 1.)

If the forces are derivable from a potential, then the theorem becomes

_ 1<
T=§ZWVm, (3.27)
13

and for a single particle moving under a central force it reduces to

T = LoV (3.28)
T2 0r " '
If V is a power-law function of r,
V =ar"t,

where the exponent is chosen so that the force law goes as r”, then
A%
—r=m+1V,
ar

and Eq. (3.28) becomes

n+1—
V.
2

T =

(3.29)

By an application of Euler’s theorem for homogeneous functions (cf. p. 62), it is
clear that Eq. (3.29) also holds whenever V is a homogeneous function in r of
degree n + 1. For the further special case of inverse-square law forces, n is —2,
and the virial theorem takes on a well-known form:

T=-1v. (3.30)

l—

THE DIFFERENTIAL EQUATION FOR THE ORBIT,
AND INTEGRABLE POWER-LAW POTENTIALS

In treating specific details of actual central force problems, a change in the orien-
tation of our discussion is desirable. Hitherto solving a problem has meant find-
ing r and @ as functions of time with E, [, etc., as constants of integration. But
most often what we really seek is the equation of the orbit, i.e., the dependence
of r upon 0, eliminating the parameter ¢. For central force problems, the elim-
ination is particularly simple, since ¢ occurs in the equations of motion only as
a variable of differentiation. Indeed, one equation of motion, (3.8), simply pro-
vides a definite relation between a differential change dt and the corresponding
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change d6:
ldt = mr? do. (3.31)

The corresponding relation between derivatives with respect to ¢ and 6 is

d [ d

—_— = 3.32
dt  mr?de (3-32)

These relations may be used to convert the equation of motion (3.12) or (3.16) to
a differential equation for the orbit. A substitution into Eq. (3.12) gives a second-
order differential equation, while a substitution into Eq. (3.17) gives a simpler
first-order differential equation.

The substitution into Eq. (3.12) yields

I d 2
4 < __r> -, (3.33)
mr

which upon substituting u = 1/r and expressing the results in terms of the poten-
tial gives

2
cu - mdv<l>. (3.34)

a? T T rau \u

The preceding equation is such that the resulting orbit is symmetric about two
adjacent turning points. To prove this statement, note that if the orbit is symmet-
rical it should be possible to reflect it about the direction of the turning angle
without producing any change. If the coordinates are chosen so that the turning
point occurs for & = 0, then the reflection can be effected mathematically by
substituting —6 for 8. The differential equation for the orbit, (3.34), is obviously
invariant under such a substitution. Further the initial conditions, here

u = u(0), <d_u) =0, for6 =0,
do /),
will likewise be unaffected. Hence, the orbit equation must be the same whether
expressed in terms of 6 or —6, which is the desired conclusion. The orbit is there-
fore invariant under reflection about the apsidal vectors. In effect, this means that
the complete orbit can be traced if the portion of the orbit between any two turning
points is known. Reflection of the given portion about one of the apsidal vectors
produces a neighboring stretch of the orbit, and this process can be repeated in-
definitely until the rest of the orbit is completed, as illustrated in Fig. 3.12.

For any particular force law, the actual equation of the orbit can be obtained by

eliminating ¢ from the solution (3.17) by means of (3.31), resulting in

ld
do = il . (3.35)

mrz\/% (E — V() — #)
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FIGURE 3.12 Extension of the orbit by reflection of a portion about the apsidal vectors.

With slight rearrangements, the integral of (3.35) is

.
d
6 =/ 4 + 6o, (3.36)
ro 2 [2mE _2mV _ 1
12

or, if the variable of integration is changed tou = 1/r,

u
d
ezeo—f “ . (3.37)
w [mE _2mV _

l 2

As in the case of the equation of motion, Eq. (3.37), while solving the problem
formally, is not always a practicable solution, because the integral often cannot be
expressed in terms of well-known functions. In fact, only certain types of force
laws have been investigated. The most important are the power-law functions of r,

V = ar"t! (3.38)

so that the force varies at the nth power of r.* With this potential, (3.37) becomes

u
d
6 — 6o — / u , (3.39)
ug \/2rln_2E _ 2;71_261“71171 — u2

This again is integrable in terms of simple functions only in certain cases. The
particular power-law exponents for which the results can be expressed in terms of
trigonometric functions are

n=1,-2,-3.

*The case n = —1 is to be excluded from the discussion. In the potential (3.38), it corresponds to a
constant potential, i.e., no force at all. It is an equally anomalous case if the exponent is used in the
force law directly, since a force varying as r—! corresponds to a logarithmic potential, which is not a
power law at all. A logarithmic potential is unusual for motion about a point; it is more characteristic
of a line source. Further details of these cases are given in the second edition of this text.
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The results of the integral for
n=5,3,0—-4,-5 -7

can be expressed in terms of elliptic functions. These are all the possibilities for an
integer exponent where the formal integrations are expressed in terms of simple
well-known functions. Some fractional exponents can be shown to lead to elliptic
functions, and many other exponents can be expressed in terms of the hyperge-
ometric function. The trigonometric and elliptical functions are special cases of
generalized hypergeometric function integrals. Equation (3.39) can of course be
numerically integrated for any nonpathological potential, but this is beyond the
scope of the text.

CONDITIONS FOR CLOSED ORBITS (BERTRAND’S THEOREM)

We have not yet extracted all the information that can be obtained from the
equivalent one-dimensional problem or from the orbit equation without explic-
itly solving for the motion. In particular, it is possible to derive a powerful and
thought-provoking theorem on the types of attractive central forces that lead
to closed orbits, i.e., orbits in which the particle eventually retraces its own
footsteps.

Conditions have already been described for one kind of closed orbit, namely a
circle about the center of force. For any given [, this will occur if the equivalent
potential V’(r) has a minimum or maximum at some distance r( and if the energy
E is just equal to V' (ro). The requirement that V' have an extremum is equiva-
lent to the vanishing of f’ at r¢, leading to the condition derived previously (cf.
Section 3.3).

12
f(ro) = ——, (3.40)
mro

which says the force must be attractive for circular orbits to be possible. In addi-
tion, the energy of the particle must be given by

12
E=V(rg) + —. (3.41)
2mrg

which, by Eq. (3.15), corresponds to the requirement that for a circular orbit r is
zero. Equations (3.40) and (3.41) are both elementary and familiar. Between them
they imply that for any attractive central force it is possible to have a circular
orbit at some arbitrary radius rp, provided the angular momentum / is given by
Eq. (3.40) and the particle energy by Eq. (3.41).

The character of the circular orbit depends on whether the extremum of V’
is a minimum, as in Fig. 3.8, or a maximum, as if Fig. 3.9. If the energy is
slightly above that required for a circular orbit at the given value of [, then for
a minimum in V' the motion, though no longer circular, will still be bounded.
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However, if V' exhibits a maximum, then the slightest raising of E above the
circular value, Eq. (3.34), results in motion that is unbounded, with the parti-
cle moving both through the center of force and out to infinity for the potential
shown in Fig. 3.9. Borrowing the terminology from the case of static equilibrium,
the circular orbit arising in Fig. 3.8 is said to be stable; that in Fig. 3.9 is unsta-
ble. The stability of the circular orbit is thus determined by the sign of the second
derivative of V' at the radius of the circle, being stable for positive second deriva-
tive (V' concave up) and unstable for V' concave down. A stable orbit therefore
occurs if

v’ 9 312
3 = _y +—>0. (3.42)
s =, o |y—p, mr
Using Eq. (3.40), this condition can be written
0 3
oy M) (3.43)
or [ =, o
or
dln f
-3 3.43
dinr|,_, G:43)

r=rgo

where f(rg)/ro is assumed to be negative and given by dividing Eq. (3.40) by rg.
If the force behaves like a power law of r in the vicinity of the circular radius ry,

f=—k",
then the stability condition, Eq. (3.43), becomes
—knr" ™ < 3kr!
or
n> =3, (3.44)

where k is assumed to be positive. A power-law attractive potential varying more
slowly than 1/r? is thus capable of stable circular orbits for all values of ry.

If the circular orbit is stable, then a small increase in the particle energy above
the value for a circular orbit results in only a slight variation of r about rg. It
can be easily shown from (3.34) that for such small deviations from the circu-
larity conditions, the particle executes a simple harmonic motion in u(= 1/r)
about ug:

u =up+ acosfo. (3.45)

Here a is an amplitude that depends upon the deviation of the energy from the
value for circular orbits, and f is a quantity arising from a Taylor series expansion
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of the force law f(r) about the circular orbit radius r(. Direct substitution into the
force law gives

B2 =3+ %ﬂ (3.46)

dr r=ro

As the radius vector of the particle sweeps completely around the plane, u goes
through 8 cycles of its oscillation (cf. Fig. 3.13). If 8 is a rational number, the
ratio of two integers, p/q, then after g revolutions of the radius vector the orbit
would begin to retrace itself so that the orbit is closed.

At each rg such that the inequality in Eq. (3.43) is satisfied, it is possible to
establish a stable circular orbit by giving the particle an initial energy and angu-
lar momentum prescribed by Eqs. (3.40) and (3.41). The question naturally arises
as to what form the force law must take in order that the slightly perturbed orbit
about any of these circular orbits should be closed. It is clear that under these
conditions B must not only be a rational number, it must also be the same rational
number at all distances that a circular orbit is possible. Otherwise, since B can take
on only discrete values, the number of oscillatory periods would change discon-
tinuously with rgp, and indeed the orbits could not be closed at the discontinuity.
With 2 everywhere constant, the defining equation for A2, Eq. (3.46), becomes
in effect a differential equation for the force law f in terms of the independent
variable ry.

We can indeed consider Eq. (3.46) to be written in terms of r if we keep
in mind that the equation is valid only over the ranges in r for which stable
circular orbits are possible. A slight rearrangement of Eq. (3.46) leads to the
equation

— =p*-3, (3.47)

FIGURE 3.13 Orbit for motion in a central force deviating slightly from a circular orbit
for B = 5.
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which can be immediately integrated to give a force law:

k

f(r)z_m-

(3.48)
All force laws of this form, with 8 a rational number, lead to closed stable orbits
for initial conditions that differ only slightly from conditions defining a circular
orbit. Included within the possibilities allowed by Eq. (3.48) are some familiar
forces such as the inverse-square law (8 = 1), but of course many other behaviors,
suchas f = —kr2°(B = %), are also permitted.

Suppose the initial conditions deviate more than slightly from the requirements
for circular orbits; will these same force laws still give circular orbits? The ques-
tion can be answered directly by keeping an additional term in the Taylor series
expansion of the force law and solving the resultant orbit equation.

J. Bertrand solved this problem in 1873 and found that for more than first-
order deviations from circularity, the orbits are closed only for 2 = 1 and
B% = 4. The first of these values of 82, by Eq. (3.48), leads to the familiar
attractive inverse-square law; the second is an attractive force proportional to
the radial distance—Hooke’s law! These force laws, and only these, could pos-
sibly produce closed orbits for any arbitrary combination of / and E(E < 0),
and in fact we know from direct solution of the orbit equation that they do.
Hence, we have Bertrand’s theorem: The only central forces that result in
closed orbits for all bound particles are the inverse-square law and Hooke’s
law.

This is a remarkable result, well worth the tedious algebra required. It is a com-
monplace astronomical observation that bound celestial objects move in orbits
that are in first approximation closed. For the most part, the small deviations
from a closed orbit are traceable to perturbations such as the presence of other
bodies. The prevalence of closed orbits holds true whether we consider only the
solar system, or look to the many examples of true binary stars that have been
observed. Now, Hooke’s law is a most unrealistic force law to hold at all dis-
tances, for it implies a force increasing indefinitely to infinity. Thus, the exis-
tence of closed orbits for a wide range of initial conditions by itself leads to
the conclusion that the gravitational force varies as the inverse-square of the
distance.

We can phrase this conclusion in a slightly different manner, one that is of
somewhat more significance in modern physics. The orbital motion in a plane
can be looked on as compounded of two oscillatory motions, one in r and one
in 6 with the same period. The character of orbits in a gravitational field fixes
the form of the force law. Later on we shall encounter other formulations of the
relation between degeneracy and the nature of the potential.

THE KEPLER PROBLEM: INVERSE-SQUARE LAW OF FORCE

The inverse-square law is the most important of all the central force laws, and it
deserves detailed treatment. For this case, the force and potential can be written
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as
k
f=-% V=— (3.49)
r

There are several ways to integrate the equation for the orbit, the simplest being to
substitute (3.49) in the differential equation for the orbit (3.33). Another approach
is to start with Eq. (3.39) with n set equal to —2 for the gravitational force

, du
0 =6 — , (3.50)
\/ZmE + 2nllzku —u2

12

where the integral is now taken as indefinite. The quantity 6’ appearing in (3.50)
is a constant of integration determined by the initial conditions and will not nec-
essarily be the same as the initial angle 6 at time = 0. The indefinite integral is
of the standard form,

2
arccos—m, (3.51)

dx 1
[\/(X—G—,Bx%—yxz_\/—)/ N

where

q=p*—day.

To apply this to (3.50), we must set
o= "—, B=— y =—1, (3.52)
and the discriminant ¢ is therefore
2mk\ 2 2EI2
=|— 1+—]). 3.53
q<12>(+mk2> (3.53)

With these substitutes, Eq. (3.50) becomes

Y m_z -1
6 =60 —arccos ———. (3.54)
1+ 2EI2

Finally, by solving for u, = 1/r, the equation of the orbit is found to be

1 mk 2E12 /
-=7 1+ 1—|—m—kzcos(9—6?) ) (3.55)

The constant of integration 8 can now be identified from Eq. (3.55) as one of the
turning angles of the orbit. Note that only three of the four constants of integration
appear in the orbit equation; this is always a characteristic property of the orbit. In
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effect, the fourth constant locates the initial position of the particle on the orbit. If
we are interested solely in the orbit equation, this information is clearly irrelevant
and hence does not appear in the answer. Of course, the missing constant has to
be supplied if we wish to complete the solution by finding r and 6 as functions
of time. Thus, if we choose to integrate the conservation theorem for angular
momentum,

mr? do = 1dt,

by means of (3.55), we must additionally specify the initial angle 6.
Now, the general equation of a conic with one focus at the origin is

1 = C[1+ecos(d —6)], (3.56)
,

where e is the eccentricity of the conic section. By comparison with Eq. (3.55), it
follows that the orbit is always a conic section, with the eccentricity

|4 2EE (3.57)
e= = )
mk?

The nature of the orbit depends upon the magnitude of e according to the follow-
ing scheme:

e>1, E > 0: hyperbola,
e=1, E=0: parabola,
e <1, E <O: ellipse,
k2
e=0, E = e : circle.
202

This classification agrees with the qualitative discussion of the orbits on the
energy diagram of the equivalent one-dimensional potential V'. The condition for
circular motion appears here in a somewhat different form, but it can easily be
derived as a consequence of the previous conditions for circularity. For a circular
orbit, T and V are constant in time, and from the virial theorem

E=T+V = V+V—V
= =-3 =5
Hence
k
E—=——. (3.58)
2rg

But from Eq. (3.41), the statement of equilibrium between the central force and
the “effective force,” we can write

k2
2"
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or
12

T omk’

ro (3.59)

With this formula for the orbital radius, Eq. (3.58) becomes

_ mik?
o2

the above condition for circular motion.

In the case of elliptic orbits, it can be shown the major axis depends solely
upon the energy, a theorem of considerable importance in the Bohr theory of the
atom. The semimajor axis is one-half the sum of the two apsidal distances r; and
ry (cf. Fig. 3.6). By definition, the radial velocity is zero at these points, and the
conservation of energy implies that the apsidal distances are therefore the roots of
the equation (cf. Eq. (3.15))

2o k_,
2mr2
or
k 2
2
o =0 3.60
T E T mE (3.60)

The coefficient of the linear term in this particular quadratic equation is the nega-
tive of the sum of the roots. Hence, the semimajor axis is given by

ry+rnr k
- __ - 3.61
“ 2 2E (3.61)

Note that in the circular limit, Eq. (3.61) agrees with Eq. (3.58). In terms of the
semimajor axis, the eccentricity of the ellipse can be written

e=1——, (3.62)

(a relation we will have use for in a later chapter). Further, from Eq. (3.62) we
have the expression

12
— =a(l — 6‘2), (3.63)
mk

in terms of which the elliptical orbit equation (3.55) can be written

a(l —é?)

r=——7mom7m7m7—o— (3.64)
1+ ecos(@ —0)
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e=0

e=10.5

e =0.75

=09

FIGURE 3.14 Ellipses with the same major axes and eccentricities from 0.0 to 0.9.

From Eq. (3.64), it follows that the two apsidal distances (which occur when 6 —6’
is 0 and , respectively) are equal to a(l — e) and a(1 + e), as is to be expected
from the properties of an ellipse.

Figure 3.14 shows sketches of four elliptical orbits with the same major axis
a, and hence the same energy, but with eccentricities ¢ = 0.0, 0.5, 0.75, and 0.9.
Figure 3.15 shows how r; and r, depend on the eccentricity ¢.

The velocity vector v of the particle along the elliptical path can be resolved
into a radial component v, = I = p,/m plus an angular component vy = rf =
l/mr

V| = vk + vg0.

The radial component with the magnitude v, = evpsinf/(1 — &%) vanishes
at the two apsidal distances, while vg attains its maximum value at perihelion
and its minimum at aphelion. Table 3.1 lists angular velocity values at the apsi-
dal distances for several eccentricities. Figure 3.16 presents plots of the radial
velocity component v, versus the radius vector r for the half cycle when vy
points outward, i.e., it is positive. During the remaining half cycle v is negative,

aphelion distance

perihelion distance

0

0 < 1

FIGURE 3.15 Dependence of normalized apsidal distances | (lower line) and r, (upper
line) on the eccentricity ¢.
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TABLE 3.1 Normalized angular speeds 6 and vg = r6 at perihelion (r{) and aphelion
(rp), respectively, in Keplerian orbits of various eccentricities (¢). The normalized radial
distances at perihelion and aphelion are listed in columns 2 and 3, respectively. The
normalization is with respect to motion in a circle with the radius a and the angular
momentum / = mavy = mazé().

Eccentricity  Perihelion  Aphelion Angular speed Linear angular speed
ri/a ra/a 61/60 62/60  vei/vo vg2/vo
1 4 1 1 1 1
& —¢ e
(1-82 A+4+e&?2 1-c¢ l+e¢
0 1 1 1 1 1 1
0.1 0.9 1.1 1.234 0.826 1.111 0.909
0.3 0.7 1.3 2.041 0.592 1.429 0.769
0.5 0.5 1.5 4.000 0.444 2.000 0.667
0.7 0.3 1.7 11.111 0.346 3.333 0.588
0.9 0.1 1.9 100.000 0.277 10.000 0.526

and the plot of Fig. 3.16 repeats itself for the negative range below v, = 0
(not shown). Figure 3.17 shows analogous plots of the angular velocity com-
ponent vg versus the angle 6. In these plots and in the table the velocities are
normalized relative to the quantities vy and 6y obtained from the expressions
I =mr?) = mrvg = mazéo = mavy for the conservation of angular momentum
in the elliptic orbits of semimajor axis a, and in the circle of radius a.

FIGURE 3.16 Normalized radial velocity, v,, versus r for three values of the eccentric-
ity €.
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100 200 300
0

FIGURE 3.17 Normalized orbital velocity, vg, versus 6 for three values of the eccen-
tricity e.

3.8 B THE MOTION IN TIME IN THE KEPLER PROBLEM

The orbital equation for motion in a central inverse-square force law can thus be
solved in a fairly straightforward manner with results that can be stated in simple
closed expressions. Describing the motion of the particle in time as it traverses the
orbit is however a much more involved matter. In principle, the relation between
the radial distance of the particle r and the time (relative to some starting point)
is given by Eq. (3.18), which here takes on the form

fo M / r dr
N2, k-2 g
Vi T e T E
Similarly, the polar angle 6 and the time are connected through the conserva-
tion of angular momentum,

(3.65)

mrz

dt = — do,
l

which combined with the orbit equation (3.55) leads to

3 6
o / a9 , (3.66)
mi2 Jy, T1+ ecos(@ — 0912

Either of these integrals can be carried out in terms of elementary functions. How-
ever, the relations are very complex, and their inversions to give r or 6 as func-
tions of ¢ pose formidable problems, especially when one wants the high precision
needed for astronomical observations.

To illustrate some of these involvements, let us consider the situation for
parabolic motion (e = 1), where the integrations can be most simply carried
out. It is customary to measure the plane polar angle from the radius vector at
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the point of closest approach—a point most usually designated as the perihe-
lion.* This convention corresponds to setting 6’ in the orbit equation (3.56) equal

to zero. Correspondingly, time is measured from the moment, T, of perihelion
passage. Using the trigonometric identity

2 9
1+ cos@ = 2cos 3
Eq. (3.66) then reduces for parabolic motion to the form

B 0 0
t= / sect = do.
4mk2 0 2

The integration is easily performed by a change of variable to x = tan(6/2),
leading to the integral

13 tan(0/2)
f (1 + x?) dx,
0

=
2mk?
or
t i t8+1t30 (3.67)
= — an — —tan” — |. .
2mk? 2 '3 2

In this equation, —m < 6 < m, where for ¥+ — —oo the particle starts
approaching from infinitely far away located at &6 = —m. The time t = O corre-
sponds to 8 = 0, where the particle is at perihelion. Finally # — +o0 corresponds
to & — m as the particle moves infinitely far away. This is a straightforward rela-
tion for ¢ as a function of 6; inversion to obtain 6 at a given time requires solving
a cubic equation for tan(6/2), then finding the corresponding arctan. The radial
distance at a given time is given through the orbital equation.

For elliptical motion, Eq. (3.65) is most conveniently integrated through an
auxiliary variable ¥, denoted as the eccentric anomaly,* and defined by the
relation

r=a(l —ecosy). (3.68)

By comparison with the orbit equation, (3.64), it is clear that ¢ also covers the
interval O to 27 as 6 goes through a complete revolution, and that the perihelion
occurs at ¥ = 0 (where 8 = 0 by convention) and the aphelion at = 7 = 6.

*Literally, the term should be restricted to orbits around the Sun, while the more general term should
be periapsis. However, it has become customary to use perihelion no matter where the center of force
is. Even for space craft orbiting the Moon, official descriptions of the orbital parameters refer to
perihelion where pericynthion would be the pedantic term.

*Medieval astronomers expected the angular motion to be constant. The angle calculated by multi-
plying this average angular velocity (27/period) by the time since the last perihelion passage was
called the mean anomaly. From the mean anomaly the eccentric anomaly could be calculated and then
used to calculate the true anomaly. The angle 6 is called the true anomaly just as it was in medieval
astronomy.
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Expressing E and £ in terms of a, e, and k, Eq. (3.65) can be rewritten for

elliptic motion as
,
d
r= |2 / rer , (3.69)
2k Jry [, 2 _ali=ed)
2a 2

where, by the convention on the starting time, rg is the perihelion distance. Substi-
tution of r in terms of ¢ from Eq. (3.68) reduces this integral, after some algebra,

to the simple form
ma3 [V
t= T/ (1 —ecosy)dy. (3.70)
0

First, we may note that Eq. (3.70) provides an expression for the period, 7, of
elliptical motion, if the integral is carried over the full range in ¥ of 2x:

r =2wa3? /% (.71

This important result can also be obtained directly from the properties of an
ellipse. From the conservation of angular momentum, the areal velocity is con-
stant and is given by

dA 1 ,. [
— = —rf=—. (3.72)
dt 2 2m

The area of the orbit, A, is to be found by integrating (3.72) over a complete

period 7:
TdA l
/ Lar=a=-".
o dt 2m
Now, the area of an ellipse is
A =mab,

where, by the definition of eccentricity, the semiminor axis b is related to a
according to the formula

b=av1—e2.
By (3.62), the semiminor axis can also be written as

12

b=al?|—,
mk
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and the period is therefore

2 2
T = —mna3/2 l— = 27a’/? ﬂ
l mk V &

as was found previously. Equation (3.71) states that, other things being equal,
the square of the period is proportional to the cube of the major axis, and this
conclusion is often referred to as the third of Kepler’s laws.* Actually, Kepler
was concerned with the specific problem of planetary motion in the gravitational
field of the Sun. A more precise statement of this third law would therefore be:
The square of the periods of the various planets are proportional to the cube of
their major axes. In this form, the law is only approximately true. Recall that the
motion of a planet about the Sun is a two-body problem and m in (3.71) must be
replaced by the reduced mass: (cf. Eq. (3.4))

mimy
mi —i—mz’

where m| may be taken as referring to the planet and m, to the Sun. Further, the
gravitational law of attraction is

so that the constant k is
k = Gmimy. (3.73)
Under these conditions, (3.71) becomes

2wa’/? 2wa’/?
T = =~ s
VG(my+my)  /Gmy

(3.74)

if we neglect the mass of the planet compared to the Sun. It is the approximate
version of Eq. (3.74) that is Kepler’s third law, for it states that T is propor-
tional to a3/2, with the same constant of proportionality for all planets. How-
ever, the planetary mass m is not always completely negligible compared to the
Sun’s; for example, Jupiter has a mass of about 0.1% of the mass of the Sun.
On the other hand, Kepler’s third law is rigorously true for the electron orbits
in the Bohr atom, since p and k are then the same for all orbits in a given
atom.

To return to the general problem of the position in time for an elliptic orbit, we
may rewrite Eq. (3.70) slightly by introducing the frequency of revolution w as

*Kepler’s three laws of planetary motion, published around 1610, were the result of his pioneering
analysis of planetary observations and laid the groundwork for Newton’s great advances. The second
law, the conservation of areal velocity, is a general theorem for central force motion, as has been
noted previously. However, the first—that the planets move in elliptical orbits about the Sun at one
focus—and the third are restricted specifically to the inverse-square law of force.
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w=—=,/—. (3.75)

The integration in Eq. (3.70) is of course easily performed, resulting in the relation
wt =Y —esiny, (3.76)

known as Kepler’s equation. The quantity wt goes through the range 0 to 2w,
along with v and 6, in the course of a complete orbital revolution and is therefore
also denoted as an anomaly, specifically the mean anomaly.

To find the position in orbit at a given time #, Kepler’s equation, (3.76), would
first be inverted to obtain the corresponding eccentric anomaly . Equation (3.68)
then yields the radial distance, while the polar angle 6 can be expressed in terms
of ¥ by comparing the defining equation (3.68) with the orbit equation (3.64):

1 —e?

1 cosf = ——.
te 1 —ecosyr

With a little algebraic manipulation, this can be simplified, to

cosg = S8V —¢ (3.77)

1 —ecosy

By successively adding and subtracting both sides of Eq. (3.77) from unity and
taking the ratio of the resulting two equations, we are led to the alternative form

o
anl = [1reon Y (3.78)
2 V1=

Either Eq. (3.77) or (3.78) thus provides 6, once 1 is known. The solution of
the transcendental Kepler’s equation (3.76) to give the value of ¢ corresponding
to a given time is a problem that has attracted the attention of many famous math-
ematicians ever since Kepler posed the question early in the seventeenth century.
Newton, for example, contributed what today would be called an analog solution.
Indeed, it can be claimed that the practical need to solve Kepler’s equation to
accuracies of a second of arc over the whole range of eccentricity fathered many
of the developments in numerical mathematics in the eighteenth and nineteenth
centuries. A few of the more than 100 methods of solution developed in the pre-
computer era are considered in the exercises to this chapter.

THE LAPLACE-RUNGE-LENZ VECTOR
The Kepler problem is also distinguished by the existence of an additional

conserved vector besides the angular momentum. For a general central force,
Newton’s second law of motion can be written vectorially as

p= f(r);- (3.79)
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The cross product of p with the constant angular momentum vector L therefore
can be expanded as

xL =

[rx (rxr)]

mf(r)
r

mf(r) [r(r-l") —rzl"]. (3.80)
.

Equation (3.80) can be further simplified by noting that

r-r=—-—(-r)=rr
2dt (r-r)
(or, in less formal terms, the component of the velocity in the radial direction is 7).
As L is constant, Eq. (3.80) can then be rewritten, after a little manipulation, as

d L) = 2T XF
E(PX )= —mf(r)r <———2)~

r r

or
d _ ,d (1
T xL) = —mf()r (;) . (3.81)

Without specifying the form of f(r), we can go no further. But Eq. (3.81) can
be immediately integrated if f(r) is inversely proportional to r>—the Kepler
problem. Writing f(r) in the form prescribed by Eq. (3.49), Eq. (3.81) then

becomes
d d (mkr
— Ly=—{—
dt(px ) dt( r )

which says that for the Kepler problem there exists a conserved vector A defined
by

A=pxL—mkE. (3.82)
r

The relationships between the three vectors in Eq. (3.82) and the conservation of
A are illustrated in Fig. 3.18, which shows the three vectors at different positions
in the orbit. In recent times, the vector A has become known amongst physicists
as the Runge—Lenz vector, but priority belongs to Laplace.

From the definition of A, we can easily see that

A-L=0, (3.83)

since L is perpendicular to p x L and r is perpendicular to L = r x p. It follows
from this orthogonality of A to L that A must be some fixed vector in the plane of
the orbit. If 6 is used to denote the angle between r and the fixed direction of A,
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FIGURE 3.18 The vectors p, L, and A at three positions in a Keplerian orbit. At perihe-
lion (extreme left) |p x L| = mk(1+e) and at aphelion (extreme right) [pxL| = mk(1—e).
The vector A always points in the same direction with a magnitude mke.

then the dot product of r and A is given by
A.r=Arcosf =r-(p x L) — mkr. (3.84)
Now, by permutation of the terms in the triple dot product, we have
r-pxL)=L.:(rxp) =12,
so that Eq. (3.84) becomes
Ar cos@ = 1> — mkr,

or

1 mk A

The Laplace-Runge-Lenz vector thus provides still another way of deriving the
orbit equation for the Kepler problem! Comparing Eq. (3.85) with the orbit equa-
tion in the form of Eq. (3.55) shows that A is in the direction of the radius vector
to the perihelion point on the orbit, and has a magnitude

A = mke. (3.86)

For the Kepler problem we have thus identified two vector constants of the
motion L and A, and a scalar E. Since a vector must have all three independent
components, this corresponds to seven conserved quantities in all. Now, a system
such as this with three degrees of freedom has six independent constants of the
motion, corresponding, say to the three components of both the initial position
and the initial velocity of the particle. Further, the constants of the motion we
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have found are all algebraic functions of r and p that describe the orbit as a whole
(orientation in space, eccentricity, etc.); none of these seven conserved quantities
relate to where the particle is located in the orbit at the initial time. Since one
constant of the motion must relate to this information, say in the form of 7', the
time of the perihelion passage, there can be only five independent constants of the
motion describing the size, shape, and orientation of the orbit. We can therefore
conclude that not all of the quantities making up L, A, and E can be independent;
there must in fact be two relations connecting these quantities. One such relation
has already been obtained as the orthogonality of A and L, Eq. (3.83). The other
follows from Eq. (3.86) when the eccentricity is expressed in terms of E and /
from Eq. (3.57), leading to

A% = m*k* + 2mEI?, (3.87)

thus confirming that there are only five independent constants out of the seven.

The angular momentum vector and the energy alone contain only four inde-
pendent constants of the motion: The Laplace-Runge—Lenz vector thus adds one
more. It is natural to ask why there should not exist for any general central force
law some conserved quantity that together with L. and E serves to define the
orbit in a manner similar to the Laplace—Runge—Lenz vector for the special case
of the Kepler problem. The answer seems to be that such conserved quantities
can in fact be constructed, but that they are in general rather peculiar functions
of the motion. The constants of the motion relating to the orbit between them
define the orbit, i.e., lead to the orbit equation giving » as a function of 6. We
have seen that in general orbits for central force motion are not closed; the argu-
ments of Section 3.6 show that closed orbits imply rather stringent conditions on
the form of the force law. It is a property of nonclosed orbits that the curve will
eventually pass through any arbitrary (r, 0) point that lies between the bounds of
the turning points of r. Intuitively this can be seen from the nonclosed nature of
the orbit; as 0 goes around a full cycle, the particle must never retrace its foot-
steps on any previous orbit. Thus, the orbit equation is such that r is a multi-
valued function of 6 (modulo 27); in fact, it is an infinite-valued function of 6.
The corresponding conserved quantity additional to L. and E defining the orbit
must similarly involve an infinite-valued function of the particle motion. Suppose
the r variable is periodic with angular frequency w, and the angular coordinate
0 is periodic with angular frequency wy. If these two frequencies have a ratio
(wr/wp) that is an integer or integer fraction, periods are said to be commensu-
rate. Commensurate orbits are closed with the orbiting mass continually retracing
its path. When wy > o, the orbit will spiral about the origin as the distance
varies between the apsidal (maximum and minimum) values, closing only if the
frequencies are commensurate. If, as in the Kepler problem, w, = wy, the periods
are said to be degenerate. If the orbits are degenerate there exists an additional
conserved quantity that is an algebraic function of r and p, such as the Runge—
Lenz vector.

From these arguments we would expect a simple analog of such a vector to
exist for the case of a Hooke’s law force, where, as we have seen, the orbits are
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also degenerate. This is indeed the case, except that the natural way to formulate
the constant of the motion leads not to a vector but to a tensor of the second
rank (cf. Section 7.5). Thus, the existence of an additional constant or integral of
the motion, beyond E and L, that is a simple algebraic function of the motion
is sufficient to indicate that the motion is degenerate and the bounded orbits are
closed.

SCATTERING IN A CENTRAL FORCE FIELD

Historically, the interest in central forces arose out of the astronomical problems
of planetary motion. There is no reason, however, why central force motion must
be thought of only in terms of such problems; mention has already been made
of the orbits in the Bohr atom. Another field that can be investigated in terms of
classical mechanics is the scattering of particles by central force fields. Of course,
if the particles are on the atomic scale, it must be expected that the specific results
of a classical treatment will often be incorrect physically, for quantum effects
are usually large in such regions. Nevertheless, many classical predictions remain
valid to a good approximation. More important, the procedures for describing
scattering phenomena are the same whether the mechanics is classical or quan-
tum; we can learn to speak the language equally as well on the basis of classical
physics.

In its one-body formulation, the scattering problem is concerned with the
scattering of particles by a center of force. We consider a uniform beam of
particles—whether electrons, or a-particles, or planets is irrelevant—all of the
same mass and energy incident upon a center of force. It will be assumed that
the force falls off to zero for very large distances. The incident beam is charac-
terized by specifying its intensity I (also called flux density), which gives the
number of particles crossing unit area normal to the beam in unit time. As a
particle approaches the center of force, it will be either attracted or repelled,
and its orbit will deviate from the incident straight-line trajectory. After passing
the center of force, the force acting on the particle will eventually diminish so
that the orbit once again approaches a straight line. In general, the final direc-
tion of motion is not the same as the incident direction, and the particle is said
to be scattered. The cross section for scattering in a given direction, o (€2), is
defined by

o (Q)dS = number of particles scattered into solid angle d€2 per unit time

El

incident intensity
(3.88)

where d<2 is an element of solid angle in the direction £). Often o (€2) is also des-
ignated as the differential scattering cross section. With central forces there must
be complete symmetry around the axis of the incident beam; hence the element
of solid angle can be written

dQ2 =2msin®do, (3.89)
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FIGURE 3.19 Scattering of an incident beam of particles by a center of force.

L

where ® is the angle between the scattered and incident directions, known as
the scattering angle (cf. Fig. 3.19, where repulsive scattering is illustrated). Note
that the name ‘“cross section” is deserved in that o (€2) has the dimensions of
an area.

For any given particle the constants of the orbit, and hence the amount of
scattering, are determined by its energy and angular momentum. It is conve-
nient to express the angular momentum in terms of the energy and a quantity
known as the impact parameter, s, defined as the perpendicular distance between
the center of force and the incident velocity. If vy is the incident speed of the
particle, then

| = mvys = sv/2mE. (3.90)

Once E and s are fixed, the angle of scattering ® is then determined uniquely.*
For the moment, it will be assumed that different values of s cannot lead to the
same scattering angle. Therefore, the number of particles scattered into a solid
angle d2 lying between ® and ® 4 d® must be equal to the number of the
incident particles with impact parameter lying between the corresponding s and
s +ds:

2nls|ds| =270 (©)Isin® |dO)|. (3.91)

Absolute value signs are introduced in Eq. (3.91) because numbers of particles
must of course always be positive, while s and ® often vary in opposite directions.
If s is considered as a function of the energy and the corresponding scattering
angle,

s =5(0, F), (3.92)

*It is at this point in the formulation that classical and quantum mechanics part company. Indeed,
it is fundamentally characteristic of quantum mechanics that we cannot unequivocally predict the
trajectory of any particular particle. We can only give probabilities for scattering in various directions.
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FIGURE 3.20 Relation of orbit parameters and scattering angle in an example of repul-
sive scattering.

then the dependence of the differential cross section on ® is given by

s ds

®) = &
*® =51 7o

. (3.93)

A formal expression for the scattering angle ® as a function of s can be
directly obtained from the orbit equation, Eq. (3.36). Again, for simplicity, we
will consider the case of purely repulsive scattering (cf. Fig. 3.20). As the orbit
must be symmetric about the direction of the periapsis, the scattering angle is
given by

O =7 -2V, (3.94)

where W is the angle between the direction of the incoming asymptote and the
periapsis (closest approach) direction. In turn, W can be obtained from Eq. (3.36)
by setting ro = oo when 6y = 7 (the incoming direction), whence 6 = & — W
when r = r,,, the distance of closest approach. A trivial rearrangement then leads

to
o0
d
W - / r , (3.95)
rm o p2

12 12 r2

Expressing / in terms of the impact parameter s (Eq. (3.90)), the resultant expres-
sion for ®(s) is

o0 d
Os) =7 — 2/ kil , (3.96)
T r\/rz(l—%)—s2
or, changing » to 1/u
Um d
@) =7 — 2/ il (3.97)
0

1-Yw _ 2
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Equations (3.96) and (3.97) are rarely used except for direct numerical com-
putation of the scattering angle. However, when an analytic expression is avail-
able for the orbits, the relation between ® and s can often be obtained almost by
inspection. An historically important illustration of such a procedure is the repul-
sive scattering of charged particles by a Coulomb field. The scattering force field
is that produced by a fixed charge —Ze acting on the incident particles having a
charge —Z’e so that the force can be written as

Z7'e?
f=—,
r

i.e., a repulsive inverse-square law. The results of Section 3.7 can be taken over
here with no other change than writing the force constant as

k=—-227¢. (3.98)

The energy E is greater than zero, and the orbit is a hyperbola with the eccentricity

given by*
|4 2EP (2 Y (3.99)
€ = —_—— = — ), .
m(ZZ'e?)? Z7'e?

where use has been made of Eq. (3.90). If 6’ in Eq. (3.55) is chosen to be ,
periapsis corresponds to 6 = 0 and the orbit equation becomes

1 77 é?
S = ml—ze(e cosf — 1). (3.100)
.

This hyperbolic orbit equation has the same form as the elliptic orbit equa-
tion (3.56) except for a change in sign. The direction of the incoming asymptote,
W, is then determined by the condition r — oo:

1
cosV¥Y = —
€
or, by Eq. (3.94),
G
sin — = —
2 €
Hence,
®
cot> — = €2 1,

*To avoid confusion with the electron charge e, the eccentricity will temporarily be denoted by €.
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and using Eq. (3.99)

® 2FEs
cot — = ——.
2 ZZ'e?

The desired functional relationship between the impact parameter and the scatter-
ing angle is therefore

ZZ'¢?  ®
s = cot —

, 3.101
2E 2 ( )

so that on carrying through the manipulation required by Eq. (3.93), we find that
o (®) is given by

2
1 (27 nC)
o(@®) =- csch —. (3.102)
4\ 2E 2

Equation (3.102) gives the famous Rutherford scattering cross section, orig-
inally derived by Rutherford for the scattering of « particles by atomic nuclei.
Quantum mechanics in the nonrelativistic limit yields a cross section identical
with this classical result.

In atomic physics, the concept of a fotal scattering cross section or, defined
as

by

or =/ o(ﬂ)dQ:Zn’/ 0(®)sin® dO,
4 0

is of considerable importance. However, if we attempt to calculate the total cross
section for Coulomb scattering by substituting Eq. (3.102) in this definition, we
obtain an infinite result! The physical reason behind this behavior is not diffi-
cult to discern. From its definition the total cross section is the number of parti-
cles scattered in all directions per unit time for unit incident intensity. Now, the
Coulomb field is an example of a “long-range” force; its effects extend to infinity.
The very small deflections occur only for particles with very large impact param-
eters. Hence, all particles in an incident beam of infinite lateral extent will be
scattered to some extent and must be included in the total scattering cross section.
It is therefore clear that the infinite value for o7 is not peculiar to the Coulomb
field; it occurs in classical mechanics whenever the scattering field is different
from zero at all distances, no matter how large.* Only if the force field “cuts off,”
i.e., is zero beyond a certain distance, will the scattering cross section be finite.
Physically, such a cut-off occurs for the Coulomb field of a nucleus as a result of
the presence of the atomic electrons, which “screen” the nucleus and effectively
cancel its charge outside the atom.

*or is also infinite for the Coulomb field in quantum mechanics, since it has been stated that
Eq. (3.102) remains valid there. However, not all “long-range” forces give rise to infinite total cross
sections in quantum mechanics. It turns out that all potentials that fall off faster at larger distances
than 1/ r2 produce a finite quantum-mechanical total scattering cross section.
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In Rutherford scattering, the scattering angle ® is a smooth monotonic func-
tion of the impact parameter s. From Eq. (3.101) we see that as s decreases from
infinity, ® increases monotonically from zero, reaching the value & as s goes to
zero. However, other types of behavior are possible in classical systems, requiring
some modification in the prescription, Eq. (3.93), for the classical cross section.
For example, with a repulsive potential and particle energy qualitatively of the
nature shown in Fig. 3.21(a), it is easy to see physically that the curve of ® ver-
sus s may behave as indicated in Fig. 3.21(b). Thus, with very large values of
the impact parameter, as noted above, the particle always remains at large radial
distances from the center of force and suffers only minor deflection. At the other
extreme, for s = 0, the particle travels in a straight line into the center of force,
and if the energy is greater than the maximum of the potential, it will continue
on through the center without being scattered at all. Hence, for both limits in s,
the scattering angle goes to zero. For some intermediate value of s, the scatter-
ing angle must pass through a maximum ®,,. When ® < ©,,, there will be two
values of s that can give rise to the same scattering angle. Each will contribute
to the scattering cross section at that angle, and Eq. (3.93) should accordingly be
modified to the form

ds
doe

(3.103)

Si
o(®) = Xl: sin® |dO|,"
where for ® # ©,, the index i takes on the values 1 and 2. Here the subscript i
distinguishes the various values of s giving rise to the same value of ®.

Of particular interest is the cross section at the maximum angle of scattering
®,,. As the derivative of ® with respect to s vanishes at this angle, it follows from
Eq. (3.93) or (3.103) that the cross section must become infinite at ® — ©,,. But
for all larger angles the cross section is zero, since the scattering angle cannot
exceed ®,,. The phenomenon of the infinite rise of the cross section followed by
abrupt disappearance is very similar to what occurs in the geometrical optics of the
scattering of sunlight by raindrops. On the basis of this similarity, the phenomenon
is called rainbow scattering.

< ——n
—
@
3

(a) (b)

FIGURE 3.21 Repulsive nonsingular scattering potential and double-valued curve of
scattering angle ® versus impact parameter s for sufficiently high energy.
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So far, the examples have been for purely repulsive scattering. If the scat-
tering involves attractive forces, further complications may arise. The effect of
attraction will be to pull the particle in toward the center instead of the repul-
sive deflection outward shown in Fig. 3.20. In consequence, the angle W between
the incoming direction and the periapsis direction may be greater than 7/2, and
the scattering angle as given by Eq. (3.94) is then negative. This in itself is no
great difficulty as clearly it is the magnitude of ® that is involved in finding the
cross section. But, under circumstances ® as calculated by Eq. (3.96) may be
greater than 27. That is, the particle undergoing scattering may circle the cen-
ter of force for one or more revolutions before going off finally in the scattered
direction.

To see how this may occur physically, consider a scattering potential shown as
the s = O curve in Fig. 3.22. Tt is typical of the intermolecular potentials assumed
in many kinetic theory problems—an attractive potential at large distances falling
off more rapidly than 1/r2, with a rapidly rising repulsive potential at small
distances. The other curves in Fig. 3.22 show the effective one-dimensional
potential V' (r), Eq. (3.22"), for various values of the impact parameter s (equiv-
alently: various values of /). Since the repulsive centrifugal barrier dominates at
large r for all values of s > 0, the equivalent potential for small s will exhibit
a hump.

Now let us consider an incoming particle with impact parameter s; and at the
energy E1 corresponding to the maximum of the hump. As noted in Section 3.3,
the difference between E| and V'(r) is proportional to the square of the radial
velocity at that distance. When the incoming particle reaches r;, the location of

V'(r)

FIGURE 3.22 A combined attractive and repulsive scattering potential, and the corre-
sponding equivalent one-dimensional potential at several values of the impact parameter s.
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the maximum in V', the radial velocity is zero. Indeed, recall from the discus-
sion in Section 3.6 that we have here the conditions for an unstable circular orbit
at the distance r;. In the absence of any perturbation, the incoming particle with
parameters Ep and s;, once having reached r, would circle around the center
of force indefinitely at that distance without ever emerging! For the same im-
pact parameter but at an energy E slightly higher than E, no true circular orbit
would be established. However, when the particle is in the immediate vicinity of
r1 the radial speed would be very small, and the particle would spend a dispro-
portionately large time in the neighbourhood of the hump. The angular velocity,
6, meanwhile would not be affected by the existence of a maximum, being given
atr, by (3.90)

= l S 2F
_mrlz_rlz m’

Thus, in the time it takes the particle to get through the region of the hump, the
angular velocity may have carried the particle through angles larger than 27w or
even multiples thereof. In such instances, the classical scattering is said to exhibit
orbiting or spiraling.

As the impact parameter is increased, the well and hump in the equivalent
potential V' tend to flatten out, until at some parameter s there is only a point
of inflection in V' at an energy E; (cf. Fig. 3.22). For particle energies above
E», there will no longer be orbiting. But the combined effects of the attractive
and repulsive components of the effective potential can lead even in such cases to
zero deflection for some finite value of the impact parameter. At large energies and
small impact parameters, the major scattering effects are caused by the strongly
repulsive potentials at small distances, and the scattering qualitatively resembles
the behavior of Rutherford scattering.

We have seen that the scattered particle may be deflected by more than 7 when
orbiting takes place. On the other hand, the observed scattering angle in the lab-
oratory lies between 0 and m. It is therefore helpful in such ambiguous cases to
distinguish between a deflection angle ®, as calculated by the right-hand sides of
Eqgs. (3.96) or (3.97), and the observed scattering angle ®. For given @, the angle
® is to be determined from the relation

®O=+d-2mm, m a positive integer.

The sign and the value of m are to be chosen so that ® lies between O and 7. The
sum in Eq. (3.103) then covers all values of ® leading to the same ®. Figure 3.23
shows curves of ® versus s for the potential of Fig. 3.22 at two different energies.
The orbiting that takes place for E = E; shows up as a singularity in the curve at
s = s1. When E > E3, orbiting no longer takes place, but there is a rainbow effect
at ® = —@’ (although there is a nonvanishing cross section at higher scattering
angles). Note that ® vanishes at s = s3, which means from Eq. (3.93) that the
cross section becomes infinite in the forward direction through the vanishing of
sin ®. The cross section can similarly become infinite in the backward direction
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FIGURE 3.23 Curves of deflection angle & versus s, for the potential of Fig. 3.22 at two
different energies.

providing

ds

*lae

remains finite at ® = . These infinities in the forward or backward scattering
angles are referred to as glory scattering, again in analogy to the corresponding
phenomenon in meteorological optics.*

A more general treatment would involve quantum corrections, but in some
instances quantum effects are small, as in the scattering of low-energy ions
in crystal lattices, and the classical calculations are directly useful. Even when
quantum-mechanical corrections are important, it often suffices to use an
approximation method (the “semiclassical” approximation) for which a knowl-
edge of the classical trajectory is required. For almost all potentials of practical
interest, it is impossible to find an analytic form for the orbit, and Eq. (3.96)
(or variant forms) is either approximated for particular regions of s or integrated
numerically.

TRANSFORMATION OF THE SCATTERING PROBLEM
TO LABORATORY COORDINATES

In the previous section we were concerned with the one-body problem of the
scattering of a particle by a fixed center of force. In practice, the scattering always
involved two bodies; e.g., in Rutherford scattering we have the « particle and the
atomic nucleus. The second particle, m», is not fixed but recoils from its initial
position as a result of the scattering. Since it has been shown that any two-body

*The backward glory is familiar to airplane travelers as the ring of light observed to encircle the
shadow of the plane projected on clouds underneath.
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FIGURE 3.24 Scattering of two particles as viewed in the laboratory system.

central force problem can be reduced to a one-body problem, it might be thought
that the only change is to replace m by the reduced mass ©. However, the matter
is not quite that simple. The scattering angle actually measured in the laboratory,
which we shall denote by 9, is the angle between the final and incident directions
of the scattered particle in laboratory coordinates.” On the other hand, the angle
® calculated from the equivalent one-body problem is the angle between the final
and initial directions of the relative vector between the two particles in the cen-
ter of mass coordinates. These two angles, 6 and ®, would be the same only if
the second particle remains stationary through the scattering process. In general,
however, the second particle, though initially at rest, is itself set in motion by the
mutual force between the two particles, and, as is indicated in Fig. 3.24, the two
angles then have different values. The equivalent one-body problem thus does
not directly furnish the scattering angle as measured in the laboratory coordinate
system.

The relationship between the scattering angles ® and ¥ can be determined
by examining how the scattering takes place in a coordinate system moving with
the center of mass of both particles. In such a system the total linear momentum
is zero, of course, and the two particles always move with equal and opposite
momenta. Figure 3.25 illustrates the appearance of the scattering process to an
observer in the center of mass system. Before the scattering, the particles are
moving directly toward each other; after, they are moving directly away from
each other. The angle between the initial and final directions of the relative vec-
tor, ®, must therefore be the same as the scattering angle of either particle in
the center-of-mass system. The connection between the two scattering angles
® and ¥ can thus be obtained by considering the transformation between the
center-of-mass system and the laboratory system.

TThe scattering angle ¥ must not be confused with the angle coordinate 6 of the relative vector, r,
between the two particles.
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FIGURE 3.25 Scattering of two particles as viewed in the center of mass system.

It is convenient here to use the terminology of Section 3.1, with slight modifi-
cations:

r] and vi are the position and velocity, after scattering, of the incident particle,
m1, in the laboratory system,

rj and v} are the position and velocity, after scattering, of particle m in the
center of mass system, and

Rand V  are the position and (constant) velocity in the center of mass in the
laboratory system.

At any instant, by definition
r =R+r],
and consequently
vi=V+v). (3.104)

Figure 3.26 graphically portrays this vector relation evaluated after the scattering
has taken place; at which time v; and v} make the angles ¢ and ©, respectively,

v=_—toy,

FIGURE 3.26 The relations between the velocities in the center of mass and laboratory
coordinates.
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with the vector V lying along the initial direction. Since the target is initially sta-
tionary in the laboratory system, the incident velocity of particle 1 in that system,
Vo, is the same as the initial relative velocity of the particles. By conservation of
total linear momentum, the constant velocity of the center of mass is therefore
given by

(my +m2)V = myvo,

or

v=""y, (3.105)

my
where u = mimy/(my + my). From Fig. 3.26, it is readily seen that
vy sin® = v} sin ®
and
vicos¥ = vjcos® + V. (3.106)

The ratio of these two equations gives a relation between ¥ and ©:

in ®
tand = ——— (3.107)
cos® + p
where p is defined as
- £ (3.108)
noy v1

An alternative relation can be obtained by expressing v in terms of the other
speeds through the cosine law as applied to the triangle of Fig. 3.26:

v = v+ V2 +20]VcosO. (3.109)

When this is used to eliminate v; from Eq. (3.106) and V is expressed in terms of
vo by Eq. (3.105), we find

®
cos P = 8O F P (3.110)

\/1+2pcos®+p2.

Both these relations still involve a ratio of speeds through p. By the definition
of center of mass, the speed of particle 1 in the center-of-mass system, v/, is con-
nected with the relative speed v after the collision, by the equation (cf. Eq. (3.2)),
where v = |F|:
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Hence, p can also be written as

p=1% (3.108)
nmy v

where v, it should be emphasized, is the relative speed affer the collision. When
the collision is elastic, the total kinetic energy of the two particles remains unal-
tered and v must equal vg so that p is simply

o= m (elastic collision) (3.111)
my

independent of energies or speeds. If the collision is inelastic, the total kinetic
energy of the two particles is altered (e.g., some of the kinetic energy goes into
the form of internal excitation energy of the target). Since the total energy is con-
served and momentum is conserved, the energy change resulting from the colli-
sion can be expressed as

20,0 (3.112)

The so-called Q value of the inelastic collision is clearly negative in magnitude,
but the sign convention is chosen to conform to that used in general for atomic
and nuclear reactions. From Eq. (3.112) the ratio of relative speeds before and
after collision can be written

v m
Y fipmtmO (3.113)
Vo my E
where £ = %m 11)% is the energy of the incoming particle (in the laboratory
system). Thus, for inelastic scattering p becomes
mi . . .
(inelastic scattering) (3.114)

r= / mi+m Q.
1 2
m2 1+ my F

Not only are the scattering angles ¢ and ® in general different in magnitude,
but the values of the differential scattering cross section depend upon which of
the two angles is used as the argument of o. The connection between the two
functional forms is obtained from the observation that in a particular experiment
the number of particles scattered into a given element of solid angle must be the
same whether we measure the event in terms of ¢ or ®. As an equation, this
statement can be written

2710 (®)sin®|dO| = 2r 1o’ (¥) sin | d¥|,
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or

o' (9) = O’(O)

sin ®
‘ (3.115)

()‘

d(cos %)

where o’() is the differential scattering cross section expressed in terms of the
scattering angle in the laboratory system. The derivative can easily be evaluated
from Eq. (3.110), leading to the result

1+ 2pcos® 4 p?)3/2
/() = o (@) LT 2P 08O + 077 (3.116)
1+ pcos®

Note that o (®) is not the cross section an observer would measure in the
center-of-mass system. Both o (®) and o’ (}) are cross sections measured in the
laboratory system; they are merely expressed in terms of different coordinates. An
observer fixed in the center-of-mass system would see a different flux density of
incident particles from that measured in the laboratory system, and this transfor-
mation of flux density would have to be included if (for some reason) we wanted
to relate the cross sections as measured in the two different systems.

The two scattering angles have a particularly simple relation for elastic scat-
tering when the two masses of particles are equal. It then follows that p = 1, and
from Eq. (3.110) we have

/14 cos® ®
cost) =,/ —— = cos —,
2 2

®
2

or

9=—, (p=1).

Thus, with equal masses, scattering angles greater than 90° cannot occur in the
laboratory system; all the scattering is in the forward hemisphere. Correspond-
ingly, the scattering cross section is given in terms of ® from Eq. (3.116) as

o'(®) =4cos? - o(0), 9 <

(RS

. (p=D.

Even when the scattering is isotropic in terms of ®, i.e., o(®) is constant,
independent of ®, then the cross section in terms of ¢ varies as the cosine of the
angle! When, however, the scattering mass my is very large compared to the inci-
dent particle mass m and the scattering is elastic, then from Eq. (3.111) p = 0,
so o’ (%) ~ o () from Eq. (3.116).

We have seen that even in elastic collisions, where the total kinetic energy
remains constant, a collision with an initially stationary target results in a transfer
of kinetic energy to the target with a corresponding decrease in the kinetic energy
of the incident particle. In other words, the collision slows down the incident
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particle. The degree of slowing down can be obtained from Eq. (3.109) if v| and
V are expressed in terms of vy by Eqs. (3.108) and (3.105), respectively:

2 2
I 2pcos O + p2 3.117
0

For elastic collisions p = m1/m2, and Eq. (3.117) can be simplified to

Ey 1 +2pcos® + p?

= , (elastic collision) (3.117"
Ey (1+p)?

where Ej is the initial kinetic energy of the incident particle in the laboratory
system and E; the corresponding energy after scattering. When the particles are
of equal mass, this relation becomes

ﬂ = w = cos? ¥,

Ey 2
Thus, at the maximum scattering angle (® = m, ¢ = m/2), the incident particle
loses all its energy and is completely stopped in the laboratory system.

This transfer of kinetic energy by scattering is, of course, the principle behind
the “moderator” in a thermal neutron reactor. Fast neutrons produced by fission
make successive elastic scatterings until their kinetic energy is reduced to thermal
energies, where they are more liable to cause fission than to be captured. Clearly
the best moderators will be the light elements, ideally hydrogen (o = 1). For a
nuclear reactor, hydrogen is practical only when contained as part of a mixture
or compound, such as water. Other light elements useful for their moderating
properties include deuterium, of mass 2, and carbon, of mass 12. Hydrogen, as
present in paraffin, water, or plastics, is frequently used in the laboratory to slow
down neutrons.

Despite their current useful applications, these calculations of the transforma-
tion from laboratory to center of mass coordinates, and of the transfer of kinetic
energy, are not particularly “modern” or “quantum” in nature. Nor is the classi-
cal mechanics involved particularly advanced or difficult. All that has been used,
essentially, is the conservation of momentum and energy. Indeed, similar calcula-
tions may be found in freshman textbooks, usually in terms of elastic collisions
between, say, billiard balls. But it is their elementary nature that results in the
widespread validity of these calculations. So long as momentum is conversed (and
this will be true in quantum mechanics) and the Q value is known, the details of
the scattering process are irrelevant. In effect, the vicinity of the scattering par-
ticle is a “black box,” and we are concerned only with what goes in and what
comes out. It matters not at all whether the phenomena occurring inside the box
are “classical” or “quantum.” Consequently, the formulae of this section may be
used in the experimental analysis of phenomena essentially quantum in nature,
as for example, neutron-proton scattering, so long as the energies are low enough
that relativistic effects may be neglected. (See Section 7.7 for a discussion of the
relativistic treatment of the kinematics of collisions.)
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THE THREE-BODY PROBLEM

Thus far, we have treated integrable problems in which the equations of motion
can be integrated to give a closed-form solution. For the two-body case of the
inverse-square law, we found solutions involving motion in elliptic, parabolic,
and hyperbolic orbits, the former of which constitute closed orbits. Solutions
can also be found for some additional power laws of the form V(r) = ar”.
Nevertheless, for almost all other possible central force potentials, the equations
of motion cannot be integrated. When one more mass is added, the situation
becomes much more complex. Even for inverse-square law forces, this three-body
Kepler-type problem has no known general solution. In the present section we
shall examine some simple examples of what happens when this third mass is
added.

The Newtonian three-body problem involves three masses m1, my, and m3 at
the respective positions ry, rp, and r3, interacting with each other via gravitational
forces. We assume that the position vectors ry, r, and r3 are expressed in the
center of mass system. It is easy to write the equation of motion of the first mass
since by Newton’s second law m ¥ equals the gravitational forces that the other
two masses exert on mj:

.. ry —r ry —r3
rr=-Gm

— 3.118
2|1‘1 - : Ir; —r3)3 ( )

and analogously for the other two masses. If we make use of the relative-position
vectors defined by

Si=Tr;—Ig (3.119)
in Fig. 3.27, then clearly

st +s2+s3=0. (3.120)

nm, — n,

53

FIGURE 3.27 Position vectors s; = X; — Xy, for the three-body problem. Adapted from
Hestenes, New Foundations for Classical Mechanics, 1999, Fig. 5.1.
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After a little algebra, the equations of motion assume the symmetrical form

§ = —mG +mG (3.121)

Si

where i = 1, 2, 3, the quantity m is the sum of the three masses
m=mi+my+m3 (3.122)

and the vector G is given by

G=G(2+2+2). (3.123)
Si S2 S3

The three coupled equations in the symmetrical form, (3.121), cannot be solved in
general, but they do provide solutions to the three-body problem for some simple
cases.

There is a solution due to Euler in which mass m, always lies on the straight
line between the other two masses so that ry, ra, r3, i, s2, 83, and G are all
collinear. Figure 3.28 shows Euler’s negative-energy (i.e., bound-state) solution
for the mass ratio m; < my < m3 in which the masses move along con-
focal ellipses with the same period r. During each period, the masses pass
through both a perihelion configuration, in which they lie close together along
the axis of the ellipses, and an aphelion configuration, in which they lie along
this same axis but far apart. The aphelion positions in the orbits are indicated in
Figure 3.28.

If the vector G = 0, the equations of motion decouple, and Eq. (3.121) reduces
to the two-body form of the Kepler problem,

S;
_39
S

Si = —mG (3.124)

with each mass moving along an elliptical orbit lying in the same plane with the
same focal point and the same period. This decoupling occurs when the three

nmy

[

s

FIGURE 3.28 Euler’s collinear solution to the three-body problem for the mass ratio
my < mo < m3. Three of the dots show aphelion positions. Adapted from Hestenes,
New Foundations for Classical Mechanics, 1999, Fig. 5.2.
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my

my \// / my

FIGURE 3.29 Lagrange’s equilateral triangle solution to the three-body problem for
the mass ratio my < myp < m3. Adapted from Hestenes, New Foundations for Classi-
cal Mechanics, 1999, Fig. 5.3.

masses are at the vertices of an equilateral triangle. As the motion proceeds,
the equations remain uncoupled so the equilateral triangle condition continues
to be satisfied, but the triangle changes in size and orientation. Figure 3.29
presents Lagrange’s elliptic solution case with the same mass ratio as before,
m) < my < m3. The figure shows the configuration when the masses are close
together, each at its respective perihelion point, and also indicates the analogous
aphelion arrangement.

Various asymptotic solutions have been worked out for the three-body prob-
lem. For example, if the total energy is positive, then all three masses can move
away from each other, or one can escape, carrying away most of the energy, and
leave the other two behind in elliptic orbits. If the energy is negative, one can
escape and leave the other two in a bound state, or all three can move in bound
orbits.

The restricted three-body problem is one in which two of the masses are large
and bound, and the third is small and merely perturbs the motion of the other two.
Examples are a spacecraft in orbit between Earth and the Moon, or the perturba-
tion of the Sun on the Moon’s orbit. In the spacecraft case, the first approach
is to assume that the Earth and Moon move in their unperturbed orbits, and
the satellite interacts with them through their respective inverse-square gravita-
tional forces. We should also note that satellites orbiting Earth at altitudes of 90
miles or 150 kilometers have their orbits perturbed by Earth’s nonspherical mass
distribution.
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A complicating factor in the restricted three-body problem is the distribu-
tion of gravitational potential energy in the vicinity of the Earth-Moon system.
Close to Earth, we experience a gravitational force directed toward Earth, and
close to the Moon, the force is directed toward the Moon. This means that the
equipotentials, or curves of constant gravitational energy, are closed curves that
encircle the Earth, (m1) and Moon, (m,), respectively, as shown in Fig. 3.30.
In contrast to this, far from the Earth and Moon, the equipotentials encircle the
Earth—Moon pair, as shown in the figure. At some point, called Lagrange point L,
along the horizontal line in the figure between the Earth and Moon, the attraction
to the two bodies is equal in magnitude and opposite in direction so the force
experienced by a small mass placed there is zero. In other words, L, is a local
potential minimum along this line. More precisely, this point is a saddle point
because the potential energy is a minimum only along the Earth—-Moon axis, and
decreases in directions perpendicular to this axis. Two other Lagrange points,
L1 and L3, along this same axis between the Earth and Moon are located at the
transition points between orbits that encircle the Earth and the Moon individu-
ally, and orbits that encircle the two together as a pair. These are also saddle

FIGURE 3.30 Contour map of equipotential curves of two masses m| > m plotted in
a reference system rotating with the two masses around each other. From Hestenes, New
Foundations for Classical Mechanics, 1986, Fig. 5.5.
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points. The fourth and fifth Lagrange points, L4 and L5, which are not collinear
with the other three, correspond to local minima in the gravitational potential
energy. Masses in the vicinity of these two points experience a force of attraction
toward them, and can find themselves in stable elliptical-shaped orbits around
them.

We can verify the preceding statements by considering the solutions found
in Sections 3.7 and 3.8 for two massive bodies in the center-of-mass frame and
asking if there are locations where a small test body will remain at rest relative to
the two bodies. By a test body we mean one whose mass is sufficiently small that
we can neglect its effect on the motions of the other two bodies. For simplicity,
we will limit our attention to the restricted case where the bodies undergo circular
motion about the center of mass. The Lagrangian for the motion of the test mass,
m, can be written, in general, as

L=1mG*+r%% - V(r,0,0), (3.125)

where V (r, 0, t) is the time-dependent potential due to the two massive bodies.

As a consequence of the circular motion, the radius vector, r, between the two
bodies is of constant length and rotates with a constant frequency, w, in the inertial
frame. If we go to a coordinate system rotating at the frequency, the two massive
bodies appear to be at rest and we can write the Lagrangian in terms of the rotating
system by using 6’ = 6 + wt as the transformation to the rotating frame. Thus, the
Lagrangian in the rotating coordinates can be written in terms of the cylindrical
coordinates, p, # = 6’ — wt, and z, with p being the distance from the center
of mass and 6 the counterclockwise angle from the line joining the two masses
shown in Fig. 3.30. So

L=4m (5 + 020 - 0P +2) = V'(p,0,2), (3.126)
or
L =dm(p? + 0207 + ) — (mep’ — dmp?0® + V'(p,0.2)) . (3.127)

The fifth and sixth terms are the potentials for the Coriolis effect (cf. Section 4.10)
and the centrifugal effect, respectively.

The procedure then is to find the Lagrange equations and look for solutions
with the conditions that ) = z = 6 = 0. The solutions are the five Lagrange
points shown in Fig. 3.30. Stability can be determined by investigating the effects
of small displacements from these positions using the methods discussed in Chap-
ters 6 and 12. Only L4 and L5 are stable.

Even though the L, point is not stable against displacements along the line
between the masses, it has been useful for studies of the Sun. The L, between the
Earth and Sun is the approximate location in the 1990s for the solar and helio-
spheric observatory, SOHO, which orbits the L point in a plane perpendicular to
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the Earth—Sun line. The satellite cannot be exactly at the L, point, or we could
not receive its transmissions against the bright Sun. Small steering rockets correct
for the slow drift toward, or away from, L,.

DERIVATIONS

1. Consider a system in which the total forces acting on the particles consist of conserva-
tive forces F: and frictional forces f; proportional to the velocity. Show that for such
a system the virial theorem holds in the form

= —fZF’ r;,

providing the motion reaches a steady state and is not allowed to die down as a result
of the frictional forces.

2. By expanding e sin in a Fourier series in wf, show that Kepler’s equation has the
formal solution

2
v = owt + Z ;J,,(ne) sin nwt,

n=1

where J, is the Bessel function of order n. For small argument, the Bessel function
can be approximated in a power series of the argument. Accordingly, from this result
derive the first few terms in the expansion of ¥ in powers of e.

3. If the difference ¢ — wt is represented by p, Kepler’s equation can be written
p = esin(wt + p).

Successive approximations to p can be obtained by expanding sin p in a Taylor series
in p, and then replacing p by its expression given by Kepler’s equation. Show that the
first approximation by p is pj, given by

¢ e sin wt
anp) = ——,
! 1 —ecoswt

and that the next approximation is found from

sin” (,02 —p1) = e sin(wt + p1)(1 + ecos wt),

an expression that is accurate through terms of order P

4. Show that for repulsive scattering, Eq. (3.96) for the angle of scattering as a function
of the impact parameter, s, can be rewritten as

R

_32(1 _ p2)

®O=m—4s
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or

d
O =m —4s P

‘ \/pz—%; (Virm) = V() + 522 — p?)

by changing the variable of integration to some function p(r). Show that for a
repulsive potential the integrand is never singular in the limit » — ry,. Because of
the definite limits of integration, these formulations have advantages for numerical
calculations of ®(s) and allow naturally for the use of Gauss—Legendre quadrature
schemes.

5. Apply the formulation of the preceding exercise to compute numerically ® (s) and the
differential cross section of o (®) for the repulsive potential

Vi
V="
1+r
and for a total energy E = 1.2Vj. It is suggested that 16-point Gauss—Legendre

quadrature will give adequate accuracy. Does the scattering exhibit a rainbow?

6. If a repulsive potential drops of monotonically with », then for energies high com-
pared to V (r;;) the angle of scattering will be small. Under these conditions show that
Eq. (3.97) can be manipulated so that the deflection angle is given approximately by

1 (V) = V) dy
ElJo a-y»iz

e =

where y, obviously, is u/uy,.
Show further, that if V() is of the form Cu”, where n is a positive integer, then in
the high-energy limit the cross section is proportional to @~2U+1/m),

7. (a) Show that the angle of recoil of the target particle relative to the incident direction
of the scattered particle is simply & = %(rr — 0).

(b) It is observed that in elastic scattering the scattering cross section is isotropic in
terms of ®. What are the corresponding probability distributions for the scattered
energy of the incident particle, E1, and for the recoil energy of the target parti-
cle, E5?

8. Show that the angle of scattering in the laboratory system, ¥, is related to the energy
before scattering, E(, and the energy after scattering £, according to the equation

cos i — my+my [Ey  my—my [Ey mQ
T 2my Ey 2my Eq 2ml4/E()E1.

9. Show that the central force problem is soluble in terms of elliptic functions when the
force is a power-law function of the distance with the following fractional exponents:

35 1 5 17
n=—z,—=,—=,—=,—%

2727 3 3 3
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EXERCISES

10.

11.

12.

13.

14.

15.

A planet of mass M is in an orbit of eccentricity e = 1 — o where o < 1, about the
Sun. Assume the motion of the Sun can be neglected and that only gravitational forces
act. When the planet is at its greatest distance from the Sun, it is struck by a comet of
mass m, where m < M traveling in a tangential direction. Assuming the collision is
completely inelastic, find the minimum kinetic energy the comet must have to change
the new orbit to a parabola.

Two particles move about each other in circular orbits under the influence of gravita-
tional forces, with a period t. Their motion is suddenly stopped at a given instant of
time, and they are then released and allowed to fall into each other. Prove that they
collide after a time t /4«5.

Suppose that there are long-range interactions between atoms in a gas in the form of
central forces derivable from a potential

k
v =5

where 7 is the distance between any pair of atoms and m is a positive integer. Assume
further that relative to any given atom the other atoms are distributed in space such
that their volume density is given by the Boltzmann factor:

_ N _veykr
p(r) = Ve ,

where N is the total number of atoms in a volume V. Find the addition to the virial of
Clausius resulting from these forces between pairs of atoms, and compute the resulting
correction to Boyle’s law. Take N so large that sums may be replaced by integrals.
While closed results can be found for any positive m, if desired, the mathematics can
be simplified by taking m = +1.

(a) Show that if a particle describes a circular orbit under the influence of an attractive
central force directed toward a point on the circle, then the force varies as the
inverse-fifth power of the distance.

(b) Show that for the orbit described the total energy of the particle is zero.
(¢) Find the period of the motion.

(d) Find x, y, and v as a function of angle around the circle and show that all three
quantities are infinite as the particle goes through the center of force.

(a) For circular and parabolic orbits in an attractive 1/r potential having the same
angular momentum, show that the perihelion distance of the parabola is one-half
the radius of the circle.

(b) Prove that in the same central force as in part (a) the speed of a particle at any
point in a parabolic orbit is +/2 times the speed in a circular orbit passing through
the same point.

A meteor is observed to strike Earth with a speed v, making an angle ¢ with the
zenith. Suppose that far from Earth the meteor’s speed was v’ and it was proceeding
in a direction making a zenith angle ¢, the effect of Earth’s gravity being to pull it into
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16

17.

18.

19

20.

a hyperbolic orbit intersecting Earth’s surface. Show how v and ¢ can be determined
from v and ¢ in terms of known constants.

Prove that in a Kepler elliptic orbit with small eccentricity e the angular motion of
a particle as viewed from the empty focus of the ellipse is uniform (the empty focus
is the focus that is not the center of attraction) to first order in e. It is this theorem
that enables the Ptolemaic picture of planetary motion to be a reasonably accurate
approximation. On this picture the Sun is assumed to move uniformly on a circle
whose center is shifted from Earth by a distance called the equant. If the equant is
taken as the distance between the two foci of the correct elliptical orbit, then the
angular motion is thus described by the Ptolemaic picture accurately to first order
ine.

One classic theme in science fiction is a twin planet (“Planet X”) to Earth that is
identical in mass, energy, and momentum but is located on the orbit 180° out of phase
with Earth so that it is hidden from the Sun. However, because of the elliptical nature
of the orbit, it is not always completely hidden. Assume this twin planet is in the
same Keplerian orbit as Earth in such a manner than it is in aphelion when Earth
is in perihelion. Calculate to first order in the eccentricity e the maximum angular
separation of the twin and the Sun as viewed from the Earth. Could such a twin be
visible from Earth? Suppose the twin planet is in an elliptical orbit having the same
size and shape as that of Earth, but rotated 180° from Earth’s orbit, so that Earth and
the twin are in perihelion at the same time. Repeat your calculation and compare the
visibility in the two situations.

Find the ratio of maximum and minimum speeds of Earth, taking the eccentricity of
the Earth’s orbit to be 0.023.

A particle moves in a force field described by the Yukowa potential

Vo) =~ exp(~1).

where k and a are positive.

(a) Write the equations of motion and reduce them to the equivalent one-dimensional
problem. Use the effective potential to discuss the qualitative nature of the orbits
for different values of the energy and the angular momentum.

(b) Show that if the orbit is nearly circular, the apsides will advance approximately
by mp/a per revolution, where p is the radius of the circular orbit.

A uniform distribution of dust in the solar system adds to the gravitational attraction
of the Sun on a planet an additional force

F=-mCr,

where m is the mass of the planet, C is a constant proportional to the gravitational
constant and the density of the dust, and r is the radius vector from the Sun to the
planet (both considered as points). This additional force is very small compared to the
direct Sun—planet gravitational force.
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21.

22,

23.

24.

25.

(a) Calculate the period for a circular orbit of radius r( of the planet in this combined
field.

(b) Calculate the period of radial oscillations for slight disturbances from this circular
orbit.

(c) Show that nearly circular orbits can be approximated by a precessing ellipse and
find the precession frequency. Is the precession in the same or opposite direction
to the orbital angular velocity?

Show that the motion of a particle in the potential field

k h
Vin=—--+-5

roor
is the same as that of the motion under the Kepler potential alone when expressed in
terms of a coordinate system rotating or precessing around the center of force.

For negative total energy, show that if the additional potential term is very small

compared to the Kepler potential, then the angular speed of precession of the elliptical
orbit is

. 2mmh
Q= ——.
12t

The perihelion of Mercury is observed to precess (after correction for known planetary
perturbations) at the rate of about 40" of arc per century. Show that this precession
could be accounted for classically if the dimensionless quantity

h
= ka
(which is a measure of the perturbing inverse-square potential relative to the gravita-

tional potential) were as small as 7 x 10~8. (The eccentricity of Mercury’s orbit is
0.206, and its period is 0.24 year.)

The additional term in the potential behaving as r~2 in Exercise 21 looks very much
like the centrifugal barrier term in the equivalent one-dimensional potential. Why is it
then that the additional force term causes a precession of the orbit, while an addition
to the barrier, through a change in /, does not?

Evaluate approximately the ratio of mass of the Sun to that of Earth, using only the
lengths of the year and of the lunar month (27.3 days), and the mean radii of Earth’s
orbit (1.49 x 108 km) and of the Moon’s orbit (3.8 x 10° km).

Show that for elliptical motion in a gravitational field the radial speed can be written as

. wa |
F=—y/a2e? — (r —a)2.
r

Introduce the eccentric anomaly variable ¥ in place of r and show that the resulting
differential equation in ¥ can be integrated immediately to give Kepler’s equation.

If the eccentricity e is small, Kepler’s equation for the eccentric anomaly v as a func-
tion of wt, Eq. (3.76), is easily solved on a computer by an iterative technique that
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26.

27.

28.

29.

30.

31.

treats the esiny term as of lower order than . Denoting v, by the nth iterative
solution, the obvious iteration relation is

Y = ot +esinyy,_1.

Using this iteration procedure, find the analytic form for an expansion of i in powers
of e at least through terms in .

Earth’s period between successive perihelion transits (the “anomalistic year”) is
365.2596 mean solar days, and the eccentricity of its orbit is 0.0167504. Assuming
motion in a Keplerian elliptical orbit, how far does the Earth move in angle in the
orbit, starting from perihelion, in a time equal to one-quarter of the anomalistic year?
Give your result in degrees to an accuracy of one second of arc or better. Any method
may be used, including numerical computation with a calculator or computer.

Determine the Earth’s surface potential taking the radius of Earth as 6.1 x 108 cm.
The mean density of the material of Earth can be taken as 5 gm/cc. The universal
gravitation constant is 6.6 x 1070 cgs units.

A magnetic monopole is defined (if one exists) by a magnetic field singularity of the
form B = br/ r3, where b is a constant (a measure of the magnetic charge, as it were).
Suppose a particle of mass m moves in the field of a magnetic monopole and a central
force field derived from the potential V (r) = —k/r.

(a) Find the form of Newton’s equation of motion, using the Lorentz force given
by Eq. (1.60). By looking at the product r x p show that while the mechanical
angular momentum is not conserved (the field of force is noncentral) there is a
conserved vector

br
p=L-L%
cr

(b) By paralleling the steps leading from Eq. (3.79) to Eq. (3.82), show that for some
f(r) there is a conserved vector analogous to the Laplace-Runge—Lenz vector in
which D plays the same role as L in the pure Kepler force problem.

If all the momentum vectors of a particle along its trajectory are translated so as to
start from the center of force, then the heads of the vectors trace out the particle’s
hodograph, a locus curve of considerable antiquity in the history of mechanics, with
something of a revival in connection with space vehicle dynamics. By taking the cross
product of L. with the Laplace—-Runge-Lenz vector A, show that the hodograph for
elliptical Kepler motion is a circle of radius mk// with origin on the y axis displaced
a distance A /! from the center of force.

In a scattering experiment, 100 o particles are scattered at an angle of 4°. Find the
number of « particles scattered at an angle of 6°.

Examine the scattering produced by a repulsive central force f = kr—3. Show that
the differential cross section is given by

k 1—x)d
5@ do = L 1=vdx
2F x2(2 — x)2sinwx

where x is the ratio of ® /7 and E is the energy.
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32.

33.

34.

35.

A central force potential frequently encountered in nuclear physics is the rectangular
well, defined by the potential

V=0 r>a

Show that the scattering produced by such a potential in classical mechanics is iden-
tical with the refraction of light rays by a sphere of radius a and relative index of

refraction
[E+Vy
n=,——.
E

(This equivalence demonstrates why it was possible to explain refraction phenomena
both by Huygen’s waves and by Newton’s mechanical corpuscles.) Show also that the
differential cross section is

n2a2 (ncos% — ) <n — COs %)

® 2
4C037 (1+n2—2ncos %)

0(0) =

What is the total cross section?

A particle of mass m is constrained to move under gravity without friction on the
inside of a paraboloid of revolution whose axis is vertical. Find the one-dimensional
problem equivalent to its motion. What is the condition on the particle’s initial velocity
to produce circular motion? Find the period of small oscillations about this circular
motion.

Consider a truncated repulsive Coulomb potential defined as

V=- r>a

~

r<a.

IS

For a particle of total energy E > k/a, obtain expressions for the scattering angle ©®
as a function of s /s, where sq is the impact parameter for which the periapsis occurs
at the point » = a. (The formulas can be given in closed form but they are not simple!)
Make a numerical plot of ® versus s/sq for the special case E = 2k/a. What can you
deduce about the angular scattering cross section from the dependence of ® on s/s(
for this particular case?

Another version of the truncated repulsive Coulomb potential has the form

k k
V=-—- r<a

roa
=0 r>a.

Obtain closed-form expressions for the scattering angle and the differential scatter-
ing cross section. These are most conveniently expressed in terms of a parameter
measuring the distance of closest approach in units of a. What is the total cross
section?
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36. The restricted three-body problem consists of two masses in circular orbits about each
other and a third body of much smaller mass whose effect on the two larger bodies
can be neglected.

(a) Define an effective potential V (x, y) for this problem where the x axis is the line
of the two larger masses. Sketch the function V (x, 0) and show that there are two
“valleys” (points of stable equilibrium) corresponding to the two masses. Also
show that there are three “hills” (three points of unstable equilibrium).

(b) Using a computer program, calculate some orbits for the restricted three-body
problem. Many orbits will end with ejection of the smaller mass. Start by assum-
ing a position and a vector velocity for the small mass.
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4.1

The Kinematics of
Rigid Body Motion

A rigid body was defined previously as a system of mass points subject to the
holonomic constraints that the distances between all pairs of points remain con-
stant throughout the motion. Although something of an idealization, the concept
is quite useful, and the mechanics of rigid body motion deserves a full expo-
sition. In this chapter we shall discuss principally the kinematics of rigid bod-
ies, i.e., the nature and characteristics of their motions. We devote some time
to developing the mathematical techniques involved, which are of considerable
interest in themselves, and have many important applications to other fields of
physics.

Of essential importance is the rotational motion of a rigid body. These consid-
erations lead directly to the relation between the time rate of change of a vector
in an inertial frame and the time rate of change of the same vector in a rotating
frame. Since it is appropriate at that point, we leave kinematics and develop the
description of the dynamics of motion in a rotating frame. In the next chapter we
discuss, using the Lagrangian formulation, how the motion of extended objects is
generated by applied forces and torques.

THE INDEPENDENT COORDINATES OF A RIGID BODY

Before discussing the motion of a rigid body, we must first establish how many
independent coordinates are necessary to specify its configuration. From ex-
perience, we expect that there should be six independent coordinates. Three
external coordinates are needed to specify the position of some reference point
in the body and three more to specify how the body is oriented with respect to
the external coordinates. In this section we show that these intuitive expectations
are correct.

A rigid body with N particles can at most have 3N degrees of freedom, but
these are greatly reduced by the constraints, which can be expressed as equations
of the form

Tij = Cij- 4.1)
Here r;; is the distance between the ith and jth particles and the ¢’s are constants.

The actual number of degrees of freedom cannot be obtained simply by subtract-
ing the number of constraint equations from 3N, for there are %N (N —1) possible
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FIGURE 4.1 The location of a point in a rigid body by its distances from three reference
points.

equations of the form of Eq. (4.1), which is far greater than 3N for large N. In
truth, the Eqs. (4.1) are not all independent.

To fix a point in the rigid body, it is not necessary to specify its distances to
all other points in the body; we need only state the distances to any three other
noncollinear points (cf. Fig. 4.1). Thus, once the positions of three of the particles
of the rigid body are determined, the constraints fix the positions of all remaining
particles. The number of degrees of freedom therefore cannot be more than nine.
But the three reference points are themselves not independent; there are in fact
three equations of rigid constraint imposed on them,

ra2==«a2, n3=:C3, ri3==«ais,

that reduce the number of degrees of freedom to six. That only six coordinates
are needed can also be seen from the following considerations. To establish the
position of one of the reference points, three coordinates must be supplied. But
once point 1 is fixed, point 2 can be specified by only two coordinates, since it is
constrained to move on the surface of a sphere centered at point 1. With these two
points determined, point 3 has only one degree of freedom, for it can only rotate
about the axis joining the other two points. Hence, a total of six coordinates is
sufficient.

A rigid body in space thus needs six independent generalized coordinates to
specify its configuration, no matter how many particles it may contain—even in
the limit of a continuous body. Of course, there may be additional constraints on
the body besides the constraint of rigidity. For example, the body may be con-
strained to move on a surface, or with one point fixed. In such case, the additional
constraints will further reduce the number of degrees of freedom, and hence the
number of independent coordinates.

How shall these coordinates be assigned? Note that the configuration of a rigid
body is completely specified by locating a Cartesian set of coordinates fixed in
the rigid body (the primed axes shown in Fig. 4.2) relative to the coordinate axes
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FIGURE 4.2 Unprimed axes represent an external reference set of axes; the primed axes
are fixed in the rigid body.

of the external space. Clearly three of the coordinates are needed to specify the
coordinates of the origin of this “body” set of axes. The remaining three coordi-
nates must then specify the orientation of the primed axes relative to a coordi-
nate system parallel to the external axes, but with the same origin as the primed
axes.

There are many ways of specifying the orientation of a Cartesian set of axes
relative to another set with common origin. One fruitful procedure is to state the
direction cosines of the primed axes relative to the unprimed. Thus, the x’ axis
could be specified by its three direction cosines a1, o2, o3, with respect to the x,
v, z axes. If, as customary, i, j, k are three unit vectors along x, y, z, and i/, j/, K’
perform the same function in the primed system (cf. Fig. 4.3), then these direction
cosines are defined as

cosf; =cos(i i) =i-i=i-i

cosfp =cos(i +j) =i -j=j-i

T=15
.
. 3 X
/ ,
b33 y =X
’ 1
k Oy )
05,
R
0
. 1 i
i
X' =x

X =X

FIGURE 4.3 Direction cosines of the body set of axes relative to an external set of axes.
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cosbhy =cos(j -i) =j -i=i-j

cosby =cos(j -j)=j§-j=j-§ (4.2)

and similarly for cos 63, cos 631, etc. Note that the angle 6;; is defined so that
the first index refers to the primed system and the second index to the un-
primed system. These direction cosines can also be used to express the unit
vector in the primed system in terms of the unit vectors of the unprimed system
giving

i’ = cos6i+ cosOy2j + cos b3k
j = cos 011 + cos 622 + cos O3k

K = cos 0311 + cos 63, + cos 633k. (4.3)

These sets of nine directions cosines then completely specify the orientation of
the x’, ¥/, 7/ axes relative to the x, y, z set. We can equally well invert the process,
and use the direction cosines to express the i, j, K unit vectors in terms of their
components along the primed axes. Thus, we can write

r=xi+yj+zk=xTV+yj+7K (4.4)
by
x'= (i) =cosf1x + cos 12y + cos 0132

y = (r-j) = cosfrx + cosbry + cos 93z

7 = (r-K) =cosb31x + cosBy + cos 033z (4.5)

with analogous equations for i, j and k.

The direction cosines also furnish directly the relations between the coordinates
of a given point in one system and the coordinates in the other system. Thus,
the coordinates of a point in a given reference frame are the components
of the position vector, r, along the primed and unprimed axes of the sys-
tem, respectively. The primed coordinates are then given in terms of x, y,
and z, as shown in Eq. (4.5). What has been done here for the components
of the r vector can obviously be done for any arbitrary vector. If G is some
vector, then the component of G along the x” axis will be related to its x-, y-,
z-components by

Gy =G-i =co0s0;1Gy + c0s 012Gy, + cos 013G, (4.6)

and so on. The set of nine direction cosines thus completely spells out the trans-
formation between the two coordinate systems.

If the primed axes are taken as fixed in the body, then the nine direction cosines
will be functions of time as the body changes its orientation in the course of
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the motion. In this sense, the direction cosines can be considered as coordinates
describing the instantaneous orientation of the body, relative to a coordinate sys-
tem fixed in space but with origin in common with the body system. But, clearly,
they are not independent coordinates, for there are nine of them and it has been
shown that only three coordinates are needed to specify an orientation.

The connections between the direction cosines arise from the fact that the basis
vectors in both coordinate systems are orthogonal to each other and have unit
magnitude; in symbols,

isj—j-k=k-i=0,
and 4.7

with similar relations for i, j’, and K. We can obtain the conditions satisfied by the
nine coefficients by forming all possible dot products among the three equations
fori, j, and K in terms of i, j’, and K’ (as in Eq. (4.4)), making use of the Egs. (4.7):

3
Zcos O €08 Oy =0 m #m'

=1
(4.8)

3
Z cos? O = 1.
=1

These two sets of three equations each are exactly sufficient to reduce the number
of independent quantities from nine to three. Formally, the six equations can be
combined into one by using the Kronecker §-symbol §;,,, defined by

Sm=1 Il=m

=0 | # m.
Equations (4.8) can then be written as

3

Z COS Oy COS U1 = Spyrmy 4.9)
=1

It is therefore not possible to set up a Lagrangian and subsequent equations
of motion with the nine direction cosines as generalized coordinates. For this
purpose, we must use some set of three independent functions of the direction
cosines. A number of such sets of independent variables will be described later,
the most important being the Euler angles. The use of direction cosines to describe
the connections between two Cartesian coordinate systems nevertheless has a
number of important advantages. With their aid, many of the theorems about the
motion of rigid bodies can be expressed with great elegance and generality, and in
a form naturally leading to the procedures used in special relativity and quantum
mechanics. Such a mode of description therefore merits an extended discussion
here.
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ORTHOGONAL TRANSFORMATIONS

To study the properties of the nine direction cosines with greater ease, it is con-
venient to change the notation and denote all coordinates by x, distinguishing the
axes by subscripts:

X — X1

Yy — X (4.10)

—> X3
as shown in Fig. 4.3. We also change the notation for the direction cosines to
ajj =COS9l‘j (4.11)

Equations (4.5) and (4.6) constitute a group of transformation equations from
a set of coordinates x1, x2, x3 to a new set xj, x5, x5. In particular, they form an
example of a linear or vector transformation, defined by transformation equations
of the form

x{ =ap1x) +ap2x2 +aysx3

Xy = a1x1 + axaxy + ar3x3 (4.12)

x5 = az1x1 + azoxz + az3xs,
where the ay1, a2, ..., are any set of constant (independent of x, x’) coeffi-
cients.* To simplify the appearance of many of the expressions, we will also make
use of the summation convention first introduced by Einstein: Whenever an index
occurs two or more times in a term, it is implied, without any further symbols, that

the terms are to be summed over all possible values of the index. Thus, Egs. (4.12)
can be written most compactly in accordance with this convention as

xl{:a,-jx]-, i=1,2,3~ (4'12/)

The repeated appearance of the index j indicates that the left-hand side of
Eq. (4.12') is a sum over the dummy index j for all possible values (here, j = 1,
2, 3). Some ambiguity is possible where powers of an indexed quantity occur, and
for that reason, an expression such as

2
D
i
appears under the summation convention as

XiXj.

*Equations (4.12) of course are not the most general set of transformation equations, cf., for example,
those from the r’s to the ¢’s (1-38).
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For the rest of the book the summation convention should be automatically
assumed in reading the equations unless otherwise explicitly indicated. Where
convenient, or to remove ambiguity, the summation sign may be occasionally
displayed explicitly, e.g., when certain values of the index are to be excluded
from the summation.

The transformation represented by Eqs. (4.11) is only a special case of the gen-
eral linear transformation, Egs. (4.12), since the direction cosines are not all inde-
pendent. The connections between the coefficients, Egs. (4.8) are rederived here
in terms of the newer notation. Since both coordinate systems are Cartesian, the
magnitude of a vector is given in terms of the sum of squares of the components.
Further, since the actual vector remains unchanged no matter which coordinate
system is used, the magnitude of the vector must be the same in both systems. In
symbols, we can state the invariance of the magnitude as

x[x] = xix;. (4.13)
The left-hand side of Eq. (4.13) is therefore
a;jaikX Xy,
and it will reduce to the right-hand side of Eq. (4.13), if, and only if
ajjajr =1 j=k
=0 j £k, 4.14)
or, in a more compact form, if
ajjaik = 8k, Jok=1,2,3. (4.15)

When the a;; coefficients are expressed in terms of the direction cosines, the six
equations contained in Eq. (4.15) become identical with the Eqs. (4.9).

Any linear transformation, Eq. (4.12), that has the properties required by
Eq. (4.15) is called an orthogonal transformation, and Eq. (4.15) itself is known
as the orthogonality condition. Thus, the transition from coordinates fixed in
space to coordinates fixed in the rigid body (with common origin) is accom-
plished by means of an orthogonal transformation. The array of transformation
quantities (the direction cosines), written as

air ap  as
a ap axs |, (4.16)
azi azx  ass

is called the matrix of transformation, and will be denoted by a capital letter A.
The quantities a;; are correspondingly known as the matrix elements of the trans-
formation.
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To make these formal considerations more meaningful, consider the simple
example of motion in a plane, so that we are restricted to two-dimensional rota-
tions, and the transformation matrix reduces to the form

ain ap 0
ay;1 axn 0
0 0 1

The four matrix elements, a;;, are connected by three orthogonality conditions:
ajjaix = djk, Jj k=12,

and therefore only one independent parameter is needed to specify the transfor-
mation. But this conclusion is not surprising. A two-dimensional transformation
from one Cartesian coordinate system to another corresponds to a rotation of the
axes in the plane (cf. Fig. 4.4), and such a rotation can be specified completely by
only one quantity, the rotation angle ¢. Expressed in terms of this single parame-
ter, the transformation equations become

x| = X1 cos$ + xp sin¢
Xy = —xj sing + x3 cos ¢
x5 = x3.

The matrix elements are therefore

aj] =cos¢ app = sing a3 =0
az; = —sing az» = cos ¢ a3 =0 “4.17)
a3 =0 ap =0 az =1,

FIGURE 4.4 Rotation of the coordinate axes, as equivalent to two-dimensional orthog-
onal transformation.
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so that the matrix A can be written

cos¢p sing O
A=| —sing cos¢ O (4.17)
0 0 1

The three nontrivial orthogonality conditions expand into the equations

ajja +azaz =1
apaiy +axaxy =1

anaiy + axayp =0.

These conditions are obviously satisfied by the matrix (4-17'), for in terms of the
matrix elements (4.17) they reduce to the identities

cos2¢ + sin2¢> =1
sin® ¢ + cos? ¢ = 1
cos¢sing —sing cos¢ = 0.

The transformation matrix A can be thought of as an operator that, acting
on the unprimed system, transforms it into the primed system. Symbolically, the
process might be written

(r)’ = Ar, (4.18)

which is to be read: The matrix A operating on the components of a vector in the
unprimed system yields the components of the vector in the primed system. Note
that in the development of the subject so far, A acts on the coordinate system only,
the vector is unchanged, and we ask merely for its components in two different
coordinate frames. Parentheses have therefore been placed around r on the left in
Eq. (4.18) to make clear that the same vector is involved on both sides on the equa-
tion. Only the components have changed. In three dimensions, the transformation
of coordinates, as shown earlier, is simply a rotation, and A is then identical with
the rotation operator in a plane.

Despite this, note that without changing the formal mathematics, A can also be
thought of as an operator acting on the vector r, changing it to a different vector r’:

r = Ar, (4.19)

with both vectors expressed in the same coordinate system. Thus, in two dimen-
sions, instead of rotating the coordinate system counterclockwise, we can rotate
the vector r clockwise by an angle ¢ to a new vector r’, as shown in Fig. 4.5. The
components of the new vector will then be related to the components of the old
by the same Eqgs. (4.12) that describe the transformation of coordinates. From a
formal standpoint, it is therefore not necessary to use parentheses in Eq. (4.18);
rather, it can be written as in Eq. (4.19) and interpreted equally as an operation on
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X2

X

FIGURE 4.5 Interpretation of an orthogonal transformation as a rotation of the vector,
leaving the coordinate system unchanged.

the coordinate system or on the vector. The algebra remains the same no matter
which of these two points of view is followed. The interpretation as an operator
acting on the coordinates is the more pertinent one when using the orthogonal
transformation to specify the orientation of a rigid body. On the other hand, the
notion of an operator changing one vector into another has the more widespread
application. In the mathematical discussion either interpretation will be freely
used, as suits the convenience of the situation. Of course, note that the nature
of the operation represented by A will change according to which interpretation
is selected. Thus, if A corresponds to a counterclockwise rotation by an angle ¢
when applied to the coordinate system, it will correspond to a clockwise rotation
when applied to the vector.

The same duality of roles often occurs with other types of coordinate trans-
formations that are more general than orthogonal transformations. They may at
times be looked on as affecting only the coordinate system, expressing some given
quantity or function in terms of a new coordinate system. At other times, they
may be considered as operating on the quantity or functions themselves, chang-
ing them to new quantities in the same coordinate system. When the transforma-
tion is taken as acting only on the coordinate system, we speak of the passive
role of the transformation. In the active sense, the transformation is looked on
as changing the vector or other physical quantity. These alternative interpreta-
tions of a transformation will be encountered in various formulations of classical
mechanics to be considered below (cf. Chapter 9) and indeed occur in many fields
of physics.

To develop further the kinematics of rigid body motion about a fixed origin, we
shall make much use of the algebra governing the manipulation of the transforma-
tion matrix. The following section is therefore a brief summary of the elementary
aspects of matrix algebra with specific application to orthogonal matrices. For
those unacquainted with this branch of mathematics, the section should provide
an introduction adequate for the immediate purpose. The material also details the
particular terminology and notation we will employ. Those already thoroughly
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familiar with matrix algebra may however omit the section and proceed directly
to Section 4.4.

FORMAL PROPERTIES OF THE TRANSFORMATION MATRIX

Let us consider what happens when two successive transformations are made—
corresponding to two successive displacements of the rigid body. Let the first
transformation from r to r’ be denoted by B:

xp = byjxj, (4.20)
and the succeeding transformation from r’ to a third coordinate set r”” by A:

_x{/ = aik-x]/(' (421)

1

The relation between x;" and x; can then be obtained by combining the two
Egs. (4.20) and (4.21):

xl{’ = aikbijj.
This may also be written as

xl{/ = Cl’j-xjv (422)
where

cij = ajrby;j. 4.23)

The successive application of two orthogonal transformations A, B is thus
equivalent to a third linear transformation C. It can be shown that C is also an
orthogonal transformation in consequence of the orthogonality of A and B. The
detailed proof will be left for the exercises. Symbolically, the resultant operator C
can be considered as the product of the two operators A and B:

C = AB,
and the matrix elements ¢;; are by definition the elements of the square matrix
obtained by multiplying the two square matrices A and B.
Note that this “matrix” or operator multiplication is not commutative,
BA £ AB,

for, by definition, the elements of the transformation D = BA are

dij = birax;, 4.24)
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which generally do not agree with the matrix elements of C, Eq. (4.23). Thus, the
final coordinate system depends upon the order of application of the operators A
and B, i.e., whether first A then B, or first B and then A. However, matrix mul-
tiplication is associative; in a product of three or more matrices the order of the
multiplications is unimportant:

(AB)C = A(BC). (4.25)

In Eq. (4.19) the juxtaposition of A and r, to indicate the operation of A on
the coordinate system (or on the vector), was said to be merely symbolic. But, by
extending our concept of matrices, it may also be taken as indicating an actual
matrix multiplication. Thus far, the matrices used have been square, i.e., with
equal number of rows and columns. However, we may also have one-column
matrices, such as x and x” defined by

X1 x|
x=|x |, X =|x5 |. (4.26)
X3 x4

The product Ax, by definition, shall be taken as a one-column matrix, with the
elements

(AX),‘ =daijjXj = xl{.
Hence, Eq. (4.19) can also be written as the matrix equation
x = Ax.

The addition of two matrices, while not as important a concept as multiplica-
tion, is a frequently used operation. The sum A + B is a matrix C whose elements
are the sum of the corresponding elements of A and B:

Cij = ajj +bij-
Of greater importance is the transformation inverse to A, the operation that

changes 7’ back to r. This transformation will be called A~! and its matrix ele-
ments designated by a; Iz We then have the set of equations

Xi = aj;x;, (4.27)
which must be consistent with

Xp = QgiXi. (4.28)
Substituting x; from (4.27), Eq. (4.28) becomes

X = akial{jxl;. (4.29)
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Since the components of r’ are independent, Eq. (4.29) is correct only if the sum-
mation reduces identically to x;. The coefficient of x} must therefore be 1 for
j =k and O for j # k; in symbols,

agiaj; = 8j. (4.30)

The left-hand side of Eq. (4.30) is easily recognized as the matrix element for the
product AA~!, while the right-hand side is the element of the matrix known as
the unit matrix 1:

1 00
1=10 1 0 4.31)
0 0 1
Equation (4.30) can therefore be written as
AA" =1, (4.32)

which indicates the reason for the designation of the inverse matrix by A~!. The
transformation corresponding to 1 is known as the identity transformation, pro-
ducing no change in the coordinate system:

x =1x.
Similarly multiplying any matrix A by 1, in any order, leaves A unaffected:
1A =A1=A

By slightly changing the order of the proof of Eq. (4.28), it can be shown that A
and A~! commute. Instead of substituting x; in Eq. (4.29) in terms of x’, we could
equally as well demand consistency by eliminating x” from the two equations,
leading in analogous fashion to

afjajk = (Sik-

In matrix notation, this reads

A lA=1, (4.33)

which proves the statement.
Now let us consider the double sum

I
Al ALi 4
which can be written either as

, .
Clidy; with ¢;; = agjag;
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or as
akldkj with dkj = akial{j.

Applying the orthogonality conditions, Eq. (4.15), the sum in the first form re-
duces to

/! /
31161,] == alj.

On the other hand, the same sum from the second point of view, and with the help
of Eq. (4.30), can be written

ak18k j = ajl-
Thus, the elements of the direct matrix A and the reciprocal A~! are related by

a; = aj. (4.34)

In general, the matrix obtained from A by interchanging rows and columns is
known as the transposed matrix, indicated by the tilde thus: A. Equation (4.34)
therefore states that for orthogonal matrices the reciprocal matrix is to be identi-
fied as the transposed matrix; symbolically,

A=A (4.35)
If this result is substituted in Eq. (4.33), we obtain
AA=1, (4.36)

which is identical with the set of orthogonality conditions, Eq. (4.15), written in
abbreviated form, as can be verified by direct expansion. Similarly, an alternative
form of the orthogonality conditions can be obtained from Eq. (4.30) by substi-
tuting (4.34):

axiaji = ;. 4.37)
In symbolic form, (4.37) can be written
AA =1

and may be derived directly from (4.36) by multiplying it from the left by A and
from the right by A~

A rectangular matrix is said to be of dimension m x n if it has m rows and n
columns; i.e., if the matrix element is g;;, then i runs from 1 to m, and j from 1
to n. Clearly the transpose of such a matrix has the dimension n x m. If a vector
column matrix is considered as a rectangular matrix of dimension m x 1, the
transpose of a vector is of dimension 1 x m, i.e., a one-row matrix. The product



148

Chapter 4 The Kinematics of Rigid Body Motion

AB of two rectangular matrices exists only if the number of columns of A is the
same as the number of rows of B. This is an obvious consequence of the definition
of the multiplication operation leading to a matrix element:

Cij = aikby;.

From this viewpoint, the product of a vector column matrix with a square matrix
does not exist. The only product between these quantities that can be formed is
that of a square matrix with a single column matrix. But note that a single row
matrix, i.e., a vector transpose, can indeed pre-multiply a square matrix. For a
vector, however, the distinction between the column matrix and its transpose is
often of no consequence. The symbol x may therefore be used to denote either
a column or a row matrix, as the situation warrants.* Thus in the expression AX,
where A is a square matrix, the symbol x stands for a column matrix, whereas in
the expression XA it represents the same elements arranged in a single row. Note
that the ith component of Ax can be written as

Aijxj ij(A)ji-

Hence, we have a useful commutation property of the product of a vector and a
square matrix that

Ax = xA.
A square matrix that is the same as its transpose,
Ajj =Aj, (4.38)

is said (for obvious reasons) to be symmetric. When the transpose is the negative
of the original matrix,

Ajj = —Aj;, (4.39)

the matrix is antisymmetric or skew symmetric. Clearly in an antisymmetric
matrix, the diagonal elements are always zero.

The two interpretations of an operator as transforming the vector, or alterna-
tively the coordinate system, are both involved if we find the transformation of an
operator under a change of coordinates. Let A be considered an operator acting
upon a vector F (or a single-column matrix F) to produce a vector G:

G = AF.

If the coordinate system is transformed by a matrix B, the components of the
vector G in the new system will be given by

BG = BAF,

*The transpose sign on vector matrices will occasionally be retained where it is useful to emphasize
the distinction between column and row matrices.
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which can also be written
BG = BAB~'BF. (4.40)

Equation (4.40) can be stated as the operator BAB~! acting upon the vector F,
expressed in the new system, produces the vector G, likewise expressed in the
new coordinates. We may therefore consider BAB™! to be the form taken by the
operator A when transformed to a new set of axes:

A = BAB~!. (4.41)

Any transformation of a matrix having the form of Eq. (4.41) is known as a simi-
larity transformation.

It is appropriate at this point to consider the properties of the determinant
formed from the elements of a square matrix. As is customary, we shall denote
such a determinant by vertical bars, thus: |A|. Note that the definition of matrix
multiplication is identical with that for the multiplication of determinants

|AB| = |A| - |B]|. (4.41")

Since the determinant of the unit matrix is 1, the determinantal form of the
orthogonality conditions, Eq. (4.36), can be written

IA|-|A| = 1.

Further, as the value of a determinant is unaffected by interchanging rows and
columns, we can write

AP =1, (4.42)

which implies that the determinant of an orthogonal matrix can only be +1 or —1.
(The geometrical significance of these two values will be considered in the next
section.)

When the matrix is not orthogonal, the determinant does not have these simple
values, of course. It can be shown however that the value of the determinant is
invariant under a similarity transformation. Multiplying Eq. (4.41) for the trans-
formed matrix from the right by B, we obtain the relation

A’'B = BA,
or in determinantal form
|A’| - [B| = |BJ - |Al.
Since the determinant of B is merely a number, and not zero,* we can divide by

*If it were zero, there could be no inverse operator B! (by Cramer’s rule), which is required for
Eq. (4.41) to make sense.



150

44 1

Chapter 4 The Kinematics of Rigid Body Motion

|B| on both sides to obtain the desired result:
A"l = |AL.

In discussing rigid body motion later, all these properties of matrix transfor-
mations, especially of orthogonal matrices, will be employed. In addition, other
properties are needed, and they will be derived as the occasion requires.

THE EULER ANGLES

We have noted (cf. p. 137) that the nine elements g;; are not suitable as generalized
coordinates because they are not independent quantities. The six relations that
express the orthogonality conditions, Eqs. (4.9) or Egs. (4.15), of course reduce
the number of independent elements to three. But in order to characterize the
motion of a rigid body, there is an additional requirement the matrix elements
must satisfy, beyond those implied by orthogonality. In the previous section we
pointed out that the determinant of a real orthogonal matrix could have the value
+1 or —1. The following argument shows however that an orthogonal matrix
whose determinant is —1 cannot represent a physical displacement of a rigid body.
Consider the simplest 3 x 3 matrix with the determinant —1:

—1 0 0
S= -1 0| =-1
0 0 -1

The transformation S has the effect of changing the sign of each of the components
or coordinate axes (cf. Fig. 4.6). Such an operation transforms a right-handed
coordinate system into a left-handed one and is known as an inversion of the
coordinate axes.

One method of performing an inversion is to rotate about a coordinate axis by
180° and then reflect in that coordinate axis direction. For the z-direction, this
gives

rotate reflect

by 180° inthe | = inversion.
about 7 xy plane

'
S
y =y
/

FIGURE 4.6 Inversion of the coordinate axes.

4

'

z
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In matrix notation, this has the form

-1 0 0 1 0 0 —1 0
0 -1 0 0 1 = 0 -1 0],
0 0 1 0 0 -1 0 0 -1

where the 180° rotation is obtained by setting ¢ = 180° in Eq. (4.17).

From the nature of this operation, it is clear that an inversion of a right-
handed system into a left-handed one cannot be accomplished by any rigid
change in the orientation of the coordinate axes. An inversion therefore never
corresponds to a physical displacement of a rigid body. What is true for the
inversion S is equally valid for any matrix whose determinant is —1, for any
such matrix can be written as the product of § with a matrix whose determi-
nant is +1, and thus includes the inversion operation. Consequently, it cannot
describe a rigid change in orientation. Therefore, the transformations represent-
ing rigid body motion must be restricted to matrices having the determinant
+1. Another method of reaching this conclusion starts from the fact that the
matrix of transformation must evolve continuously from the unit matrix, which
of course has the determinant 4 1. It would be incompatible with the continuity
of the motion to have the matrix determinant suddenly change from its initial
value +1 to —1 at some given time. Orthogonal transformations with determi-
nant +1 are said to be proper, and those with the determinant —1 are called
improper.

In order to describe the motion of rigid bodies in the Lagrangian formulation
of mechanics, it will therefore be necessary to seek three independent parameters
that specify the orientation of a rigid body in such a manner that the correspond-
ing orthogonal matrix of transformation has the determinant +1. Only when such
generalized coordinates have been found can we write a Lagrangian for the sys-
tem and obtain the Lagrangian equations of motion. A number of such sets of
parameters have been described in the literature, but the most common and useful
are the Euler or Eulerian angles. We shall therefore define these angles at this
point, and show how the elements of the orthogonal transformation matrix can be
expressed in terms of them.

We can carry out the transformation from a given Cartesian coordinate sys-
tem to another by means of three successive rotations performed in a specific
sequence. The Euler angles are then defined as the three successive angles of rota-
tion. Within limits, the choice of rotation angles is arbitrary. The main convention
that will be followed here is used widely in celestial mechanics, applied mechan-
ics, and frequently in molecular and solid-state physics. Other conventions will
be described below and in Appendix A.

The sequence employed here is started by rotating the initial system of axes,
xyz, by an angle ¢ counterclockwise about the z axis, and the resultant coordinate
system is labeled the £n¢ axes. In the second stage, the intermediate axes, £n¢,
are rotated about the £ axis counterclockwise by an angle 6 to produce another
intermediate set, the §'n'¢’ axes. The £’ axis is at the intersection of the xy and
&'n’ planes and is known as the line of nodes. Finally, the £'n'¢’ axes are rotated
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__— N
A

W7, af;
A

FIGURE 4.7 The rotations defining the Eulerian angles.

counterclockwise by an angle v about the ¢’ axis to produce the desired x’y’z’
system of axes. Figure 4.7 illustrates the various stages of the sequence. The Euler
angles 0, ¢, and v thus completely specify the orientation of the x"y’z’ system rel-
ative to the xyz and can therefore act as the three needed generalized coordinates.*

The elements of the complete transformation A can be obtained by writing
the matrix as the triple product of the separate rotations, each of which has a
relatively simple matrix form. Thus, the initial rotation about z can be described
by a matrix D:

& = Dx,

where £ and x stand for column matrices. Similarly, the transformation from &n¢
to £'n’¢’ can be described by a matrix C,

§=Cg

*A number of minor variations will be found in the literature even within this convention. The differ-
ences are not very great, but they are often sufficient to frustrate easy comparison of the end formulae,
such as the matrix elements. Greatest confusion, perhaps, arises from the occasional use of left-handed
coordinate systems.
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and the last rotation to x"y’z’ by a matrix B,
x' = B¢’
Hence, the matrix of the complete transformation,

X = Ax,

is the product of the successive matrices,
A = BCD.

Now the D transformation is a rotation about z, and hence has a matrix of the
form (cf. Eq. (4.17))

[ cos¢ sing O
D= | —sin¢g cos¢ O |. (4.43)
0 0 1

The C transformation corresponds to a rotation about £, with the matrix

1 0 0
C=|0 cosf sin6 |, (4.44)
| 0 —sinf cosd

and finally B is a rotation about ¢’ and therefore has the same form as D:

cosyy siny O
B=| —sinyy cosy O |. (4.45)
0 0 1

The product matrix A = BCD then follows as

—siny cos¢ —cosfsingcosy —sinyrsing + cosfcosgpcosy  cos Y sinh
sin 6 sin ¢ —sinf cos ¢ cos 6

cos ¥ cos ¢ — cos B sin¢ sin ¥ cos ¥ sin ¢ + cos 6 cos ¢ sin Y sin ¥ sin @
A= .

(4.46)
The inverse transformation from body coordinates to space axes
x=A"'x
is then given immediately by the transposed matrix A:

ATl =

5 cosycos¢p —cosfsingsiny  —siny cos¢ — cos b sin @ cos Y sin 6 sin ¢
A = | cosyrsing +cosfcospsinyy —sinysing + cosfcosgpcosyy —sinfcosg |.
sin 6 sin sin 6 cos ¥ cosf

(4.47)
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Verification of the multiplication, and demonstration that A represents a proper,
orthogonal matrix will be left to the exercises.

Note that the sequence of rotations used to define the final orientation of the
coordinate system is to some extent arbitrary. The initial rotation could be taken
about any of the three Cartesian axes. In the subsequent two rotations, the only
limitation is that no two successive rotations can be about the same axis. A total
of 12 conventions is therefore possible in defining the Euler angles (in a right-
handed coordinate system). The two most frequently used conventions differ only
in the choice of axis for the second rotation. In the Euler’s angle definitions
described above, and used throughout the book, the second rotation is about the
intermediate x axis. We will refer to this choice as the x-convention. In quan-
tum mechanics, nuclear physics, and particle physics, we often take the second
defining rotation about the intermediate y axis; this form will be denoted as the
y-convention.

A third convention is commonly used in engineering applications relating to
the orientation of moving vehicles such as aircraft and satellites. Both the x- and
y-conventions have the drawback that when the primed coordinate system is only
slightly different from the unprimed system, the angles ¢ and ¥ become indis-
tinguishable, as their respective axes of rotation, z and z’ are then nearly coin-
cident. To get around this problem, all three rotations are taken around different
axes. The first rotation is about the vertical axis and gives the heading or yaw
angle. The second is around a perpendicular axis fixed in the vehicle and nor-
mal to the figure axis; it is measured by the pitch or attitude angle. Finally, the
third angle is one of rotation about the figure axis of the vehicle and is the roll
or bank angle. Because all three axes are involved in the rotations, it will be
designated as the xyz-convention (although the order of axes chosen may actu-
ally be different). This last convention is sometimes referred to as the Tait—Bryan
angles.

While only the x-convention will be used in the text, for reference purposes
Appendix A lists formulae involving Euler’s angles, such as rotation matrices, in
both the y- and xyz-conventions.

THE CAYLEY-KLEIN PARAMETERS AND RELATED QUANTITIES

We have seen that only three independent quantities are needed to specify the
orientation of a rigid body. Nonetheless, there are occasions when it is desirable
to use sets of variables containing more than the minimum number of quan-
tities to describe a rotation, even though they are not suitable as generalized
coordinates. Thus, Felix Klein introduced the set of four parameters bearing
his name to facilitate the integration of complicated gyroscopic problems. The
Euler angles are difficult to use in numerical computation because of the large
number of trigonometric functions involved, and the four-parameter representa-
tions are much better adapted for use on computers. Further, the four-parameter
sets are of great theoretical interest in branches of physics beyond the scope of
this book, wherever rotations or rotational symmetry are involved. It therefore
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seems worthwhile to briefly describe these parameters, leaving the details to

Appendix A.
The four Cayley—Klein parameters are complex numbers denoted by «, 8, y,
and § with the constraints that 8 = —y* and § = a™. In terms of these numbers,

the transformation matrix of a rotated body is given by
| ,
S@ =y 48— p) St + ) ys—ap
i 1
@y =B =8 S@+y 4B +87) —i@B+yd)
B8 —ay i(ay + B9) ad + By

The matrix A is real in spite of its appearance, as we can see by writing

o =e)+ie3

B =e+iey,

where the four real quantities e, e1, e2, and e3 are often referred to as the Cayley—
Klein parameters but should be called the Euler parameters to be correct. They
satisfy the relation

e(z)—i—e]z—i—e%—i—e%:l.

A bit of algebraic manipulation then shows that the matrix A can be written in
terms of the four real parameters in the form

eg + e% — e% — e% 2(e1ep + ege3) 2(e1e3 — eper)
A= 2(e1er — epes) 8(2) - e% + e% - e% 2(eze3 + eper) . (447)
2(e1e3 + epern) 2(epe3 — epeq) eé — e% — e% + e%

The reality of the matrix elements is now manifest. It can also be easily demon-
strated that the matrix A in terms of these parameters cannot be put in the form of
the inversion transformation S. An examination of the off-diagonal elements and
their transposes shows that they all vanish only if at least three of the parameters
are zero. We cannot then choose the remaining nonzero parameter such that all
three of the diagonal elements (or only one of them) are —1.

EULER’S THEOREM ON THE MOTION OF A RIGID BODY

The discussions of the previous sections provide a complete mathematical tech-
nique for describing the motions of a rigid body. At any instant, the orientation
of the body can be specified by an orthogonal transformation, the elements of
which may be expressed in terms of some suitable set of parameters. As time
progresses, the orientation will change, and hence the matrix of transformation
will be a function of time and may be written A(¢). If the body axes are chosen
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coincident with the space axes at the time ¢t = 0, then the transformation is ini-
tially simply the identity transformation:

A0) = 1.

At any later time, A(¢) will in general differ from the identity transformation, but
since the physical motion must be continuous, A(#) must be a continuous function
of time. The transformation may thus be said to evolve continuously from the
identity transformation.

With this method of describing the motion, and using only the mathematical
apparatus already introduced, we are now in a position to obtain the important
characteristics of rigid body motion. Of basic importance is:

Euler’s Theorem: The general displacement of a rigid body with one
point fixed is a rotation about some axis.

The theorem means that for every such rotation it is always possible to find an
axis through the fixed point oriented at particular polar angles 6 and ¢ such that
a rotation by the particular angle i about this axis duplicates the general rota-
tion. Thus, three parameters (angles) characterize the general rotation. It is also
possible to find three Euler angles to produce the same rotation.

If the fixed point (not necessarily at the center of mass of the object) is taken
as the origin of the body set of axes, then the displacement of the rigid body
involves no translation of the body axes; the only change is in orientation. The
theorem then states that the body set of axes at any time ¢ can always be obtained
by a single rotation of the initial set of axes (taken as coincident with the space
set). In other words, the operation implied in the matrix A describing the physical
motion of the rigid body is a rotation. Now it is characteristic of a rotation that one
direction, namely, the axis of rotation, is left unaffected by the operation. Thus,
any vector lying along the axis of rotation must have the same components in both
the initial and final axes.

The other necessary condition for a rotation, that the magnitude of the vectors
be unaffected, is automatically provided by the orthogonality conditions. Hence,
Euler’s theorem will be proven if it can be shown that there exists a vector R hav-
ing the same components in both systems. Using matrix notation for the vector,

R =AR=R. (4.48)
Equation (4.48) constitutes a special case of the more general equation:

R = AR = AR, (4.49)
where X is some constant, which may be complex. The values of A for which

Eq. (4.49) is soluble are known as the characteristic values, or eigenvalues,* of
the matrix. Since equations of the form of (4.49) are of general interest and will be

*This term is derived from the German Eigenwerte, literally “proper values.”
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used in Chapter 6, we shall examine Eq. (4.49) and then specialize the discussion
to Eq. (4.48).

The problem of finding vectors that satisfy Eq. (4.49) is therefore called the
eigenvalue problem for the given matrix, and Eq. (4.49) itself is referred to as the
eigenvalue equation. Correspondingly, the vector solutions are the eigenvectors
of A. Euler’s theorem can now be restated in the following language:

The real orthogonal matrix specifying the physical motion of a rigid
body with one point fixed always has the eigenvalue +1.

The eigenvalue equations (4.49) may be written
(A—A1R =0, (4.50)
or, in expanded form,

(ann —MX +apnY +a3Z=0
a1 X + (axn — MY +anZ =0 (4.51)
a31X +anY + (a3 —A)Z =0.

Equations (4.51) comprise a set of three homogeneous simultaneous equations
for the components X, Y, Z of the eigenvector R. As such, they can never fur-
nish definite values for the three components, but only ratios of components.
Physically, this corresponds to the circumstance that only the direction of the
eigenvector can be fixed; the magnitude remains undetermined. The product of a
constant with an eigenvector is also an eigenvector. In any case, being homoge-
neous, Egs. (4.51) can have a nontrivial solution only when the determinant of the
coefficients vanishes:

ail — A ain a3
|A—AT| = ar| a» — A a3 =0. 4.52)
asi axp a3 —A

Equation (4.52) is known as the characteristic or secular equation of the matrix,
and the values of A for which the equation is satisfied are the desired eigenvalues.
Euler’s theorem reduces to the statement that, for the real orthogonal matrices
under consideration, the secular equation must have the root A = +1.

In general, the secular equation will have three roots with three corresponding
eigenvectors. For convenience, the notation X1, X7, X3 will often be used instead
of X, Y, Z. In such a notation, the components of the eigenvectors might be
labeled as Xy, the first subscript indicating the particular component, the second
denoting which of the three eigenvectors in involved. A typical member of the
group of Egs. (4.51) would then be written (with explicit summation) as

Zainjk = M Xik
J
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or, alternatively, as
Zainjk = ZXiijk)Lk. (4.53)
j j

Both sides of Eq. (4.53) then have the form of a matrix product element; the left
side as the product of A with a matrix X having the elements X j, the right side
as the product of X with a matrix whose jkth element is § jxAx. The last matrix is
diagonal, and its diagonal elements are the eigenvalues of A. We shall therefore
designate the matrix by A:

MM 0 O
A= 0 x» 0. (4.54)
0 0 X3

Equation (4.53) thus implies the matrix equation
AX = XA,
or, multiplying from the left by X!,
X'AX = A. (4.55)

Now, the left side is in the form of a similarity transformation operating on A.
(We have only to denote X~! by the symbol Y to reduce it to the form Eq. (4.41).)
Thus, Eq. (4.55) provides the following alternative approach to the eigenvalue
problem: We seek to diagonalize A by a similarity transformation. Each column
of the matrix used to carry out the similarity transformation consists of the com-
ponents of an eigenvector. The elements of the diagonalized form of A are the
corresponding eigenvalues.

Euler’s theorem can be proven directly by using the orthogonality property of
A. Consider the expression

A-—DA=1-A.

If we take the determinant of the matrices forming both sides (cf. Eq. (4.41")), we
can write the equality

IA—1|A| =|1—A (4.56)
To describe the motion of a rigid body, the matrix A(¢) must correspond to a
proper rotation; therefore the determinant of A, and of its transpose, must be +1.

Further, since in general the determinant of the transpose of a matrix is the same
as that of the matrix, the transpose signs in Eq. (4.56) can be removed:

A—1]=|1—A| (4.57)
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Equation (4.57) says that the determinant of a particular matrix is the same as the
determinant of the negative of the matrix. Suppose B is some n x n matrix. Then
it is a well-known property of determinants that

| = Bl = (=1)"[B].

Since we are working in a three-dimensional space (n = 3), it is clear that
Eq. (4.57) can hold for any arbitrary proper rotation only if

|A—1]=0. (4.58)

Comparing Eq. (4.58) with the secular equation (4.52), we can see that one of the
eigenvalues satisfying Eq. (4.52) must always be A = +1, which is the desired
result of Euler’s theorem.

Note how the proof of Euler’s theorem emphasizes the importance of the num-
ber of dimensions in the space considered. In spaces with an even number of
dimensions, Eq. (4.57) is an identity for all matrices and Euler’s theorem doesn’t
hold. Thus, for two dimensions there is no vector in the space that is left unaltered
by a rotation—the axis of rotation is perpendicular to the plane and therefore out
of the space.

It is now a simple matter to determine the properties of the other eigenvalues
in three dimensions. Designate the +1 eigenvalue as A3. The determinant of any
matrix is unaffected by a similarity transformation (cf. Section 4.3). Hence, by
Egs. (4.54) and (4.55) and the properties of A as a proper rotation,

|A| = AiAoh3 = A1Ap = 1. 4.59)

Further, since A is a real matrix, then if A is a solution of the secular equa-
tion (4.52), the complex conjugate 1* must also be a solution.

If a given eigenvalue ); is complex, then the corresponding eigenvector, R;,
that satisfies Eq. (4.59) will in general also be complex. We have not previously
dealt with the properties of complex vectors under (real) orthogonal transforma-
tions, and there are some modifications to previous definitions. The square of the
length or magnitude of a complex vector R is R - R*, or in matrix notation RR*,
where the transpose sign on the left-hand vector indicates it is represented by a
row matrix. Under a real orthogonal transformation, the square of the magnitude
is invariant:

R'R* = (AR)AR* = RAAR* = RR*.

Suppose now that R is a complex eigenvector corresponding to a complex eigen-
value A. Hence, by Eq. (4.49), we have

RR™* = A*RR*,
which leads to the conclusion that all eigenvalues have unit magnitude:

A =1 (4.60)
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From these properties it may be concluded that there are three possible distri-
butions of eigenvalues. If all of the eigenvalues are real, then only two situations
are possible:

1. All eigenvalues are +1. The transformation matrix is then just 1, a case we
may justly call trivial.

2. One eigenvalue is +1 and the other two are both —1. Such a transformation
may be characterized as an inversion in two coordinate axes with the third
unchanged. Equally it is a rotation through the angle 7 about the direction
of the unchanged axis.

If not all of the eigenvalues are real, there is only one additional possibility:

3. One eigenvalue is +1, and the other two are complex conjugates of each
other of the form ¢/® and e ~#®.

A more complete statement of Euler’s theorem thus is that any nontrivial real
orthogonal matrix has one, and only one, eigenvalue +1.

The direction cosines of the axis of rotation can then be obtained by setting
A = 1 in the eigenvalue equations (4.51) and solving for X, Y, and Z.* The
angle of rotation can likewise be obtained without difficulty. By means of some
similarity transformation, it is always possible to transform the matrix A to a
system of coordinates where the z axis lies along the axis of rotation. In such a
system of coordinates, A’ represents a rotation about the z axis through an angle
®, and therefore has the form

cos® sind O
A=]| —sin® cos® 0
0 0 1

The trace of A’ is simply
14 2cos ®.

Since the trace is always invariant under a similarity transformation, the trace of
A with respect to any initial coordinate system must have the same form,

TrA =a;; = 1 +2cos P, 4.61)

which gives the value of ® in terms of the matrix elements. The rotation angle ®
is to be identified also with the phase angle of the complex eigenvalues A, as the

*If there are multiple roots to the secular equation, then the corresponding eigenvectors cannot be
found as simply (cf. Sections 5.4 and 6.2). Indeed, it is not always possible to completely diagonalize
a general matrix if the eigenvalues are not all distinct. These exceptions are of no importance for the
present considerations, as Euler’s theorem shows that for all nontrivial orthogonal matrices +1 is a
single root.
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sum of the eigenvalues is just the trace of A in its diagonal form, Eq. (4.54). By
Euler’s theorem and the properties of the eigenvalues, this sum is

TA=) Ji=1+e®+e®=1+2cosd.

1

We see that the situations in which the eigenvalues are all real are actually special
cases of A having complex eigenvalues. All the A; = +1 corresponds to a rotation
angle ® = 0 (the identity transformation), while the case with a double eigenvalue
—1 corresponds to & = 7, as previously noted.

The prescriptions for the direction of the rotation axis and for the rotation angle
are not unambiguous. Clearly if R is an eigenvector, so is —R; hence the sense of
the direction of the rotation axis is not specified. Further, —® satisfies Eq. (4.61)
if ® does. Indeed, it is clear that the eigenvalue solution does not uniquely fix
the orthogonal transformation matrix A. From the determinantal secular equa-
tion (4.52), it follows that the inverse matrix A~! = A has the same eigenvalues
and eigenvectors as A. However, the ambiguities can at least be ameliorated by
assigning ® to A and —® to A~!, and fixing the sense of the axes of rotation by
the right-hand screw rule.

Finally, note should be made of an immediate corollary of Euler’s theorem,
sometimes called

Chasles’ Theorem: The most general displacement of a rigid body is
a translation plus a rotation.

Detailed proof is hardly necessary. Simply stated, removing the constraint of mo-
tion with one point fixed introduces three translatory degrees of freedom for the
origin of the body system of axes.*

FINITE ROTATIONS

The relative orientation of two Cartesian coordinate systems with common ori-
gin has been described by various representations, including the three successive
Euler angles of rotation that transform one coordinate system to the other. In the
previous section it was shown that the coordinate transformation can be carried
through by a single rotation about a suitable direction. It is therefore natural to
seek a representation of the coordinate transformation in terms of the parameters

*M. Chasles (1793-1881) also proved a stronger form of the theorem, namely, that it is possible to
choose the origin of the body set of coordinates so that the translation is in the same direction as the
axis of rotation. Such a combination of translation and rotation is called a screw motion.

This formalism has some use in crystallographic studies of crystals with a screw axis of symmetry.
Such symmetry produces strange optical properties. Aside from that application, there seems to be
little present use for this version of Chasles’ theorem, nor for the elaborate mathematics of screw
motions developed in the nineteenth century.
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of the rotation—the angle of rotation and the direction cosines of the axis of
rotation.

With the help of some simple vector algebra, we can derive such a repre-
sentation. For this purpose, it is convenient to treat the transformation in its
active sense, i.e., as one that rotates the vector in a fixed coordinate system (cf.
Section 4.2 ). Recall that a counterclockwise rotation of the coordinate system
then appears as a clockwise rotation of the vector. In Fig. 4.8(a) the initial posi-
tion of the vector r is denoted by OP and the final position r’ by @, while the
unit vector along the axis of rotation is denoted by n. The distance between O
and N has the magnitude n - r, so that the vector ON can be written as nn-r).
Figure 4.8(b) sketches the vectors in the plane normal to the axis of rotation. The
vector N P can be described also as r — n(n - r), but its magnitude is the same as
that of the vectors N Q and r x n. To obtain the desired relation between r’ and r,
we construct r’ as the sum of three vectors:

r'=0N+NV+V0
or
r =nm:r)+[r—nm-r)]cos ® + (r x n) sin d.
A slight rearrangement of terms leads to the final result:
r =rcos®+nm-r)(1 —cos ®) + (r x n) sin d. 4.62)
Equation (4.62) will be referred to as the rotation formula. Note that Eq. (4.62)
holds for any rotation, no matter what its magnitude, and thus is a finite-rotation

version (in a clockwise sense) of the description given in Section 2.6, for the
change of a vector under infinitesimal rotation. (cf. also Section 4.8.)

o

(a) Overall view the axis of rotation

(b) The plane normal to

FIGURE 4.8 Vector diagrams for derivation of the rotation formula.
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It is straightforward to express the rotation angle, ®, in terms of the Euler
angles. Equation (4.61) gives the trace of the rotation matrix in the plane per-
pendicular to the axis of rotation. Since the trace of a matrix is invariant, this
expression must equal the trace of A as given in Eq. (4.46). If we use this equality,
add one (1) to both sides, and use trigonometric identities, we get an equation
whose square root is

o+y cos Q, (4.63)
2 2

®
COS — = COs

where the sign of the square root is fixed by the physical requirement that & — 0
as ¢, ¥,and 6 — 0.

INFINITESIMAL ROTATIONS

In the previous sections various matrices have been associated with the descrip-
tion of the rigid body orientation. However, the number of matrix elements has
always been larger than the number of independent variables, and various sub-
sidiary conditions have had to be tagged on. Now that we have established that
any given orientation can be obtained by a single rotation about some axis, it is
tempting to try to associate a vector, characterized by three independent quanti-
ties, with the finite displacement of a rigid body about a fixed point. Certainly a
direction suggests itself obviously—that of the axis of rotation—and any function
of the rotation angle would seem suitable as the magnitude. But it soon becomes
evident that such a correspondence cannot be made successfully. Suppose A and
B are two such “vectors” associated with transformations A and B. Then to qualify
as vectors they must be commutative in addition:

A+B=B+A.

But the addition of two rotations, i.e., one rotation performed after another, it has
been seen, corresponds to the product AB of the two matrices. However, matrix
multiplication is not commutative, AB # BA, and hence A, B are not commuta-
tive in addition and cannot be accepted as vectors. This conclusion, that the sum
of finite rotations depends upon the order of the rotations, is strikingly demon-
strated by a simple experiment. Thus, Fig. 4.9 illustrates the sequence of events
in rotating a block first through 90° about the 7z’ axis fixed in the block, and then
90° about the y’ axis, while Fig. 4.10 presents the same rotations in reverse order.
The final position is markedly different in the two sequences.

While a finite rotation thus cannot be represented by a single vector, the same
objections do not hold if only infinitesimal rotations are considered. An infinites-
imal rotation is an orthogonal transformation of coordinate axes in which the
components of a vector are almost the same in both sets of axes—the change
is infinitesimal. Thus, the x| component of some vector r (on the passive interpre-
tation of the transformation) would be practically the same as xp, the difference
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' '

z z

N\
\

X' x'

(a) Vertical position (b) Rotated 90° about z' (¢) Rotated 90° ab,out
intermediate y

FIGURE 4.9 The effect of two rotations performed in a given order.

L

(a) Vertical position (b) Rotated 90° about y’ (c) Rotated 90° about
intermediate 7z’

FIGURE 4.10 The two rotations shown in Fig. 4.9, but performed in reverse order.

being extremely small:

X} = X1 4 €11x1 + €12x2 + €13x3. (4.64)

The matrix elements €11, €]2, etc., are to be considered as infinitesimals, so that in

subsequent calculations only the first nonvanishing order in ¢;; need be retained.
For any general component x;, the equations of infinitesimal transformation can
be written as
!/
X; = X;i +€ijXj

or

x,{ = (Sij =+ Eij)x]‘. (4.65)

The quantity §;; will be recognized as the element of the unit matrix, and

Eq. (4.65) appears in matrix notation as

X' =1+ ex. (4.66)



4.8 Infinitesimal Rotations 165

Equation (4.66) states that the typical form for the matrix of an infinitesimal trans-
formation is 1 + €; i.e., it is almost the identity transformation, differing at most
by an infinitesimal operator.

It can now be seen that the sequence of operations is unimportant for infinites-
imal transformations; in other words, they commute. If 1 + €| and 1 + €; are two
infinitesimal transformations, then one of the possible products is

1+e)(1+ €)= 12 +e€1+1e)+ €€
=1+4+¢€ + e, 4.67)

neglecting higher-order infinitesimals. The product in reverse order merely inter-
changes €] and e;; this has no effect on the result, as matrix addition is always
commutative. The commutative property of infinitesimal transformations over-
comes the objection to their representation by vectors. For example, the rotation
matrix (4.46) for infinitesimal Euler rotation angles is given by

1 dé+dy) 0
A= | —de¢+dy) 1 de
0 —db 1

and
dQ =id0 +k(d¢ + dvy),

where i and k are the unit vectors in the x- and z-directions, respectively.
The inverse matrix for an infinitesimal transformation is readily obtained. If
A = 1 + €is the matrix of the transformation, then the inverse is

Al=1-—e (4.68)
As proof, note that the product AA~! reduces to the unit matrix,
AN =(1+e(1-e=1,

in agreement with the deﬁnition~f0r the inverse matrix, Eq. (4.32). Further, the
orthogonality of A implies that A = (1 + &) must be equal to A~! as given by
Eq. (4.68). Hence, the infinitesimal matrix is antisymmetric* (cf. Eq. (4.39)):

€= —¢€.

Since the diagonal elements of an antisymmetric matrix are necessarily zero,
there can be only three distinct elements in any 3 x 3 antisymmetric matrix. Hence,

*In this section we have assumed implicitly that an infinitesimal orthogonal transformation corre-
sponds to a rotation. In a sense this assumption is obvious; an “infinitesimal inversion” is a contradic-
tion in terms. Formally, the statement follows from the antisymmetry of €. All the diagonal elements
of 1 + € are then unity, and to first order in small quantities, the determinant of the transformation is
always +1, which is the mark of a proper rotation.
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there is no loss of generality in writing € in the form

0 dQ3  —dS2
€= | —d3 0 e |. (4.69)
dQ2; —dQ2 0

The three quantities d<21, d2;, d23 are clearly to be identified with the three
independent parameters specifying the rotation. We will now show that these three
quantities also form the components of a particular kind of vector. By Eq. (4.66)
the change in the components of a vector under the infinitesimal transformation
of the coordinate system can be expressed by the matrix equation

r —r=dr =er, (4.70)
which in expanded form, with € given by (4.69), becomes

dX1 = deQ3 — X3 sz
dxy) = x3dQ2; — x1dS23 “4.71)
dxz = x1dQ0 — xpd2.

The right-hand side of each of Egs. (4.71) is in the form of a component of
the cross product of two vectors, namely, the cross product of r with a vector
dQ having components* d2j, d2;, d23. We can therefore write Eq. (4.71)
equivalently as

dr =r x dQ. 4.72)

The vector r transforms under an orthogonal matrix B according to the relations
(cf. Eq. (4.20))

x; = bijx;. (4.73)

If dQ is to be a vector in the same sense as r, it must transform under B in the
same way. As we shall see, d€) passes most of this test for a vector, although in
one respect it fails to make the grade. One way of examining the transformation
properties of d€2 is to find how the matrix € transforms under a coordinate trans-
formation. As was shown in Section 4.3, the transformed matrix € is obtained by
a similarity transformation:

€ = BeB .

*]t cannot be emphasized too strongly that d€) is not the differential of a vector. The combination d{}
stands for a differential vector, that is, a vector of differential magnitude. Unfortunately, notational
convention results in having the vector characteristic applied only to €2, but it should be clear to the
reader there is no vector of which d€) represents a differential. As we have seen, a finite rotation
cannot be represented by a single vector.
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As the antisymmetry property of a matrix is preserved under an orthogonal simi-
larity transformation (see Derivation 3), € can also be put in the form of Eq. (4.69)
with nonvanishing elements d€2}. A detailed study of these elements shows that
€ transforms under the similarity transformation such that

dS} = |B|b;;dS;. (4.74)

The transformation of d€) is thus almost the same as for r, but differs by the factor
|B|, the determinant of the transformation matrix.

There is however a simpler way to uncover the vector characteristics of d{€Q,
and indeed to verify its transformation properties as given by Eq. (4.74). In the
previous section a vector formula was derived for the change in the components
of r under a finite rotation ® of the coordinate system. By letting ® go to the
limit of an infinitesimal angle d ®, the corresponding formula for an infinitesimal
rotation can be obtained. In this limit, cos @ in Eq. (4.62) approaches unity, and
sin ® goes to ®; the resultant expression for the infinitesimal change in r is then

 —r=dr=rxndd. (4.75)

Comparison with Eq. (4.72) indicates that d€) is indeed a vector and is determined
by

dQ =ndd. (4.76)

Equation (4.75) can of course be derived directly without recourse to the finite
rotation formula. Considered in its active sense, the infinitesimal coordinate trans-
formation corresponds to a rotation of a vector r clockwise through an angle d
about the axis of rotation, a situation that is depicted in Fig. 4.11.* The magnitude
of dr, to first order in d ® is, from the figure,

dr =rsinfdo,

and the direction dr is, in this limit, perpendicular to both r and dQ = nd®.
Finally, the sense of dr is in the direction a right-hand screw advances as r is
turned into d€). Figure 4.11 thus shows that in magnitude, direction, and sense dr
is the same as that predicted by Eq. (4.75).

The transformation properties of d€2, as defined by Eq. (4.76), are still to be
discussed. As is well known from elementary vector algebra, there are two kinds
of vectors in regard to transformation properties under an inversion. Vectors that
transform according to Eq. (4.72) are known as polar vectors. Under a three-
dimensional inversion,

—1 0 O
S= 0 -1 0
0 0 -1

*Figure 4.11 is the clockwise-rotation version of Fig. 2.8.
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nd® = dQ

FIGURE 4.11 Change in a vector produced by an infinitesimal clockwise rotation of the
vector.

whose components are
Sij = —38ij,

all components of a polar vector change sign.

On the other hand, the components of axial vectors or pseudovectors do not
change sign under inversion. The simplest example of an axial vector is a cross
product of two polar vectors,

V*=D x F,

where the components of the cross product are given, as customary, by the defini-
tions:

Vi =D;F; — F; Dy, i, j, k in cyclic order. “4.77)

The components of D and F change sign under inversion; hence those of V*
do not. Many familiar physical quantities are axial vectors, such as the angular
momentum L. = r x p, and the magnetic field intensity. The transformation law
for an axial vector is of the form of Eq. (4.74). For proper orthogonal transforma-
tions, axial and polar vectors are indistinguishable, but for improper transforma-
tions, i.e., involving inversion, the determinant |V*| is —1, and the two types of
vectors behave differently.

Another way to explain this property is to define a parity operator P. The oper-
ator P performs the inversion x - —x, y - —y, z — —z. Then if § is scalar, V
a polar vector, and V* an axial vector,

PS=S
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PV =-V
PV* = V¥,

and, obviously,
P(V-V*) =—(V-V¥).

Thus, V- V* is a pseudoscalar §* with the property PS* = —S™* and of course
P(§§*) = —S8S8*, P(SV) = —SV, P(SV*) = SV*.

On the passive interpretation of the transformation, it is easy to see why polar
vectors behave as they do under inversion. The vector remains unaffected by the
transformation, but the coordinate axes, and therefore the components, change
sign. What then is different for an axial vector? It appears that an axial vector
always carries with it a “handedness” convention, as implied, e.g., by the def-
inition, Eq. (4.77), of a cross product. Under inversion a right-handed coordi-
nate system changes to a left-handed system, and the cyclic order requirement
of Eq. (4.77) implies a similar change from the right-hand screw convention to a
left-hand convention. Hence, even on the passive interpretation, there is an actual
change in the direction of the cross product upon inversion.

It is clear now why d €} transforms as an axial vector according to Eq. (4.74).
Algebraically, we see that since both r and dr in Eq. (4.75) are polar vectors, then
n, and therefore d€2, must be axial vectors. Geometrically, the inversion of the
coordinates corresponds to the switch from a right-hand screw law to a left-hand
screw to define the sense of n.

The discussion of the cross product provides an opportunity to introduce a
notation that will be most useful on future occasions. The permutation symbol
or Levi-Civita density* €;j is defined to be zero if any two of the indices ijk
are equal, and otherwise either +1 or —1 according as ijk is an even or odd
permutation of 1, 2, 3. Thus, in terms of the permutation symbol, Eq. (4.77) for
the components of a cross product can be written

Vi* = E,’jijFk, (4.77/)

where the usual summation convention has been employed.

The descriptions of rotation presented so far in this chapter have been devel-
oped so that we can represent the orientation of a rigid body. Note that the transfor-
mations primarily involve rotation of the coordinate system (cf. Fig. 4.12a). The
corresponding “active” interpretation of rotation of a vector in a fixed coordinate
system therefore implies a rotation in the opposite direction, i.e, in a clockwise
sense. But there are many areas of mechanics, or of physics in general for that
matter, where we are concerned with the effects of rotating the physical system
and associated vectors (cf. Fig. 4.12b). The connection between invariance of the
system under rotation and conservation of angular momentum has already been
pointed out (cf. Section 2.6). In such applications it is necessary to consider the

*Also known interchangeably as the alternating tensor or isotropic tensor of rank 3.
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(a) (b)

FIGURE 4.12 (a) Transformation from the coordinate system (x, y, z) to a new coor-
dinate system (x’,y’, z'). By convention, this transformation is considered positive in the
clockwise sense. We refer to this as a passive transformation. (b) The rotation of a body
through an angle ®’. By convention, the rotation is positive in a counterclockwise sense.
Before the rotation, the coordinates of points of the body were given by (x, y, z); after the
rotation, they are given by (x',y’, z'). This is called an active transformation because the
physical body moves.

consequences of rotation of vectors in the usual counterclockwise sense. For ref-

erence purposes, a number of rotation formulae given above will be listed here,

but for counterclockwise rotation of vectors. All equations and statements from

here to the end of this section apply only for such counterclockwise rotations.
The rotation formula, Eq. (4.62), becomes

r =rcos®+nm-r)(1 —cos ) + (n xr)sin d, (4.62)
and the corresponding infinitesimal rotation, Eq. (4.75), appears as
dr' =dQ xr=mxr)d® = —(r xn)do. (4.75)

The antisymmetric matrix of the infinitesimal rotation, Eq. (4.69), becomes

0 —dQ3  dS2 0 —n3  np
€= dS23 0 —dQ | = nj3 0 —ny | do, (4.69)
—dQ,  dQ 0 -ny np 0

where n; are the components of the unit vector n along the axis of rotation. Letting
dr stand for the infinitesimal change r’ — r, Eq. (4.66) can then take the form of
a matrix differential equation with respect to the rotation angle:

dr
— = —Nr, 4.78
PES (4.78)
where N is the transpose of the matrix on right in Eq. (4.69") with elements N;; =

€ijkNk-



49 1

4.9 Rate of Change of a Vector 171

Another useful representation is to write € in Eq. (4.69") as

€=l’liMidq)
where M; are the three matrices:
0 0 0 0 0 1 0o -1 0
Mi=]0 0 —-1{, M= 00 0], M3=]1 0 0
0 1 0 -1 0 O 0 0 0
4.79)

The matrices M; are known as the infinitesimal rotation generators and have the
property that their products are

MiMj — MjM,' = [Mi, Mj] = eijkMk~ (4.80)

The difference between the two matrix products, or commutator, is also called the
Lie bracket or M;, and Eq. (4.80) defines the Lie algebra of the rotation group
parametrized in terms of the rotation angle. To go further into the group theory of
rotation would take us too far afield, but we shall have occasion to refer to these
properties of the rotation operation. (cf. Section 9.5 and Appendix B)

RATE OF CHANGE OF A VECTOR

The concept of an infinitesimal rotation provides a powerful tool for describing
the motion of a rigid body in time. Let us consider some arbitrary vector or pseu-
dovector G involved in the mechanical problem, such as the position vector of a
point in the body, or the total angular momentum. Usually such a vector will vary
in time as the body moves, but the change will often depend upon the coordinate
system to which the observations are referred. For example, if the vector happens
to be the radius vector from the origin of the body set of axes to a point in the rigid
body, then clearly such a vector appears constant when measured by the body set
of axes. However, to an observer fixed in the space set of axes, the components
of the vector (as measured on the space axes) will vary in time if the body is in
motion.

The change in a time d¢ of the components of a general vector G as seen by an
observer in the body system of axes will differ from the corresponding change as
seen by an observer in the space system. A relation between the two differential
changes in G can be derived on the basis of physical arguments. We can write that
the only difference between the two is the effect of rotation of the body axes:

d G) space — d G) body +d G) rot-

Now consider a vector fixed in the rigid body. As the body rotates, there is of
course no change in the components of this vector as seen by the body observer,
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i.e., relative to body axes. The only contribution to (dG)space is then the effect of
the rotation of the body. But since the vector is fixed in the body system, it rotates
with it counterclockwise, and the change in the vector as observed in space is that
given by Eq. (4.75), and hence (dG);ot is given by

(dG)r = dQ x G.

For an arbitrary vector, the change relative to the space axes is the sum of the two
effects:

(dG)space = (dG)pody +dL x G. (4.81)

The time rate of change of the vector G as seen by the two observers is then
obtained by dividing the terms in Eq. (4.81) by the differential time element dt

under consideration;
dG dG
<—) = <—> + w x G. (4.82)
dt space dt body

Here w is the instantaneous angular velocity of the body defined by the relation*
wdt =dQ. (4.83)

The vector w lies along the axis of the infinitesimal rotation occurring between ¢
and ¢ + dt, a direction known as the instantaneous axis of rotation. In magnitude,
w measures the instantaneous rate of rotation of the body.

A more formal derivation of the basic Eq. (4.82) can be given in terms of
the orthogonal matrix of transformation between the space and body coordi-
nates. The component of G along the ith space axis is related to the components
along the body axes:

Gi = &ijG; = ajiG./i'
As the body moves in time, the components G’I. will change as will the elements
a;j of the transformation matrix. Hence, the change in G; in a differential time
element dt is

dG; = a./idG/]- + daj,-G’j. (4.84)

It is no loss of generality to take the space and body axes as instantaneously
coincident at the time 7. Components in the two systems will then be the same
instantaneously, but differentials will not be the same, since the two systems are
moving relative to each other. Thus, G/j = G, buta j,-dG’j = dGj, the prime
emphasizing the differential is measured in the body axis system. The change in
the matrix A in the time dr is thus a change from the unit matrix and therefore

*Note that w is not the derivative of any vector.
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corresponds to the matrix € of the infinitesimal rotation. Hence,
daji = (&)ij = —€ij,

using the antisymmetry property of €. In terms of the permutation symbol €; j,
the elements of € are such that (cf. Eq. (4.69))

—€jj = —€;jrdQ = €)jd .
Equation (4.84) can now be written
dGg; = dG; + €ikjdG .

The last term on the right will be recognized as the expression for the ith com-
ponent of a cross product, so that the final expression for the relation between
differentials in the two systems is

dG; = dG) + (dQ x G);, (4.85)

which is the same as the ith component of Eq. (4.81).

Equation (4.81) is not so much an equation about a particular vector G as itis a
statement of the transformation of the time derivative between the two coordinate
systems. The arbitrary nature of the vector G made use of in the derivation can be
emphasized by writing Eq. (4.82) as an operator equation acting on some given

vector:
d d + (4.86)
— =|— w X. .
dt ] dt/,

Here the subscripts s and r indicate the time derivatives observed in the space
and body (rotating) system of axes, respectively. The resultant vector equation
can then of course be resolved along any desired set of axes, fixed or moving. But
again note that the time rate of change is only relative to the specified coordinate
system. When a time derivative of a vector is with respect to one coordinate sys-
tem, components may be taken along another set of coordinate axes only after the
differentiation has been carried out.

It is often convenient to express the angular velocity vector in terms of the
Euler angles and their time derivatives. The general infinitesimal rotation asso-
ciated with @ can be considered as consisting of three successive infinitesimal
rotations with angular velocities wy = b, wp = 6, Wy = V. In consequence of
the vector property of infinitesimal rotations, the vector w can be obtained as the
sum of the three separate angular velocity vectors. Unfortunately, the directions
wy, wy, and wy are not symmetrically placed: @y is along the space z axis, wg
is along the line of nodes, while @y alone is along the body z" axis. However,
the orthogonal transformations B, C, D of Section 4.4 may be used to furnish the
components of these vectors along any desired set of axes.



174

410 m

Chapter 4 The Kinematics of Rigid Body Motion

The body set of axes proves most useful for discussing the equations of motion,
and we shall therefore obtain the components of @ for such a coordinate system.
Since @y is parallel to the space z axis, its components along the body axes are
given by applying the complete orthogonal transformation A = BCD, Eq. (4.46):

(@p)y = ¢sind sin, (y)y = ¢ sin 6 cos ¥, (wy)y = ¢ cosh.

Note that ¢ has the projection ¢ sin @ in the x’, y’ plane, and it is perpendicular to
the line of nodes.

The line of nodes, which is the direction of wy, coincides with the & axis, so
that the components of wy with respect to the body axes are furnished by applying
only the final orthogonal transformation B, Eq. (4.45):

(wp)y =0cosy,  (wp)y =—Osiny,  (ep)y = 0.

No transformation is necessary for the components of @y, which lies along the z’

axis (wy = ¥). Adding these components of the separate angular velocities, the
components of w with respect to the body axes are

wy = ¢sinf siny + 6 cos ¥,
Wy = ¢ sinf cos ¥ — 6 sin ¥,
Wy = $cosh + . 4.87)

Similar techniques may be used to express the components of @ along the space
set of axes in terms of the Euler angles.

THE CORIOLIS EFFECT

Equation (4.86) is the basic kinematical law upon which the dynamical equations
of motion for a rigid body are founded. But its validity is not restricted solely to
rigid body motion. It may be used whenever we wish to discuss the motion of a
particle, or system of particles, relative to a rotating coordinate system.

A particularly important problem in this latter category is the description of
particle motion relative to coordinate axes rotating with Earth. Recall that in
Section 1.1 an inertial system was defined as one in which Newton’s laws of
motion are valid. For many purposes, a system of coordinates fixed in the rotating
Earth is a sufficient approximation to an inertial system. However, the system of
coordinates in which the local stars are fixed comes still closer to the ideal iner-
tial system. Detailed examination shows there are observable effects arising from
Earth’s rotation relative to this nearly inertial system. Equation (4.86) provides
the needed modifications of the equations of motion relative to the noninertial
system fixed in the rotating Earth.

The initial step is to apply Eq. (4.86) to the radius vector, r, from the origin of
the terrestrial system to the given particle:

Vi =V, +®XTr, (4.88)
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where v and v, are the velocities of the particle relative to the space and rotating

set of axes, respectively, and e is the (constant) angular velocity of Earth relative
to the inertial system. In the second step, Eq. (4.86) is used to obtain the time rate

of change of vy:
<dvs) <dvs)
=a; = + @ X vy
dt ) dt J,

=a,+2(wxVv,)+wx (wXxr), (4.89)

where v, has been substituted from Eq. (4.88), and where a; and a, are the accel-
erations of the particle in the two systems. Finally, the equation of motion, which
in the inertial system is simply

F = ma,,
expands, when expressed in the rotating coordinates, into the equation
F-2m(wxv,) —mwx (o xr)=ma,. (4.90)

To an observer in the rotating system, it therefore appears as if the particle is
moving under the influence of an effective force Fe:

Fer =F —2m(wxv,) —mow x (wxr). (4.91)

Let us examine the nature of the terms appearing in Eq. (4.91). The last term is
a vector normal to @ and pointing outward. Further, its magnitude is mw?r sin6.
It will therefore be recognized that this term provides the familiar centrifugal
force. When the particle is stationary in the moving system, the centrifugal force
is the only added term in the effective force. However, when the particle is mov-
ing, the middle term known as the Coriolis effect® comes into play. The order
of magnitude of both of these quantities may easily be calculated for a particle
on Earth’s surface. Earth rotates counterclockwise about the north pole with an
angular velocity relative to the fixed stars:

27 366.25 5
w= =7.292 x 1073~
24 x 3600 ) \ 365.25

Here the first set of parentheses gives the angular velocity relative to the radius
vector to the Sun. The quantity in the second parentheses, the ratio of the number
of sidereal days in a year to the corresponding number of solar days, is the correc-
tion factor to give the angular velocity relative to the fixed stars. With this value

*The term Coriolis effect is used instead of the older term, Coriolis force, to remind us that this effect
exists because we are using a noninertial frame. In a proper inertial frame, the effect does not exist.
You can always visualize the Coriolis effect by asking what is happening in an inertial frame.
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for w, and with r equal to Earth’s equatorial radius, the maximum centripetal
acceleration is

?r = 3.38 cm/s?,

or about 0.3% of the acceleration of gravity. While small, this acceleration is
by no means negligible. However, the measured effects of gravity represent
the combination of the gravitational field of the mass distribution of Earth and
the effects of centripetal acceleration. It has become customary to speak of the
sum of the two as Earth’s gravity field, as distinguished from its gravitational
field.

The situation is further complicated by the effect of the centripetal acceleration
in flattening the rotating Earth. If Earth were completely fluid, the effect of rota-
tion would be to deform it into the shape of an ellipsoid whose surface would be
an equipotential surface of the combined gravity field. The mean level of Earth’s
seas conforms very closely to this equilibrium ellipsoid (except for local varia-
tions of wind and tide) and defines what is called the geoid.

Except for effects of local perturbations, the force of gravity will be perpen-
dicular to the equipotential surface of the geoid. Accordingly, the local vertical is
defined as the direction perpendicular to the geoid at the given point on the sur-
face. For phenomena that occur in the vicinity of a particular spot on Earth, the
centripetal acceleration terms in Eq. (4.91) can be considered as swallowed up in
the gravitational acceleration g, which will be oriented in the local vertical direc-
tion. The magnitude of g of course varies with the latitude on Earth. The effects
of centripetal acceleration and the flattening of Earth combine to make g about
0.53% less at the equator than at the poles.

Incidentally, the centrifugal force on a particle arising from Earth’s revolu-
tion around the Sun is appreciable compared to gravity, but it is almost exactly
balanced by the gravitational attraction to the Sun. If we analyze the motion of
the Sun—Earth system from a frame rotating with Earth, it is of course just the
balance between the centrifugal effect and the gravitational attraction that keeps
the Earth (and all that are on it) and Sun separated. An analysis in a Newtonian
inertial frame gives a different picture. As was described in Section 3.3, the
angular momentum contributes to the effective potential energy to keep the Earth
in orbit.

The Coriolis effect on a moving particle is perpendicular to both w and v.*
In the northern hemisphere, where w points out of the ground, the Coriolis effect
2m(v x w) tends to deflect a projective shot along Earth’s surface, to the right of
its direction of travel (cf. Fig. 4.13). The Coriolis deflection reverses direction in
the southern hemisphere and is zero at the equator, where w is horizontal. The
magnitude of the Coriolis acceleration is always less than

20v >~ 1.5 x 10™%,

*From here on, the subscript r will be dropped from v as all velocities will be taken with respect to
the rotating coordinate axes only.
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Horizontal trajectory

FIGURE 4.13 Direction of Coriolis deflection in the northern hemisphere.

which for a velocity of 10° cm/s (roughly 2000 mi/h) is 15 cm/s?, or about
0.015g. Normally, such an acceleration is extremely small, but there are instances
when it becomes important. To take an artificial illustration, suppose a projec-
tile were fired horizontally at the north pole. The Coriolis acceleration would
then have the magnitude 2wv, so that the linear deflection after a time 7 is wvt?.
The angular deflection would be the linear deflection divided by the distance
of travel:
wvt?

0= = ot, (4.92)
vt

which is the angle Earth rotates in the time ¢. Physically, this result means
that a projectile shot off at the north pole has no initial rotational motion and
hence its trajectory in the inertial space is a straight line, the apparent deflec-
tion being due to Earth rotating beneath it. Some idea of the magnitude of the
effect can be obtained by substituting a time of flight of 100 s—not unusual for
large projectiles—in Eq. (4.92). The angular deflection is then of the order of
7 x 1073 radians, about 0.4°, which is not inconsiderable. Clearly the effect is
even more important for long-range missiles, which have a much longer time
of flight.

The Coriolis effect also plays a significant role in many oceanographic and
meteorological phenomena involving displacements of masses of matter over long
distances, such as the circulation pattern of the trade winds and the course of
the Gulf stream. A full description of these phenomena requires the solution of
complex hydrodynamic problems in which the Coriolis acceleration is only one
among many terms involved. It is possible however to give some indication of
the contribution of Coriolis effects by considering a highly simplified picture
of one particular meteorological problem—the large-scale horizontal wind cir-
culation. Masses of air tend to move, other things being equal, from regions of
high pressure to regions of low pressure—the so-called pressure-gradient flow. In
the vertical direction the pressure gradient is roughly balanced by gravitational
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Isobars

Low

High

FIGURE 4.14 Deflection of wind from the direction of the pressure gradient by the
Coriolis effect (shown for the northern hemisphere).

forces so that it is only in the horizontal plane that there are persistent long-range
motions of air masses—which we perceive as winds. The pressure gradient forces
are quite modest, and comparable in magnitude to the Coriolis effects acting on
air masses moving at usual speeds. In the absence of Coriolis effects, the wind
directions would ideally be perpendicular to the isobars, as shown in Fig. 4.14.
However, the Coriolis effects deflect the wind to the right of this direction in the
sense indicated in the figure. The deflection to the right continues until the wind
vector is parallel to the isobars and the Coriolis effect is in the opposite direction
to, and ideally just balances, the pressure-gradient force. The wind then continues
parallel to the isobars, circulating in the northern hemisphere in a counterclock-
wise direction about a center of low pressure. In the southern hemisphere, the
Coriolis effect acts in the opposite direction, and the cyclonic direction (i.e., the
flow around a low-pressure center) is clockwise. (Such a wind flow, deflected par-
allel to the isobars, is known as a geostrophic wind.) In this simplified picture,
the effect of friction has been neglected. At atmospheric altitudes below several
kilometers, the friction effects of eddy viscosity become important, and the equi-
librium wind direction never becomes quite parallel to the isobars, as indicated
in Fig. 4.15.

Another classical instance where Coriolis effect produces a measurable effect
is in the deflection from the vertical of a freely falling particle. Since the parti-
cle velocity is almost vertical and w lies in the north—south vertical plane, the

<P

T

(a) Idealized (b) Actual

FIGURE 4.15 Cyclone pattern in the northern hemisphere.
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deflecting force 2m (v x w) is in the east—west direction. Thus, in the northern
hemisphere, a body falling freely will be deflected to the East. Calculation of the
deflection is greatly simplified by choosing the z axis of the terrestrial coordinate
system to be along the direction of the upward vertical as previously defined. If
the y axis is taken as pointing North, and the frictional effect of the atmosphere is
neglected, then the equation of motion in the x (East) direction is

d*x

mﬁ —2m(w X V)y

—2mwuv, sin 6, 4.93)

where 6 is the co-latitude. The effect of the Coriolis effect on v, would constitute
a small correction to the deflection, which itself is very small. Hence, the vertical
velocity appearing in (4.93) may be computed as if Coriolis effects were absent.

v, = —gt.
The integral of this is
2z
t=_[—.
8

With these values, Eq. (4.93) may be easily integrated to give the deflection* as
x= %ﬁ sinf
3
or

w [(22)3 .
X =— sin 4.
3V ¢

An order of magnitude of the deflection can be obtained by assuming 6 = x /2
(corresponding to the equator) and z = 100 m. The deflection is then, roughly,

x ~2.2cm.

The actual experiment is difficult to perform, as the small deflection may often be
masked by the effects of wind currents, viscosity, or other disturbing influences. "
More easily observable is the well-known experiment of the Foucault pendu-
lum. If a pendulum is set swinging at the north pole in a given plane in space,
then its linear momentum perpendicular to the plane is zero, and it will continue
to swing in this invariable plane while Earth rotates beneath it. To an observer
on Earth, the plane of oscillation appears to rotate once a day. At other latitudes
the result is more complicated, but the phenomenon is qualitatively the same and
detailed calculation will be left as an exercise.
*Again, we neglect the frictional effects of the atmosphere.

It is easy to show, using Eq. (4.93), that a particle projected upward will fall back to the ground
westward of the original launching spot.
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Effects due to the Coriolis terms also appear in atomic physics. Thus, two types
of motion may occur simultaneously in polyatomic molecules: The molecule
rotates as a rigid whole, and the atoms vibrate about their equilibrium positions.
As a result of the vibrations, the atoms are in motion relative to the rotating
coordinate system of the molecule. The Coriolis term will then be different
from zero and will cause the atoms to move in a direction perpendicular to the
original oscillations. Perturbations in molecular spectra due to Coriolis effects
thus appear as interactions between the rotational and vibrational motions of
the molecule.

DERIVATIONS

1. Prove that matrix multiplication is associative. Show that the product of two orthogo-
nal matrices is also orthogonal.

2. Prove the following properties of the transposed and adjoint matrices:
AB = BA,
(AB)" = BTAT.

3. Show that the trace of a matrix is invariant under any similarity transformation. Show
also that the antisymmetry property of a matrix is preserved under an orthogonal sim-
ilarity transformation.

4. (a) By examining the eigenvalues of an antisymmetric 3 x 3 real matrix A, show that
1 & A is nonsingular.

(b) Show then that under the same conditions the matrix
B=(1+A)(1-A""

is orthogonal.

5. Obtain the matrix elements of the general rotation matrix in terms of the Euler
angles, Eq. (4.46), by performing the multiplications of the successive component
rotation matrices. Verify directly that the matrix elements obey the orthogonality
conditions.

6. The body set of axes can be related to the space set in terms of Euler’s angles by the
following set of rotations:
(a) Rotation about the x axis by an angle 6.
(b) Rotation about the 7’ axis by an angle .
(c) Rotation about the old z axis by an angle ¢.

Show that this sequence leads to the same elements of the matrix of transformation as
the sequence of rotations given in the book. [Hint: It is not necessary to carry out the
explicit multiplication of the rotation matrices.]

7. If A is the matrix of a rotation through 180° about any axis, show that if

P =1(1£A),
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10.

11.

12.

13.

14.

15.

then Pzi = P. Obtain the elements of P+ in any suitable system, and find a geometric
interpretation of the operation P4 and P_ on any vector F.

. (a) Show that the rotation matrix in the form of Eq. (4.47") cannot be put in the form

of the matrix of the inversion transformation S.
(b) Verify by direct multiplication that the matrix in Eq. (4.47) is orthogonal.

. Show that any rotation can be represented by successive reflection in two planes, both

passing through the axis of rotation with the planar angle ®/2 between them.

If B is a square matrix and A is the exponential of B, defined by the infinite series
expansion of the exponential,

B ) B"
A=e®=1+B+ B+ -+ —+---,
2 n
then prove the following properties:
(a) eBeC = eB+C, providing B and C commute.
(b) A7l =B
() ¢CBC = cAC!
(d) Ais orthogonal if B is antisymmetric.
Verify the relation
| —B| = (=1)"|B|

for the determinant of an n X n matrix B.

In a set of axes where the z axis is the axis of rotation of a finite rotation, the rotation
matrix is given by Eq. (4.43) with ¢ replaced by the angle of finite rotation ®. Derive
the rotation formula, Eq. (4.62), by transforming to an arbitrary coordinate system,
expressing the orthogonal matrix of transformation in terms of the direction cosines
of the axis of the finite rotation.

(a) Suppose two successive coordinate rotations through angles ®; and &, are car-
ried out, equivalent to a single rotation through an angle ®. Show that ®, ®;, and
@ can be considered as the sides of a spherical triangle with the angle opposite to
® given by the angle between the two axes of rotation.

(b) Show that a rotation about any given axis can be obtained as the product of two
successive rotations, each through 180°.

(a) Verify that the permutation symbol satisfies the following identity in terms of
Kronecker delta symbols:

€ijp€rmp = Sir8jm — Simdjr.
(b) Show that
€ijp€ijk = 20 pk-

Show that the components of the angular velocity along the space set of axes are given
in terms of the Euler angles by

wyx = 6 cos¢ + 1 sinfsinp,
wy = 6 sing — v sinf cos ¢,

w; = Y cosO + .
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16.

17.

18.

19.

20.

Show that the Euler parameter eg has the equation of motion
—2é0 = ejwy + ey + e3w,/,

where the prime denotes the body set of axes. Find the corresponding equations for the
other three Euler parameters and for the complex Cayley—Klein parameters « and S.

Verify directly that the matrix generators of infinitesimal rotation, M;, as given by
Eq. (4.79) obey the commutation relations

[M;, M;] = €; kM.
(a) Find the vector equation describing the reflection of r in a plane whose unit

normal is n.

(b) Show that if /;, i = 1, 2,3, are the direction cosines of n, then the matrix of
transformation has the elements

Aij = 8,']' —2lilj,
and verify that A is an improper orthogonal matrix.

Figures 4.9 and 4.10 show that the order of finite rotations leads to different results.
Use the notation that A(«, 1,,) where A is a rotation in the direction of 1, through an
angle «. Let ny and n, be two orthogonal directions.

(a) If x is the position vector of a point on a rigid body, which is then rotated by an
angle 0 around the origin, show that the new value of x is

X =%, +[x— 1,1, -x)]cosd — 1, x xsin#h.

From this, obtain the formula for A(r/2, 1,;) and derive the two rotations in the
figures.

(b) Discuss these two rotations. [Hint: The answer will involve a rotation by the angle
27 in adirection (1/+/3)(1, 1, 1).]

Express the “rolling” constraint of a sphere on a plane surface in terms of the Euler
angles. Show that the conditions are nonintegrable and that the constraint is therefore
nonholonomic.

EXERCISES

21.

22.

A particle is thrown up vertically with initial speed vg, reaches a maximum height
and falls back to ground. Show that the Coriolis deflection when it again reaches the
ground is opposite in direction, and four times greater in magnitude, than the Coriolis
deflection when it is dropped at rest from the same maximum height.

A projectile is fired horizontally along Earth’s surface. Show that to a first approxima-
tion the angular deviation from the direction of fire resulting from the Coriolis effect
varies linearly with time at a rate

wcosB,

where w is the angular frequency of Earth’s rotation and 6 is the co-latitude, the
direction of deviation being to the right in the northern hemisphere.
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23.

24.

25.

The Foucault pendulum experiment consists in setting a long pendulum in motion at
a point on the surface of the rotating Earth with its momentum originally in the ver-
tical plane containing the pendulum bob and the point of suspension. Show that the
pendulum’s subsequent motion may be described by saying that the plane of oscilla-
tion rotates uniformly 27 cos 0 radians per day, where 6 is the co-latitude. What is the
direction of rotation? The approximation of small oscillations may be used, if desired.

A wagon wheel with spokes is mounted on a vertical axis so it is free to rotate in the
horizontal plane. The wheel is rotating with an angular speed of w = 3.0 radian/s. A
bug crawls out on one of the spokes of the wheel with a velocity of 0.5 cm/s holding
on to the spoke with a coefficient of friction © = 0.30. How far can the bug crawl
along the spoke before it starts to slip?

A carousel (counter-clockwise merry-go-round) starts from rest and accelerates at a
constant angular accleration of 0.02 revolutions/s2. A girl sitting on a bench on the
platform 7.0 m from the center is holding a 3.0 kg ball. Calculate the magnitude and
direction of the force she must exert to hold the ball 6.0 s after the carousel starts to
move. Give the direction with respect to the line from the center of rotation to the girl.
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5

5.1

The Rigid Body Equations
of Motion

Chapter 4 presents all the kinematical tools needed in the discussion of rigid body
motion. In the Euler angles we have a set of three coordinates, defined rather
unsymmetrically it is true, yet suitable for use as the generalized coordinates
describing the orientation of the rigid body. In addition, the method of orthog-
onal transformations, and the associated matrix algebra, furnish a powerful and
elegant technique for investigating the characteristics of rigid body motion. We
have already had one application of the technique in deriving Eq. (4.86), the rela-
tion between the states of change of a vector as viewed in the space system and in
the body system. These tools will now be applied to obtain the Euler dynamical
equations of motion of the rigid body in their most convenient form. With the help
of the equations of motion, some simple but highly important problems of rigid
body motion can be discussed.

ANGULAR MOMENTUM AND KINETIC ENERGY
OF MOTION ABOUT A POINT

Chasles’ theorem states that any general displacement of a rigid body can be rep-
resented by a translation plus a rotation. The theorem suggests that it ought to
be possible to split the problem of rigid body motion into two separate phases,
one concerned solely with the translational motion of the body, the other, with
its rotational motion. Of course, if one point of the body is fixed, the separa-
tion is obvious, for then there is only a rotational motion about the fixed point,
without any translation. But even for a general type of motion such a separa-
tion is often possible. The six coordinates needed to describe the motion have
already been formed into two sets in accordance with such a division: the three
Cartesian coordinates of a point fixed in the rigid body to describe the transla-
tional motion and, say, the three Euler angles for the motion about the point.
If, further, the origin of the body system is chosen to be the center of mass,
then by Eq. (1.28) the total angular momentum divides naturally into contribu-
tions from the translation of the center of mass and from the rotation about the
center of mass. The former term will involve only the Cartesian coordinates of
the center of mass, the latter only the angle coordinates. By Eq. (1.31), a sim-
ilar division holds for the total kinetic energy 7', which can be written in the
form

T =M+ T'($,0,),
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as the sum of the kinetic energy of the entire body as if concentrated at the center
of mass, plus the kinetic energy of motion about the center of mass.

Often the potential energy can be similarly divided, each term involving only
one of the coordinate sets, either the translational or rotational. Thus, the poten-
tial energy in a uniform gravitational field will depend only upon the Cartesian
vertical coordinate of the center of gravity.* Or if the force on a body is due to
a uniform magnetic field, B, acting on its magnetic dipole moment, M, then the
potential is proportional to M - B, which involves only the orientation of the body.
Certainly, almost all problems soluble in practice will allow for such a separation.
In such a case, the entire mechanical problem does indeed split into two. The
Lagrangian, L = T — V, divides into two parts, one involving only the trans-
lational coordinates, the other only the angle coordinates. These two groups of
coordinates will then be completely separated, and the translational and rotational
problems can be solved independently of each other.

It is of obvious importance therefore to obtain expressions for the angular
momentum and kinetic energy of the motion about some point fixed in the body.
To do so, we will make abundant use of Eq. (4.86) linking derivatives relative to
a coordinate system fixed at some point in the rigid body. It is intuitively obvi-
ous that the rotation angle of a rigid body displacement, as also the instantaneous
angular velocity vector, is independent of the choice of origin of the body system
of axes. The essence of the rigid body constraint is that all particles of the body
move and rotate together. However, a formal proof is easily constructed.

Let R; and R; be the position vectors, relative to a fixed set of coordinates, of
the origins of two sets of body coordinates (cf. Fig. 5.1). The difference vector is
denoted by R:

R, =R; +R.

,
3|
71

r
X1

X

FIGURE 5.1 Vectorial relation between sets of rigid body coordinates with different
origins.

*The center of gravity of course coincides with the center of mass in a uniform gravitational field.
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If the origin of the second set of axes is considered as a point defined relative to
the first, then the time derivative of R; relative to the space axes is given by

dR dR dR dR
()= (@) (@) = () o
dt /), dt dt J dt J

The last step follows from Eq. (4.86), recalling that the derivatives of R rel-
ative to any rigid body axes must vanish, and with w; as being the angular
velocity vector appropriate to the first coordinate system. Alternatively, the
origin of the first coordinate system can be considered as fixed in the second
system with the position vector —R. In the same manner, then, the derivative
of the position vector R to this origin relative to the fixed-space axes can be

written as
(dR]) (dR2> (dR) (dRz)
— ) ={—) - {— ) ={—) —w xR
dt ), dt ), dt ) dt ),
A comparison of these two expressions shows (w; — @») x R = 0. Any differ-
ence in the angular velocity vectors at two arbitrary points must lie along the line
joining the two points. Assuming the w vector field is continuous, the only possi-

ble solution for all pairs of points is that the two angular velocity vectors must be
equal:

W = mn.*
The angular velocity vector is the same for all coordinate systems fixed in the
rigid body.
When a rigid body moves with one point stationary, the total angular momen-
tum about that point is
L=m,~(r,~ XV,’), (5.1)
(employing the summation convention) where r; and v; are the radius vector and
velocity, respectively, of the ith particle relative to the given point. Since r; is a
fixed vector relative to the body, the velocity v; with respect to the space set of
axes arises solely from the rotational motion of the rigid body about the fixed
point. From Eq. (4.86), v; is then
Vi = wXr;. 5.2)
Hence, Eq. (5.1) can be written as

L =m;[r; x (wxr;)],

*See also N. A. Lemos, Am. Jr. Phys., 68(7) 2000, pp. 668—669.
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or, expanding the triple cross product,
L=m [o? —ri(ri- o). (5.3)
Again expanding, the x-component of the angular momentum becomes
L, = a)xm,-(rl-2 — xl-z) — WyMX;yi — W M;X;Zi, 5.4

with similar equations for the other components of L. Thus, each component of
the angular momentum is a linear function of all the components of the angular
velocity. The angular momentum vector is related to the angular velocity by a
linear transformation. To emphasize the similarity of (5.4) with the equations of
a linear transformation, (4.12), we may write L, as

Ly = Liywx + Liywy + I;0;.

Analogously, for Ly and L, we have
Ly = I,y + Iyywy + Iy, 0, (5.5)
L; = I;xoy + Iyoy + ;0.

The nine coefficients Iy, Iyy, etc., are the nine elements of the transformation
matrix. The diagonal elements are known as moment of inertia coefficients, and
have the following form

Ly = mi(r} — x7), (5.6)
while the off-diagonal elements are designated as products of inertia, a typical
one being

Ly = —m;x;y;. (5.7)
In Egs. (5.6) and (5.7), the matrix elements appear in the form suitable if the
rigid body is composed of discrete particles. For continuous bodies the summa-

tion is replaced by a volume integration, with the particle mass becoming a mass
density. Thus, the diagonal element I, appears as

Loy = / ()2 = x> dv. (5.6))
\%

With a slight change in notation, an expression for all matrix elements can be
stated for continuous bodies. If the coordinate axes are denoted by x;, j =1, 2, 3,
then the matrix element /; can be written

I = /Vp(r)(rzajk — xjxp)dV. (5.8)
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Thus far, the coordinate system used in resolving the components of L has
not been specified. From now on, we will take it to be a system fixed in the
body.* The various distances x;, y;, z; are then constant in time, so that the matrix
elements are likewise constants, peculiar to the body involved, and dependent on
the origin and orientation of the particular body set of axes in which they are
expressed.

Equations (5.5) relating the components of L. and @ can be summarized by a
single operator equation,

L =lw, (5.9)

where the symbol | stands for the operator whose matrix elements are the
inertia coefficients appearing in (5.5), and w and L are column matrices. Of
the two interpretations that have been given to the operator of a linear trans-
formation (cf. Section 4.2), it is clear that here | must be thought of as acting
upon the vector w, and not upon the coordinate system. The vectors L and w
are two physically different vectors, having different dimensions, and are not
merely the same vector expressed in two different coordinate systems. Unlike
the operator of rotation, I will have dimensions—mass times length squared—
and it is not restricted by any orthogonality conditions. Equation (5.9) is to be
read as the operator | acting upon the vector w results in the physically new
vector L.

While full use will be made of the matrix algebra techniques developed in
the discussion of the rotation operator, more attention must be paid here to the
nature and physical character of the operator per se. However, a certain amount
of preliminary mathematical formalism needs first to be discussed. Those already
familiar with tensors can proceed immediately to Section 5.3.

TENSORS

The quantity | may be considered as defining the quotient of L and w for the
product of | and w gives L. Now, the quotient of two quantities is often not
a member of the same class as the dividing factors, but may belong to a more
complicated class. Thus, the quotient of two integers is in general not an inte-
ger but rather a rational number. Similarly, the quotient of two vectors, as is well
known, cannot be defined consistently within the class of vectors. It is not sur-
prising, therefore to find that | is a new type of quantity, a tensor of the second
rank.

In a Cartesian three-dimensional space, a tensor T of the Nth rank may be
defined for our purposes as a quantity having 3V components 7; jk... (with N
indices) that transform under an orthogonal transformation of coordinates, A,

*In Chapter 4, such a system was denoted by primes. As components along spatial axes are rarely
used here, this convention will be dropped from now on to simplify the notation. Unless other-
wise specified, all coordinates used for the rest of the chapter refer to systems fixed in the rigid
body.
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according to the following scheme:*

Tl/]k(x/) = ajlajmdgn - - - Timn...(X). (5.10)

By this definition, a tensor of the zero rank has one component, which is invariant
under an orthogonal transformation. Hence, a scalar is a tensor of zero rank.
A tensor of the first rank has three components transforming as
/
Ty = ajjT;.
Comparison with the transformation equations for a vector, (4.12'), shows that

a tensor of the first rank is completely equivalent to a vector.” Finally, the nine
components of a tensor of the second rank transform as

Ti/' = ajrajiTy. (5.11)

Rigorously speaking, we must distinguish between a second-rank tensor T and
the square matrix formed from its components. A tensor is defined only in terms of
its transformation properties under orthogonal coordinate transformations. On the
other hand, a matrix is in no way restricted in the types of transformations it may
undergo and indeed may be considered entirely independently of its properties
under some particular class of transformations. Nevertheless, the distinction must
not be stressed unduly. Within the restricted domain of orthogonal transforma-
tions, there is a practical identity. The tensor components and the matrix elements
are manipulated in the same fashion; for every tensor equation there will be a
corresponding matrix equation, and vice versa. By Eq. (4.41), the components of
a square matrix T transform under a linear change of coordinates defined by the
matrix A according to a similarity transformation:

T = ATA L.
For an orthogonal transformation, we therefore have

T = ATA (5.12)

*In a Cartesian space (that is, with orthogonal straight-line axes) there is no distinction between “co-
variant” and “contravariant” indices, and the terminology will not be needed. Indeed, strictly speaking
the tensors defined here should be denoted as “Cartesian tensors.” As this is the only type of tensor
that will be used in this book (except in Chapters 7 and 13), the adjective will be omitted in subsequent
discussions.

A pseudotensor in three dimensions transforms as a tensor except under inversion. In general, the
transformation equation for a pseudotensor T* of the Nth rank is (cf. Eq. (4.74))

*/
Tiik...

= |A‘ailajmakn cee Tltnn...’
and the parity operation P gives
PT* = (_1)N+1T*

As rigid body motion involves only proper rotations, no further use will be made here of the general
pseudotensor.
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or

Tz/J = aj Taj. (5.13)
Comparison with Eq. (5.11) thus shows that the matrix components transform
identically, under an orthogonal transformation, with the components of a ten-
sor of the second rank. All the terminology and operations of matrix algebra,
such as “transpose” and “antisymmetrical” can be applied to tensors without
change. The equivalence between the tensor and the matrix is not restricted to
tensors of the second rank. For example, we already know that the components
of a vector, which is a tensor of the first rank, form a column or row matrix
and vector manipulation may be treated completely in terms of these associated
matrices.

Two vectors can be used to construct a second-rank tensor, T. Let A and B be
vectors with components A; and B; and construct the tensor T, by

T;; = AiB;. (5.14)
For example, if A and B are two-dimensional vectors,*
T (Txx Txy> _ (AXB
Tyx Ty Ay By
Since each individual vector transforms as a vector under a Cartesian trans-

formation, each component of T will transform as required by Eq. (5.10). For
example,

=
> 2
= =
oy ™
e
N

3 3
/ Y
Txy = ZZaxiaijij = ay;jayjA;Bj = axiAjayjBj = AxBy,
i=1j=1

so T is a tensor.
The types of operations performed with vectors can be combined with tensors
in an obvious way. There is a unit tensor, 1, whose components are

1;; =6;j (5.15)
where §;; is the delta function (also called the Kronecker delta), §;; = 1if i = j,

and zero otherwise. The dot product on the right of a tensor T with a vector C is
defined as the vector D by

3
D=T-C Whel‘eDiZZTijCjZTijCj,
j=l1

*To distinguish between matrices which are transformations and tensors which are physical quantities
we use [ ] for matrices and () for tensors.
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and the dot product on the left with a vector F is defined as the vector E by
3
E=F.T whereEi:ZF,'Tﬁ:F/Tﬁ.
j=1

A scalar S can be constructed by a double dot product

3 3
S=F.-T-C where S= ZZ FT;;C; = F;T;;C;.
im1j=1

These processes are termed contraction. If the tensor T is constructed of two
vectors A and B as in Eq. (5.14), then

T.-C=AB-C)=B-C)A, and F.T=(F-A)B=(A-F)B.

THE INERTIA TENSOR AND THE MOMENT OF INERTIA

Considered as a linear operator that transforms w into L, the matrix | has elements
that behave as the elements of a second-rank tensor. The quantity I is therefore
identified as a second-rank tensor and is usually called the moment of inertia
tensor or briefly the inertia tensor.

The kinetic energy of motion about a point is

2
T = sm;vy;,

=

where v; is the velocity of the ith particle relative to the fixed point as measured
in the space axes. By Eq. (5.2), T may also be written as

T= %min‘ c(wxT;),
which, upon permuting the vectors in the triple dot product, becomes

0}
T =—-mi(r; xv;).
2
The quantity summed over i will be recognized as the angular momentum of the
body about the origin, and in consequence the kinetic energy can be written in
the form

(5.16)

Let n be a unit vector in the direction of w so that @ = wn. Then an alternative
form for the kinetic energy is

1
T=2nl-n=-lo (5.17)
2 2
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where [ is a scalar, defined by
I=n-ln=m[r?=@-n]. (5.18)

and known as the moment of inertia about the axis of rotation.

In the usual elementary discussions, the moment of inertia about an axis is
defined as the sum, over the particles of the body, of the product of the particle
mass and the square of the perpendicular distance from the axis. It must be shown
that this definition is in accord with the expression given in Eq. (5.18). The per-
pendicular distance is equal to the magnitude of the vector r; x n (cf. Fig. 5.2).
Therefore, the customary definition of / may be written as

I =m;i(rj xn)-(r; xn). (5.19)
Multiplying and dividing by ?, this definition of / may also be written as
mi
1= —z(wx r;) - (wxr;).
)

But each vector in the dot product is exactly the relative velocity v; as measured
in the space system of axes. Hence, I so defined is related to the kinetic energy
by

which is the same as Eq. (5.17), and therefore I must be identical with the scalar
defined by Eq. (5.19).

The value of the moment of inertia depends upon the direction of the axis of
rotation. As w usually changes its direction with respect to the body in the course
of time, the moment of inertia must also be considered a function of time. When
the body is constrained so as to rotate only about a fixed axis, then the moment
of inertia is a constant. In such a case, the kinetic energy (5.16) is almost in the

FIGURE 5.2 The definition of the moment of inertia.
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FIGURE 5.3 The vectors involved in the relation between moments of inertia about
parallel axes.

form required to fashion the Lagrangian and the equations of motion. The one
further step needed is to express w as the time derivative of some angle, which
can usually be done without difficulty.

Along with the inertia tensor, the moment of inertia also depends upon the
choice of origin of the body set of axes. However, the moment of inertia about
some given axis is related simply to the moment about a parallel axis through the
center of mass. Let the vector from the given origin O to the center of mass be
R, and let the radii vectors from O and the center of mass to the ith particle be
r; and r;}, respectively. The three vectors so defined are connected by the relation
(cf. Fig. 5.3)

ri=R+r. (5.20)
The moment of inertia about the axis a is therefore
I, = m;(r; x n)> = m;[(r} + R) x n]*
or
I, = MR x n)* + m; (¢, x n)> 4 2m; (R x n) - (r; x n),

where M is the total mass of the body. The last term in this expression can be
rearranged as

—2(R x n) - (n X m;r}).

By the definition of center of mass, the summation m ,-r; vanishes. Hence, I, can
be expressed in terms of the moment about the parallel axis b as

I, = I, + M(R x n)° (5.21)
= I, + MR?sin® 6.
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The magnitude of R x n, which has the value R sin 8, where 6 is the angle between
R and n, is the perpendicular distance of the center of mass from the axis passing
through O. Consequently, the moment of inertia about a given axis is equal to the
moment of inertia about a parallel axis through the center of mass plus the moment
of inertia of the body, as if concentrated at the center of mass, with respect to the
original axis.

The inertia tensor is defined in general from the kinetic energy of rotation about
an axis, and is written as

1 2_ 1 2
Trotation = 5mMi (@ X 1;)" = 504wm; (8ep?; — Tialip)

where Greek letters indicate the components of w and r;. In an inertial frame, the
sum is over the particles in the body, and r;4 is the oth component of the position
of the ith particle. Because Tioation is a bilinear form in the components of e, it
can be written as

Trotation = %Iaﬁwawﬂ»
where
Log = mi(Bapr? — Tigrip) (5.22)

is the moment of inertia tensor. To get the moment of inertia about an axis through
the center of mass, choose the rotation about this axis. For a body with a contin-
uous distribution of density p(r), the sums in the components of the moment of
inertia tensor in Eq. (5.22) reduce to

lyp = / p(0)(Sapr? —rarg)dV. (5.23)
\%

As an example, let us consider a homogeneous cube of density p, mass M,
and side a. Choose the origin to be at one corner and the three edges adjacent
to that corner to lie on the 4+x, +y, and +z axes. If we define b = Ma?, then
straightforward integration of Eq. (5.23) gives

3 1 4
— 1 2 1
I=|- 2 -
1 1 2
1y 1y Zp

Thus, both the moment of inertia and the inertia tensor possess a type of revolu-
tion, relative to the center of mass, very similar to that found for the linear and
angular momentum and the kinetic energy in Section (1.2).

THE EIGENVALUES OF THE INERTIA TENSOR
AND THE PRINCIPAL AXIS TRANSFORMATION

The preceding discussion emphasizes the important role the inertia tensor plays in
the discussion of the motion of rigid bodies. An examination, at this point, of the
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properties of this tensor and its associated matrix will therefore prove of consid-
erable interest. From the defining equation, (5.7), it is seen that the components
of the tensor are symmetrical; that is

Ly = I (5.24)

This means that, while the inertia tensor will in general have nine components,
only six of them will be independent—the three along the diagonal plus three of
the off-diagonal elements.

The inertia coefficients depend both upon the location of the origin of the
body set of axes and upon the orientation of these axes with respect to the body.
This symmetry suggests that there exists a set of coordinates in which the ten-
sor is diagonal with the three principal values I1, I», and I3. In this system,
the components of L. would involve only the corresponding component of w,
thus*

L =lLow, Ly = hw», L3 = Lws. (5.25)
A similar simplification would also occur in the form of the kinetic energy:

wlow 1 , 1 5, 1 4
T = T = 5[10)1 + E 2(1)2+ 5 3Ws3. (526)

We can show that it is always possible to find such axes, and the proof is based
essentially on the symmetric nature of the inertia tensor.

There are several ways to understand vectors and tensors. For example, a vector
is a quantity defined by its transformation properties. In any set of coordinates, a
vector is specified by its three components, e.g.,

V = Vii+ V,j+ Vik, (5.27)

or by its magnitude and direction. In any frame, the magnitude is given by
/VZ+ V24 V2, and the direction is given by the polar angles 6 and ¢. An

alternative is to use the first two Euler angles to specify a new z axis chosen such
that the vector’s direction is along that axis. Since the vector lies along that z axis,
the third Euler angle is not needed.

An approach similar to this latter method can be used for the symmetric
moment of inertia tensor. Consider the moment of inertia of a body about an
axis passing through the center of mass of the body. A similarity transformation
performed by a rotation matrix R can be chosen such that

Ip = RIR. (5.28)

*With an eye to future applications, components relative to these axes will be denoted by subscripts
1,2,3.
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This rotation can be expressed in terms of the Euler angles ¢, 6, and ¥ as shown
in Egs. (4.46) and (4.47). A proper choice of these angles will transform I into its
diagonal form

L 0 O
Ip=10 L O (5.29)
0 0 I

where I, I, and I3, which are the eigenvalues of I, are referred to as the com-
ponents of the principal moment of inertia tensor. The directions of x’, y’, and
7' defined by the rotation matrix in Eq. (5.28) are called the principal axes, or
eigenvectors of the inertia tensor. These eigenvectors lie along the directions x’,
y',and 7'.

Once the principal moments and their directions relative to the surface of
a body are known, the inertia tensor relative to any other set of axis through
the center of mass can be found by a similarity transformation defined by the
Euler angles relating the two coordinate systems. If S is that transformation,
then

I = SIpS, (5.30)

gives the moment of inertia in that frame. Equation (5.21) can then be used to
transform the rotation center to any desired location. The principal values of I can
be determined by the methods of matrix algebra.

The three principal values of the moment of inertia tensor in Eq. (5.29) can be
found by solving the cubic equation for I that arises from the determinant

Ly — 1 Iyy Iy
Ly Ly—1 I, |=0, (5.31)
[zx Iyz Izz -1

where the symmetry of | has been displayed explicitly. Equation (5.31) is the
secular equation, whose three roots are the desired principal moments. For
each of these roots, Egs. (5.28) can be solved to obtain the direction of the
corresponding principal axis. In most of the easily soluble problems in rigid
dynamics, the principal axes can be determined by inspection. For example, we
often have to deal with rigid bodies that are solids of revolution about some
axis, with the origin of the body system on the symmetry axis. All directions
perpendicular to the axis of symmetry are then alike, which is the mark of a
double root to the secular equation. The principal axes are then the symme-
try axis and any two perpendicular axes in the plane normal to the symmetry
axis.

The principal moments of inertia cannot be negative, because as the diagonal
elements in the principal axes system they have the form of sums of squares. Thus,
I is given by (cf. Eq. (5.6))

Iy, = mi(y,'2 + Z,Z)
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For one of the principal moments to vanish, all points of the body must be such
that two coordinates of each particle are zero. Clearly this can happen only if all
points of the body are collinear with the principal axis corresponding to the zero
principal moment. Any two axes perpendicular to the line of the body will then
be the other principal axes. Indeed, this is clearly a limiting case of a body with
an axis of symmetry passing through the origin.

We can also understand the concept of principal axes through some geometri-
cal considerations that historically formed the first approach to the subject. The
moment of inertia about a given axis has been defined as / = n-1.n. Let the
direction cosines of the axis be «, 8, and y so that

n = ui+ gj+ yk;
I then can be written as
I = Liyo® + Ly B2 + Ly* + 2Lyap + 21, By + 2L, v a, (5.32)

using the symmetry of I explicitly. It is convenient to define a vector p by the
equation

= (5.33)
p= i )

The magnitude of p is thus related to the moment of inertia about the axis whose
direction is given by n. In terms of the components of this new vector, Eq. (5.32)
takes on the form

U= Lot + Lyyps + Leps + 2Ly p192 + 2020205 + 2Lexp3pr. (5.34)

Considered as a function of the three variables p;, 02, p3, Eq. (5.34) is the
equation of some surface in p space. In particular, Eq. (5.34) is the equation of
an ellipsoid designated as the inertial ellipsoid. We can always transform to a
set of Cartesian axes in which the equation of an ellipsoid takes on its normal
form:

1= 11pt + bp's + B3, (5.35)

with the principal axes of the ellipsoid along the new coordinate axes. But (5.35)
is simply the form Eq. (5.34) has in a system of coordinates in which the inertia
tensor | is diagonal. Hence, the coordinate transformation that puts the equation
of ellipsoid into its normal form is exactly the principal axis transformation
previously discussed. The principal moments of inertia determine the lengths
of the axes of the inertia ellipsoid. If two of the roots of the secular equation
are equal, the inertia ellipsoid thus has two equal axes and is an ellipsoid of
revolution. If all three principal moments are equal, the inertia ellipsoid is a
sphere.
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A quantity closely related to the moment of inertia is the radius of gyration,
Ry, defined by the equation

I =MR3. (5.36)

In terms of the radius of gyration, the vector p can be written as

n
P= RVl

The radius vector to a point on the inertia ellipsoid is thus inversely proportional
to the radius of gyration about the direction of the vector.

It is worth reemphasizing that the inertia tensor | and all the quantities
associated with it—principal axes, principal moments, inertia ellipsoid, etc.—are
only relative to some particular point fixed in the body. If the point is shifted
elsewhere in the body, all the quantities will in general be changed. Thus,
Eq. (5.21) gives the effect of moving the reference point from the center of
mass to some other point. The principal axis transformation that diagonalizes
I’ at the center of mass will not necessarily diagonalize | about another axis,
and hence is not in general the principal axis transformation for the shifted ten-
sor I. Only if the shift vector R is along one of the principal axes relative to
the center of mass will the difference tensor be diagonal in that system. The
new inertia tensor | will in that special case have the same principal axes as
at the center of mass. However, the principal moments of inertia are changed,
except for that corresponding to the shift axis, where the diagonal element of
the difference tensor is clearly zero. The “parallel axis” theorem for the diag-
onalized form of the inertia tensor thus has a rather specialized and restricted
form.

SOLVING RIGID BODY PROBLEMS
AND THE EULER EQUATIONS OF MOTION

Practically all the tools necessary for setting up and solving problems in rigid
body dynamics have by now been assembled. If nonholonomic constraints are
present, then special means must be taken to include the effects of these con-
straints in the equations of motion. For example, if there are “rolling constraints,”
these must be introduced into the equations of motion by the method of Lagrange
undetermined multipliers, as in Section 2.4. As discussed in Section 5.1, we usu-
ally seek a particular reference point in the body such that the problem can be
split into two separate parts, one purely translational and the other purely rota-
tional about the reference point. Of course, if one point of the rigid body is fixed
in an inertial system, then that is the obvious reference point. All that has to be
considered then is the rotational problem about the fixed point.

For bodies without a fixed point, the most useful reference point is almost
always the center of mass. We have already seen that the total kinetic energy and
angular momentum then split neatly into one term relating to the translational
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motion of the center of mass and another involving rotation about the center of
mass. Thus, Eq. (1.31) can now be written

T = IMv* + $10?.

For many problems (certainly all those that will be considered here), a similar
sort of division can be made for the potential energy. We can then solve individu-
ally for the translational motion of the center of mass and for the rotational motion
about the center of mass. For example, the Newtonian equations of motion can be
used directly: Eq. (1.22) for the motion of the center of mass and Eq. (1.26) for
the motion about that point.

With holonomic conservative systems, the Lagrangian formulation is available,
with the Lagrangian taking the form

L(q’ q) = Lc(‘]m qC) + Lb(qhv Qb)

Here L. is that part of the Lagrangian involving the generalized coordinates g,
(and velocities g.) of the center of mass, and Lj the part relating to the ori-
entation of the body about the center of mass, as described by gy, gp. In effect
then, there are two distinct problems, one with Lagrangian L. and the other with
Lagrangian Lp.

In both the Newtonian and Lagrangian formulations, it is convenient to work
in terms of the principal axes system of the point of reference, so that the kinetic
energy of rotation takes the simple form given in Eq. (5.26). So far, the only
suitable generalized coordinates we have for the rotational motion of the rigid
body are the Euler angles. Of course, the motion is often effectively confined to
two dimensions, as in the motion of a rigid lamina in a plane. The axis of rotation
is then fixed in the direction perpendicular to the plane; only one angle of rotation
is necessary and we may dispense with the cumbersome machinery of the Euler
angles.

For the rotational motion about a fixed point or the center of mass, the direct
Newtonian approach leads to a set of equations known as Euler’s equations of
motion. We consider either an inertial frame whose origin is at the fixed point of
the rigid body, or a system of space axes with origin at the center of mass. In these
two situations, Eq. (1.26) holds, which here appears simply as

dL
(), =
dt )

The subscript s is used because the time derivative is with respect to axes that do
not share the rotation of the body. However, Eq. (4.86) can be used to obtain the
derivatives with respect to axes fixed in the body:

(dL) (dL)
— ) =(—) +twoxL,
dt /) dt /),



200

56 H

Chapter 5 The Rigid Body Equations of Motion

or, by dropping the “body” subscript:
dL
E+wa=N. (5.37)

Equation (5.37) is thus the appropriate form of the Newtonian equation of motion
relative to body axes. The ith component of Eq. (5.37) can be written

dL;
— +€ijrwjLy = N;. (5.38)
dt
If now the body axes are taken as the principal axes relative to the reference
point, then the angular momentum components are L; = [;w;. By Eq. (5.25),
Eq. (5.38) takes the form (no summation on i *)

dwj
I,-d—t' +€jrwjorly = N (5.39)
since the principal moments of inertia are of course time independent. In expanded
form, the three equations making up Eq. (5.39) look like

Loy — ww3(lp — I3) = N
han — w3 (I3 — 11) = N2 (5.39)

Loz — wiwa(I] — 1) = N3.

Equations (5.39) or (5.39') are Euler’s equations of motion for a rigid body
with one point fixed. They can also be derived from Lagrange’s equations in
the form of Eq. (1.53) where the generalized forces Q; are the torques, N;,
corresponding to the Euler angles of rotation. However, only one of the Euler
angles has its associated torque along one of the body axes, and the remaining
two Euler’s equations must be obtained by cyclic permutation (cf. Derivation 4).

Consider the case where I} = I, # I3. A torque with components Ny or N>
will cause both w; and w, to change without affecting w3. We shall return to a
discussion of this in Section 5.7 when we consider the heavy symmetric top with
one point fixed. Let us first consider the torque-free motion of a rigid body.

TORQUE-FREE MOTION OF A RIGID BODY

One problem in rigid dynamics where Euler’s equations are applicable is in the
motion of a rigid body not subject to any net forces or torques. The center of mass
is then either at rest of moving uniformly, and it does not decrease the generality
of the solution to discuss the rotational motion in a reference frame in which the
center of mass is stationary. In such a case, the angular momentum arises only
from rotation about the center of mass, and Euler’s equations are the equations of

*It should be obvious that Eq. (5.39), as the ith component of a vector equation, does not involve a
summation over i, although summation is implied over the repeated indices j and k.
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motion for the complete system. In the absence of any net torques, they reduce to
Loy = mw3(ly — 1)
hwy = w3wi (I3 — 1)) (5.40)

Bz = w2 (1) — h).

The same equations, of course, will also describe the motion of a rigid body
when one point is fixed and there are no net applied torques. We know two
immediate integrals of the motion, for both the kinetic energy and the total angular
momentum vector must be constant in time. With these two integrals it is possible
to integrate (5.40) completely in terms of elliptic functions, but such a treatment is
not very illuminating. However, it is also possible to derive an elegant geometri-
cal description of the motion, known as Poinsot’s construction, without requiring
a complete solution to the problem.

Let us consider a coordinate system oriented along the principal axes of the
body but whose axes measure the components of a vector p along the instanta-
neous axis of rotation as defined by Eq. (5.33). For our purposes, it is convenient
to make use of Eq. (5.17) for the kinetic energy (here constant) and write the
definition of p in the form

-2 _° (5.41)
P= Vi~ Vot '
In this p space, we define a function
F(p)=p-1-p=p}L;, (5.42)

where the surfaces of constant F are ellipsoids, the particular surface F' = 1 being
the inertia ellipsoid. As the direction of the axis of rotation changes in time, the
parallel vector p moves accordingly, its tip always defining a point on the inertia
ellipsoid. The gradient of F, evaluated at this point, furnishes the direction of
the corresponding normal to the inertia ellipsoid. From Eq. (5.42) for F(p), the
gradient of F with respect to p has the form

V,F =2l 2o

= op: —
P V2T
or

Vo F = %L. (5.43)
T
Thus, the w vector will always move such that the corresponding normal to the
inertia ellipsoid is in the direction of the angular momentum. In the particular case
under discussion, the direction of L is fixed in space, and it is the inertia ellipsoid
(fixed with respect to the body) that must move in space in order to preserve this
connection between w and L (cf. Fig. 5.4).
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Inertia ellipsoid

Invariable
plane

L

FIGURE 5.4 The motion of the inertia ellipsoid relative to the invariable plane.

It can also be shown that the distance between the origin of the ellipsoid and the
plane tangent to it at the point p must similarly be constant in time. This distance
is equal to the projection of p on L and is given by

p-L w-L

or

b~
=
15
~

7 , (5.44)

where use has been made of Eq. (5.16). Both T, the kinetic energy, and L, the
angular momentum, are constants of the motion, and the tangent plane is therefore
always a fixed distance from the origin of the ellipsoid. Since the normal to the
plane, being along L, also has a fixed direction, the tangent plane is known as
the invariable plane. We can picture the force-free motion of the rigid body as
being such that the inertia ellipsoid rolls, without slipping, on the invariable plane,
with the center of the ellipsoid a constant height above the plane. The rolling
occurs without slipping because the point of contact is defined by the position of
P, which, being along the instantaneous axis of rotation, is the one direction in
the body momentarily at rest. The curve traced out by the point of contact on the
inertia ellipsoid is known as the polhode, while the similar curve on the invariable
plane is called the herpolhode.*

Poinsot’s geometrical discussion is quite adequate to describe completely the
force-free motion of the body. The direction of the invariable plane and the height
of the inertia ellipsoid above it are determined by the values of T and L, which

*Hence, the jabberwockian-sounding statement: the polhode rolls without slipping on the herpolhode
lying in the invariable plane.
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are among the initial conditions of the problem. It is then a matter of geometry to
trace out the polhode and the herpolhode.* The direction of the angular velocity
in space is given by the direction of p, while the instantaneous orientation of the
body is provided by the orientation of the inertia ellipsoid, which is fixed in the
body. Many elaborate descriptions of force-free motion obtained in this fashion
can be found in the literature.

In the special case of a symmetrical body, the inertia ellipsoid is an ellip-
soid of revolution, so that the polhode on the ellipsoid is clearly a circle about
the symmetry axis. The herpolhode on the invariable plane is likewise a cir-
cle. An observer fixed in the body sees the angular velocity vector @ move
on the surface of a cone—called the body cone—whose intersection with the
inertia ellipsoid is the polhode. Correspondingly, an observer fixed in the space
axes sees @ move on the surface of a space cone whose intersection with the
invariable plane is the herpolhode. Thus, the free motion of the symmetrical
rigid body is sometimes described as the rolling of the body cone on the space
cone. If the moment of inertia about the symmetry axis is less than that about
the other two principal axes, then from Eq. (5.35) the inertia ellipsoid is prolate,
i.e., football shaped—somewhat as is shown in Fig. 5.4. In that case, the body
cone is outside the space cone. When the moment of inertia about the symmetry
axis is the greater, the ellipsoid is oblate and the body cone rolls around the
inside of the space cone. In either case, the physical description of the motion
is that the direction of w precesses in time about the axis of symmetry of the
body.

The Poinsot construction shows how w moves, but gives no information as to
how the L vector appears to move in the body system of axes. Another geomet-
rical description is available however to describe the path of the L vector as seen
by an observer in the principal axes system. Equations (5.25) and (5.26) imply
that in this system the kinetic energy is related to the components of the angular
momentum by the equation

2
Lo

= —= —. (5.45)
21 2, 213

Since T is constant, this relation defines an ellipsoid, referred to as the Binet
ellipsoid, also fixed in the body axes but not the same as the inertia ellipsoid.
If we adopt the convention

I3 <DL <1,
and write the equations for the ellipsoid in the standard form

L2 N L3 N L2
2TL  2TL, 2T

1 (5.45)

*The herpolhode is always concave to the origin, belying its name, which suggests “snakelike.”
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then we see that the ellipsoid sketched on Fig. 5.5a has semimajor axes, in order
of decreasing size, of /2T I, /2T I, and /2T I5. The conservation of the total
angular momentum, L, gives us

LI+ L3+ L2
— =1 (5.46)

the equation for a sphere in Ly Ly L, space. The vector L. moves in such a way that
it describes a path on both the ellipsoid of Eq. (5.45) and the sphere of Eq. (5.46).
In other words, the path of L is the intersection of the ellipsoid and the sphere.
The components L satisfy the equation

2 2 2 2 2 2
Lx L)’ + LZ — Lx + Ly + LZ
2T 1 2T, 2TI3 L2

It is easy to show that these two surfaces will intersect for values of L larger
than the ellipsoid semiminor axis and less than the semimajor axis, that is,

V2T < L < +/2T1;.

The sphere is outside the ellipsoid on the L, axis and inside the ellipsoid along
L. Figure 5.5 depicts curves where the sphere intersects the ellipsoid for various
values of L. Fig. 5.5a shows a perspective view and Fig. 5.5b shows the view
as seen from the L, axis. The curves that appear as straight lines on Fig 5.5b
correspond to the case where L = /2T I».

(a) (b)

FIGURE 5.5 (a) The kinetic energy, or Binet, ellipsoid fixed in the body axes, and some
possible paths of the L vector in its surface. (b) Side view of Binet ellipsoid.
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With the help of this geometrical construction, something can be said about the
possible motions of a free asymmetric body. It is easy to see that a steady rotation
of such a body is possible only about one of the principal axes. From the Euler
equations (5.40), all the components of w can be constant only if

wiwy (I — 1) = wyw3(lp — I3) = w31 (I3 — I1) =0,

which requires that at least two of the components w; be zero; i.e., w is along
only one of the principal axes. However, not all of these possible motions are
stable—that is, not moving far from the principal axis under small perturbation.
For example, steady motion about the L, axis will occur when L = 27T I3. When
there are slight deviations from this condition, the radius of the angular momen-
tum sphere is just slightly smaller than this value, and the intersection with the
kinetic energy ellipsoid is a small circle about the L, axis. The motion is thus
stable, the L vector never being far from the axis.

Similarly, at the other extreme, when the motion about the axis of smallest 7 is
perturbed, the radius of the angular momentum sphere is just slightly larger than
the smallest semimajor axis. The intersection is again a small closed figure around
the principal axis, and the motion is stable. However, the motion about the inter-
mediate axis is unstable. This is clearly shown in Fig. 5.5. For the intermediate
(Ly) axis, the kinetic energy has two orbits that encircle the ellipsoid and cross
each other where the =L pass through the ellipsoid. Hence, there are two differ-
ent orbits with values slightly less than /27 I and two other distinctly different
orbits with values slightly exceeding /2T I, all four of which have quite long
paths on the surface.

This behavior can be best understood by recognizing that at the intermediate
axis the radius of curvature of the ellipsoid in one direction is greater than that
of the contact sphere, and less in the perpendicular direction. At the other two
extremes, the radii of curvature are either greater or smaller than the sphere radius
in all directions. These conclusions on the stability of free-body motion have been
known for a long time, but applications, e.g., to the stability of spinning space-
craft, have brought them out of the obscurity of old monographs on rigid body
dynamics.*

For a symmetrical rigid body, the analytical solution for the force-free motion
is not difficult to obtain, and we can directly confirm the precessing motion pre-
dicted by the Poinsot construction. Let the symmetry axis be taken as the L,

*If there are dissipative mechanisms present, these stability arguments have to be modified. It is easy
to see that for a body with constant L, but slowly decreasing 7', the only stable rotation is about the
principal axis with the largest moment of inertia. The kinetic energy of rotation about the ith principal
axis for given Lis T = L? /21;, which is least for the axis with the largest ;. If a body is set spinning
about any other principal axis, the effect of a slowly decreasing kinetic energy is to cause the angular
velocity vector to shift until the spinning is about the axis requiring the least value of T for the given
L. Such dissipative effects are present in spacecraft because of the flexing of various members in the
course of the motion, especially of the long booms carried by many of them. These facts were learned
the hard way by the early designers of spacecraft!
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principal axis so that I} = I. Euler’s equations (5.40) reduce then to

Loy = (I1 — B)wsw,
Ly = (I3 — w3 (5.47)

Loz = 0.

The last of these equations states that w3 is a constant, and it can therefore be
treated as one of the known initial conditions of the problem. The remaining two
equations can now be written

w1 = —Quwa, wy = Qoi, (5.48)
where 2 is an angular frequency

I — 1)
I

Q=

ws. (5.49)

Elimination of w, between Eqs. (5.48) leads to the standard differential equation
for simple harmonic motion

w] = —920)1,
with the typical solution
w] = Acos Qt.

The corresponding solution for w> can be found by substituting this expression
for w1, back in the first of Eqgs. (5.48):

wy = Asin Qf.

The solutions for w; and w, show that the vector w;i + w,j has a constant mag-
nitude and rotates uniformly about the z axis of the body with the angular fre-
quency 2 (cf. Fig. 5.6). Hence, the total angular velocity w is also constant in
magnitude and precesses about the z axis with the same frequency, exactly as pre-
dicted by the Poinsot construction. * Recall that the precession described here is
relative to the body axes, which are themselves rotating in space with the larger
frequency w. From Eq. (5.49), it is seen that the closer I is to I3, the slower will
be the precession frequency €2 compared to the rotation frequency w. The con-
stants A (the amplitude of the precession) and w3 can be evaluated in terms of
the more usual constants of the motion, namely, the kinetic energy and the mag-
nitude of the angular momentum. Both 7' and L? can be written as functions of A

*The precession can be demonstrated in another fashion by defining a vector € lying along the z axis
with magnitude given by (5.49). Equations (5.47) are then essentially equivalent to the vector equation

w=wx,

which immediately reveals the precession of w with the frequency .
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FIGURE 5.6 Precession of the angular velocity about the axis of symmetry in the force-
free motion of a symmetrical rigid body.

and w3:
T =iNnA%* + 110},
L* = I} A% + I3,
and these relations in turn may be solved for A and w3 in terms of 7" and L.

We would expect that Earth’s axis of rotation should exhibit this precession, for
the external torques acting on Earth are so weak that the rotational motion may be
considered as that of a free body. Earth is approximately symmetrical about the
polar axis and slightly flattened at the poles so that [ is less than /3. Numerically,
the ratio of the moments is such that

Iz —1;
1

= 0.00327,

and the magnitude of the precession angular frequency should therefore be

Q= w3 . w3
T 305.81039 306

Since w3 is practically the same as the magnitude of w, this result predicts
a period of precession of approximately 306 days or about 10 months. If some
circumstance disturbed the axis of rotation from the figure axis of Earth, we would
therefore expect the axis of rotation to precess around the figure axis (i.e., around
the north pole) once every 10 months. Practically, such a motion should show up
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as a periodic change in the apparent latitude of points on Earth’s surface. Careful
measurements of latitude at a network of locations around the world, carried out
now for about a century, show that the rotation axis is indeed moving about the
pole with an amplitude of the order of a few tenths of a second of latitude (about
10 m). But the situation is far more complicated (and interesting) than the above
simple analysis would suggest.

The deviations between the figure and rotation axes are very irregular so that
it’s more a “wobble” than a precession. Careful frequency analysis shows the
existence of an annual period in the motion, thought to arise from the annual
cycle of seasons and the corresponding mean displacement of atmospheric masses
about the globe. Additionally, a strong frequency component is centered about a
period of 420 days, known as the Chandler wobble. The present belief is that this
motion represents the free-body precession derived above. It is thought that the
difference in period arises from the fact that Earth is not a rigid body but is to
some degree elastic. In effect, some part of Earth follows along with the shift in
the rotation axis, which has the effect of reducing the difference in the principal
moments of inertia and therefore increasing the period. (If, for example, Earth
were completely fluid, then the figure axis would instantaneously adjust to the
rotation axis and there could be no precession.)

There are still other obscure features to the observed wobble. The frequency
analysis indicates strong damping effects are present, believed to arise from either
tidal friction or dissipative effects in the coupling between the mantle and the
core. The damping period ought to be on the order of 10-20 years. But no such
decay of the amplitude of the Chandler wobble has been observed; some sort of
random excitation must be present to keep the wobble going. Various sources
of the excitation have been suggested. Present speculation points to deep earth-
quakes, or the mantle phenomena underlying them, as possibly producing discon-
tinuous changes in the inertia tensor large enough to keep exciting the free-body
precession.*

THE HEAVY SYMMETRICAL TOP WITH ONE POINT FIXED

As a further and more complicated example of the application of the methods
of rigid dynamics, let us consider the motion of a symmetrical body in a uni-
form gravitational field when one point on the symmetry axis is fixed in space.
A wide variety of physical systems, ranging from a child’s top to complicated
gyroscopic navigational instruments, are approximated by such a heavy symmet-
rical top. Both for its practical applications and as an illustration of many of the

*The free precession of Earth’s axis is not to be confused with its slow precession about the normal
to the ecliptic. This astronomical precession of the equinoxes is due to the gravitational torques of
the Sun and Moon, which were considered negligible in the above discussion. That the assumption is
justified is shown by the long period of the precession of the equinoxes (26,000 years) compared to
a period of roughly one year for the force-free precession. The astronomical precession is discussed
further below.
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FIGURE 5.7 Euler’s angles specifying the orientation of a symmetrical top.

techniques previously developed, the motion of the heavy symmetrical top de-
serves a detailed exposition.

The symmetry axis is of course one of the principal axes and will be chosen as
the z axis of the coordinate system fixed in the body.* Since one point is stationary,
the configuration of the top is completely specified by the three Euler angles: 6
gives the inclination of the z axis from the vertical, ¢ measures the azimuth of the
top about the vertical, while v is the rotation angle of the top about its own z axis
(cf. Fig. 5.7). The distance of the center of gravity (located on the symmetry axis)
from the fixed point will be denoted by 1.

The rates of change of these three angles give the characteristic motions of the
top as

Y = rotation or spinning of the top about its own figure axis, z
¢ = precession or rotation of the figure axis z about the vertical axis z’

6 = nutation or bobbing up and down of the z figure axis relative to the verti-
cal space axis z'.

For many cases of interest such as the top and the gyroscope, we have V> 0>
¢. Since I} = I, # I3, Euler’s equations (5.39’) become

Loy + ww3(I3 — [) = Ny,
hwy + wiw3(I] — I3) = Na,

*Only the body axes need specific identification here; it will therefore be convenient to designate
them in this section as the xyz axes, without fear of confusing them with the space axes, which will

be designated by the x’y’z’ axes.
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and
3wz = N3.

Let us consider the case where initially N3 = 0 = N», N; # 0, and w; =
wy = 0, w3 # 0, then w3 will be constant. The torque N will cause w to change
since w; # 0. Since w; is no longer zero, the second equation requires that w;
begin to change also. What this means in terms of an observation is not obvious.
We observe the changes in the Euler angles vy, ¢, 6 and their associated angles
in the x’, y’, 7’ laboratory frame rather than the w1, @;, @3 and their associated
angles in the principal axis system. This suggests that the Euler equations may
not provide the most useful description of the motion.

The Lagrangian procedure, rather than Euler’s equations, will be used to obtain
a solution for the motion of the top. Since the body is symmetrical, the kinetic
energy can be written as

T = Jh(of + 3) + $ Bod,

or, in terms of Euler’s angles, and using Eqs. (4.87), as
I 5 9 .9 Iz . . 5
T:;(@ + ¢~ sin 9)+E(W+¢0059) , (5.50)
where the qb 6 cross terms in a)% and a)% cancel.

It is a well-known elementary theorem that in a constant gravitational field the
potential energy is the same as if the body were concentrated at the center of mass.
We will however give a brief formal proof here. The potential energy of the body
is the sum over all the particles:

V =—mr;-g,

where g is the constant vector for the acceleration of gravity. By Eq. (1.21), defin-
ing the center of mass, this is equivalent to

V=-MR-g, (5.51)
which proves the theorem. In terms of the Euler angles,
V = Mgl cos@, (5.51)

so that the Lagrangian is
hseazan?ey v B v d 2
L = 3(9 + ¢“sin“ 0) + 3(1//+¢0059) — Mgl cos®. (5.52)

Note that ¢ and i do not appear explicitly in the Lagrangian; they are therefore
cyclic coordinates, indicating that the corresponding generalized momenta are
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constant in time. Now, we have seen that the momentum conjugate to a rotation
angle is the component of the total angular momentum along the axis of rotation,
which for ¢ is the vertical axis, and for i, the z axis in the body. We can in fact
show from elementary principles that these components of the angular momentum
must be constant in time. Since the torque of gravity is along the line of nodes,
there is no component of the torque along either the vertical or the body z axis,
for by definition both of these axes are perpendicular to the line of nodes. Hence,
the components of the angular momentum along these two axes must be constant
in time.
We therefore have two immediate first integrals of the motion:

oL ; .
Py = P =L + dcosh) = hws = a (5.53)
and
oL -2 2 ; /
Py = 9= (I1 sin” 0 + I3cos” 0)¢ + I3y cos 6 = Ib. (5.54)

Here the two constants of the motion are expressed in terms of new constants a
and b. There is one further first integral available; since the system is conservative,
the total energy E is constant in time:

Iy o a2 I3,
E=T+V=?(0 + ¢“ sin 6)+3a)3+Mglcose. (5.55)

Only three additional quadratures are needed to solve the problem, and they are
easily obtained from these three first integrals without directly using the Lagrange
equations. From Eq. (5.53), ¢ is given in terms of ¢ by

Ly = La — Iz$ cos, (5.56)
and this result can be substituted in (5.54) to eliminate :
11q5 sin? 6 + Iiacos® = b,

or

. b —acosb
= — 5.57
¢ sin® 6 637

Thus, if 6 were known as a function of time, Eq. (5.57) could be integrated to

furnish the dependence of ¢ on time. Substituting Eq. (5.57) back in Eq. (5.56)
results in a corresponding expression for ¥:

1‘.0 La eb—acose (5.58)
= — —cosf———, .
I sin%
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which furnishes ¢ if 6 is known. Finally, Egs. (5.57) and (5.58) can be used to
eliminate ¢ and ¥ from the energy equation, resulting in a differential equation
involving 6 alone.

First notice that Eq. (5.53) says w3 is constant in time and equal to (/{/I3)a.
Therefore, E — I3a)§ /2 is a constant of the motion, which we shall designate as E’.
Making use of Eq. (5.57), the energy equation can thus be written as

1,6 I; (b — acos)?
_h +_1( )

E/
2 2 sin 0

+ Mgl cos6. (5.59)

Equation (5.59) has the form of an equivalent one-dimensional problem in the
variable 6, with the effective potential V'(0) given by

I (b—acosf\>

V(@) = Mglcosd + — [ ———"7) . (5.60)
2 sin 6

Thus, we have four constants associated with the motion, the two angular

momenta py and py, the energy term E — %130%, and the potential energy

term Mgl. It is common to define four normalized constants of the motion as

2E — ho3
0= —"
I
2Mgl
B = Ig (5.61)
1
a = p_]//
I
p="ro
I

In terms of these constants, the energy equation (5.55) can be written as

o (b= acosf)?

=6- + — + Bcosh. (5.62)
sin“ 6

We will use this one-dimensional problem to discuss the motion in 6, very
similarly to what was done in Section 3.3 in describing the radial motion for the
central force problem. It is more convenient to change variables as we did for the
central force problem. Using the variable u = cos 6, rewrite Eq. (5.62) as

i =1 —u?)(a — Bu) — (b — au)?, (5.62)

which can be reduced immediately to a quadrature:

u(t) du
t:/ . (5.63)
u© (1 —u?)(a — u) — (b — au)?
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With this result, and Egs. (5.57) and (5.58), ¢ and ¥ can also be reduced to
quadratures. However, the polynomial in the radical is a cubic so that we have to
deal with elliptic integrals. These solutions can be generated on current desk-top
computers. In the case of the force-free motion, the physics tends to be obscured
in the profusion of mathematics. Fortunately, the general nature of the motion can
be discovered without actually performing the integrations.

Before proceeding with the study of the possible solutions of Eq. (5.63), a few
comments on the constants defined in Eqs. (5.61) will be useful. Figure 5.7 shows
the case where the fixed point is not at the center of mass. If the top is spinning on
a horizontal surface, both o and g are greater than zero. If the top is supported by
a stand that allows it to dip below horizontal, 8 is still larger than zero, but & could
be positive or negative. Another common application is the gyroscope where the
center of mass is the fixed point. In terms of Fig. 5.7, « is the energy in the system
excluding the x3 angular kinetic energy. For the gyroscope, § = 0 and o > 0.
We shall restrict our attention to situations in which the rotational kinetic energy
about the x3 axis is much larger than the kinetic energy about the other two axes.

It is convenient to designate the right-hand side of Eq. (5.62') as a function
f (u) and discuss the behavior of the cubic equation

f) = Bu® — (@ + a>u® + Qab — Pu + (« — b2).

For the gyroscope, f () is only a quadratic equation since 8 = 0, while for the top
the full cubic equation must be considered. Since many of the applications of the
gyroscope use torque-free mountings, precession and nutations are suppressed so
the gyroscope motions are trivial. To understand the general motions of a spinning
body, we will consider only cases where 8 > 0.

The roots of the cubic polynomial furnish the angles at which 6 changes sign,
that is, the “turning angles” in 6. Knowing these angles will give qualitative
information about the motion. There are three roots to a cubic equation and three
possible combinations of solutions. There can be one real root and a complex
conjugate pair of roots; there can be three real roots, two of which are equal; and
there can be three real and unequal roots. These possibilities depend upon the rel-
ative signs and magnitudes of the four constants in Eqgs. (5.61). There is also the
physical constraint that the solution # must satisfy —1 < u < 1. We will draw all
figures as if u > 0, which would be the case if the top is supported by a horizontal
surface. Recall that a point support could allow the smallest root to be less than
Zero.

For u large, the dominant term in f(u) is ,3u3. Since B (cf. Egs. (5.61)) is
always a positive constant f(u) is positive for large positive u and negative for
large negative u. At points u = =1, f(u) becomes equal to —(b F a)? and is
therefore always negative, except for the unusual case where u = =+1 is a root
(corresponding to a vertical top). Hence, at least one root must lie in the region
u > 1, aregion that does not correspond to real angles. Indeed, physical motion
of the top can occur only when u? is positive somewhere in the interval between
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Sw)

FIGURE 5.8 Illustrating the location of the turning angles of 6 in the motion of a heavy
symmetric top supported on a horizontal plane. A point support could allow one of the
roots to be negative.

u = —1 and u = +1, that is, 6 between 0 and +m. We must conclude therefore
that for any actual top f(u) will have two roots, u; and uj, between —1 and +1
(cf. Fig. 5.8), and that the top moves such that cos 6 always remains between these
two roots. The location of these roots, and the behavior of ¢> and w for values of 6
between them, provide much qualitative information about the motion of the top.

It is customary to depict the motion of the top by tracing the curve of the
intersection of the figure axis on a sphere of unit radius about the fixed point. This
curve is known as the locus of the figure axis. The polar coordinates of a point on
the locus are identical with the Euler angles 6, ¢ for the body system. From the
discussion in the preceding paragraph, we can see that the locus lies between the
two bounding circles of colatitude 67 = arccos u1 and 6, = arccos u, with 6 van-
ishing at both circles. The shape of the locus curve is in large measure determined
by the value of the root of b — au, which we denote by u’:

(5.64)

Suppose, for example, the initial conditions are such that u’ is larger than u;.
Then, by Eq. (5.57), ¢ will always have the same sign for the allowed inclination
angles between 6; and 6,. Hence, the locus of the figure axis must be tangent
to the bounding circles in such a manner that ¢ is in the same direction at both
01 and 6,, as is shown in Fig. 5.9(a). Since ¢ therefore increases secularly in one
direction or the other, the axis of the top may be said to precess about the vertical
axis. But it is not the regular precession encountered in force-free motion, for as
the figure axis goes around, it nods up and down between the bounding angles 6;
and 6,—the top nutates during the precession.

Should b/a be such that u’ lies between 1 and u3, the direction of the preces-
sion will be different at the two bounding circles, and the locus of the figure axis
exhibits loops, as shown in Fig. 5.9(b). The average of ¢ will not vanish how-
ever so that there is always a net precession in one direction or the other. It can
also happen that u’ coincides with one of the roots of f (u). At the corresponding
bounding circles, both 6 and ¢ must then vanish, which requires that the locus
have cusps touching the circle, as shown in Fig. 5.9(c).
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(a) (b) (©)
FIGURE 5.9 The possible shapes for the locus of the figure axis on the unit sphere.

This last case is not as exceptional as it sounds; it corresponds in fact to the
initial conditions usually stipulated in elementary discussions of tops: We assume
that initially the symmetrical top is spinning about its figure axis, which is fixed
in some direction 6. At time ¢ = 0, the figure axis is released and the problem is
to describe the subsequent motion. Explicitly, these initial conditions are that at
t=0,0 =6and § = qb = 0. The quantity ug = cos 6y must therefore be one of
the roots of f(u); in fact, it corresponds to the upper circle:

b
up=uy =u = —. (5.65)
a

For proof, note that with these initial conditions E’ is equal to Mgl cos 8y, and
that the terms in E’ derived from the top’s kinetic energy can never be nega-
tive. Hence, as 6 and ¢ begin to differ from their initial zero values, energy can
be conserved only by a decrease in Mgl cos#, i.e., by an increase in 6. The
initial 6y is therefore the same as 6, the minimum value 6 can have. When
released in this manner, the top always starts to fall, and continues to fall until
the other bounding angle 0; is reached, precessing the meanwhile. The figure
axis then begins to rise again to 6,, the complete motion being as shown in
Fig. 5.9(c).

Some quantitative predictions can be made about the motion of the top under
these initial conditions of vanishing 6 and ¢, provided that the initial kinetic
energy of rotation about the z-axis is assumed large compared to the maximum
change in potential energy:

TRl > 2Mgl. (5.66)

The effects of the gravitational torques, namely, the precession and accompanying
nutation, will then be only small perturbations on the dominant rotation of the top
about its figure axis. In this situation, we speak of the top as being a “fast top.”
With this assumption we can obtain expressions for the extent of the nutation, the
nutation frequency, and the average frequency of precession.



216

Chapter 5 The Rigid Body Equations of Motion

The extent of the nutation under these given initial conditions is given by
u1 — ug, where up is the other physical root of f(u). The initial conditions
E’ = Mgl cos 6y is equivalent to the equality

o = Bug.

With this relation, and the conditions of Eq. (5.65), f(u) can be rewritten more
simply as

F@) = wo—w [B0 =) = o —w)]. (5.67)

The roots of f(u) other than ug are given by the roots of the quadratic expression
in the brackets, and the desired root | therefore satisfies the equation
a?
(1 —u?) — E(uo—ul) =0. (5.68)

Denoting ug — u by x and ug — u; by x, Eq. (5.68) can be rewritten as
x% 4+ px1 —q =0, (5.69)

where

a2
: 2
pZE—ZCOSQQ, q = sin” 6.

The condition for a “fast” top, Eq. (5.66), implies that p is much larger than q.
This can be seen by writing the ratio %/ as

a? (I3 I3a)%
B \I)2Mgl’
Except in the case that I3 < I (which would correspond to a top in the unusual

shape of a cigar), the ratio is much greater than unity, and p > ¢. To first order
in the small quantity g/ p, the only physically realizable root of Eq. (5.68) is then

q
X1 = —.
p

Neglecting 2 cos 8y compared to a?/ B, this result can be written

_ Bsin6y I 2Mgl

.2
X1 = sin” 6. (5.70)
a? I3 ]360%
Thus, the extent of the nutation, as measured by x; = ug — uy, goes down as

1/ w%. The faster the top is spun, the less is the nutation.
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The frequency of nutation likewise can easily be found for the “fast” top. Since
the amount of nutation is small, the term (1 — #2) in Eq. (5.67) can be replaced by
its initial value, sin? 6p. Equation (5.67) then reads, with the help of Eq. (5.70),
fw) = 2= a2x(x1 —X).
If we shift the origin of x to the midpoint of its range, by changing variable to

X1

y:x—?,

then the differential equation becomes

2
-2 2 [ %1 2
= d _— s

which on differentiation again reduces to the familiar equation for simple har-
monic motion

y=—ay.
In view of the initial condition x = 0 at ¢ = 0, the complete solution is

x= %(1 — cosat), (5.71)

where x is given by (5.70). The angular frequency of nutation of the figure axis
between 6y and 6 is therefore

a=—w;3, (5.72)

which increases the faster the top is spun initially.
Finally, the angular velocity of precession, from (5.57), is given by

a(ug — u) o ax

sin® @ -~ sin? 90’
or, substituting Eqs. (5.70) and (5.71),
. B
¢ = —(1 — cosat). (5.73)
2a
The rate of precession is therefore not uniform but varies harmonically with time,
with the same frequency as the nutation. The average precession frequency how-

ever is

b= =5 (5.74)
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which indicates that the rate of precession decreases as the initial rotational
velocity of the top is increased.

We are now in a position to present a complete picture of the motion of the fast
top when the figure axis initially has zero velocity. Immediately after the figure
axis is released, the initial motion of the top is always to fall under the influence of
gravity. But as it falls, the resultant torque around the axis of fall causes the top to
pick up a precession velocity, directly proportional to the extent of its fall, which
starts the figure axis moving sideways about the vertical. The initial fall results
in a periodic nutation of the figure axis in addition to the precession. As the top
is spun faster and faster, the extent of the nutation decreases rapidly, although
the frequency of nutation increases, while at the same time the precession about
the vertical becomes slower. In practice, for a sufficiently fast top the nutation is
damped out by the friction at the pivot and becomes unobservable. The top then
appears to precess uniformly about the vertical axis. Because the precession is
regular only in appearance, Klein and Sommerfeld have dubbed it a pseudoregular
precession. In most of the elementary discussions of precession, the phenomenon
of nutation is neglected. As a consequence, such derivations seem to lead to the
paradoxical conclusion that upon release the top immediately begins to precess
uniformly, a motion that is normal to the forces of gravity that are the ultimate
cause of the precession. Our discussion of pseudoregular precession serves to
resolve the paradox; the precession builds up continuously from rest without any
infinite accelerations, and the initial tendency of the top is to move in the direction
of the forces of gravity.

It is of interest to determine exactly what initial conditions will result in a true
regular precession. In such a case, the angle 6 remains constant at its initial value
6p, which means that 6; = 6, = 6. In other words, f (1) must have a double root
at ug (cf. Fig. 5.10), or

af _

_ 52 _
fu) =u" =0, T

0; U= ugp.

The first of these conditions, from Eq. (5.62') with & = 0, implies

(@ = Pug) = ————; (5.75)

Jlu)

} b ]

FIGURE 5.10 Appearance of f(u) for a regular precession.
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the second corresponds to

B _ab—an) _ (a—puo)

2 1—14% 0 l—u%

(5.76)
Substitution of Eq. (5.7_5) in Eq. (5.76) leads, in view of Eq. (5.57) for d), to a
quadratic equation for ¢:

g =a¢p — ¢* cos . (5.76))

With the definitions of 8 and a, Eq. (5.61), this can be written in two alternativ;
forms, depending on whether a is expressed in terms of w3 or the (constant)
and ¢:

Mgl = ¢(Izw3 — 19 cos bp), (5.77)
or
Mgl = ¢(I3yr — (I} — I3)¢ cos bp). (5.77)

The initial conditions for the problem of the heavy top require the specification
of6,¢,V, 9, d), and, say, either 1// or w3 at the time ¢ = (. Because they are cyclic,
the initial values of ¢ and 1 are largely irrelevant, and in general we can choose
any desired value for each of the four others. But if in addition we require that the
motion of the figure axis be one of uniform precession without nutation, then our
choice of these four initial values is no longer completely unrestricted. Instead,
they must satisfy either of Eqgs. (5.77). For 6 = 0, we may still choose initial
values of 6§ and w3, almost arbitrarily, but the value of ¢ is then determined. The
phrase “almost arbitrarily” is used because Egs. (5.77) are quadratic, and for ¢ to
be real, the discriminant of Eq. (5.77) must be positive:

L} > 4MglI, cos 6. (5.78)

For 8y > /2 (a top mounted so its center of mass is below the fixed point), then
any value of w3 can lead to uniform precession. But for 6y < /2, w3 must be
chosen to be above a minimum value a)g,

2
w3 > Wy = E\/Mglll cos 6 (5.79)

to achieve the same situation. Similar conditions can be obtained from Eq. (5.77)
for the allowable values of ¥. As a result of the quadratic nature of Eq. (5.77),
there will in general be two solutions for ¢, known as the “fast” and “slow” pre-
cession. Also note that (5.77) can never be satisfied by ¢ = 0 for finite i or ws;
to obtain uniform precession, we must always give the top a shove to start it on its
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way. Without this correct initial precessional velocity, we can obtain at best only
a pseudoregular precession.

If the precession is slow, so that ¢ cos 6 may be neglected compared to a, then
an approximate solution for ¢ is

. Mgl
o~ LA ==& (slow),
2a Lws

which agrees with the average rate of pseudoregular precession for a fast top. This
result is to be expected of course; if the rate of precession is slow, there is little
difference between starting the gyroscope off with a little shove or with no shove
at all. Note that with this value of ¢, the neglect of ¢ cos 6y compared to a is
equivalent to requiring that w3 be much greater than the minimum allowed value.
For such large values of w3, the “fast” precession is obtained when ¢ is so large
that Mgl is small compared to the other terms in Eq. (5.77):

I
= B9 (fast).
11 cos 6y

The fast precession is independent of the gravitational torques and can in fact be
related to the precession of a free body (see Derivation 6a in the Exercises).

One further case deserves some attention, namely, when u = 1 corresponds
to one of the roots of f(u).* Suppose, for instance, a top is set spinning with
its figure axis initially vertical. Clearly then b = a, for I1b and Ia are the con-
stant components of the angular momentum about the vertical axis and the figure
axis respectively, and these axes are initially coincident. Since the initial angular
velocity is only about the figure axis, the energy equation (5.59) evaluated at time
t = 0 states that

E' =E - 11w} = Mgl.

By the definitions of « and B (Eq. (5.61)), it follows that @ = .
The energy equation at any angle may therefore be written as

W =1 —u?)BA —u) —a*(1 —u)?
or
W2 =1 —u)? [ﬂ(l Fu)— a2] .
The form of the equation indicates that u = 1 is always a double root, with the

third root given by

a2

u3 = — — 1.

B

*Note that this must be treated as a special case, since in the previous discussions factors of sin? 6
were repeatedly divided out of the expressions.
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S S

/ Uy u=+I

(@) w;> o' (b) w; <o

FIGURE 5.11 Plot of f(u) when the figure axis is initially vertical.

If a*/B > 2 (which corresponds to the condition for a “fast” top), u3 is larger
than 1 and the only possible motion is for u = 1; the top merely continues to spin
about the vertical. For this state of affairs, the plot of f(u) appears as shown in
Fig. 5.11(a). On the other hand, if a>/8 < 2, the third root u is then less than
1, f(u) takes on the form shown in Fig. 5.11(b), and the top will nutate between
0 = 0 and 6 = 63. There is thus a critical angular velocity, «’, above which only
vertical motion is possible, whose value is given by

a? _ Iz Iga)/2 5
g \I/)2Mgl

Mgl[l
I

or

2
W' =4

: (5.80)

which is identical with Eq. (5.79) for the minimum frequency for uniform preces-
sion with 6y = 0.

In practice, if a top is started spinning with its axis vertical and with w3 greater
than the critical angular velocity, it will continue to spin quietly for a while about
the vertical (hence the designation as a “sleeping” top). However, friction grad-
ually reduces the frequency of rotation below the critical value, and the top then
begins to wobble in ever larger amounts as it slows down.

The effects of friction (which of course cannot be directly included in the
Lagrangian framework) can give rise to unexpected phenomena in the behavior
of tops. A notable example is the “tippie-top,” which consists basically of some-
what more than half a sphere with a stem added on the flat surface. When set
rotating with the spherical surface downwards on a hard surface, it proceeds to
skid and nutate until it eventually turns upside down, pivoting on the stem, where
it then behaves as a normal “sleeping” top. The complete reversal of the angular
momentum vector is the result of frictional torque occurring as the top skids on
its spherical surface.
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A large and influential technology is based on the applications of rapidly spin-
ning rigid bodies, particularly through the use of what are called “gyroscopes.”
Basically, a three-frame gyroscope is a symmetrical top rotated very rapidly by
external means about the figure axis and mounted in gimbals so that the motion of
the figure axis is unrestricted about three perpendicular spatial axes while the cen-
ter of gravity remains stationary. The figure axis maintains the same direction in
space no matter how the mounting is reoriented, a phenomenon called gyroscopic
inertia. Such an instrument can indicate the roll, pitch, and attitude directions of
an airplane flying “blind” by using the xyz Euler angle convention described in
Section 4.4 and Appendix A.

If external torques are suitably exerted on the gyroscope, it will undergo the
precession and nutation motions described earlier for the heavy top. However,
the condition for the “fast” top is abundantly satisfied, so that the extent of the
nutation is always very small, and moreover is deliberately damped out by the
method of mounting. The only gyroscopic phenomenon then observed is preces-
sion, and the mathematical treatment required to describe this precession can be
greatly simplified. We can see how to do this by generalization from the case of
the heavy symmetrical top.

If R is the radius vector along the figure axis from the fixed point to the center
of gravity, then the gravitational torque exerted on the top is

N =R x Mg, (5.81)

where g is the downward vector of the acceleration of gravity. If L3 is the vec-
tor along the figure axis, describing the angular momentum of rotation about the
figure axis, and @, known as the precession vector, is aligned along the vertical

with magnitude equal to the mean precession angular velocity ¢, Eq. (5.74), then
the sense and magnitude of the (pseudoregular) precession is given by

wp x Ly =N. (5.82)

Since any torque about the fixed point or center of mass can be put in the form
R x F, similar to Eq. (5.81), the resulting average precession rate for a “fast” top
can always be derived from Eq. (5.82), with the direction of the force F defining
the precession axis. Almost all engineering applications of gyroscopes involve
the equilibrium behavior (i.e., neglecting transients) which can be derived from
Eq. (5.82).

Free from any torques, a gyroscope spin axis will always preserve its original
direction relative to an inertial system. Gyros can therefore be used to indicate
or maintain specific directions, e.g., provide stabilized platforms. As indicated by
Eq. (5.82), through the precession phenomena they can sense and measure angular
rotation rates and applied torques. Note from Eq. (5.82) that the precession rate
is proportional to the torque, whereas in a nonspinning body it is the angular
acceleration that is given by the torque. Once the torque is removed, a nonspinning
body will continue to move; under similar conditions a gyro simply continues
spinning without precessing.
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The gyrocompass involves more complicated considerations because here
we are dealing with the behavior of a gyroscope fixed in a noninertial system,
while Earth rotates underneath it. In a gyrocompass, an additional precession
is automatically applied by an external torque at a rate just enough to balance
Earth’s rotation rate. Once set in the direction of Earth’s rotation, i.e., the north
direction, the gyrocompass then preserves this direction, at least in slowly mov-
ing vehicles. What has been presented here is admittedly an oversimplified,
highly compressed view of the fascinating technological uses of fast spinning
bodies. To continue further in this direction would regrettably lead us too far
afield.

There are however two examples of precession phenomena in nature for which
a somewhat fuller discussion would be valuable, both for the great interest in
the phenomena themselves and as examples of the techniques derived in this
chapter. The first concerns the types of precession that arise from the torques
induced by Earth’s equatorial “bulge,” and the second is the precession of mov-
ing charges in a magnetic field. The next two sections are concerned with these
examples.

PRECESSION OF THE EQUINOXES AND OF SATELLITE ORBITS

It has been mentioned previously that Earth is a top whose figure axis is pre-
cessing about the normal to the ecliptic, the plane of Earth’s orbit, a motion
known astronomically as the precession of the equinoxes. Were Earth completely
spherical, none of the other members of the solar system could exert a gravi-
tational torque on it. But, as has been pointed out, Earth deviates slightly from
a sphere, being closely approximated by an oblate spheroid of revolution. It is
just the net torque on the resultant equatorial “bulge” arising from gravitational
attraction, chiefly of the Sun and Moon, that sets Earth’s axis precessing in
space.

To calculate the rate of this precession, a slight excursion into potential theory
is needed to find the mutual gravitational potential of a mass point (representing
the sun or the moon) and a nonspherical distribution of matter. We will find the
properties of the inertia tensor as obtained above very useful in the derivation of
this potential.

Consider a distribution of mass points forming one body, and a single mass
point, mass M, representing the other (cf. Fig. 5.12). If ; is the distance between
the ith point in the distribution and the mass point M, then the mutual gravitational
potential between the two bodies is*

GMm; GMm;
_ZEm i . (5.83)

ri N\ 2 ’
l r\/l + (;’) —2%cos¢,~

*It may be worth a reminder that summation is implied over repeated subscripts.

V =
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FIGURE 5.12 Geometry involved in gravitational potential between an extended body
and a mass point.

In this last expression the terminology of Fig. 5.12 is used: r} is the radius vector
to the ith particle from a particular point, which will later be taken to be the center
of mass of the first body, r is the corresponding radius vector to the mass point
M, and ¥; is the angle between the two vectors. It is well known that a simple
expansion in terms of Legendre polynomials can be given for Eq. (5.83); in fact,
the reciprocal of the square root in Eq. (5.83) is known as the generating function
for Legendre polynomials, so that
GM \"
V=—a—-">» m <—’> P, (cos ¥r;), (5.84)
r =0 r

providing r, the distance from the origin to M, is much greater than any r;. We
shall make use of only the first three Legendre polynomials that, for reference, are

Po) =1, Pix)=x, Pyx)=1@x%-1). (5.85)

For a continuous spherical body, with only a radial variation of density, all
terms except the first in Eq. (5.84) can easily be shown to vanish. Thus, the nth
term inside the summation, for a body with spherical symmetry and mass density
p(r"), can be written

///d3R/p(r’) (;) P, (cos ).

Using spherical polar coordinates, with the polar axis along r, this becomes

) / ” , , <r/>n/+l
| rodr p@) d(cos ) P,(cos yr).

r -1

From the orthonormal properties of P, with respect to Py, the integral over cos ¥
vanishes except for n = 0, which proves the statement.

If the body deviates only slightly from spherical symmetry, as is the case with
Earth, we would expect the terms in Eq. (5.84) beyond n = 0 to decrease rapidly
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with increasing n. It will therefore be sufficient to retain only the first nonvanish-
ing correction term in Eq. (5.84) to the potential for a sphere. Now, the choice of
the center of mass as origin causes the n = 1 term to vanish identically, since it
can be written

_GM i cos Vi = ——T-m;r;
}"2 A l r3 [l R

which is zero, by definition of the center of mass. The next term, for n = 2, can

be written

GM
Fmiri/z(l —3cos? ¥;).

Simple tensor manipulation gives the complete second-order approximation to the
nonspherical potential as

GMm GM
V=—--—+4+—Q0GI,—-Trl,
r 2r3

where m is the mass of the first body (Earth), 7, is the moment of inertia about the
direction of r, and / is the moment of inertia tensor in the principal axis system.
From the diagonal representation of the inertia tensor in the principal axis system,
its trace is just the sum of the principal moments of inertia, so that V can be
written as

GMm GM

+

V= — _
r 2r3

(32, — (I + L + B3)]. (5.86)

Equation (5.86) is sometimes known as MacCullagh’s formula. So far, no
assumption of rotational symmetry has been made. Let us now take the axis of
symmetry to be along the third principal axis, so that I} = . If «, B, y are the
direction cosines of r relative to the principal axes, then the moment of inertia I,
can be expressed as

L =nL@+ )+ Ly =1L+ (3 — )y~ (5.87)
With this form for 7,, the potential, Eq. (5.86), becomes

GMm GM(3—1
V=- M gy
r 2r>

or

GMm GM(Is — 1))

V=-— + . P(y). (5.88)

The general form of Eq. (5.88) could have been foretold from the start, for the
potential from a mass distribution obeys Poisson’s equation. The solution appro-
priate to the symmetry of the body, as is well known, is an expansion of terms
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of the form P,(y)/r"*!, of which Eq. (5.88) shows the first two nonvanishing
terms. However, this approach does not give the coefficients of the terms any
more simply than the derivation employed here. It should also be remarked that
the expansion of V is the gravitational analog of the multipole expansion of, say,
the electrostatic potential of an arbitrary charged body. The n = 1 term is absent
here because there is only one sign of gravitational “charge” and there can be no
gravitational dipole moment. Further, the inertia tensor is defined analogously to
the quadrupole moment tensor. Therefore, the mechanical effects we are seek-
ing can be said to arise from the gravitational quadrupole moment of the oblate
Earth.*

Of the terms in Eq. (5.88) for the potential, the only one that depends on the
orientation of the body, and thus could give rise to torques, is

GM(I5 — 1
Vy = %Pz(y). (5.89)

For the example of Earth’s precession, it should be remembered that y is the
direction cosine between the figure axis of Earth and the radius vector from
Earth’s center to the Sun or Moon. As these bodies go around their apparent orbits,
y will change. The relation of y to the more customary astronomical angles can
be seen from Fig. 5.13 where the orbit of the Sun or Moon is taken as being in the
xy plane, and the figure axis of the body in the xz plane. The angle 6 between the
figure axis and the z direction is the obliquity of the figure axis. The dot product
of a unit vector along the figure axis with the radius vector to the celestial body
involves only the products of their x-components, so that

y = sin6 cos 1.

Hence, V, can be written

_ GM((I3— 1)
- 2r3

) (3sin® 6 cos>n — 1).

FIGURE 5.13 Figure axis of Earth relative to orbit of mass point.

*Note that so far nothing in the argument restricts the potential of Eq. (5.88) to rigid bodies. The
constraint of rigidity enters only when we require from here on that the principal axes be fixed in the
body and the associated moments of inertia be constant in time.
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As we shall see, the orbital motion is very rapid compared to the precessional
motion, and for the purpose of obtaining the mean precession rate, it will be
adequate to average V> over a complete orbital period of the celestial body con-
sidered. Since the apparent orbits of the Sun and Moon have low eccentricities, r
can be assumed constant and the only variation is in cos 7. The average of cos? n
over a complete period is %, and the averaged potential is then

— GM(Iz3 —1 3 GM(z -1 1 3
szM _Sin29_1 :(;1) ___COSZG ,
2r3 2 2r3 2 2

or, finally,

= GM(I3 - 1)

Vo = ————————P2(cosb). (5.90)
2r3

The torque derived from Eq. (5.90) is perpendicular to both the figure axis and
the normal to the orbit (which plays the same role as the vertical axis for the heavy
top). Hence, the precession is about the direction of the orbit normal vector. The
magnitude of the precession rate can be obtained from Eq. (5.82), but because the
potential differs in form from that for the heavy top, it may be more satisfying to
obtain a more formal derivation. For any symmetric body in which the potential
is a function of cos 6 only, the Lagrangian can be written, following Eq. (5.52), as

L= %(9’2 + ¢ sin?0) + 12—3@'& + ¢ cos0)* — V(cos0). (5.91)

If we are to assume only uniform precession and are not concerned about the
necessary initial conditions, we can simply take 6 and 0 to be zero in the equations
of motion. The Lagrange equation corresponding to 6 is then

aL . S Vv
— = I1¢p"sinfcosO — 3psinO (Y + ¢pcosf) — — =0
00 a0
or
. . oV
I — L¢?cosh) = ——, 5.92
3w3¢p — [1¢” cos 3(cost) (5.92)

which is the analog of Eq. (5.76") for a more general potential. For slow pre-
cession, which means basically that ¢ < w3, the ¢> terms in Eq. (5.92) can be
neglected, and the rate of uniform precession is given by

1 aVv

- Izws 9(cosh)

(5.93)

From Eq. (5.51") we see that for the heavy top Eq. (5.93) agrees with the average
result of Eq. (5.74). With the potential of Eq. (5.90), the precession rate is

¢ 3GM I3 — 11 P (5.94)
=— cos@. .
20313 I3
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For the case of the precession due to the Sun, this formula can be put in a
simpler form, by taking r as the semimajor axis of Earth’s orbit and using Kepler’s
law, Eq. (3.71), in the form

5 (271)2 GM
a)(): —_— = —.

The precession rate, relative to the orbital angular velocity, wy, is then

b 3wg 3 — 1
¢ _ 3ob-h o (5.95)
wo 2wy Iz

With the value of (I3 — I1) /I3 as given in Section 5.6, and § = 23°27’, Eq. (5.95)
says that the solar-induced precession would be such as to cause a complete rota-
tion of the figure axis about the normal to the ecliptic (plane of Earth’s orbit) in
about 81,000 years.

The Moon is far less massive than the Sun, but it is also much closer; the
net result is that the lunar-induced precession rate is over twice that caused by
the Sun. Since the lunar orbit is close to the ecliptic and has the same sense as
the apparent solar orbit, the two precessions nearly add together arithmetically,
and the combined lunisolar precession rate is 50.25"/year, or one complete rota-
tion in about 26,000 years. Note that this rate of precession is so slow that the
approximation of neglecting ¢ compared to w3 is abundantly satisfied. Because
the Sun, Moon, and Earth are in constant relative motion, and the Moon’s orbit
is inclined about 5° to the ecliptic, the precession exhibits irregularities desig-
nated as astronomical nutation. The extent of these periodic irregularities is not
large—about 9” of arc in 6 and about 18” in ¢. Even so, they are far larger than
the true nutation that, as Klein and Sommerfeld have shown, is manifested by
the Chandler wobble whose amplitude is never more than a few tenths of an arc
second.

One further application can be made of the potential, Eq. (5.88), and associ-
ated uniform precession rate, Eq. (5.93). It has been stressed that the potential
represents a mutual gravitational interaction; if it results in torques acting on the
spinning Earth, it also gives rise to (noncentral) forces acting on the mass point M.
The effect of these small forces appears as a precession of the plane of the orbit
of the mass point, relative to an inertial frame. It is possible to obtain an approx-
imate formula for this precession by an argument again based on the behavior of
spinning rigid bodies.

Since the precession rates are small compared to the orbital angular veloc-
ity, we can again average over the orbit. The averaging in effect replaces the
particle by a rigid ring of mass M with the same radius as the (assumed circu-
lar) orbit, spinning about the figure axis of the ring with the orbital frequency.
Equation (5.90) gives the potential field in which this ring is located, with 6
the angle between the figure axes of the ring and Earth. The average preces-
sion rate is still given by Eq. (5.93), but now I3 and w3 refer to the spinning
ring and not Earth. It would therefore be better to rewrite Eq. (5.93) for this
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application as

(]5 _ T A% (5.93')
T 27 Mr2 9(cosh)’ )
and Eq. (5.94) appears as
. T 3G(Iz—1)
é = R 6. (5.94')

Equation (5.94") could be used, for example, to find the precession of the orbit
of the Moon due to Earth’s oblateness. A more current application would be
to the precession of nearly circular orbits of artificial satellites revolving about
Earth. The fraction of a complete precession rotation in one period of the satel-
lite is

qS_t = —( ‘ )ZE—G(I3 — 1) cos 6.

o ) 2 S

An application of Kepler’s law, this time for the period of the satellite, reduces
this result to

(ﬁ‘L’_ 3L-—-1

__3b5-h 5.96
2 2 mrz % (5-96)

where m is Earth’s mass. If Earth were a uniform sphere, then the principal
moments of inertia would be

L~1 =%mR?

with R Earth’s radius. Because the core is much more dense than the outer layers,
the moment of inertia is smaller, such that in fact*

I3 =0.331mR* ~ tmR*.

The approximate precession is thus given by

j 1 -1 [R\?
;5—;=—§ 313 ! (7) cos 6. (5.97)

For a “close” satellite where r is very close to R, and the inclination of the satellite
orbit to the equator is, say, 30°, Eq. (5.97) says that the plane of the orbit precesses
completely around 27 in about 700 orbits of the satellite. Since the period of a
close satellite is about 1% hours, complete rotation of the orbital plane occurs
in a little over six weeks time. Clearly the effect is quite significant. We shall
rederive the precession of the satellite orbit later on, when we discuss the subject
of perturbation theory (cf. Section 12.3).

*The best values of I3 are now obtained from observation of just such effects on satellite orbits.
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PRECESSION OF SYSTEMS OF CHARGES IN A MAGNETIC FIELD

The motion of systems of charged particles in magnetic fields does not normally
involve rigid body motion. In a number of particular instances, the motion is how-
ever most elegantly discussed using the techniques developed here for rigid body
motion. For this reason, and because of their importance in atomic and nuclear
physics, a few examples will be given here.

The magnetic moment of a system of moving charges (relative to a particular
origin) is defined as

M= %qi(ri X Vi) —> %/a’v Pe(r)(r X V). (5.98)

Here the first expression is a sum over discrete particles with charge g;, while the
second is the corresponding generalization to a continuous distribution of charge
density p,(r). The angular momentum of the system under corresponding con-
ventions is

L=m;(r; xv;) —> /dem(r)(rxv).

Both the magnetic moment and the angular momentum have a similar form.
We shall restrict the discussion to situations in which M is directly proportional
to L:

M =yL, (5.99)

most naturally by having a uniform ¢ /m ratio for all particles or at all points in
the continuous system. In such cases, the gyromagnetic ratio y is given by

=—, 5.100
Y=o ( )

but, with an eye to models of particle and atomic spin, y will often be left unspec-
ified. The forces and torques on a magnetic dipole may be considered as derived
from a potential

V =—(M-B). (5.101)

It is implied along with Eq. (5.101) that the magnetic field is substantially
constant over the system. Indeed, the picture applies best to a pointlike magnetic
moment whose magnitude is not affected by the motion it undergoes—a picture
appropriate to permanent magnets or systems on an atomic or small scale. With
uniform B, the potential depends only on the orientation of M relative to B; no
forces are exerted on the magnetic moment, but there is a torque

N =M x B. (5.102)
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(Compare with Eq. (5.81).) The time rate of change of the total angular momen-
tum is equal to this torque, so that in view of Eq. (5.99) we can write

yri yL x B. (5.103)
But this is exactly the equation of motion for a vector of constant magnitude
rotating in space about the direction of B with an angular velocity w = —yB.
The effect of a uniform magnetic field on a permanent magnetic dipole is to cause
the angular momentum vector (and the magnetic moment) to precess uniformly.
For the classical gyromagnetic ratio, Eq. (5.100), the precession angular
velocity is

qB

w; =
2m’

(5.104)
known as the Larmor frequency. For electrons ¢ is negative, and the Larmor
precession is counterclockwise around the direction of B.

As a second example, consider a collection of moving charged particles, with-
out restrictions on the nature of their motion, but assumed to all have the same
q/m ratio, and to be in a region of uniform constant magnetic field. It will also
be assumed that any interaction potential between particles depends only on the
scalar distance between the particles. The Lagrangian for the system can be writ-
ten (cf. Eq. (1.63)). L is a system quantity so sum over repeated i’s and all j’s 7 i
for the rest of this chapter.

1 2

L = —m;v

Smivf + Lmpvi - A = V(i =), (5.105)

where the constant magnetic field B is generated by a vector potential A:
A=1Bxr. (5.106)

In terms of B, the Lagrangian has the form (permuting dot and cross products)

1 , ¢B
L =—-mjv; + — - (r; x m;v;) = V(|r; —r;j|). (5.107)
2 2m
The interaction term with the magnetic field can be variously written (cf.
Egs. (5.101) and (5.104))
gB-L
—— =M:B = —w; - (r; x m;v;). (5.108)
2m
Suppose now we express the Lagrangian in terms of coordinates relative to
“primed” axes having a common origin with the original set, but rotating uni-
formly about the direction of B with angular velocity e;. Distance vectors from
the origin are unchanged as are scalar distances such as |r; — r;|. However,
velocities relative to the new axes differ from the original velocities by the relation

Vi =V, + @ X1,
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The two terms in the Lagrangian affected by the transformation are

2
mivi2 m;v; , m;
— = +mv;« (@ x1;) + — (@ x1;)« () XT;),
2 2 2
—) - T; Xm;Vi = —oy - (r; X miV;) — oy (r; xmij(w; X17)).

By permuting dot and cross product, we can see that the terms linear in @; and
v; are just equal and opposite and therefore cancel in the Lagrangian. A similar
permutation in the terms quadratic in w; show that they are of the same form and
are related to the moment of inertia of the system about the axis defined by ey (cf.
Section 5.3). The quadratic term in the Lagrangian can in fact be written as

n; 1 1 2

—— (o xr;) (o x1;)) ==~ - |-y = —= ]y, (5.109)
2 2 2

where I; denotes the moment of inertia about the axis of ey. In terms of coordi-

nates in the rotating system, the Lagrangian thus has the simple form

2
L=3mjv]> = V(i —rj]) — S 1], (5.110)

from which all linear terms in the magnetic field have disappeared.

We can get an idea of the relative magnitude of the quadratic term by con-
sidering a situation in which the motion of the system consists of a rotation with
some frequency w, e.g., an electron revolving around the atomic nucleus. Then for
systems not too far from spherical symmetry, the kinetic energy is approximately
%1 ? (without subscripts on the moment of inertia) and the linear term in wy is
on the order of w; -L ~ Iwjw. Hence, the quadratic term in Eq. (5.110) is on
the order of (w;/w)* compared to the kinetic energy, and on the order of (w;/w)
relative to the linear term.

In most systems on the atomic or smaller scale, the natural frequencies are
much larger than the Larmor frequency. Compare, for example, the frequency of
a spectral line (which is a difference of natural frequencies) to the frequency shift
in the simple Zeeman effect, which is proportional to the Larmor frequency. Thus,
for such systems the motion in the rotating system is the same as in the laboratory
system when there is no magnetic field. What we have is Larmor’s theorem, which
states that to first order in B, the effect of a constant magnetic field on a classical
system is to superimpose on its normal motion a uniform precession with angular
frequency w;.

DERIVATIONS

1. If R; is an antisymmetric matrix associated with the coordinates of the ith mass point
of a system, with elements Ry, = €,,7X; show that the matrix of the inertia tensor
can be written as

I = —m;(R)>.
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2. Show directly by vector manipulation that the definition of the moment of inertia as
I =m;(r; xn)-(r; xn)
reduces to Eq. (5.18).

3. Prove that for a general rigid body motion about a fixed point, the time variation of
the kinetic energy T is given by

dT

—_— =W

dt

4. Derive Euler’s equations of motion, Eq. (5.39'), from the Lagrange equation of
motion, in the form of Eq. (1.53), for the generalized coordinate .

5. Equation (5.38) holds for the motions of systems that are not rigid, relative to a chosen
rotating set of coordinates. For general nonrigid motion, if the rotating axes are chosen
to coincide with the (instantaneous) principal axes of the continuous system, show that
Eqgs. (5.39) are to be replaced by

dljw;) dl;

i +€ijkijk1k—wiZ=Ni, i=1,2,3,

where
I; = de p(r)eijkxjv,/(

with p(r) the mass density at point r, and v’ the velocity of the system point at r
relative to the rotating axes. These equations are sometimes known as the Liouville
equations and have applications for discussing almost-rigid motion, such as that of
Earth including the atmosphere and oceans.

6. (a) Show that the angular momentum of the torque-free symmetrical top rotates in
the body coordinates about the symmetry axis with an angular frequency 2. Show
also that the symmetry axis rotates in space about the fixed direction of the angular
momentum with the angular frequency

33

- Iy cos@’

where ¢ is the Euler angle of the line of nodes with respect to the angular
momentum as the space z axis.

(b) Using the results of Exercise 15, Chapter 4, show that w rotates in space about
the angular momentum with the same frequency ¢, but that the angle 6 between
w and L is given by

. Q .
sind’ = = sin6”,

where 0" is the inclination of ® to the symmetry axis. Using the data given
in Section 5.6, show therefore that Earth’s rotation axis and the axis of angular
momentum are never more than 1.5 cm apart on Earth’s surface.

(¢) Show from parts (a) and (b) that the motion of the force-free symmetrical top
can be described in terms of the rotation of a cone fixed in the body whose axis
is the symmetry axis, rolling on a fixed cone in space whose axis is along the
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7.

10.

11.

12.

angular momentum. The angular velocity vector is along the line of contact of the
two cones. Show that the same description follows immediately from the Poinsot
construction in terms of the inertia ellipsoid.

For the general asymmetrical rigid body, verify analytically the stability theorem
shown geometrically above on p. 204 by examining the solution of Euler’s equations
for small deviations from rotation about each of the principal axes. The direction of
w is assumed to differ so slightly from a principal axis that the component of w along
the axis can be taken as constant, while the product of components perpendicular to
the axis can be neglected. Discuss the boundedness of the resultant motion for each of
the three principal axes.

When the rigid body is not symmetrical, an analytic solution to Euler’s equation for
the torque-free motion cannot be given in terms of elementary functions. Show, how-
ever, that the conservation of energy and angular momentum can be used to obtain
expressions for the body components of @ in terms of elliptic integrals.

. Apply Euler’s equations to the problem of the heavy symmetrical top, expressing w;

in terms of the Euler angles. Show that the two integrals of motion, Egs. (5.53) and
(5.54), can be obtained directly from Euler’s equations in this form.

Obtain from Euler’s equations of motion the condition (5.77) for the uniform preces-
sion of a symmetrical top in a gravitational field, by imposing the requirement that the
motion be a uniform precession without nutation.

Show that the magnitude of the angular momentum for a heavy symmetrical top can
be expressed as a function of 6 and the constants of the motion only. Prove that as a
result the angular momentum vector precesses uniformly only when there is uniform
precession of the symmetry axis.

(a) Consider a primed set of axes coincident in origin with an inertial set of axes
but rotating with respect to the inertial frame with fixed angular velocity wy. If a
system of mass points is subject to forces derived from a conservative potential
V depending only on the distance to the origin, show that the Lagrangian for the
system in terms of coordinates relative to the primed set can be written as

L:T’—l—wo-L/—l—%wo-l/-wo—V,

where primes indicate the quantities evaluated relative to the primed set of axes.
What is the physical significance of each of the two additional terms?

(b) suppose that @y is in the xéxé plane, and that a symmetric top is constrained to
move with its figure axis in the xéx; plane, so that only two Euler angles are
needed to describe its orientation. If the body is mounted so that the center of
mass is fixed at the origin and V = 0, show that the figure axis of the body
oscillates about the xé axis according to the plane-pendulum equation of motion
and find the frequency of small oscillations. This illustrates the principle of the
gyro compass.

EXERCISES

13.

Two thin rods each of mass m and length / are connected to an ideal (no friction) hinge
and a horizontal thread. The system rests on a smooth surface as shown in the figure.
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14.

15.

16.

17.

18.

19.

At time ¢ = 0, the thread is cut. Neglecting the mass of the hinge and the thread, and
considering only motion in the xy plane

(a) Find the speed at which the hinge hits the floor.
(b) Find the time it takes for the hinge to hit the floor.

YA

thread

30° 30°

=Y

What is the height-to-diameter ratio of a right cylinder such that the inertia ellipsoid
at the center of the cylinder is a sphere?

Find the principal moments of inertia about the center of mass of a flat rigid body in
the shape of a 45° right triangle with uniform mass density. What are the principal
axes?

A system of three particles of masses 40, 50 and 60 gm has the center of mass at (2,
2,2). Where can a fourth particle of mass 70 gm be placed so that the position of the
new center of mass will be at (0, 0, 0)?

A uniform right circular cone of height 4, half-angle «, and density p rolls on its
side without slipping on a uniform horizontal plane in such a manner that it returns
to its original position in a time t. Find expressions for the kinetic energy and the
components of the angular momentum of the cone.

(a) A bar of negligible weight and length / has equal mass points m at the two ends.
The bar is made to rotate uniformly about an axis passing through the center
of the bar and making an angle # with the bar. From Euler’s equations find the
components along the principal axes of the bar of the torque driving the bar.

(b) From the fundamental torque equation (1.26) find the components of the torque
along axes fixed in space. Show that these components are consistent with those
found in part (a).

A uniform bar of mass M and length 2/ is suspended from one end by a spring of
force constant k. The bar can swing freely only in one vertical plane, and the spring is
constrained to move only in the vertical direction. Set up the equations of motion in
the Lagrangian formulation.

~—2_suspension
point

attachme_nt ~
point



236

Chapter 5 The Rigid Body Equations of Motion

20.

21.

22,

23.

24.

25.

26.

27.

A plane pendulum consists of a uniform rod of length / and negligible thickness with
mass m, suspended in a vertical plane by one end. At the other end a uniform disk of
radius a and mass M is attached so it can rotate freely in its own plane, which is the
vertical plane. Set up the equations of motion in the Lagrangian formulation.

A compound pendulum consists of a rigid body in the shape of a lamina suspended
in the vertical plane at a point other than the center of gravity. Compute the period
for small oscillations in terms of the radius of gyration about the center of gravity
and the separation of the point of suspension from the center of gravity. Show that if
the pendulum has the same period for two points of suspension at unequal distances
from the center of gravity, then the sum of these distances is equal to the length of the
equivalent simple pendulum.

A uniform rod slides with its ends inside a smooth vertical circle. If the rod subtends
an angle of 120° at the center of the circle, show that the equivalent simple pendulum
has a length equal to the radius of the circle.

An automobile is started from rest with one of its doors initially at right angles. If
the hinges of the door are toward the front of the car, the door will slam shut as the
automobile picks up speed. Obtain a formula for the time needed for the door to close
if the acceleration f is constant, the radius of gyration of the door about the axis of
rotation is rg, and the center of mass is at a distance a from the hinges. Show that
if fis0.3 m/s2 and the door is a uniform rectangle 1.2 m wide, the time will be
approximately 3.04 s.

A wheel rolls down a flat inclined surface that makes an angle o with the horizontal.
The wheel is constrained so that its plane is always perpendicular to the inclined
plane, but it may rotate about the axis normal to the surface. Obtain the solution for
the two-dimensional motion of the wheel, using Lagrange’s equations and the method
of undetermined multipliers.

(a) Express in terms of Euler’s angles the constraint conditions for a uniform sphere
rolling without slipping on a flat horizontal surface. Show that they are nonholo-
nomic.

(b) Set up the Lagrangian equations for this problem by the method of Lagrange
multipliers. Show that the translational and rotational parts of the kinetic energy
are separately conserved. Are there any other constants of motion?

For the axially symmetric body precessing uniformly in the absence of torques, find
analytical solutions for the Euler angles as a function of time.

In Section 5.6, the precession of Earth’s axis of rotation about the pole was calculated
on the basis that there were no torques acting on Earth. Section 5.8, on the other hand,
showed that Earth is undergoing a forced precession due to the torques of the Sun
and Moon. Actually, both results are valid: The motion of the axis of rotation about
the symmetry axis appears as the nutation of the Earth in the course of its forced
precession. To prove this statement, calculate @ and ¢ as a function of time for a
heavy symmetrical top that is given an initial velocity ¢q, which is large compared
with the net precession velocity 8/2a, but which is small compared with w3. Under
these conditions, the bounding circles for the figure axis still lie close together, but
the orbit of the figure axis appears as in Fig. 5.9(b), that is, shows large loops that
move only slowly around the vertical. Show for this case that (5.71) remains valid but
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28.

29.

30.

now
y
x| = (% - @) sin? 6.
a a

From these values of @ and ¢, obtain w; and -, and show that for 8/2a small com-
pared with ¢, the vector w precesses around the figure axis with an angular velocity

I3 -1
—_—
I

Q= 3

in agreement with Eq. (5.49). Verify from the numbers given in Section 5.6 that ¢y
corresponds to a period of about 1600 years, so that ¢y is certainly small compared
with the daily rotation and is sufficiently large compared with §/2a, which corre-
sponds to the precession period of 26,000 years.

Suppose that in a symmetrical top each element of mass has a proportionate charge
associated with it, so that the e/m ratio is constant—the so-called charged symmetric
top. If such a body rotates in a uniform magnetic field the Lagrangian, from (5.108), is

L=T—-ow;-L.

Show that T is a constant (which is a manifestation of the property of the Lorentz
force that a magnetic field does no work on a moving charge) and find the other
constants of motion. Under the assumption that w; is much smaller than the initial
rotational velocity about the figure axis, obtain expressions for the frequencies and
amplitudes of nutation and precession. From where do the kinetic energies of nutation
and precession come?

A homogeneous cube of sides / is initially at rest in unstable equilibrium with one edge
in contact with a horizontal plane. The cube is given a small angular displacement and
allowed to fall. What is the angular velocity of the cube when one face contacts the
plane if:

(a) the edge in contact with the plane cannot slide?
(b) the plane is frictionless so the edge can slide?

A door is constructed of a thin homogeneous material. It has a height of 2 m and a
width of 0.9 m. If the door is opened by 90° and released from rest, it is observed that
the door closes itself in 3 s. Assuming that the hinges are frictionless, what angle do
these hinges make with the vertical?
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6.1

Oscillations

A class of mechanical motions that can best be treated in the Lagrangian
formulation is that of the oscillations of a system about positions of equilib-
rium. The theory of small oscillations finds widespread physical applications
in acoustics, molecular spectra, vibrations of mechanisms, and coupled electri-
cal circuits. If the deviations of the system from stable equilibrium conditions
are small enough, the motion can generally be described as that of a system of
coupled linear harmonic oscillators. It will be assumed the reader is familiar
with the properties of a simple harmonic oscillator of one degree of freedom,
both in free and forced oscillation, with and without damping. Here the emphasis
will be on methods appropriate to discrete systems with more than one degree
of freedom. As will be seen, the mathematical techniques required turn out
to be very similar to those employed in studying rigid body motion, although
the mechanical systems considered need not involve rigid bodies at all. Anal-
ogous treatments of oscillations about stable motions can also be developed,
but these are most easily done in the Hamiltonian formulation presented in
Chapter 8.

FORMULATION OF THE PROBLEM

We consider conservative systems in which the potential energy is a function of
position only. It will be assumed that the transformation equations defining the
generalized coordinates of the system, ¢y, . .., g,, do not involve the time explic-
itly. Thus, time-dependent constraints are to be excluded. The system is said to be
in equilibrium when the generalized forces acting on the system vanish:

Qi =— (ﬂ> =0. 6.1)
9qi /¢

The potential energy therefore has an extremum at the equilibrium configuration
of the system, qo1, g02, - - - , qon. If the configuration is initially at the equilib-
rium position, with zero initial velocities ¢, then the system will continue in
equilibrium indefinitely. Examples of the equilibrium of mechanical systems are
legion—a pendulum at rest, a suspension galvanometer at its zero position, an egg
standing on end.

An equilibrium position is classified as stable if a small disturbance of the
system from equilibrium results only in small bounded motion about the rest
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position. The equilibrium is unstable if an infinitesimal disturbance eventually
produces unbounded motion. A pendulum at rest is in stable equilibrium, but
the egg standing on end is an obvious illustration of unstable equilibrium. It
can be readily seen that when the extremum of V is a minimum the equilib-
rium must be stable. Suppose the system is disturbed from the equilibrium by
an increase in energy dE above the equilibrium energy. If V is a minimum at
equilibrium, any deviation from this position will produce an increase in V.
By the conservation of energy, the velocities must then decrease and eventually
come to zero, indicating bound motion. On the other hand, if V decreases as the
result of some departure from equilibrium, the kinetic energy and the velocities
increase indefinitely, corresponding to unstable motion. The same conclusion
may be arrived at graphically by examining the shape of the potential energy
curve, as shown symbolically in Fig. 6.1. A more rigorous mathematical proof
that stable equilibrium requires a minimum in V will be given in the course of the
discussion.

We shall be interested in the motion of the system within the immediate neigh-
borhood of a configuration of stable equilibrium. Since the departures from equi-
librium are too small, all functions may be expanded in a Taylor series about the
equilibrium, retaining only the lowest-order terms. The deviations of the general-
ized coordinates from equilibrium will be denoted by ;:

qi = qoi + i, (6.2)

and these may be taken as the new generalized coordinates of the motion.
Expanding the potential energy about gg;, we obtain

Vv 1{ 8%v
Vigl,--sqn) =V(@ots---sqm) t\ — ) mi+ | =——) nnj+---.
0 9qidq;

86],’ 2

(6.3)

a;— 4;—

(a) Stable (b) Unstable

FIGURE 6.1 Shape of the potential energy curve at equilibrium.
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where the summation convention has been invoked, as usual. The terms linear in
n; vanish automatically in consequence of the equilibrium conditions (6.1). The
first term in the series is the potential energy of the equilibrium position, and by
shifting the arbitrary zero of potential to coincide with the equilibrium potential,
this term may also be made to vanish. We are therefore left with the quadratic
terms as the first approximation to V:

1{ 9%V 1
V= ﬂiﬂj=§Vij77i77j, (6.4)
0

2 8qiaqj

where the second derivatives of V have been designated by the constants V;;
depending only upon the equilibrium values of the g;’s. It is obvious from
their definition that the V;;’s are symmetrical, that is, that V;; = Vj;. The V;;
coefficients can vanish under a variety of circumstances. Thus, the potential can
simply be independent of a particular coordinate, so that equilibrium occurs
at any arbitrary value of that coordinate. We speak of such cases as neutral
or indifferent equilibrium. It may also happen, for example, that the potential
behaves like a quadratic at that point, again causing one or more of the V;;’s to
vanish. Either situation calls for special treatment in the mathematical discussion
that follows.

A similar series expansion can be obtained for the kinetic energy. Since the
generalized coordinates do not involve the time explicitly, the kinetic energy is a
homogeneous quadratic function of the velocities (cf. Eq. (1.71)):

T = ymijgigj = ymijiin;. (6.5)

The coefficients m;; are in general functions of the coordinates gy, but they may
be expanded in a Taylor series about the equilibrium configuration:

am,‘j
mij(qi, ..., qn) =mij(qot,....qon) + | — ) mk+---.
gk 0

As Eq. (6.5) is already quadratic in the 7);’s, the lowest nonvanishing approxima-
tion to T is obtained by dropping all but the first term in the expansions of m;;.
Denoting the constant values of the m;; functions at equilibrium by T;;, we can
therefore write the kinetic energy as

T = 3Tijnin;. (6.6)

It is again obvious that the constants 7;; must be symmetric, since the individ-
ual terms in Eq. (6.6) are unaffected by an interchange of indices. From Eqgs. (6.4)
and (6.6), the Lagrangian is given by

L = 5(Tijiin; — Vijninj)- 6.7)
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Taking the n’s as the general coordinates, the Lagrangian of Eq. (6.7) leads to the
following n equations of motion:

Tijij + Vijnj =0, (6.8)

where explicit use has been made of the symmetry property of the V;; and T;;
coefficients. Each of Egs. (6.8) will involve, in general, all of the coordinates n;,
and it is this set of simultaneous differential equations that must be solved to
obtain the motion near the equilibrium.

In almost all cases of interest, the kinetic energy term can be easily written so
as to have no cross terms.* This corresponds to the Lagrangian

L = 3(T;i7 — Vijnin,). (6.9)
which generates the following equations of motion

Tin; + Vijn; =0. (no sum over i) (6.10)

THE EIGENVALUE EQUATION
AND THE PRINCIPAL AXIS TRANSFORMATION

The equations of motion (6.8) are linear differential equations with constant
coefficients, of a form familiar from electrical circuit theory. We are therefore led
to try an oscillatory solution of the form

ni = Caje "', 6.11)

Here Ca; gives the complex amplitude of the oscillation for each coordinate 7;,
the factor C being introduced for convenience as a scale factor, the same for all
coordinates. It is understood of course that it is the real part of Eq. (6.11) that
is to correspond to the actual motion. Substitution of the trial solution (6.11)
into the equations of motion leads to the following equations for the amplitude
factors:

(Vija; — @*Tija;) = 0. (6.12)

Equations (6.12) constitute n linear homogeneous equations for the a;’s,
and consequently can have a nontrivial solution only if the determinant of the

*Mathematically, we could go even further when the coordinates are Cartesian and making the 7;; =
d;j by rescaling the coordinates. Such coordinates are called mass-weighted coordinates since they
are generated by dividing the coordinates by the square root of the mass. This transforms the kinetic
energy to the form

_ Nini

-
This reduces the problem to the eigenvalue problem of Chapters 4 and 5, only in n dimensions instead
of three; however, the mathematical simplification can obscure the physics, since each coordinate can
have a different characteristic scale.

T
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coefficients vanishes:

Vit — Ty Viz — 0*Tip
Vai —@?Ty1 Voo — 0*Tap
V31 — 0? T3 =0. (6.13)

This determinantal condition is in effect an algebraic equation of the nth degree
for w?, and the roots of the determinant provide the frequencies for which
Eq. (6.11) represents a correct solution to the equations of motion. For each
of these values of w?, Eqgs. (6.12) may be solved for the amplitudes of a;, or more
precisely, for n — 1 of the amplitudes in terms of the remaining ;.

Equations (6.12) represent a type of eigenvalue equation, for writing 7;; as an
element of the matrix T, the equations may be written

Va = ATa. (6.14)

Here the effect of V on the eigenvector a is not merely to reproduce the vector
times the factor A, as in the ordinary eigenvalue problem. Instead, the eigenvector
is such that V acting on a produces a multiple of the result of T acting on a. We
shall show that the eigenvalues A for which Eq. (6.14) can be satisfied are all real
in consequence of the symmetric and reality properties of T and V, and, in fact,
must be positive. It will also be shown that the eigenvectors a are orthogonal—in
a sense. In addition, the matrix of the eigenvectors, A, diagonalizes both T and V,
the former to the unit matrix 1 and the latter to a matrix whose diagonal elements
are the eigenvalues A. Most importantly it is necessary to show that a and X are
real.

Proceeding as in Section 5.4, let a; be a column matrix representing the kth
eigenvector, satisfying the eigenvalue equation*

Va, = A, Tay. (6.15)

Assume now that the only solution to Eq. (6.15) involves complex A and ai. The
adjoint equation, i.e., the transposed complex conjugate equation, for A; has the
form

aV=2aT. (6.16)
Here a;' stands for the adjoint vector—the complex conjugate row matrix—and
explicit use has been made of the fact that the V and T matrices are real and

symmetric. Multiply Eq. (6.16) from the right by a; and subtract the result of
the similar product of Eq. (6.15) from the left with alT. The left-hand side of the

*It hardly need be added that there is no summation over k in Eq. (6.15). Indeed, in this chapter the
summation convention will apply only to the components of matrices or tensors (of any rank) and not
to the matrices and tensors themselves.
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difference equation vanishes, leaving only
0= (ki — A)a) Tay. 6.17)
When ! = k, Eq. (6.17) becomes
(i — AHaTag = 0. (6.18)

That the matrix product in Eq. (6.18) is real can be shown immediately by taking
its complex conjugate and using the symmetry property of T. However, we want
to prove that the matrix product is not only real but is positive definite. For this
purpose, separate a; into its real and imaginary components:

ap = o + i .
The matrix product can then be written as
a Tay = &y Ty + B TP + i (@ TR — BiTaw). (6.19)

The imaginary term vanishes by virtue of the symmetry of T and therefore, as
noted earlier, the matrix product is real. Further, the kinetic energy in Eq. (6.6)
can be rewritten in terms of a column matrix 71 as

T = 19Ty (6.20)

I —

Hence, the first two terms in Eq. (6.18) are twice the kinetic energies when the
velocity matrix 1y has the values ay and B, respectively. Now, a kinetic energy
by its physical nature must be positive definite for real velocities, and therefore
the matrix product in Eq. (6.18) cannot be zero. It follows that the eigenvalues A4
must be real.

Since the eigenvalues are real, the ratios of the eigenvector components a j
determined by Eqgs. (6.15) must all be real. There is still some indeterminateness
of course since the value of a particular one of the a;’s can still be chosen at will
without violating Egs. (6.15). We can require however that this component shall
be real, and the reality of A then ensures the reality of all the other components.
(Any complex phase factor in the amplitude of the oscillation will be thrown into
the factor C, Eq. (6.11).) Multiply now Eq. (6.15) by a; from the left and solve
for Ag:

ﬁk Vak

aTag (6.21)
The denominator of this expression is equal to twice the kinetic energy for veloc-
ities a;x and since the eigenvectors are all real, the sum must be positive definite.
Similarly, the numerator is the potential energy for coordinates a;, and the con-
dition that V be a minimum at equilibrium requires that the sum must be positive
or zero. Neither numerator nor denominator can be negative, and the denominator
cannot be zero, hence A is always finite and positive. (It may however be zero.)
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Recall that A stands for w?, so that positive A corresponds to real frequencies of
oscillation. Were the potential not a local minimum, the numerator in Eq. (6.21)
might be negative, giving rise to imaginary frequencies that would produce an
unbounded exponential increase of the »; with time. Such motion would obvi-
ously be unstable, and we have here the promised mathematical proof that a min-
imum of the potential is required for stable motion.

Let us return for the moment to Eq. (6.17) which, in view of the reality of the
eigenvalues and eigenvectors, can be written

(Ax — Ap)a;Tag = 0. (6.17)

If all the roots of the secular equation are distinct, then Eq. (6.17’) can hold only
if the matrix product vanishes for / not equal to k:

aTay =0, [#k. (6.222)

It has been remarked several times that the values of the a;’s are not completely
fixed by the eigenvalue equations (6.12). We can remove this indeterminacy by
requiring further that

aiTa, = 1. (6.22b)

There are n such equations (6.22), and they uniquely fix the one arbitrary compo-
nent of each of the n eigenvectors a;.* If we form all the eigenvectors a; into
a square matrix A with components aj; (cf. Section 4.6), then the two equa-
tions (6.22a and b) can be combined into one matrix equation:

ATA = 1. (6.23)

When two or more of the roots are repeated, the argument leading to Eq. (6.22a)
falls through for A; = A;. We shall reserve a discussion of this exceptional case
of degeneracy for a later time. For the present, suffice it to state that a set of
aji coefficients can always be found that satisfies both the eigenvalue conditions
Egs. (6.10), and Eq. (6.22a), so that Eq. (6.23) always holds.

In Chapter 4, the similarity transformation of a matrix C by a matrix B was
defined by the equation (cf. Eq. (4.41):

C'=BCB .
*Equation (6.22b) may be put in a form that explicitly shows that it suffices to remove the indetermi-

nacy in the aj’s. Suppose it is the magnitude of ay that is to be evaluated; the ratio of all the other
aji’s to aj is obtained from Egs. (6.12). Then Eq. (6.22b) can be written as

oai 1
St o

o -
i alk alk ayy

The left-hand side is completely determined from the eigenvalue equations and may be evaluated
directly to provide ay.



6.2 The Eigenvalue Equation and the Principal Axis Transformation 245

We now introduce the related concept of the congruence transformation of C by
A according to the relation

C' = ACA. (6.24)
If A is orthogonal, so that A= A~ there is no essential difference between
the two types of transformation (as may be seen by denoting A~! by the matrix
B). Equation (6.23) can therefore be read as the statement that A transforms T
by a congruence transformation into a diagonal matrix, in particular into the unit
matrix.

If a diagonal matrix A with elements Ay = Axd;x is introduced, the eigenvalue
equations (6.15) may be written
Vijajr = Tijajiii,

which becomes in matrix notation

VA = TAA (6.25)
Multiplying by A from the left, Eq. (6.25) takes the form

AVA = ATAA,

which by Eq. (6.23) reduces to

AVA = A, (6.26)

Our final equation (6.26) states that a congruence transformation of V by
A changes it into a diagonal matrix whose elements are the eigenvalues A.
Eq. (6.26) has solutions

IV—Al| =0. (6.26)

In summary we can use normalized Cartesian coordinates so that 7;; = §;; which
reduces the physics to solving

AA=1 (436) and  AVA = Vgiggona (6.26),

or we may choose more general goordinates where T;; # §;;, even allowing
T;j=Tj; #0fori # j, and use

ATA=1 (623) and  AVA = Vgiggona (6.26),
to solve the general problem.
As an example, we consider a particle of mass m with two degrees of freedom

(x1, x2) that obeys the Lagrangian (cf. Eq. (6.9))

1 -2 22 1
L = am@j +33) — 7 Vijxix;
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where the V;; are constants. The congruence transformation (6.26) has solutions
only when Eq. (6.26') is satisfied, so

Vit —A Viz

=0
Vai Vo — )»‘

This equation has two solutions:

Al

i (Vn + Voo + v (Vi — V)2 + 4V12V21)

A=1 (Vn + Voo =V (Vi1 — V)2 +4Va Vo ) .
Associated with the eigenvalues A; are the eigenvectors a;; that satisfy
a;j(Vij — Aid;j) =0 and aizl +ai22 =1 (sumon j,noti)
We consider two limiting cases. The first case assumes Vi1 > V22 > 0 and

0 # Vo1 = Vi K (Vi1 — Va). We write the small quantity § = [V12/(Vi1— Va22)]
then, to first order in §, the eigenvalues are

A=V + Vi2d

(6.27)
Ay = Voo — V128
whose eigenvectors are, to lowest order in §,
2 3
- 5+
o |:a11 1121:| = |: 23 22 ) (6.28)
a2 axn s_ 8 _8
2 2

These correspond to the relations
ajg =axp and ap = —a.
The other limiting case assumes Vi > Vo > Oand (Vi1 — V) K Vi = Vpy.
We now write ¢ = (V11 — V22)/8V12, which is a small quantity. To first order in

¢ the eigenvalues are

M= 3(Vii+ Vo) + Vi + (Vi — V)

; (6.29)
hy =5V + V2) = Via = (Vi1 — Vo)e
whose eigenvectors are, to lowest order in ¢,
1 S e
2 [au a21] _ ﬁ(l +2¢) ﬁ(l 2¢) (6.30)
“la an| | L _ €1 ' '
12 4 ﬁ(l 2¢) ﬁ(l + 2¢)
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The relations among the components of the eigenvectors are different than in the
previous example. Here aj» = —ap is slightly less than 1/ V2 while a1 = an is
slightly greater than 1/ V2.

The preceding approximations looked at the behavior of the eigenvalues and
eigenvectors in limiting cases. The qualitative changes in these quantities as a
function of Vi5/(V11 — Va2) from zero to three are shown in Fig. 6.2. We shall
return to this example after considering the general problem of multiple roots of
the eigenvalue equation (6.26").

s oy
B e
2
%- apn
ai; 0
Ay |
- r a
) 21
- T
r 2
1 1 71 1 1
1 2 3 1 2 3
Vip Vip
Vii— Vp Vii— Vp

(a) (b)

FIGURE 6.2 Behavior of the (a) eigenvalues and (b) eigenvector components as the

energy ratio ﬁ changes from O to 3.

It remains only to consider the case of multiple roots to the secular equation,
a situation that is more annoying in the mathematical theory than it is in practice.
If one or more of the roots is repeated, it is found that the number of independent
equations among the eigenvalues is insufficient to determine even the ratio of the
eigenvector components. Thus, if the eigenvalue A is a double root, any two of the
components ¢; may be chosen arbitrarily, the rest being fixed by the eigenvalue
equations.

In general, any pair of eigenvectors randomly chosen out of the infinite set of
allowed vectors will not be orthogonal. Nevertheless, it is always possible to con-
struct a pair of allowed vectors that are orthogonal, and these can be used to form
the orthogonal matrix A. Consider for simplicity the procedure to be followed
for a double root. Let a; and a; be any two allowable eignenvectors for a given
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double root A, which have been normalized so as to satisfy Eq. (6.22b). Any linear
combination of a; and a; will also be an eigenvector for the root 1. We therefore
seek to construct a vector ay,

a = Cla;c + Cza;, (6.31)

where ¢ and ¢; are constants such that a; is orthogonal to aj . The orthogonality
condition, Eq. (6.22a), then requires that

ﬁlTa;C =c1 + C25;Ta;< =0,

where use has been made of the normalization of a}(. It therefore follows that the
ratio of ¢ to ¢ must be given by
C1 ~/r./
— =—aTa, = —1. (6.32)
c2
We can illustrate these ideas by again considering our two-dimensional
example given by Eqgs. (6.27) through (6.30). The two limiting cases of the
off-diagonal potential term Vi, being much less than and much greater than
the difference factor (V11 — V»2), provide an excellent example of the problems
introduced by degeneracy. When

Vii=Va=W, Vi=0,

the two eigenvalues become the same, A1 = Ay = V).
If the limit is taken by letting Vi3 — O first and then taking the limit
(V11 = V22), the eigenvectors in Egs. (6.28) become

a) = <(1)> and a = ((1)) . (6.33)

If the limit is taken in the reverse order, Egs. (6.30) give

b = and by = , (6.34)

where b is used for the eigenvectors in Eqgs. (6.34) to avoid confusion with the
eigenvectors in Egs. (6.33). Each of the eigenvectors in (6.33) and (6.34) are linear
combinations of the other set of eigenvectors. For example,

1
b; = —(a; +ay), and by =

1
\/5 ﬁ(az—al),

so either set of eigenvectors is a linear combination of the other, as was discussed
in this section. These results obviously generalize to the infinite set

a; = (la)) and a = (_ab) s
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where a and b are any pairs of numbers that satisfy
a?+b* =1

This shows that there is an infinite set of possible eigenvectors in the case of
degeneracy.

There is another way to consider the significance of these results. The approx-
imate eigenvectors in Egs. (6.28) are for the case where the main potential energy
terms are Vi1 and V3, which are at diagonal positions, and the V7, are in the off-
diagonal positions. If we take the eigenvectors of Eq. (6.30) in the limit ¢ — 0
and let the eigenvectors of Egs. (6.30) transform V as V' = AVA, we obtain the
transformed potential energy tensor

V= TV + V) + Via 3(Vii = Vo)
F (Vi1 — Vo) (Vi + Vo) — Vio

in which the difference term (V11 — V»y) is off-diagonal. Thus, the set of eigenvec-
tors given by Eqgs. (6.30) are for the physical situation in which the small energy
term (V11 — V22) is off-diagonal.

Returning to the main discussion, the requirement that a; of Eq. (6.32) be nor-
malized provides another condition on the two coefficients, which in terms of 7
defined by Eq. (6.32) takes the form

aTa =1= C% + C% + 2cic21).

Together the two equations fix the coefficients ¢ and c», and therefore the vector
a;. Both a; and a; = aj are automatically orthogonal to the eigenvectors of the
other distinct eigenvalues, for then the argument based on Eq. (6.17') remains
valid. Hence, we have a set of n eigenvectors a; whose components form the
matrix A satisfying Eq. (6.23).

A similar procedure is followed for a root of higher multiplicity. If A is an
m-fold root, then orthogonal normalized eigenvectors are formed out of linear
combinations of any of the m corresponding eigenvectors a, ..., aj,. The first of
the “orthonormal” eigenvectors a; is then chosen as a multiple of a); a, is taken
as a linear combination of a’1 and a’2; and so on. In this manner, the number of
constants to be determined is equal to the sum of the first m integers, or %m (m+1).

The normalization requirements provide m conditions, while there are %m(m —-1)
orthogonality conditions, and together these are just enough to fix the constants
uniquely.

This processes of constructing orthogonalized eigenvectors in the case of mul-
tiple roots is completely analogous to the Gram-Schmidt method of constructing
a sequence of orthogonal functions out of any arbitrary set of functions. Phrased
in geometrical language, it is also seen to be identical with the procedure followed
in Chapter 5 for multiple eigenvalues of the inertia tensor. For example, the added
indeterminacy in the eigenvector components for a double root means that all of
the vectors in a plane are eigenvectors. We merely choose any two perpendicular
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directions in the plane as being the new principal axes, with the eigenvectors in A
as unit vectors along these axes.

FREQUENCIES OF FREE VIBRATION, AND NORMAL COORDINATES

The somewhat lengthy arguments of the preceding section demonstrate that the
equations of motion will be satisfied by an oscillatory solution of the form (6.11),
not merely for one frequency but in general for a set of n frequencies wi. A com-
plete solution of the equations of motion therefore involves a superposition of
oscillations with all the allowed frequencies. Thus, if the system is displaced
slightly from equilibrium and then released, the system performs small oscilla-
tions about the equilibrium with the frequencies wy, . .., ®,. The solutions of the
secular equation are therefore often designated as the frequencies of free vibration
or as the resonant frequencies of the system.

The general solution of the equations of motion may now be written as a sum-
mation over an index k:

ni = Craje ", (6.35)

there being a complex scale factor Cy for each resonant frequency. It might be
objected that for each solution A; of the secular equation there are two resonant
frequencies +w; and —wy. The eigenvector a; would be the same for the two
frequencies, but the scale factors C,j and Cy could conceivably be different. On
this basis, the general solution should appear as

i = ai(CFe™ ™ 4 Cre™ ). (6.35)

Recall however that the actual motion is the real part of the complex solution, and
the real part of either (6.35) or (6.35") can be written in the form

ni = fraix cos(wit + ), (6.36)

where the amplitude f; and the phase §; are determined form the initial condi-
tions. Either of the solutions ((6.35) and (6.36)) will therefore represent the actual
motion, and the former of course is the more convenient.

The orthogonality properties of A greatly facilitate the determination of the
scale factors Cy in terms of the initial conditions. At ¢+ = 0, the real part of
Eq. (6.35) reduces to

1i (0) = Re Craix, (6.37)

where Re stands for “real part of.” Similarly, the initial value of the velocities is
obtained as

17i(0) = Im Cra;r oy, (6.38)
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where Im Cj denotes the imaginary part of Cy. From these 2n equations, the real
and imaginary parts of the n constants Cy may be evaluated. To solve Eq. (6.37),
for example, let us first write it in terms of column matrices 1(0) and C:

1n(0) = ARe C. (6.37")

If we multiply by AT from the left and use Eqg. (6.23), we immediately obtain a
solution for Re C:

Re C = AT0(0),
or, taking the /th component,
Re C; = a;iTjknr(0). (6.39)

A similar procedure leads to the imaginary part of the scale factors as*

1 :
ImC = — > ajTjin (). (6.40)
J.k

Equations (6.39) and (6.40) thus permit the direct computation of the complex
factors C; (and therefore the amplitudes and phases) in terms of the initial condi-
tions and the matrices T and A.

The solution for each coordinate, Eq. (6.35), is in general a sum of simple
harmonic oscillations in all of the frequencies wy satisfying the secular equation.
Unless it happens that all of the frequencies are commensurable, that is, rational
fractions of each other, n; never repeats its initial value and is therefore not itself a
periodic function of time. However, it is possible to transform from the n; to a new
set of generalized coordinates that are all simple periodic functions of time—a set
of variables known as the normal coordinates.

We define a new set of coordinates ¢

ni = aijgj, (6.41)
or, in terms of single-column matrices 1 and ¢,
n=A~% (6.41")
The potential energy, Eq. (6.4), is written in matrix notation as

v =15va. (6.42)

=

Now, the single-row transpose matrix 1) is related to Z’by the equation
7=AL=[A,

*The summation over j and k is shown explicitly because there is no summation over the repeated
subscript /.



252

Chapter 6 Oscillations

so that the potential energy can be written also as
v = JZAVAL.

But A diagonalizes V by a congruence transformation (cf. Eq. (6.26)), and the
potential energy therefore reduces simply to

V=1g= 1ol (6.43)

The kinetic energy has an even simpler form in the new coordinates. Since the
velocities transform as the coordinates, 7' as given in Eq. (6.20) transforms to

T = L{ATAZ
which by virtue of Eq. (6.23) reduces to
T =38 = 36 (6.44)

Equations (6.43) and (6.44) state that in the new coordinates both the potential
and kinetic energies are sums of squares only, without any cross terms. Of course,
this result is simply another way of saying that A produces a principal axis trans-
formation. Recall that the principal axis transformation of the inertia tensor was
specifically designed to reduce the moment of inertia to a sum of squares; the new
axes being the principal axes of the inertia ellipsoid. Here the kinetic and poten-
tial energies are also quadratic forms (as was the moment of inertia) and both are
diagonalized by A. For this reason, the principal axis transformation employed
here is a particular example of the well-known algebraic process of the simulta-
neous diagonalization of two quadratic forms.

The equations of motion share in the simplification resulting from their use.
The new Lagrangian is

L= 3 — w70 (6.45)
so that the Lagrange equations for ¢ are
G+ wjoe = 0. (6.46)
Equations (6.47) have the immediate solutions
Gk = Cre !, (6.47)

which could have been seen of course directly from Egs. (6.35) and (6.41). Each
of the new coordinates is thus a simply periodic function involving only one of
the resonant frequencies. As mentioned earlier, it is therefore customary to call
the ¢’s the normal coordinates of the system.

Each normal coordinate corresponds to a vibration of the system with only one
frequency, and these component oscillations are spoken of as the normal modes
of vibration. All of the particles in each mode vibrate with the same frequency
and with the same phase;* the relative amplitudes being determined by the matrix

*Particles may be exactly out of phase if the a’s have opposite sign.
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elements aj;. The complete motion is then built up out of the sum of the normal
modes weighted with appropriate amplitude and phase factors contained in the
Cy’s.

Harmonics of the fundamental frequencies are absent in the complete motion
essentially because of the stipulation that the amplitude of oscillation be small.
We are then allowed to represent the potential as a quadratic form, which is
characteristic of simple harmonic motion. The normal coordinate transforma-
tion emphasizes this point, for the Lagrangian in the normal coordinates (6.45)
is seen to be the sum of the Lagrangians for harmonic oscillators of frequencies
wk. We can thus consider the complete motion for small oscillations as being
obtained by exciting the various harmonic oscillators with different intensities
and phases.*

FREE VIBRATIONS OF A LINEAR TRIATOMIC MOLECULE

To illustrate the technique for obtaining the resonant frequencies and normal
modes, we shall consider in detail a model based on a linear symmetrical tri-
atomic molecule. In the equilibrium configuration of the molecule, two atoms
of mass m are symmetrically located on each side of an atom of mass M (cf.
Fig. 6.3). All three atoms are on one straight line, the equilibrium distances apart
being denoted by b. For simplicity, we shall first consider only vibrations along
the line of the molecule, and the actual complicated interatomic potential will be
approximated by two springs of force constant k joining the three atoms. There
are three obvious coordinates marking the position of the three atoms on the line.
In these coordinates, the potential energy is

V= g(xz —x1—b)?+ g(xg —x» — b)%. (6.48)
We now introduce coordinates relative to the equilibrium positions:
ni = Xj — X0i,
where

X02 — X01 = b = x03 — x02.

m M m
~BBT0500 =" 008050000
x| b ) b x5

FIGURE 6.3 Model of a linear symmetrical triatomic molecule.

*Note for future reference that the same sort of picture appears in the quantization of the electromag-
netic field. The frequencies of the harmonic oscillators are identified with the photon frequencies, and
the amplitudes of excitation become the discrete quantized “occupation numbers”—the number of
photons of each frequency.
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The potential energy then reduces to
v="5 P2+ )?
) m—m 5 n—mn),
or
k
V=201 + 205+ 13 = 22 = 2m13).

Hence, the V tensor has the form

k —k 0
V=|-k 2k —k
0 —k k

The kinetic energy has an even simpler form:

M

m
T="2 42 2
2(7)1+773)+ 2712

so that the T tensor is diagonal:

T=

S oo

0
M
0

o o 3

Combining these two tensors, the secular equation appears as

k — w?m —k 0
V—o’T|=| —k 2k — w*M —k | =0.
0 —k k — w’m

Direct evaluation of the determinant leads to the cubic equation in w?:
2 2 2 —
o’k — o m)(k(M 4+ 2m) — w“Mm) = 0,

with the obvious solutions

k k 2m
o1 =0 o=l es= o)

(6.49)

(6.50)

(6.51)

(6.52)

(6.53)

(6.54)

(6.55)

The first eigenvalue, w1 = 0, may appear somewhat surprising and even alarm-
ing at first sight. Such a solution does not correspond to an oscillatory motion at

all, for the equation of motion for the corresponding normal coordinate is

& =0,

which produces a uniform translational motion. But this is precisely the key to
the difficulty. The vanishing frequency arises from the fact that the molecule may
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be translated rigidly along its axis without any change in the potential energy,
an example of neutral equilibrium mentioned previously. Since the restoring
force against such motion is zero, the effective “frequency” must also vanish.
We have made the assumption that the molecule has three degrees of freedom
for vibrational motion, whereas in reality one of them is a rigid body degree of
freedom.

A number of interesting points can be discussed in connection with a vanishing
resonant frequency. It is seen from Eq. (6.21) that a zero value of w can occur
only when the potential energy is positive but is not positive definite; that is, it
can vanish even when not all the »;’s are zero. An examination of V, Eq. (6.49),
shows that it is not positive definite and that V does in fact vanish when all the
n’s are equal (uniform translation).

Since the zero frequency found here is of no consequence for the vibration
frequencies of interest, it is often desirable to phrase the problem so that the root
is eliminated from the outset. We can do this here most simply by imposing the
condition or constraint that the center of mass remain stationary at the origin:

m(xy +x3) + Mxp = 0. (6.56)

Equation (6.56) can then be used to eliminate one of the coordinates from V and
T, reducing the problem to one of two degrees of freedom (cf. Derivation 1, this
chapter).

The restriction of the motion to be along the molecular axis allows only
one possible type of uniform rigid body motion. However, if the more gen-
eral problem of vibrations in all three directions is considered, the number of
rigid body degrees of freedom will be increased to six. The molecule may then
translate uniformly along the three axes or perform uniform rotations about
the axes. Hence, in any general system of n degrees of freedom, there will be
six vanishing frequencies and only n — 6 true vibration frequencies. Again,
the reduction in the number of degrees of freedom can be performed before-
hand by imposing the conservation of linear and angular momentum upon the
coordinates.

In addition to rigid body motion, it has been pointed out that zero resonant
frequencies may also arise when the potential is such that both the first and second
derivatives of V vanish at equilibrium. Small oscillations may still be possible in
this case if the fourth derivatives do not also vanish (the third derivatives must
vanish for a stable equilibrium), but the vibrations will not be simple harmonic.
Such a situation therefore constitutes a breakdown of the customary method of
small oscillations, but fortunately it is not of frequent occurrence.

Returning now to the examination of the resonant frequencies, w, will be rec-
ognized as the well-known frequency of oscillation for a mass m suspended by
a spring of force constant k. We are therefore led to expect that only the end
atoms partake in this vibration; the center molecule remains stationary. It is only
in the third mode of vibration, w3, that the mass M can participate in the oscilla-
tory motion. These predictions are verified by examining the eigenvectors for the
three normal modes.
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The components a;; are determined for each frequency by the equations

k — a)?m)alj —kayj =0
—kaij + 2k — & M)ay, —kazj = 0 (6.57a)
—kazj + (k — w?m)a_o,j =0,
along with the normalization condition:
m(ai; +a3;) + Maj; = 1. (6.57b)

For w; = 0, it follows immediately from the first and third of Egs. (6.57a) that all
three coefficients are equal: aj; = a1 = a3z;. This of course is exactly what was
expected form the translational nature of the motion (cf. Fig. 6.4a). The normal-
ization condition then fixes the value of a;; so that

1 1 1
—_—, W] =Y/, 43 = —.
Smam T mieM T ami M
The factors (kK — w%m) vanish for the second mode, and Eqgs. (6.57a) show imme-

diately that ay» = O (as predicted) and ajp = —a3p. The numerical value of these
quantities is then determined by Eq. (6.57b):

(6.582)

ayr =

1 1
apn = ——, ajy) = 0, a3) = ———. (658b)

V2m V2m

In this mode the center atom is at rest, while the two outer ones vibrate exactly
out of phase (as they must in order to conserve linear momentum) (cf. Fig. 6.4b).
Finally, when w = w3, it can be seen from the first and third of Eqs. (6.57a) that
a3 and a3z must be equal. The rest of the calculation for this mode is not quite as
simple as for the others, and it will be sufficient to state the final result:

1 —2 1
ap = —fF/—m—, a23=—Ms a3y = —F/—————.
2m (143 2M (24 5) Jm (1+ 22)

(6.58¢)

FIGURE 6.4 Longitudinal normal modes of the linear symmetric triatomic molecule.
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Here the two outer atoms vibrate with the same amplitude, while the inner one
oscillates out of phase with them and has a different amplitude, (cf. Fig. 6.4c.)
The normal coordinates may be found by inverting Eq. (6.41) as

1
&= ﬁ(’”ﬂl + Mny + mn3)

m
H= \/g(m —n3) (6.59)
= 2Qm + M) [(n1 +n3) —2n2].

These normal modes describe each of the behaviors shown on Fig. 6.4. Any gen-
eral longitudinal vibration of the molecule that does not involve a rigid translation
will be some linear combination of the normal modes @, and w3. The amplitudes
of the normal modes, and their phases relative to each other, will of course be
determined by the initial conditions (cf. Exercise 5).

We have spoken so far only of vibrations along the axis; in the actual molecule
there will also be normal modes of vibration perpendicular to the axis. The com-
plete set of normal modes is naturally more difficult to determine than merely the
longitudinal modes, for the general motion in all directions corresponds to nine
degrees of freedom. While the procedure is straightforward, the algebra rapidly
becomes quite complicated, and it is not feasible to present the detailed calcula-
tion here. However, it is possible to give a qualitative discussion on the basis of
general principles, and most of the conclusions of the complete solution can be
predicted beforehand.

The general problem will have a number of zero resonant frequencies cor-
responding to the possibility of rigid body motion. For a molecule with n atoms
there are 3n degrees of freedom. Subtracting the three translational and three rigid
rotational degrees of freedom, there will be in general 3n — 6 vibrational modes.
For the linear molecule, there will be three degrees of freedom for rigid trans-
lation, but rigid rotation can account for only fwo degrees of freedom. Rotation
about the axis of the molecule is obviously meaningless and will not appear as a
mode of rigid body motion. We are therefore left with four true modes of vibra-
tion. Two of these are the longitudinal modes, which have already been examined
so that there can only be two modes of vibration perpendicular to the axis. How-
ever, the symmetry of the molecule about its axis shows that these two modes
of perpendicular vibration must be degenerate. There is nothing to distinguish a
vibration in the y direction from a vibration in the z direction, and the two fre-
quencies must be equal.

The additional indeterminacy of the eigenvectors of a degenerate mode appears
here, in that all directions perpendicular to the molecular axis are alike. Any two
orthogonal axes in the plane normal to the molecule may be chosen as the direc-
tions of the degenerate modes of vibration. The complete motion of the atoms nor-
mal to the molecular axis will depend upon the amplitudes and relative phases of
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FIGURE 6.5 Degenerate modes of the symmetrical triatomic molecule.

the two degenerate modes. If both are excited, and they are exactly in phase, then
the atoms will move on a straight line passing through the equilibrium configura-
tion. But if they are out of phase, the composite motion is an elliptical Lissajous
figure, exactly as in a two-dimensional isotropic oscillator. The two modes then
represent a rotation, rather than a vibration.

It is obvious from the symmetry of the molecules that the amplitudes of the
end atoms must be identical in magnitude. The complete calculation shows that
the end atoms also travel in the same direction along the Lissajous figure. Hence,
the center atom must revolve in the opposite direction, in order to keep the center
of mass at rest. Figure 6.5 illustrates the motion for the two degenerate modes
when they are 90° out of phase.

As the complexity of the molecule increases, the size of the secular deter-
minant becomes very large, and finding the normal frequencies and amplitudes
becomes a problem of considerable magnitude. We have seen however that even
in a situation as simple as the linear triatomic molecule, a study of the symmetries
to be expected in the vibrations greatly simplifies the calculations. Considerable
mathematical ingenuity has been devoted to exploiting the symmetries inherent
in complex molecules to reduce the labor involved in finding their vibration fre-
quencies. Group theory (see Appendix B) has been applied with great success in
factoring the large secular determinant into smaller blocks that may be diagonal-
ized separately. It has been pointed out however that such elaborate mathematical
manipulation was more appropriate in a time when numerical computations were
difficult and tedious. Considering the speed and memory capacity of present-day
computers, a straightforward approach may be easier and more accurate in the
long run. Fast and accurate routines for solving the eigenvalue problems of large
matrices are the stock-in-trade today of scientific computers of even moderate
size. There has therefore been a trend toward a more brute-force approach in
which mass-weighted Cartesian coordinates (see p. 241) are used to formulate
the problem. The kinetic energy ellipsoid for the molecular vibrations is then
already a sphere, and finding the normal modes reduces to diagonalizing the
potential energy. These approaches are extensively applied in infrared and Raman
spectroscopy.

FORCED VIBRATIONS AND THE EFFECT OF DISSIPATIVE FORCES

Free vibrations occur when the system is displaced initially from its equilibrium
configuration and is then allowed to oscillate by itself. Very often, however, the
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system is set into oscillation by an external driving force that continues to act on
the system after # = 0. The frequency of such a forced oscillation is then deter-
mined by the frequency of the driving force and not by the resonant frequencies.
Nevertheless, the normal modes are of great importance in obtaining the ampli-
tudes of the forced vibration, and the problem is greatly simplified by use of the
normal coordinates obtained from the free modes.

If F; is the generalized force corresponding to the coordinate 7;, then by
Eq. (1.49) the generalized force Q; for the normal coordinate ¢; is

Q,’ = aj,-Fj. (660)
The equations of motion when expressed in normal coordinates now become
&+ 0l = 0. (6.61)

Equations (6.61) are a set of n inhomogeneous differential equations that can be
solved only when we know the dependence of Q; on time. While the solution
will not be as simple as in the free case, note that the normal coordinates preserve
their advantage of separating the variables, and each equation involves only a
single coordinate.

Frequently, the driving force varies sinusoidally with time. In an acoustic prob-
lem, for example, the driving force might arise from the pressure of a sound wave
impinging on the system, and Q; then has the same frequency as the sound wave.
Or, if the system is a polyatomic molecule, a sinusoidal driving force is present
if the molecule is illuminated by a monochromatic light beam. Each atom in the
molecule is then subject to an electromagnetic force whose frequency is that of
the incident light. Even where the driving force is not sinusoidal with a single fre-
quency, it can often be considered as built up as a superposition of such sinusoidal
terms. Thus, if the driving force is periodic, it can be represented by a Fourier
series; other times, a Fourier integral representation is suitable. Since Eqs. (6.61)
are linear equations, its solutions for particular frequencies can be superposed to
find the complete solution for given Q;.

It is therefore of general interest to study the nature of the oscillations when
the force Q; can be written as

Qi = Qi cos(wt + §;), (6.62)

where  is the angular frequency of an external force. The equations of motion
NOw appear as

& + w?t = Qo cos(wt + 8;). (6.63)
A complete solution of Eq. (6.63) consists of the general solution to the homoge-

neous equation (that is, the free modes of vibration) plus a particular solution
to the inhomogeneous equation. By a proper choice of initial conditions, the
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superimposed free vibrations can be made to vanish,* centering our interest on
the particular solution of Egs. (6.63) that will obviously have the form

¢i = Bj cos(wt + §;). (6.64)

Here the amplitudes B; are determined by substituting the solution in Egs. (6.63):
B = =% (6.65)

The complete motion is then

aji Qoi cos(wt + 8;)
nj =ajifi = L 12 5 <. (6.66)

(,()i—(,()

Thus, the vibration of each particle is again composed of linear combinations of
the normal modes, but now each normal oscillation occurs at the frequency of the
driving force.

Two factors determine the extent to which each normal mode is excited. One
is the amplitude of the generalized driving force, Qg;. If the force on each particle
has no component in the direction of vibration of some particular normal mode,
then obviously the generalized force corresponding to the mode will vanish and
Qoi will be zero. An external force can excite a normal mode only if it tends to
move the particles in the same direction as in the given mode. The second fac-
tor is the closeness of the driving frequency to the free frequency of the mode.
As a consequence of the denominators in Eq. (6.66), the closer @ approaches
to any w;, the stronger will that mode be excited relative to the other modes.
Indeed, Eq. (6.66) apparently predicts infinite amplitude when the driving fre-
quency agrees exactly with one of the w;’s— the familiar phenomenon of res-
onance. Actually, of course, the theory behind Eq. (6.66) presumes only small
oscillations about equilibrium positions; when the amplitude predicted by the for-
mula becomes large, this assumption breaks down and Eq. (6.66) is then no longer
valid. Note that the oscillations are in phase with the driving force when the fre-
quency is less than the resonant frequency, but that there is a phase change of
in going through the resonance.

Our discussion has been unrealistic in that the absence of dissipative or fric-
tional forces has been assumed. In many physical systems, these forces, when
present, are proportional to the particle velocities and can therefore be derived
from a dissipation function F (cf. Section 1.5). Let us first consider the effects of
frictional forces on the free modes of vibration.

From its definition, 7 must be a homogeneous quadratic function of the
velocities:

F = 3Fijnin;. (6.67)

*The free vibrations are essentially the transients generated by the application of the driving forces.
If we consider the system to be initially in an equilibrium configuration, and then slowly build up
the driving forces from zero, these transients will not appear. Alternatively, dissipative forces can be
assumed present (see pages following) that will damp out the free vibrations.
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The coefficients F;; are clearly symmetric, F;; = Fj;, and in general will be
functions of the coordinates. Since we are concerned with only small vibrations
about equilibrium, it is sufficient to expand the coefficients about equilibrium and
retain only the first, constant term, exactly as was done for the kinetic energy.
In future applications of Eq. (6.67), we shall take F;; as denoting these con-
stant factors. Recall that 2F is the rate of energy dissipation due to the fric-
tional forces (cf. Eq. (2.60)). The dissipation function F therefore can never
be negative. The complete set of Lagrange equations of motion now become
(cf. Section 1.5)

Tijiij + Fijnj + Vijn; = 0. (6.68)

Clearly in order to find normal coordinates for which the equations of motion
would be decoupled, it is necessary to find a principal axis transformation that
simultaneously diagonalizes the three quadratic forms 7', V, and F. As was shown
above, this is not in general possible; normal modes cannot usually be found for
any arbitrary dissipation function.

There are however some exceptional cases when simultaneous diagonalization
is possible. For example, if the frictional force is proportional both to the particle’s
velocity and its mass, then F will be diagonal whenever T is. When such simul-
taneous diagonalization is feasible, then the equations of motion are decoupled in
the normal coordinates with the form

G+ Fiti + wizCi = 0. (no summation) (6.69)
Here the F;’s are the nonnegative coefficients in the diagonalized form of 7 when

expressed in terms of ¢;. Being a set of linear differential equations with constant
coefficients, Egs. (6.69) may be solved by functions of the form

¢ = Cie ',
where )/ satisfies the quadratic equation

) +iw,F; —w? =0. (no summation) (6.70)

Equation (6.70) has the two solutions

| F? ;
W) = wf—j—i%. (6.71)

The motion is therefore not a pure oscillation, for @’ is complex. It is seen from
Eq. (6.71) that the imaginary part of )/ results in a factor exp(—F;t/2), and by
reason of the nonnegative nature of of the F;’s, this is always an exponentially
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decreasing function of time.* The presence of a damping factor due to the friction
is hardly unexpected. As the particles vibrate, they do work against the frictional
forces, and the energy of the system (and hence the vibration amplitudes) must
decrease with time. The real part of Eq. (6.71) corresponds to the oscillatory factor
in the motion; note that the presence of friction also affects the frequency of the
vibration. However, if the dissipation is small, the squared term in J; may be
neglected, and the frequency of oscillation reduces to the friction-free value. The
complete motion is then simply an exponential damping of the free modes of
vibration:

;i = Cie Titl2gmiwit 6.72)

If the dissipation function cannot be diagonalized along with 7 and V, the
solution is much more difficult to obtain. The general nature of the solution
remains pretty much the same, however: an exponential damping factor times an
oscillatory exponential function. Suppose we seek a solution to Egs. (6.68) of the
form
iwt

nj=Caje”" = Caje_’”e_zm”t. (6.73)

With this solution, Egs. (6.68) become a set of simultaneous linear equations
Vijaj —ioFija; — o*Tija;j = 0. (6.74)
It is convenient to write w as iy, so that
y =—iw=—k —2miv, (6.75)

and thus —« is the real part of y. In terms of the square tensors of V, T, and F,
the set of equations (6.74) become a column matrix equation involving y:

Va+ yFa+ y’Ta=0. (6.76)

The set of homogeneous equations (6.74) or (6.76) can be solved for the a; only
for certain values of w or y.

Without actually evaluating the corresponding secular equation, we can show
that ¥ must always be nonnegative. Convert the matrix equation (6.76) into a
scalar equation for y by multiplying from the left with a':

a'Va+ya'Fa+y%a'Ta = 0. (6.77)

Equation (6.77) is a quadratic equation for y with coefficients that are matrix
products of the same general type as those encountered in Eq. (6.19). By virtue
of the symmetry of V, F, and T, the matrix products are all real, as can be seen by

*Some (but not all) F;’s may be zero, which simply means there are no frictional effects in the corre-
sponding normal modes. The important point is that the F;’s cannot be negative.
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expanding a as @ + i B (cf. Eq. (6.19)). Hence, if y is a solution of the quadratic
equation, its complex conjugate y* must also be a solution. Now, the sum of the
two roots of a quadratic equation is the negative of the coefficient of the linear
term divided by the coefficient of the square term

a'Fa

== ———. 6.78
y+v K 2 Ta (6.78)

Hence, k can be expressed in terms of the real and imaginary parts of a; as

o = LFijioj + Bif))
2 T(okar + BiBr)

(6.79)

The dissipation function F must always be positive, and T is positive defi-
nite; hence « cannot be negative. The oscillations of the system may decrease
exponentially with time, but they can never increase with time. Note that if F
is positive definite, ¥ must be different from zero (and positive), and all modes
will have an exponential damping factor. The frequencies of oscillation, given
by the real part of w, will of course be affected by the dissipative forces, but
the change will be small if the damping is not very large during a period of
oscillation.

Finally, we may consider forced sinusoidal oscillations in the presence of
dissipative forces. Representing the variation of the driving force with time by

F; = Foje '™,
where Fjy; may be complex, the equations of motion are
Vijnj + Fijnj + Tijiij = Foie . (6.80)
If we seek a particular solution to these equations of the form
nj=Aje",

we obtain the following set of inhomogeneous linear equations for the amplitudes
Aj:
J

(Vij —iwFij — o*T;j))A; — Foi = 0. (6.81)
The solution to these equations* may easily be obtained from Cramer’s rule:

- Dj(w)
T D)’

(6.82)

where D(w) is the determinant of the coefficients of A; in Eq. (6.81) and
Dj(w) is the modification in D(w) resulting when the jth column is replaced

*They are of course merely the inhomogeneous version of Egs. (6.74).
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by Foi ... Fo,. It is the denominator D(w) that is of principal interest to us here,
for the resonances arise essentially out of the algebraic form of the denominator.
Now, D is the determinant appearing in the secular equation corresponding to the
homogeneous equations (6.74); its roots are the complex frequencies of the free
modes of vibration. The requirement that both y and y* are roots of Eq. (6.77)
means, on the basis of Eq. (6.75), that if w; is a root of D(w), then —a)j‘ is a
root. For a system of n degrees of freedom, it is therefore possible to represent

D(w) as
D) =G —o)(®—w)...(0—w)(®+ o) (®+a))...(0+ o)),

where G is some constant. Using product notation, and denoting w by 2m v, this
representation can be written as

D(w) =G [[@r®—v) +iKk) @r(v+v) +iKi) . (6.83)
i=1

When we rationalize Eq. (6.83) to separate A; into its real and imaginary parts,
the denominator will be

D*(@)D(w) = GG* [ [@n*(v — v)* + kAT v+ v)* + 7). (6.84)

i=1

The amplitudes of the forced oscillation thus exhibit typical resonance behav-
ior in the neighborhood of the frequencies of free oscillations v;. As a result of
the presence of the damping constants k;, the resonance denominators no longer
vanish at the free mode frequencies, and the amplitudes remain finite. The driving
frequency at which the amplitude peaks is no longer exactly at the free frequencies
because of frequency dependence of terms in A; other than the particular reso-
nance denominator. However, so long as the damping is small enough to preserve
a recognizable resonant peak, the shift in the resonance frequencies is usually
small.

We have discussed the properties of small oscillations solely in terms of
mechanical systems. The reader however has undoubtedly noticed the similarity
with the theory of the oscillations of electrical networks. The equations of motion
(6.68) become the circuit equations for n coupled circuits if we read the V;;
coefficients as reciprocal capacitances, the F;;’s as resistances, and the T;;’s as
inductances. Driving forces are replaced by generators of frequency w applied to
one or more of the circuits, and the equations of forced vibration (6.80) reduce to
the electrical circuit equations (2.42) mentioned in Chapter 2.

We have presented here only a fraction of the techniques that have been devised
for handling small oscillations, and of the general theorems about the motion.
For example, space does not permit a discussion of the powerful Laplace trans-
form techniques to study the response of a linearly oscillating system to driving
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forces with arbitrary time dependencies. Nor is it appropriate here to fully con-
sider the extensive subject of nonlinear oscillations, where the potential energy
contains terms beyond the quadratic, and the motion is no longer simple har-
monic. (Some relevant portions of this field will be introduced later when we treat
chaos and perturbation theory). As mentioned earlier, a formal development of
the theory of small oscillations about steady motion will be given later in con-
nection with the Hamiltonian version of mechanics. Another generalization that
will deserve our attention relates to the oscillation of systems with continuously
infinite numbers of degrees of freedom. The question is how we can construct a
way of handling continuous systems that is analogous to the classical mechanics
of discrete systems. We shall postpone such considerations of continuous systems
to Chapter 13—after we have developed the canonical formulation of discrete
mechanics, and after we have seen how the structure of Newtonian mechanics
must be modified in the special theory of relativity.

BEYOND SMALL OSCILLATIONS: THE DAMPED
DRIVEN PENDULUM AND THE JOSEPHSON JUNCTION

As an example of forced vibrations with dissipative forces, we consider the
motion of the pendulum sketched in Fig. 6.6, which is subjected to an applied
torque N, and is permitted to rotate through its full range of motion —7 < ¢ < 7.
In addition, the pendulum is subject to damping by the viscosity n of the medium
in which it rotates. For simplicity, we will assume that the rod is massless, and
that all of the pendulum mass is concentrated at the end of the rod.

Let us begin by recalling the dynamics of a simple pendulum of length R and
mass m. The angular acceleration of the pendulum is produced by the restoring

‘[(,
—a /\‘
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¢ | I
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O
N=0 N=1mgRr N=mgR =N,
$=0 ¢ =30° ¢ = 90°

(a) (b) ()

FIGURE 6.6 Pendulum (a) with no applied torque, N = 0, (b) with the torque N =
%ng, and (c) with the critical torque applied, N, = mgR. Figures 6.6, 6.8, 6.10, and 6.11
are adapted from C. P. Poole, Jr., H. A. Farach and R. J. Creswick, “Superconductivity,”
Wiley, NY, 1995.
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gravitational torque mg R sin ¢ corresponding to the equation of motion

2 d%¢ o
mR T +mgRsing =0, (6.85)

where I = mR? is the moment of inertia. For small angular displacements, the
approximation sin¢ = ¢ linearizes the problem by making the torque propor-
tional to the displacement, and the motion is simple harmonic, ¢ = ¢ sin wt with
the characteristic frequency wq

AR 6.86
@ = (%) (50
If a torque N is applied to a stationary pendulum, it will swing out through an
angle ¢. The force of gravity acting on the mass m provides the restoring torque
mg R sin ¢, as we noted above, and the pendulum assumes an equilibrium position
at the angle ¢ given by

N = mgRsin¢ (fl—f = 0) , (6.87)

as indicated in Fig. 6.6b. The greater the torque, the larger the angle ¢. There is
a critical torque N, indicated on Fig. 6.6(c) for which the angle ¢ assumes the
value 77/2:

N, =mgR. (6.88)

If N exceeds this critical value, then the applied torque becomes larger than the
restoring torque, N > mgR sin ¢, for all angles ¢. As a result, the pendulum will
begin to rotate beyond ¢ = 7/2, and it will continue to rotate as long as the torque
N > N, is applied. The motion will take place at a variable angular speed w

d¢
®=—" (6.89)
and it can persist if the torque is later removed.

With these facts in mind, let us proceed to examine the case of the damped
pendulum assuming that the damping force Fgamp = nw is proportional to the
angular velocity w. To write the differential equation of its motion, we add the
restoring and damping torques mg R sin ¢ and n d¢ /dt, respectively, to Eq. (6.85):

d? d .
N=mR2d—t‘f+nd—‘f + mgR sin . (6.90)

If we define a critical frequency w, corresponding to the angular speed at which
the damping torque nw equals the critical torque mgR,
__mgR N

we =, 6.91)
n n
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then we can write the pendulum equation (6.90) in the normalized form

N 1 d?*¢ 1d¢
— = —-——~ 4+ ——" +5ing. 6.92
Ne ~ o dr? t e dr e (6.92)

The solutions of this equation exhibit complex time variations of the angular
position ¢ ().

When a constant torque is applied to the pendulum at rest, there will be a initial
transient behavior that eventually settles down to a dynamic steady state after the
transients die out. We shall examine several cases of this dynamic steady state.

1. For low applied torques, N < N, there is a static steady state
N = N.sin ¢, (6.93)

in which all time derivatives vanish after the initial oscillations have died
out. This is illustrated in Fig. 6.6b with the pendulum stationary at the
angle ¢.

2. For undamped motion (n = 0) with a constant applied torque, N, Eq. (6.90)
assumes the form

2d%¢

= (6.94)

torque = N —mgRsin¢g = mR

so we see that the acting torque is angularly dependent. This torque has
special values at four particular angles:

torque = N ¢=0 (6.95a)
torque = N — N, ¢=m/2 (6.95b)
torque = N p=m (6.95¢)
torque = N + N, ¢ =3m/2 (6.95d)

If the applied torque N exceeds the critical torque N, the motion will be
continuously accelerated rotation, and the pendulum increases its energy as
time goes on. The angular speed also increases with time, but with fluctu-
ations that repeat every cycle, as indicated in Fig. 6.7. Note that Fig. 6.7
is drawn for the case where damping is present. The average over these
oscillations provides the average angular speed

_[49
() = < - > (6.96)

which continually increases linearly with the time.

3. When damping is present with w, < wo and N > N, the angular speed
w continues to increase until the damping term nd¢/dt approaches the
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FIGURE 6.7 Dependence of the angular velocity w = d¢/dt on the time for an applied
torque N > N,. The average value (w) increases linearly with time in the absence of
damping (linear region), and the overall curve applies to the case w, < w with damping.

value of the applied torque. When this occurs, the average angular speed (w)
approaches a limiting value (w),, as shown in Fig. 6.7, and the acceleration
fluctuates around an average that is zero: (d¢?/dt*) = 0. The pendulum
undergoes what is called quasi-static motion, rotating with an angular speed
w that undergoes periodic variations but always remains close to the average
(w)L.

To obtain more insight into this quasi-static behavior, we neglect the
acceleration term in the equation of motion (6.92), and write

N 1 d¢ + sin¢ (6.97)
— = —— +sing, .
N. . dt

which is an equation that can be solved analytically with the solutions

(w) =0 for N < N, (6.98a)
(@) = o [(N/N)?=1]"* for N > N, (6.98b)
(@) = (N/Ne)o for N > N, (6.98¢)

which are plotted in Fig. 6.8. The actual cyclic variations in o for points
A and B on this plot are presented in Fig. 6.9. At point A, the applied
torque has the value N = 1.2N,, so from Egs. (6.95) the net torque varies
between 0.2N, and 2.2N, around the cycle, and the angular speed is fast at
the bottom and slow at the top, with the variations shown at the lower part of
Fig. 6.9. For point B, we have N = 2N, so the net torque varies between N,
and 3N, producing the more regular variations in angular speed presented
at the top of Fig. 6.9. In the limit N > N., meaning () > w,, the angular
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FIGURE 6.8 Relationship between the applied torque N and the average angular veloc-
ity (w) for w. < wg. We see that (w) = 0 for N < N, and (w) increases with increasing
N > Ng.
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FIGURE 6.9 Oscillations at points A (N = 1.2N.) and B (2N,) for w, < w indicated
on Fig. 6.8 for the damped harmonic oscillator. Adapted from A. Barone and G. Paterno,
“Physics and Applications of the Josephson Effect,” Wiley, NY, 1982.



270

Chapter 6 Oscillations

speed begins to approximate a sinusoidal variation with time
w(t) = (w) + a sin f, (6.99)

which approximates point B in Fig. 6.8.

. For the negligible damping case (n — 0 and w. > o), the steady-state

solution (6.98a) can still occur for N < N, with the pendulum held fixed
at the angle ¢ defined by Eq. (6.93), which means that ® = (@) = 0.
In addition, the solution, (6.98c), in which the torque balances the time
averaged damping force, now applies for all values of N, both less than and
greater than N, and so we have

w=0 for N < N, (6.100a)
(w) = (N/Np)w, forO0 < N (6.100b)

These solutions are plotted in Fig. 6.10. Note from the figure that the sys-
tem exhibits hysteresis, meaning that the behavior differs for increasing and
decreasing torques. When the torque is increased for N < N, the pen-
dulum is stabilized at the angle ¢ satisfying the relation N = N, sin¢
of Eq. (6.87), so w = 0 via Eq. (6.100a). When N reaches the critical
torque N, the angular speed jumps to the value w., and then rises linearly
with further increases in N, as shown in the figure. For decreasing torques,
Eq. (6.100b) applies, and (@) remains proportional to N all the way to the
origin, as shown.

. Figure 6.8 shows the response for w, <« wq, Fig. 6.10 presents it for

we > wp, and the question arises as to what is the behavior for an inter-
mediate condition such as w, =~ wg? This requires solving the general

w L w. > 0, |

FIGURE 6.10 Relationship between the applied torque N and the average angular
velocity (w) for we > wq. There is hysteresis for the behavior when () < we.
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FIGURE 6.11 Relationship between the average angular velocity of the pendulum
(w) and the applied torque N. For low applied torques, the pendulum oscillates and
the average velocity is zero, whereas at high torques, N > N, motion is contin-
uous with (w) proportional to N. Note the hysteresis for increasing and decreasing
torques.

equation (6.92) since no approximations can be made. The N versus (w)
characteristic for the particular case w. = 2wy is plotted in Fig. 6.11. We
see from the figure that for increasing torques there is the usual initial rise in
N at zero frequency until the critical value N, is reached, at which point the
average angular speed jumps to w, as in the w, > wq case of Fig. 6.10. For
decreasing torques, there is hysteresis with zero average frequency reached
at a torque N, C’, which is less than N,.

The damped-driven pendulum equation (6.92) has a particularly important
application in solid-state physics. When two superconductors are in close prox-
imity with a thin layer of insulating material between them, the arrangement
constitutes a Josephson junction, which has the property that electric current
I can flow across the junction with zero applied voltage, up to a certain crit-
ical value /.. Current exceeding this value is accompanied by the presence of
a voltage, and plots of current / versus voltage V for the junction exhibit Ays-
teresis. The Josephson junction satisfies the same differential equation (6.93)
as the damped oscillator with the current playing the role of the torque, the
voltage playing the role of the average angular speed, the capacitance acting
like a moment of inertia, and the electrical conductance serving as the viscos-
ity. The variable, which is the angle ¢ for the oscillator, becomes the phase
difference 1 across the Josephson junction. Many physicists find it helpful
to obtain an intuitive understanding of the operation of the Josephson junc-
tion by studying properties of the damped driven pendulum that mimics its
behavior.
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DERIVATIONS

1. The problem of the linear triatomic molecule can be reduced to one of two degrees of

freedom by introducing coordinates y; = xp —x1, Yo = x3—x», and eliminating x, by
requiring that the center of mass remain at rest. Obtain the frequencies of the normal
modes in these coordinates and show that they agree with the results of Section 6.4.
The distances between the atoms, y; and y,, are known as internal coordinates.

. Obtain the frequencies of longitudinal vibration of the molecule discussed in Sec-

tion 6.4, except that now the center atom is to be considered bound to the origin by a
spring of force constant k. Show that the translational mode disappears.

EXERCISES

3. A bead of mass m is constrained to move on a hoop of radius R. The hoop rotates

with constant angular velocity @ around a diameter of the hoop, which is a vertical
axis (line along which gravity acts).
(a) set up the Lagrangian and obtain the equations of motion of the bead.

(b) Find the critical angular velocity €2 below which the bottom of the hoop provides
a stable equilibrium for the bead.

(c) Find the stable equilibrium position for v > .

. Obtain the normal modes of vibration for the double pendulum shown in Fig. 1.4,

assuming equal lengths, but not equal masses. Show that when the lower mass is
small compared to the upper one, the two resonant frequencies are almost equal. If the
pendula are set in motion by pulling the upper mass slightly away from the vertical
and then releasing it, show that subsequent motion is such that at regular intervals one
pendulum is at rest while the other has its maximum amplitude. This is the familiar
phenomenon of “beats.”

. (a) In the linear triatomic molecule, suppose the initial condition is that the center

atom is at rest but displaced by an amount aq from equilibrium, the other two
being at their equilibrium points. Find the amplitudes of the longitudinal small
oscillations about the center of mass. Give the amplitudes of the normal modes.

(b) Repeat part (a) but with the center atom initially at its equilibrium position but
with an initial speed v(.

. A spring of force constant 3 Nm~! is connected between two identical simple pen-

dulums, each of length 0.8 m. Calculate the period of the other pendulum if one is
damped taking the mass of each bob as 0.23 kg (g = 10 m/s2).

. In the linear triatomic molecule, suppose that motion in the y and z directions is

governed by the potentials

k 2 K 2
Vy =302 =yD"+ 503 =y2)"

k 2k 2
Vi=z@—z21) "+ (@3 — 22"
2 2
Find the eigenfrequencies for small vibrations in three dimensions and describe the
normal modes. What symmetries do the zero frequencies represent? You may want to
use the kind of intermediate coordinates suggested in Exercise 6.
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10.

11.

12.

13.

. The equilibrium configuration of a molecule is represented by three atoms of equal

mass at the vertices of a 45° right triangle connected by springs of equal force con-
stant. Obtain the secular determinant for the modes of vibration in the plane and show
by rearrangement of the columns that the secular equation has a triple root w = 0.
Reduce the determinant to one of third rank and obtain the nonvanishing frequencies
of free vibration.

. Calculate the force constant of a harmonic oscillator if its resting position potential

energy is 8 joule and the total energy is 13 joule. [Given: the amplitude as 1 m.]

(a) Three equal mass points have equilibrium positions at the vertices of an equi-
lateral triangle. They are connected by equal springs that lie along the arcs of
the circle circumscribing the triangle. Mass points and springs are constrained to
move only on the circle, so that, for example, the potential energy of a spring is
determined by the arc length covered. Determine the eigenfrequencies and normal
modes of small oscillations in the plane. Identify physically any zero frequencies.

(b) Suppose one of the springs has a change in force constant 8k, the others remaining
unchanged. To first order in 8k, what are the changes in the eigenfrequencies and
normal modes?

(c) Suppose what is changed is the mass of one of the particles by an amount §m.
Now how do the normal eigenfrequencies and normal modes change?

A uniform bar of length / and mass m is suspended by two equal springs of equilibrium
length b and force constant &, as shown in the diagram.

J U

|

|

|

I

l—go 00
m

!

Find the normal modes of small oscillation in the plane.

Two particles move in one dimension at the junction of three springs, as shown in the
figure. The springs all have unstretched lengths equal to a, and the force constants and
masses are shown.

Find the eigenfrequencies and normal modes of the system.

Two mass points of equal mass m are connected to each other and to fixed points by
three equal springs of force constant k, as shown in the diagram.
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14.

15.

16.

17.

18.

The equilibrium length of each spring is a. Each mass point has a positive charge +¢,
and they repel each other according to the Coulomb law. Set up the secular equation
for the eigenfrequencies.

Find expressions for the eigenfrequencies of the following electrical coupled circuit:

[| ]
i I
G J_ G

&

Ly

If the generalized driving forces Q; are not sinusoidal, show that the forced vibrations
of the normal coordinates in the absence of damping are given by

+o0 G (®)

= rfm

where G; () is the Fourier transform of Q; defined by

e—la)l dw,

1 / +oo iwt
— Gi(w)e ' dw.
V2t J—co '
If the dissipation function is simultaneously diagonalized along with 7 and V, show
that the forced vibrations are given by

i) =

/‘+°° G; (a))(a) —? +za)]~')
V2 (a)l. —w?)?2 4+ a)2.7-'l.2
which has the typical resonance denominator form. These results are simple illus-

trations of the powerful technique of the operational calculus for handling transient
vibrations.

—iwt dt

&=

A mass particle moves in a constant vertical gravitational field along the curve defined
byy = ax®, where y is the vertical direction. Find the equation of motion for small
oscillations about the position of equilibrium.

A plane triatomic molecule consists of equal masses m at vertices of an equilateral

triangle of sides a. Assume the molecule is held together by forces that are harmonic

for small oscillations and that the force constants are identical and equal to k. Allow

motion only in the plane of the molecule.

(a) Without writing the equations of motion, justify your reasoning on the number of
normal modes of the system and how many of these modes have zero frequency.

(b) One of the normal modes corresponds to a symmetrical stretching of all three
vertices of the molecule. Find the frequency of this mode.

A particle in an isotropic three-dimensional harmonic oscillator potential has a natural
frequency of w(. Assume the particle is charged and that crossed static electric and
magnetic fields are applied. Find the vibration frequencies with these electromagnetic
fields present. Discuss the results for the limits of strong and weak fields.
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19.

20.

21.

22,

23.

Show for the case Vi1 > Vo3 > 0and Vi, = Vo1 = 01in Eq. (6.27) that there are two
normal modes with frequencies w| = (Vll)l/ 2 and w)y = (sz)l/ 2 Reintroduce the
mass factor m and describe a physical system that would show this behavior for small
oscillations.

Write the Lagrangian for the case V1| = V25 = 0 and Vi, = V31 > 0 for the example
discussed in Eqgs. (6.27) to (6.30). Show there is one normal mode of simple harmonic
motion with the frequency w; = (Vlz)l/ 2 and a second mode in which the particle
is unbound, receding exponentially to infinity for long time ¢ > 7 in accordance with
the expression ™! /T, where the parameter t is given by T = (V12)~1/2. For this
unbounded mode, how does the distance depend upon time when ¢t < 7?7 What is the
nature of the point x; = xp = 0? Restate your results with the mass parameter m
included explicitly.

Write the Lagrangian discussed in Egs. (6.27) to (6.30) in polar coordinates for the
case Vi1 = Vpp > 0and V|p = V| = 0. Show that there is a radial normal mode r =
ro cos(wt) with frequency w = (V| D2 when the angular momentum is zero. Show
that in the case of nonzero angular momentum, the angular momentum is conserved
and the particle can no longer reach r = 0. Write the fictitious potential energy V' (r)
(Chapter 3) for nonzero angular momentum. When finished, reintroduce the mass
parameter, m, into all equations.

Repeat Exercise 21 with the conditions Vi; > Vpp > 0 and Vi, = V1 = 0 and
discuss your results in terms of the effective potential energy of Chapter 3.

Make a full analysis of the example discussed in Egs. (6.27) to (6.30).



CHAPTER

The Classical Mechanics of the
Special Theory of Relativity

At the end of the nineteenth century, the physics community had two incom-
patible descriptions of phenomena, Newtonian mechanics and Maxwellian elec-
tromagnetic theory. Newtonian mechanics assumed that all inertial frames were
equivalent, while Maxwell’s wave equations gave a universal speed of light that
implied a preferred inertial frame. Albert Einstein developed the special theory of
relativity to replace Newtonian mechanics with a theory that was consistent with
electromagnetic theory without this implication. After a brief historical survey,
we shall review the assumptions of the special theory and the consequences of
these assumptions. We shall then examine the formalism of the geometric picture
of spacetime that results. Lastly, we develop a Lagrangian formalism and study
attempts to express the results in a proper relativistic form.

In Newtonian mechanics, a set of well-verified laws applies in an inertial frame
of reference defined by the first law. Any frame moving at constant velocity
with respect to an inertial frame is also an inertial frame. Consider two frames
denoted by S and S’ with (¢, x, y, z) and (¢, x’, ¥/, ) the coordinates in S and
S’, respectively. Without loss of generality, we assume the coordinate axes are
aligned, x along x’, and so on. Let S” be moving relative to S in the +x-direction
at a speed v, as shown in Figure 7.1.

Newtonian mechanics assumes the spacetime coordinates in S are related to
those in S’ by the simple expressions

y =y, (7.1)

Transformations of this type are called Galilean transformations. Under this
assumption, it follows that Newton’s second law,

F— d
_dtp’

relating the applied force (F) and the momentum (p) remains invariant, and

d
F = %p’ and t=1t. (7.2)

276
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FIGURE 7.1 Galilean transformation from S to S’ by a velocity v in the +x-direction.

The time in both the S and S’ frames is assumed to be (¢ = ¢). The Newtonian
world view is that the universe consists of three spatial directions and one time
direction. All observers agree on the time direction up to a possible choice of
units. Under these assumptions, there are no universal velocities. If u and u’ are
the velocities of a particle as measured in two frames moving with relative veloc-
ity v as defined by Figure 7.1, then

u=u-v. (7.3)

Maxwell’s electromagnetic equations, on the other hand, have a universal con-
stant (denoted by c), which is interpreted as the speed of light. Since this is incon-
sistent with Newtonian mechanics, either Newtonian or Maxwellian mechanics
would have to be modified. After carefully thinking about how the universe would
appear to an observer traveling at the speed of light, Albert Einstein decided that
Maxwell’s equations are correct to all inertial observers and the assumed trans-
formations for Newtonian mechanics are incorrect. The correct transformations
make the speed of light the same to all inertial observers.

BASIC POSTULATES OF THE SPECIAL THEORY
Einstein used two postulates to develop what became known as the special theory:

1. The laws of physics are the same to all inertial observers.
2. The speed of light is the same to all inertial observers.

A formulation of physics that explicitly incorporates these two postulates is
said to be covariant. Since the speed of light, c, is the same in all coordinate
systems, it is reasonable to consider the numerical value of ¢ as a conversion
factor between the units used in measuring space and the units used in measuring
time. So, cdt is the time interval measured in the same units used to measure
space units. In the SI system of units, ¢ d¢ has dimensions of meters. Many books
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and articles on relativity set ¢ = 1 and measure time and space in meters. In the
material that follows, we shall show the explicit dependence upon c.

To satisfy the two postulates, the space and time of the special theory consist
of a single entity that we refer to as spacetime. This spacetime is the geometric
framework within which we perform physics. We cannot assume that all observers
make the same division into time and space in the same way. The separation is
unique to each inertial frame. The square of the distance in that spacetime, As?,
between two points A and B is given by

(As)2 = cz(time interval)2 — (space interval)z, (7.4)

where the interval is between the two points .4 and B. If the separation of the
interval is assumed to be infinitesimal, the A is replaced by the differential symbol
d. Since a point in spacetime consists of a specification of three spatial coordinate
values and one time value, the usual convention is to refer to a point in spacetime
as an event. The term event is used because such a point has a definite location
and a definite time in any frame.

The choice of opposite signs for the time and space intervals is intrinsic to
the theory; however, the choice of a positive sign for (cdf)? is arbitrary. Some
authors define a (ds)?, which is the negative of the choice given in Eq. (7.4). All
sign choices makes (ds)?> = 0 according to the definition in Eq. (7.4) for light,
since the space interval is (¢ x time interval). The choice made here for the
relative signs used for space and time is such that real bodies moving at a velocity
less than light have (ds)*> > 0. This makes ds real for bodies moving slower than
light speed. If (ds)> > 0, the interval is called timelike. If (ds)?> < 0, the interval
is called spacelike. Intervals for which (ds)? = 0 are called lightlike or null.

Since, to all inertial observers, objects that travel on timelike paths move less
than the speed of light, they are called fardyons. Hypothetical bodies that always
move faster than light are called rachyons, but such bodies will not concern us
here. Objects moving at the speed of light are called null or lightlike.

In the limit of small displacements (differential displacements), Eq. (7.4)
becomes, in a Cartesian coordinate system,

(ds)? = (cdt)? — (dx* + dy* + dz). (7.4

The four-dimensional space with an interval defined by Egs. (7.4) or (7.4'), is
often called Minkowski space to distinguish it from a four-dimensional Euclidean
space for which there would be no minus sign in Egs. (7.4) or (7.4). The idea
of using ict for the time coordinate to make the space Euclidean is no longer
useful since it obscures the non-Euclidean nature of spacetime and makes the
generalization to noninertial frames more difficult.

Since the interval between two events of spacetime is a geometric quantity,
all inertial observers measure coordinates that preserve the value of the interval
squared, (ds)?.If S and S’ are two different inertial frames, then

ds”? = ds*. (7.5)
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Thus, (ds)? is called the square of the invariant spacetime interval. For this
to be possible, the transformations between the coordinates in S’ and those in
S, must involve the relative velocity between the frames in both the space and
the time parts; that is, the time coordinate can no longer stand independent of
the transformation. This means the relative splitting of spacetime into space and
time will be different for different inertial observers. Since the time measured in
a laboratory frame is different from that measured by an observer at rest with
respect to the body under study, we must distinguish these times. We distinguish
them by calling the time inverval measured by a clock at rest with respect to a
body the proper time of that body’s frame, while the other inertial observer uses
a time that is often called laboratory time. As a special case of Eq. (7.4), con-
sider the relation between the proper time, T, measured by an observer at rest
with respect to an object in frame S’ with coordinates (z, x’, y’, z’), which is
moving at a velocity, v, with respect to a laboratory frame S with coordinates
(¢, x, y, z). In the rest frame of the object, there is no motion, so Egs. (7.4") and
(7.5) give

2
A(dr)? = A(dt)? — v2(d1)? = Adr)> (1 - ”—2)
C

or

dt = —— (7.6)

Since Eq. (7.6) makes dt < dt, this effect on dt is called “time dilation”: moving
clocks appear to run slower.

The invariance of the interval expressed in Eq. (7.5), naturally divides space-
time into three regions, sketched in Fig. 7.2 relative to any event .4 at time 74
(Ais located at x = y = ¢ = 0 in Figure 7.2). If an event B at time 75 is such
that (ds45)> > 0, then all inertial observers will agree on the time order of the
events A and B. It is even possible to choose an inertial frame where B has the
same space coordinates as A. If 73 is less than 7 4 in one inertial frame, then 75 is
less than ¢ 4 in all inertial frames. We call this region the past. Likewise, there is a
region called the future where for event C (shown in Figure 7.2), ¢ is greater than
t 4 for all inertial observers. Both the past and the future could be causally related
to the event A. For any event inside the light cone, there exists a frame in which
that event and the origin have the same x, y, z coordinates.

If (ds AD)z < 0, then there exist a set of inertial frames in which the relative
order of 7 4 and ¢p can be reversed or even made equal. This region has sometimes
been referred to as the elsewhere, or as the elsewhen. In the region in which event
D is located, there exists an inertial frame S’ with its origin at event the A in
which D is at the same time as A (but somewhere else). There also exist frames
in which the time of D occurs before .4 and frames in which the time of D is after
event A. Separating the past-future and the elsewhere is the null or light cone,
where ds? = 0. The null cone is the set of spacetime points from which emitted
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-

X

> null or light cone
Y

elsewhen

FIGURE 7.2 The three dimensions (ct, x, and y) of the light cone. The third spatial
dimension has been suppressed. The event A referenced in the text is located at x = y =
ct = 0. The light cone is the set of (ct, x, y) traced out by light emitted from ct = x =
y = 0 or by light that reaches x = y = 0 at time ¢t = 0. The past and future lie inside the
light cone. This figure is of necessity misleading because all points on the light cone have
zero separation in spacetime.

light could reach event A, and those points from which light emitted from event
A could reach. Any interval between the origin and a point inside the light cone
is timelike, and any interval between the origin to a point outside the light cone is
spacelike. Understanding the implication of the division of spacetime by the light
cone is usually all that is needed to resolve the apparent paradoxes of the special
theory.

LORENTZ TRANSFORMATIONS

The simplest set of transformations that preserve the invariance of the interval,
ds?, are called Lorentz transformations. These transformations are simplest in the
sense that they are linear in the coordinates and as the relative velocity goes to
zero, the transformations become identity transformations. If we consider parallel
Cartesian coordinate systems, S and S’, whose origins coincide at t = ¢/ = 0, and
whose relative velocity is v along the x axis as measured by S, and define

v 1
B=-, and Yy = — 7.7)
c

N

then the following four equations relate the two sets of coordinates

of = “1_—_’3;2 — y(ct — Bx) (7.82)
W= S = Ber) (7.8b)

J1=p2
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y =y (7.8¢)
J =z (7.8d)

Here we are only interested in transformations for which ¢ — 7 and x’ — x as
B — 0. As matrices, these transformations appear as

ct’ y —yB 0 0| |ect

x' -vB v 0 0ffx '
- 7.8)

y 0 0 1 0|y

Z 0 0 0 1]z

In the limit of 8 < 1, Egs. (7.8) reduce to the Galilean transformations as
expected.

The generalization to arbitrary orientation of the velocity relative to the axes
is straightforward. Since we are considering spacetime a four-dimensional entity,
we would expect to deal with four-dimensional vectors. Using the notation
(ct,x,y,z) = (ct,r) allows the writing of the generalization of Egs. (7.8)
to the case where v is not parallel to an axis, as

ct' =yt —B-r)

/ BBy -1

r=r+ 5 Byct, (7.9)

provided the two sets of axes are aligned. Another way to express this arbi-
trary velocity is to consider the Lorentz transformation between two inertial
coordinate systems with aligned axes, as a matrix transformation relating the two
4-quantities, X = (ct, r) and X' = (ct’, r"), where

x = Lx (7.10)

We treat X" and x as column matrices and L as the symmetric matrix

14 —VPBx . —vBy —vB:
—vB 1+ -DE v -DER - DEE
p p Z
L= BBy p2 8. (7.11)
—-vBy -D7 1+ -Dp -DI3

2
—vp.  -0EE ¢ -DER 1+ ¢ -5

This reduces to the results given in Eqs. (7.8") when g, = 8, B, = . = 0.
These transformations map the origin of S and the origin of S’ to (0, 0, 0, 0).

Hence the coordinates of both origins correspond to the same location in space-

time. If this is not desired, there is a more general transformation of the form

X =Lx+a (7.12)
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where L is a spacetime rotation (boost) and a is a spacetime translation. This is the
Poincaré transformation or the inhomogeneous Lorentz transformation. We shall
consider only homogeneous transformations for which a of Eq. (7.12) is zero.

VELOCITY ADDITION AND THOMAS PRECESSION

The most general homogeneous Lorentz transformation will involve both a veloc-
ity change and a rotation of the coordinates. The velocity transformation is termed
a boost and has the form of Eq. (7.11). Any homogeneous Lorentz transformation,
L, can be written as

L =RLy = LjR’ (7.13)

where R is a rotation matrix as discussed in Chapter 4, and Ly, which is called
a restricted or proper Lorentz transformation, corresponds to a pure boost. The
restricted Lorentz transformations form a representation of the Lorentz group.*
Since R is not symmetric and Ly is symmetric, L will, in general, have no sym-
metry. Also, since Ly and R are matrices, RLy # LoR. There will exist two other
transformations L;, and R" such that RLy = L{R’.

For any Lorentz transformation, L, there is an inverse transformation, L~ 1 such
that

LIl =L"L=1, (7.14)

where 1 is the diagonal unit 4 x 4 matrix with elements d,5. The existence of
an inverse places four constraints on the diagonal element and six on the off-
diagonal elements for a total of ten constraints on the Lorentz transformation.
There are then only six independent components. Three of these correspond to
the components of the relative velocity vector and three correspond to the Euler
angles of the rotation (see Section 4.4).

Consider three inertial systems, S1, S, and S3, with x axes aligned. Let S be
moving at a velocity v along the common x-direction with respect to S; and let
S3 be moving at velocity v” along the common x-direction with respect to S,. The
Lorentz transformation from S to S3 is given by

v —vB8 0 o[y -yB 0 0
L= |7VE v 0 O0pp—yp ¥y 0 0
0 0 1 o0|| o0 0 1 0
0 0 0 1 0 0 0 1

yy'A+p8) —yy'B+p) 0 0
—-yy'B+B) yyA+pp) 0 0
0 0 1 0
0 0 0 1

*QGroup concepts are discussed in Appendix B.
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where Eq. (7.7) defines 8 and y for v and B8’ and y’ for v'. Let B” be the speed of
S5 relative to S| and y” the associated factor, then since Lj_3 can be written as a
single Lorentz transformation with a velocity 8” with its associated y” as

J/// _y//ﬂ// O 0

L _ _,y//ﬁ// J/// O 0
= 0 o 1 ol

0 0 0 1

and, since these two forms of L;_3 must be the same, we have

_B+H#

P 1+

(7.15)

This is the relativistic addition of velocity formula for parallel velocities.

The product of any two transformations, L; and L; is itself a Lorentz trans-
formation, L3. Such a Lorentz transformation will, in general, involve not only
a boost, but may also include a rotation of coordinate axes. If both L; and
L, are pure boosts but their two velocities are not parallel, L3 will involve
a rotation in addition to a boost. This rotation is called the Thomas preces-
sion rotation. The usual form for the Thomas precession assumes the second
boost, L, has a velocity small compared to the first boost, L; and also that
it is small compared to the speed of light. For example, the Thomas preces-
sion can be observed for a gyroscope orbiting the Earth or for electrons in
atoms.

Consider three inertial frames Si, Sz, and S3, with S moving at a velocity 8
with respect to S| and S3 moving at a velocity of B8 with respect to S,. Without
loss of generality, we can arrange the axes of S| so that 8 is along the x axis of
S; and B lies in the x"y’ plane of S5; that is, 8, 8’ define the x’y’ plane of S,. Let
L represent the transformation from S to S and L’ the transformation from S, to
S3 with y and y’ associated with 8 and B'. Then from Eq. (7.11),

y —vB 0 O
L —gﬁ )(; (1) 8 (7.16)
0 0 0 1
and
v VB v'By 0
L — —y'B., 1+(7//_1,)?_% (y/_l)"iﬁi/z (7.17)
o R e
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We assume that the components of 8’ are small and only need be retained to first
order giving via matrix multiplications of Eq. (7.16) and Eq. (7.17)

vy’  —vyv'B —v'B, 0

- 0 0
U =vi=| VP v 7.18
—vv'B, vBYB, ¥ 0 719

0 0 0o 1

Since L” is not symmetric, it must correspond to a rotation and a boost. We shall
write the velocity of S5 as observed by S as 8.

Since the off-diagonal elements corresponding to the z axis are zero, this
rotation is about an axis perpendicular to the xy plane. The boost from S; to S3
is denoted by B”, and we assume that B is small compared to 8 and also small
compared to the speed of light (y’ =~ 1). Then, to first order, the nonvanishing
components of B” are (Since the velocity perpendicular to x is small we can
ignore to first order the distinction among y, y’, and y”)

Bl =8B B = % pr=p%  and =y, (7.19)
and Eq. (7.18) becomes
Yy =vY'BY —v"By 0
VS T e (7189
0 0 0 1

In this approximation, a pure Lorentz transformation from S3 to S; (the inverse
transformation) would correspond to a large boost in the x” axis of —8; and a
small boost in the y” axis of —pY/. The Lorentz boost for that transformation

y// J///ﬂ)/(/ y//ﬂ;/ O
Bl
y'BY y” (" =Dg 0
L1 = "l ”_1 ﬂ_;l 1 ‘ (7.20)
0 0 0 1

Finally, the rotation matrix induced by the rotation from §; to S3, after some
algebraic simplification and the dropping of higher-order terms in B8, is found
to be

1 0 0 0
Bl
0 1 -D2 o
R=L"Ly_; = e r="17% (7.21)
0 —(r -7 1 0
0 0 0 1
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Comparison with Eq. (4.44) shows that R implies S3 is rotated with respect to Sy
about the z axis through an infinitesimal angle:

'3/‘/ 1" y —1
AQ:W—Aﬁizmﬂ(ﬂ2>. (7.22)

The spatial rotation resulting from the successive application of two nonparallel
Lorentz transformations has been declared every bit as paradoxical as the more
frequently discussed apparent violations of common sense, such as the so-called
“twin paradox.” But the present apparent paradox has important applications,
especially in atomic physics, and therefore has been abundantly verified exper-
imentally.

Consider a particle moving in the laboratory system with a velocity v that is
not constant. Since the system in which the particle is at rest is accelerated with
respect to the laboratory, the two systems should not be connected by a Lorentz
transformation. We can circumvent this difficulty by a frequently used stratagem
(elevated by some to the status of an additional postulate of relativity). We imagine
an infinite number of inertial systems moving uniformly relative to the laboratory
system, one of which instantaneously matches the velocity of the particle. The
particle is thus instantaneously at rest in an inertial system that can be connected to
the laboratory system by a Lorentz transformation. It is assumed that this Lorentz
transformation will also describe the properties of the particle and its true rest
system as seen from the laboratory system.

Suppose now that S is the laboratory system, while S, and S3 are two of the
instantaneous rest systems a time At apart in the particle’s motion. By Eq. (7.22),
the laboratory observer will see a change in the particle’s velocity in this time,
Av, which has only a y-component ,3;,’ ¢ = Av. Since the initial x axis has been
chosen along the direction of v = Bc, the vector of the infinitesimal rotation in
this time can be written as

VX AV

AQ=—(y—1) (7.23)

2
Hence, if the particle has some specific direction attached to it (such as a spin
vector), it will be observed from the laboratory system that this direction precesses
with an angular velocity

_dﬂ__( _l)vxa (7.24)
dr Y V2 '

where a is the particle’s acceleration as seen from S;. Equation (7.24) is frequency
encountered in the form it takes when v is small enough that y can be approxi-
mated (using y &~ 1 + %,32) as

W= %(a X V). (7.25)

In either form, e is known as the Thomas precession frequency.
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VECTORS AND THE METRIC TENSOR

We will use the notation that the coordinates, which need not be Cartesian, are
written as x* where x° = ct is the time coordinate, and x!, x2, x> are the space
coordinates. This change in notation is needed to be consistent with the develop-
ments in the following sections.

Consider an arbitrary one-dimensional curve in 4-dimensional spacetime, P,
described by a parameter A, where for a given A the coordinates of a point of
the curve can be written as x°(%), x1(}), xz(k), x3(k). In introductory texts a
4-vector, v, is defined by this curve as an arrow whose tail is located at an event .4
on the curve and whose head is at an event B on the curve where v 43 = Pg—P4.
However, instead of defining the vector at two points, we can use the parameter
A, which is a measure of the length along the curve from A to B, by writing

dP
=|—- . 7.26
A8 (d)» )A:O 720
Such a 4-vector is a tangent vector to the curve. We adopt the notation that the

components of vectors are written with superscripts such as v%, v/, v2, v3. In spite

of the way we draw tangent vectors, they do not have any extension in spacetime.
The arrows we draw simply help us visualize the vector. At each point along the
curve, the tangent vector has a direction and a magnitude. For curves that are
timelike, the proper time, t, is usually chosen as the parameter A. The laboratory
coordinates are then x? = ct(v), xI = x(0), x2 = (1), X = z(7), and the
tangent to the curve is the four-velocity, u, of a particle traveling along the curve
‘P. Equation (7.26) becomes

o _ det _
dt

-_dxi

i ) 7.27
. =Y (7.27)

u yc, u

where v/ = dx'/dt is the normal three-velocity with v = (v*)% 4+ (v¥)? + (v¥)?.
We shall assume that Greek letters can take on the values 0-3 and Latin letters
the values 1-3. Repeated indices are summed. Since the 4-velocity of a particle is
defined over a range of the parameter X, there is an infinite set of 4-velocities for
the particle, one for each value of L. Such a set of vectors is termed a vector field.
Some common examples of vector fields are given in Table 7.1.

We assume that the components of any 4-vector can be expressed by the val-
ues of the vector’s projections along a set of basis vectors, ey, €1, e2, €3, and
that the coordinates are measured along the direction given by the basis vectors.
Such a system is called a coordinates basis.* Cartesian, spherical, and cylindrical
coordinate systems, among many possible systems, can have such a basis set. The
position of a point on the curve P(t) can be written as

P(r) = x"(v)ey, (7.28)

*The choice of a coordinate basis is arbitrary but avoids some complications. For this introductory
chapter we will assume that each basis vector lies in the direction of its increasing coordinate.
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TABLE 7.1 Examples of Vector Fields

Time Space
Name Portion Portion (Magnitude)2 Type
Coordinate ct r 22 — 2 spacelike, null, or timelike
Velocity yc yv c? timelike
Momentum % P m2c? timelike
Force % il—’;: y %’ =yF *(FNewtonian)z spacelike
Current density ypc yJ o2t timelike

where repeated Greek indices, one raised and one lowered, are summed from 0
to 3. In particular, the 4-velocity given in Eq. (7.27) becomes

"
u= % = ddi_[eﬂ = ue,. (7.29)
The magnitude of the 4-velocity is a scalar whose values can vary as we
change A. This set of magnitudes is an example of a scalar field. To convert a
4-vector field to a scalar field, we need what is called a functional,* which can
convert a pair of vectors into a scalar function at each point in spacetime. In other
words, we wish to define the scalar product of two vectors or vector fields. This
conversion of a 4-vector field (or two different vector fields) to a scalar field is
an example of a mapping. If both the vectors are the same, then this scalar would
be the square of the length of the vector, and when the vectors are different, it
is called the scalar product of the vectors. Such a functional is called the metric
tensor, g.T The metric tensor functional can be considered as a machine with two
slots (both of which are linear) into which you can insert two vectors to produce
a scalar (real-valued function). That is,

glu,v) =g, u) =u-v, (7.30)
is the scalar product. In particular if the basis vectors are inserted into the metric,

8ap = 8lea, ep) = €y - €p. (7.31)

The g4p are the components of the metric tensor associated with the basis vec-
tors ey. For example, consider a two-dimensional Minkowski space with coordi-
nates ct and x and a vector v = (a, b). Then g(v,v) = a? — b* and goo = 1,
g =—1

The form of the gup is defined by the form for the interval. This suggests that
we consider small displacements. If the relative displacement vector between two

*A functional is a function whose arguments are themselves functions.
fWe use the same notation for tensors in 4-space as we do for 4-vectors.
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points is small, it can be written as
d¢ = Ax%ey. (7.32)

Recasting Eq. (7.32) in the language of Eq. (7.4'), we see for Minkowski
coordinates

(As)? =d¢ -di = Ax®AxPe, -eg = (goqu)c"‘A)c’3
= (cAN? — (Ax)? — (Ay)* — (A%

In the limit of infinitesimal displacements this can be written as

ds? = gupdx®dxP, (7.32))
which holds for any metric tensor. The metric tensor for a Minkowski coordinate
system, using the +——— sign convention, has the following tensor representa-
tion*

1 0 0 O
0 -1 0 O

=10 o0 -1 o (7.33)
0 0 0 -1

The scalar product of two vectors in this coordinate system is

U-v =u°‘v’3galg =u%? —ulo! — u?0? — 3. (7.34)

It is straightforward to show that in any coordinate system, the square of the
magnitude of the four-velocity is

u-u=c>. (7.35)
The 4-momentum can be defined from Eq. (7.27)
p = mu, (7.36)
where the mass, m, is a scalar. So the length squared of the four-momentum is
pep= m?c?, (7.37)
or from Egs. (7.27) and (7.34),

EZ
pep= m?c? = m202y2 - mzvz)/2 =2~ p2 (7.38)

*The notation used for the display of a matrix is [ ], while for tensors ( ) will be used as it was
in Chapter 5. Matrices are used for relating different coordinate frames while tensors are physical
geometric objects.
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where p is the length of the 3-momentum. This last form of Eq. (7.38) is often
written as

E? = m%c* + pzcz. (7.38)
The relativistic kinetic energy, T, is defined as

T=E—mc* = mc2(y -1 (7.39)

=/ (me?)? + p2c? — mc?. (7.39)

For B « 1, a power series expansion gives
T = imv? + O(B%). (7.40)

Since p = myv, Eq. (7.39) shows that the kinetic energy of a body with finite rest
mass tends to infinity as the speed approaches that of light (as 8 — 1, y — 00).
In other words, it takes an infinite amount of energy to increase the speed of a
mass particle (or a space ship) from any velocity less than c¢ to c itself. This is
another proof that it is impossible to attain or exceed the speed of light starting
from any finite speed less than c.

7.5 W 1-FORMS AND TENSORS*

Suppose we insert only one 4-vector into the metric tensor in Eq. (7.30). We
would produce an object that could be written as uy = gaﬂuﬁ. For example, in
the two-dimensional Minkowski space, if u“ has components (a, b), then u, has
components (a, —b). This geometric object, uy, is called a /-form or, in an older
notation, a covariant vector. In the older notation the vector itself was called a
contravariant vector. If the vector is thought of as a directed line, the 1-form is a
set of numbered surfaces through which the vector passes as is shown in Fig. 7.3.
It is another functional (machine) similar to g, except it converts a vector to a
linear real-valued scalar function. That is, if n is a 1-form (field) and v is some
vector (field), the quantity denoted by (n, v) is a number that tells us how many
surfaces of n are pierced by v. For each vector field V, there is an associated
1-form, V), such that (V;, V) = V - V is the scalar contraction or the square of the
magnitude of V.

The gradient is an example of a 1-form since, if we consider a curve P, param-
eterized by A, where A = 0 at Py and take a scalar function, f, defined along the
curve,

9 Cdf Lo
ovf = mfﬂ’(}»))— D, =voa (7.41)

*The material in Sections 7.5 and 7.6 is not needed for Section 7.7. The Section order has been chosen
for continuity of ideas.
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n

surfaces
positive
sense
of n

FIGURE 7.3 A vector v between two neighboring points and a 1-form 7. The piercing

of n by v produces a number given by (n, v), the number (including fractions) of surfaces
pierced.

So
0

T axe

Oy = Og, (7.42)

We often write either dy or d to indicate the gradient of a scalar. Several
examples of vectors, 1-forms, scalar products, and metrics from relativity and
other areas of physics are given in Table 7.2.

The gradient of the coordinates, @*, defined as

w® =dx*, (7.43)

provides a set of basis 1-forms since

(7, eg) = 85, (7.44)

TABLE 7.2 Examples of Vectors and 1-forms

SYSTEM Vectors: 1-forms: Scalar Metric
(Contravariant (Covariant Contraction
Components) Components)
Euclidean (dx, dy,dz) (dx,dy,dz) |dx?+dy? +dz? 1 0 0
Cartesian (x, y, z) 0O 1 0
0 0 1
Euclidean (dr, d0, do) (dr, ¥ do, dr +r2do? |1 0 0
Spherical r2sin? 6 do) +r2sin20dg? | 0 r? 0
0 0 r2sin?6
Solid-state r (lattice vector) | k (reciprocal vector) r-k varies
Quantum theory i) (ket) (jl (bra) (Jli) 1Y/
Special theory of | (cdt, dr) (cdt, —dr) Adi2—dr? |1 0 0 0
relativity 0o -1 0 0
(Minkowski) o 0 -1 0
0o 0 0 -1
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and any 1-form 7 can be written as

n=ngw”. (7.45)
It follows that
(1, ea) = 1o (7.46)
and for any vector, v
(n,v) = nav®. (1.47)

This gives us two ways to calculate the scalar product of two vectors v and u.
If we define the inverse metric by

off _ Qo
gg,, =6 (7.48)

or in index-free notation by
-1 _ -1 _ /
g g=88 =1 (7.48)
we can convert vectors (u*) to 1-forms (#,) and conversely as
_ B a _ _af
ug = gopu” and u” = g%ug. (7.49)
We can therefore write for two 4-vectors u and v (or they could be two 1-forms),
u-v=gu,v) = gaﬁu“vﬂ =u%vy = uavﬁg“ﬁ. (7.34)
Since each 1-form has a unique associated vector, we could use the same symbol
for both. The difference is important only when considering components.
In terms of the two-dimensional example that we previously considered
(Minkowski spacetime) with cf and x as the coordinates), if the vector u has

components (a, b) and the vector v has components (c, d), the last three terms of
the preceding equation can be written as

gaptt®v? = (1) (@) (c) + (= 1)(b)(d) = ac — bd,
u”vy = (a)(c) + (b)(—d) = ac — bd,

and
ugvpg® = (a)(c)(1) + (b)(d)(—1) = ac — bd.

It may help to consider the relationship between a vector and a 1-form from a
more general point of view using the Minkowski two-dimensional space as an
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example. A vector V in two-dimensional space with basis vectors e; and e; can
be written as

Vv =Vle + V%

In general, it is not necessary that any of the basis vectors be normalized (e; - e; #
1, e2-ex # 1) or that they be orthogonal (e; -e; # 0). This means that the
magnitude of the scalar product is not conveniently obtained from a simple sum
of squares
2
Vev= ) vivi= (e rer + VIVie e +ere) + (Ve e
i,j=1

2
#) VIV,

i=1

and it does not have the value +/(V1)2 + (V2)2. One way to obtain the magni-
tude of the vector is to define the dual space with basis vectors @' and w? (cf.
Eq. (7.43)), which have the properties

el-wlzwl-elzez-w =w2-e2=1
w

and 60’ =w-ei=er-w = -e,=0.

We say that the vector basis, e;, is orthonormal to the 1-form basis '. The 1-form,
v, corresponding to the vector V may be written as

v = vlwl + vzwz.

This vector has a (magnitude)? of
(magnitude)2 =v-V=V.v=Vh+ V.

When we want to require an object to be expressed in terms of its coordinate basis
vectors we will write with a Roman letter (e.g., #) and use Greek letters when it
is to be expressed in terms of the basis 1-forms (e.g., n). This same approach
provides the scalar product of two vectors V and U in terms of their associated
I-forms v and u as

scalarproduct=V .y =v.-U=u-V=U- v = Vlu1+V2u2 = v1U1+v2U2.

These results are easily generalized to more dimensions, to spaces that have
an indefinite metric, and even to more general spaces, such as those discussed in
Section 7.11. For example, in a four-dimensional Minkowski space, the 1-form,
v, associated with the vector V, is vg = Vo, v = vl vy = -v2, vy = —V3,
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so the squared length of the vector V is
VOuy + Vv 4+ V205 + V3 = vOVO —vivl —y2y2 _yidys,
The Lorentz transformations can be expressed in terms of the basis vectors. If
we let x, x!, x2, x3 be the coordinates in aframe S and x¥ = x? (xo, x!, %2, x3)

be the transformed coordinates in the frame §’, then the Lorentz transformation
can be written as

’

X =1 and  x® =1%xF, (7.50)
where L g’ 18 the inverse transformation of L“/ﬂ. The basis vectors transform as
ew =LPyes and e, =L yep. (7.51)

Any vector transforms as v = v%e, = vﬁ/eﬂr, S0 (n, v) = NEv* = na/v“/. This
means that 1-forms transform as n = nyw* = na/w‘)‘/, and it follows that

o =10  and @ =L% e, (7.52)
SO

v = L"‘/ﬁv'3 and VY = L“lg/vﬁ/, (7.53)
and

e =Ulymg  and  ne=1Fgng. (7.54)

To convert vectors, sum on the second (lowered) index of the transformation
matrix. To convert 1-forms, sum on the first (raised) index. In tensor notation,
vectors are columns, while 1-forms are rows.

Scalars, vectors and 1-forms are simple examples of geometric objects called
tensors. A tensor is a functional into which we insert p vectors and n 1-forms
to produce a mapping onto a scalar. We describe a tensor by saying that it has a
rank given by the numbers n and p, where n is the number of 1-forms insertions
possible and p is the number of possible vector insertions. A tensor, Q, with n
I-form slots and p vector slots is written as Q of rank (Z ) A tensor H of rank
(: ) is a functional into which we can insert n 1-forms o, A, ..., 8 and p vec-
tors u, v, ..., w to produce a scalar. For example, the energy momentum vector
(E/c, p) is a tensor of rank ((1)), since contracting it with a 1-form produces a
scalar. An example of an ordinary second-rank tensor is the quadrupole tensor of
rank (é)

Although the components of 1-forms are written with their indices down, the
number of 1-form slots is written as the upper of the two numbers used to give the
rank of a tensor. This is because in component notation the object generated will
have that number of indices to be contracted with 1-forms. For example, if S is a
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tensor of rank (?),
S(oa®, AgaP 1" e)) = auhpv? S(@%, P, e,) = S aurpv?,  (1.55)

where the S*# y are called the components of the tensor § in the chosen coordinate
frame. The output of § is a scalar (see Eq. (7.55)), so if we repeat this calcula-
tion in another Lorentz frame, we obtain the transformation law for the tensor
components under a coordinate transformation,

N ] i L1 L9 (7.56)

The metric tensor can be used to convert indices from vector to 1-form or 1-form
to vector; for example,
S%gy = 8855%7y. (7.57)
Hence, any tensor of rank (Z) can be converted by the metric tensor, without
loss of information, to any arrangement of tensor and 1-form indices desired as
long as the total number of indices (n + p) is conserved. All of these objects are
different coordinate forms of the same geometric object (tensor).
Consider our two-dimensional example with a vector, u, whose components

are (a, b) and a 1-form, o, with components (c, d). If we examine a tensor W of
rank (i) then, from Eq. (7.55),

W (o, u) = W*goguf = Woyca + WO b + W'oda + W'idb.

Physically, by using sets of vectors, u’s, and 1-forms, o’s, and measuring the
value of the scalar field W (o, u), the values of the components of W%g can be
determined in one frame. And from Eq. (7.56), specialized to the number and
type of components, the values in all inertial frames are known. In a Minkowski
space with pseudo-Cartesian coordinates, the components of the tensor W of rank
(1) can be converted to a corresponding tensor of rank (J) using the metric tensor
in Eq. (7.33) {goo = 1, g11 = g22 = g33 = —1} and the expression in Eq. (7.57)
to give the following relations:

Woo = goo W% = WY, Wor = gooW°1 = WY,
Wio = guW'lo = —wl, and Wi =guwh =-w'.

Given any two vectors, we can construct a second-rank tensor by the operation
called tensor product, T = u ® v. The tensor product is a machine whose output
is a number when the two vectors and the two 1-forms are inserted

u®vVv)(o,A) = (o,u){r, V). (7.58)
The components of the tensor product are

T = y*P, (7.59)
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In our two-dimensional example of vector u with components (a, b) and vector
v with components (c, d), Eq. (7.59) becomes written in tensor form

afy _ [ac ad
(T )_<bc bd)'

This process can be continued and could include 1-forms as well as vectors; for
example, two vectors (u, v) and a 1-form (o) would be written asu ® v ® o.

Other useful operations include the gradient, contraction, the divergence, and
the wedge product. First, let us consider the gradient operation. We used d for
the gradient operation on scalars. For a higher-rank tensor, the gradient is often
denoted by V. In three-dimensional Cartesian space, V is the operator

0 0 0
V=i—+j—+k—,
lax + ay + 9z
which may also be written as
0, 0 + +
=el— +ter— +e3—.
T T T2 T3

Returning to 4-dimensions, an example of a more general case, let S be a (g) rank
tensor, then by definition, VS(u, v, w, §) = 8§S(u, v, w) with the vectors u, v, w
held fixed, and

aS
VS(u, v, W, &) = 3 (Sap,u®vPw?) = %Sauavﬂwy = Supy.s&uvPw? .
X
(7.60)
That is, the gradient operates only on the coefficients in the definition of the tensor,
not on the included vector fields. Since the vectors and 1-forms in Eq. (7.60) are
arbitrary and constant, we can rewrite the preceding as

3s,
O (Sapy) = 8§ﬁay’35= wpy.sE’, (7.60)

where the £° define the direction of the gradient, and the last equality shows
clearly that the derivative does not operate on the vector given by &°.

In Minkowski spacetime, contracting the energy momentum vector (E/c, p)
with the charge-current 1-form (pc, —J) produces the scalar (Ep — p - J). This
idea can be extended to reduce the rank of a tensor by a process called contraction.
The contraction operation can be performed on any tensor whose total rank (sum
of vector and 1-form indices) is equal to or greater than 2. To do this, enter a basis
vector in one slot and the corresponding 1-form basis in another slot and sum
over the basis, thereby producing a lower-rank tensor. For example, consider the
4-index tensor whose components are RW‘8 v. We can form a two-index tensor
by the inserting a basis 1-form into the first slot of the tensor definition, and the
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related basis vector in the third slot, and summing over the basis set. Formally,

R(eq, u, w*,v) = M(u, v), (7.61)
or in component form
M utv” = Ry~ yutv”, (7.62)
which can be written as
My = Ro)*y. (7.62))

In three-dimensional Cartesian space, the divergence of a vector V is the scalar

quantlty V.v= 38‘)/3 + aa‘é + 57 9% while in 4-dimensional space the 4-divergence

is a ,l In Minkowski spacetime the 4-divergence operator is often denoted by the
same symbol, V, in italics, or by (J whose components are

1

O.=V. _w“B
xOl

with @ the 1-form basic components. For example, the continuity equation in
electromagnetic theory is
d(pc) . 0p

9
- =d.J=V.J = Vej= — V.i=0.
axk e TV T TV

The operator V2 (sometimes written as [1?) is called the d’ Alembertian and is

9 9 1 92 92 92 92
=V =V.V=g = | —= 4+ —=+—
Bx/‘ axv 2912 (8x2 + dy? + 972

where the last equality is the expression in Minkowski space with Cartesian
coordinates. The 4-divergence operator on tensors reduces the rank of the tensor
by 1. For spacetime tensors, the divergence is written as V- S and, considering as
an example a tensor S with a slot for a 1-form and three vector slots,

O Su,v) = Ve S(u,v) = V- S(0%, u, v, e4) = S%, quPv?.  (7.63)

That is, the gradient of Eq. (7.60) is taken along a basis direction, and then a
contraction is formed between this direction and one of the 1-form slots in the
tensor. In component form, this reduces to

VeS8, =Sy 4. (7.63')

The final tensor operator we need is the wedge product, also called the bivector
or biform, which is

UANV=UR®V—VRU, (7.64)
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where the tensor product, ®, was defined in Eq. (7.58). The wedge product is an
antisymmetric vector product. In component form, Eq. (7.64) becomes

(u A )P = u*vP — v*ub. (7.64")

Successive A operations can be strung together just like the ® operator. The
wedge product is useful whenever we deal with antisymmetric expressions. In
particular, when we look at the electromagnetic field in the next section, we will
discover that the fundamental field tensor, called Faraday, can be expressed in
terms of the wedge product.

Consider the two-dimensional example used previously, where u = u'e; +
u’e; and v = v'e; + v?ey. The wedge product in Eq. (7.64") has components
W = u A v given by

W= ulv! —olul wlo? — u2! . 0 ulv? — vly?
- (uzvl —viul u? - v2u2> - (uzv1 —v%u! 0 )

Although the examples given above assumed a certain combination of 1-form
slots and vector slots, we must stress that the metric tensor can be used to produce
a tensor with indices in any desired position.

FORCES IN THE SPECIAL THEORY; ELECTROMAGNETISM

The preceding material has been concerned with the kinematics of the special
theory. The dynamics of the theory follows from the assumption that Newton’s
laws are correct for objects at rest in the rest frame of the observer, nearly correct
for objects moving slowly relative to the speed of light, and require generaliza-
tions to covariant equations. The correct generalization of the three-velocity to the
four-velocity was given in Eq. (7.27). So we must generalize the force law,

d(mv')
dt

F =

: (7.65)

to a covariant form.

Since Maxwell’s equations are assumed to be a correct description, we shall
briefly consider a covariant reformulation of electromagnetic theory as a guide
for the correct form of the force laws of mechanics. The vector and scalar elec-
tromagnetic potentials form a four-vector A* = (¢/c, A). If the potentials satisfy
the Lorenz condition (in SI units), which is the vanishing of the four-divergence
of the electromagnetic potential 4-vector,

dAH

¢
O0.-A=V.A=——=V.A — =0, 7.66
o +lt0808t (7.66)

they separately satisfy the wave equations of the form (where poeg = 1/c2)

[(’A = VA = v VA = poj (7.67a)
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for the space components and for the time component

1 0% p
p=Vop=—— —Vp="—. 7.67b
b=Vo=555 Vo= (7.67b)
In terms of ¢ and A, the Lorentz force is F = g{—V¢ + %% + 1[v x (V x A)]}.
This suggests that we should generalize the Lorentz force law to
d d(u'A dA
D _ o (A0 A)_ dAy (7.68)
dt oxH dr

For the three-momentum, p3, and three-velocity, v, Eq. (7.68) becomes

d

P gE®+vxB), (7.68")

dt
with E the electric field, B the magnetic field, and e the electric charge. The geo-
metric approach is to define a tensor F, named Faraday, whose components will
be the electromagnetic field tensor and write, with u the 4-velocity,

dp

e = gF(u). (7.69)
In component notation, this becomes
dp*

;r = qF"guP. (7.70)

This produces Maxwell’s equations, provided (according to Eq. (7.68)) F%g is
given by

0 E, E, E,
E 0 cB —cB
o X z y
Fo=|E _en. o0 B | (7.71)
E

. ¢By —cBy 0

In Minkowski space, the indices are raised and lowered by the metric tensor
(Eq. (7.33)), so

0 —-E. -—-E, -E

E 0 —cB cB,
aff __ X z y /
cF* = E, cB. 0 —eB, | (7.71")

E, —cBy By 0
and

0 E, Ey E,
| —Ex 0 —cB, «¢By ”
cFyp = _E, cB, 0 —¢B, (7.717)

—E, —cBy By 0
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The Faraday tensor can be written in at least two different ways using either the
tensor product, Eq. (7.58), or the wedge product, Eq. (7.64), as

F = Fopdx” Q dx? =% wp dx* AdxP.

The latter expression explicitly shows the antisymmetry.
We can write Maxwell’s equation in their normal component form using
geometric notation:

VF=0 and V-F=1J, (7.72)

where J is the 4-current density with components (pc, j), where p is the charge
density and j is the three-current density. The first of these equations produces
(using three-dimensional notation) V- B = 0 and dB/dt + V x E = 0, while the
second gives V- E = p/gg and (1/¢?) dE/dt — V x B = —uqj.

Following the guide provided by the covariant formulation of electromagnetic
theory, the proper generalization of Newton’s second law, Eq. (7.65), is

@ = K", (7.73)
dt
where K* is a 4-vector force, known as the Minkowski force. The spatial compo-
nents of K* are not the components of the force in Eq. (7.65), but rather they are
quantities that reduce to the F' as  — 0. The exact form clearly results from
the Lorentz transformation properties of the forces present. Some aspects of the
4-force are listed in Table 7.1.

The general question (which cannot be uniquely resolved) is, How do we find
the proper relativistic expression for force? Electromagnetism is used to justify the
special theory, so we should expect no problem with it. As we saw in the previous
paragraphs, this is trivial for electromagnetic forces because the special theory and
the Lorentz transformations are constructed to make Maxwell’s electromagnetic
theory covariant. For example, the electromagnetic force is given by Eq. (7.68) as

o (dwA” _dA, -
LA A o dr '

with ¢ the charge on the particles and A, the components of the four-potential
given by (¢/c,A). Note that ¢ is the scalar potential and A is the three-
dimensional electromagnetic vector potential. So the ordinary force, F;, and
the spatial component of the Minkowski electromagnetic force, K;, are related by

— K1 p2. (7.75)

What about other forces? Two methods are commonly used to deduce acceptable
transformation properties of forces and hence the correct relativistic form of the
forces.
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The first method is to argue that there are only four fundamental forces
in nature—gravitational, weak nuclear, electromagnetic, and strong nuclear. A
correct relativistic theory must provide valid expressions for these four forces.
These expressions, if stated in covariant form, will automatically provide the
transformation properties of the forces. In this approach, since we understand
electromagnetic forces, it remains to find expressions for the other three funda-
mental forces in a covariant form in some frame and assume this is correct in
all inertial frames. It is assumed the transformations involve no terms that vanish
in the chosen frame; for example, there is no need to arbitrarily add terms pro-
portional to (v/c)3. This program has been carried out for two of the remaining
three forces (weak nuclear and strong nuclear) and for weak gravitational forces.
It fails completely for strong gravitational effects. It is beyond the scope of the
present text to probe more deeply in to this question.

The second approach of determining the correct relativistic force is to simply
define force as being the time rate of change of the momentum. Then we write

dpi

=F; 7.76
r i (7.76)

where the p; in Eq. (7.76) is some relativistic generalization of the Newtonian
momentum that reduces to mv; in the limit of small 8. The simplest generalization
is the one given in Eq. (7.36). This second approach has thus far failed to produce
any results other than those predicted by the first approach.

RELATIVISTIC KINEMATICS OF COLLISIONS
AND MANY-PARTICLE SYSTEMS

The formulations of the previous sections enable us to generalize relativistically
the discussion of Section 3.11 on the transformation of collision phenomena
between various systems. The subject is of considerable interest in experimen-
tal high-energy physics. While the forces between elementary particles are only
imperfectly known, and are certainly far from classical, so long as the parti-
cles involved in a reaction are outside the region of mutual interaction their
mean motion can be described by classical mechanics. Further, the main principle
involved in the transformations—conservation of the four-vector of momentum—
is valid in both classical and quantum mechanics. The actual collision or reaction
is taken as occurring at a point—or inside a very small black box—and we look
only at the behavior of the particles before and after.

Because of the importance to high-energy physics, this aspect of relativistic
kinematics has become an elaborately developed field. It is impossible to give
a comprehensive discussion here. All that we can do is provide some of the
important tools, and cite a few simple examples that may illustrate the flavor of
the techniques employed. Although many collision experiments involve colliding
beams, we shall, for simplicity, confine our attentions to problems where one of
the particles is at rest in the laboratory frame. The generalization to both particles
moving in the laboratory frame is straightforward.
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The notion of a point designated as the center of mass obviously presents
difficulties in a Lorentz-invariant theory. But the center-of-mass system can be
suitably generalized as the Lorentz frame of reference in which the total spatial
linear momentum of all particles is zero. That such a Lorentz frame can always
be found follows from the theorem that the total momentum 4-vector is timelike
for a system of mass points.

One such frame is the center-of-momentum frame. This is a frame in which
the components of the spatial momentum of the initial particles add to zero. Such
a frame obviously exists. Let us define E and p in Eq. (7.36) to be

n n
E=)E and p=)_p (7.77)
i=1 i=1

where the sum is over the particles involved. The left-hand side of Eq. (7.38)
becomes

D memse® =Y memgyys(ve - V). (7.78)
s r,s

This clearly is positive (hint: separate the negative terms in which r = s), so
it is possible to find a frame in which the three-momentum, p, equals zero. The
Lorentz system, in which the spatial components of the total momentum are zero,
is termed the center-of-momentum system, or more loosely, and somewhat incor-
rectly, as the center-of-mass system, and will be designated by the abbreviation
“C-O-M system.”

As an example, let us consider a particle of mass .| and momentum p! in the
x-direction, which suffers a head-on collision with a particle of mass m at rest in
an experimenter’s frame (called the laboratory frame). The initial 4-momentum is

p" = (Imiy +male,miyv',0,0). (7.79)
The length squared of momentum has the magnitude
W o2 2 2 /
Pl pu = (my +m5 4+ 2myyma)c”. (7.79%)
When components are given, we shall follow the practice of denoting the primed
frame by primes on the indices. The two particles are denoted by subscripts
1 and 2 respectively.
In the C-O-M system, the total momentum is
(Im1y{ +m2y;le,0,0,0), (7.80)

since by definition the space part of the momentum vanishes,

myy|Bic + may;Bye =0, (7.81)
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where B and B, are the velocities of m and m;, respectively, in the C-O-M
frame.

The boost, B, needed to go from the laboratory to the C-O-M frame, has the
value

B,=-B. (7.81)

Since all velocities are parallel, the velocity addition formula Eq. (7.15) gives
the velocity B of mass m in the C-O-M system in terms of B and its velocity
B = v/c in the laboratory frame,

PP
L-pp

The total squared momentum in the C-O-M frame given in Eq. (7.80) can be
rewritten using the results of Eqgs. (7.81) and (7.82) as

B (7.82)

202 12N 2
W mBA(— e
Pbr B—p

Equating Egs. (7.79) and (7.83) gives a single equation that can be solved for
the boost velocity B’. There are two real roots, one of which corresponds to the
physically meaningful case of 8/ < 1.

Since the spatial momentum in the C-O-M frame is zero, there is clearly more
energy, p, in this frame than in the laboratory frame.* The excess energy in the
C-O-M frame, AE, is obtained by subtracting the time component of Eq. (7.79)
from the time component of Eq. (7.80).

The total momentum four vector is conserved, which automatically implies
both conservation of spatial linear momentum and conservation of total energy
(including rest mass energy). Our major tools for making use of the conserva-
tion principle are Lorentz transformations to and from the C-O-M system, and
the formation of Lorentz invariants (world scalars) having the same value in all
Lorentz frames. Since energy and momentum are combined into one conservation
law, the relativistic results are more easily obtained than the nonrelativistic results
of previous chapters. The transformations between laboratory system and C-O-M
system are merely special cases of the Lorentz transformation.

As an example of the use of Lorentz invariants, let us consider a reaction ini-
tiated by two particles that produces another set of particles with masses m,,
r =3,4,5,.... In the C-O-M system, the transformed total momentum is

(7.83)

PY = (E'/ec,0,0,0). (7.84)

It is often convenient to look on the C-O-M system as the proper (or rest) system
of a composite mass particle of mass M = E’/c2." The square of the magnitude of

*For a single particle, the energy has a minimum value, mc?, in the rest frame. The C-O-M frame is
not the rest frame of either particle.

'I'Although it is customary in high-energy physics to use units in which ¢ = 1, it seems more helpful
in an introductory exposition such as this to retain the powers of ¢ throughout.
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P must be invariant in all Lorentz systems and conserved in the reaction. Hence,
we have
P,P* =P P/*’—E/z—M22 7.85
" = Iy = c—z = Cc. ( . )
But for the initial particles, P, P* can be evaluated as
P, P" = (m} +m3)c* —2p1,phy. (7.86)

The energy in the C-O-M system, or equivalent mass M, is therefore given in
terms of the incident particles as

E? = M*c* = (m} + m3)c* + 2(E 1 E2 — ¢2p1 - po). (7.87)

Suppose now that, one particle, say 2, was initially stationary in the laboratory
system. Since then p; = 0 and E> = myc?, the C-O-M energy becomes

E? = M2 = (m% + m%)c4 + 2m2c2Ei. (7.88)

If the excess of Ep over the rest mass energy be denoted by 77, [cf. Eq. (7.39)]
that is, the kinetic energy, this can be written

E’? = M2c* = (my + mo)2c* + 2mac?Ty. (7.89)

It is clear that the available energy in the C-O-M system increases only slowly
with incident kinetic energy. Even in the “ultrarelativistic” region, where the
Kkinetic energy of motion is very large compared to the rest mass energy, E’
increases only as the square root of 77.

The effect of the proportionally small amount of incident energy available in
the C-O-M system is shown dramatically in terms of the threshold energies. It is
obvious that the lowest energy at which a reaction (other than elastic scattering) is
possible is when the reaction products are at rest in the C-O-M system. Any finite
Kinetic energy requires a higher E’ or equivalently higher incident energy. The
total four-momentum in the C-O-M system after the reaction, denoted by P
has the magnitude at threshold given by

2
PP =2 <Z m,) , (7.90)
r

which, by conservation of momentum, must be the same as Eq. (7.85). For a
stationary target, the incident energy of motion as threshold is then given as a
consequence of Eq. (7.89) by

2
() = om s
T _ r

mic? 2mimy
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If the Q value of the reaction is defined as*

0= |:Zm — (m +m2):| 2, (7.91)

this threshold energy becomes

T _ Q°+200m +my)c?
S = < ) (7.92)
mic 2mimyc
A common illustration of the application of Eq. (7.92) is the historic production
of an antiproton, p, by the reaction, involving a proton p,

p+n—p+n+p+p,

where n is a nucleon, either neutron or proton. The masses of all particles involved
are nearly equal at 938 MeV equivalent rest mass energy and we select Q = 2mc>.
Equation (7.92) then says that the incident particle kinetic energy at threshold
must be

T) = 6mc?® = 5.63 GeV,

which is 3 times the energy represented by Q! If, however, the reaction was
initiated by two nucleons incident on each other with equal and opposite velocity,
then the laboratory system is the same as the C-O-M system. All of the kinetic
energy is available in this case to go into production of the proton—antiproton
pair, and each of the incident particles at threshold need have a kinetic energy of
motion equivalent to only the mass of one proton, 938 MeV. It is no wonder so
much effort has been put into constructing colliding beam machines!

Another instructive example of a threshold calculation is photomeson produc-
tion, say, by the reaction

y+p=3"+KT, (7.93)

where y stands for an incoming photon. For the purposes of classical mechanics,
a photon is a zero-mass particle with spatial momentum %p and energy °pc.’ In
calculating Q, the mass m of the photon is zero:

0 = (mso +mg+ — mp)c? = 749 MeV.

*Q here has the opposite sign to the convention adopted in Eq. (3.112).

TThe square of the magnitude of the photon momentum four-vector is zero, so the vector can be
described as “lightlike.” The C-O-M theorem is imperiled only if all of the particles are photons, and
even then only if the photons are going in the same direction.
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Equation (7.92) is rewritten for a reaction involving an incident photon as

0% +20m)c?

T =0pc 3

2moc
From the value of Q and the rest mass energy m of the proton, the threshold
energy for the reaction Eq. (7.93) is then

71 = 1.05 GeV,

which is only slightly higher than Q.

We can also easily find the energy of the reaction products in the laboratory
system at threshold. The C-O-M system is the rest system for the mass M, with
PY = Mc.In any other system, the zeroth component of the 4-vector is P? =
M cy. But in the laboratory system

Po—l(E +E) =L 2
=~ (E 2)—C(1+m20),

where the last form holds only for a stationary target particle. Hence, the C-O-M
system moves relative to the laboratory system such that

_ E +m2c2

Y (7.94)

But at threshold all the reaction products are at rest in the C-O-M system so that
M =" m,, and therefore
r

_ Ty + (my + ma)c?

(threshold). (7.95)
> myc?
-

The kinetic energy of the sth reaction product in the laboratory system is then
T, = myc*(y — 1). (7.96)

Thus, the antiproton at threshold has a kinetic energy Ty = mc? = 938 MeV. In
contrast, the K+ meson emerges at threshold with 494 MeV.

In Section 3.11, the kinematic transformations of a two-body nonrelativistic
collision were investigated. Eq. (3.117") gives the reduction in energy of an inci-
dent particle after elastic scattering from a stationary target, as a function of the
scattering angle in the C-O-M system. The derivation of the relativistic analog
provides another interesting example of the methods of relativistic kinematics.
Use of Lorentz invariants here is not particularly helpful; instead direct Lorentz
transformations are made between the laboratory and C-O-M systems. Figure 7.4
illustrates the relations of the incident and scattered spatial momentum vectors
in both systems. The incident and scattered momentum vectors define a plane,
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P;
x ®
s
I 4 . .
z pl p2 pl
Py
Py
(a) Center-of-momentum system (b) Laboratory system

FIGURE 7.4 Momentum vectors for relativistic elastic scattering in C-O-M and labora-
tory Lorentz frames.

invariant in orientation under Lorentz transformation, here taken to be the xz
plane with the incident direction along the z axis. Because the collision is elastic,
the masses of the incident particle, m1, and of the stationary target, m,, remain
unchanged; that is, m3 = m1, mq = my. Primes on the vectors denote C-O-M val-
ues, unprimed vectors are in the laboratory system. To distinguish clearly between
before and after the scattering, the indexes 3 and 4 will be retained for the vectors
after scattering. We have only to remember that 3 denotes the scattered incident
particle, and 4 the recoiling target particle. Components of the separate particle
4-vectors will always have two indices: the first for the particle, the second for the
component.

The Lorentz transformation from the laboratory to the C-O-M system is
defined by the y of Eq. (7.94) with M given by Eq. (7.89):

. E| + mac? _ Ti + (my + ma)c?
\/2m202E1 + (m% + m%)c4 V2mac Ty 4 (my + my)2c

y (7.97)

The quantity B can be found from y, or more directly by arguments similar to
those used to obtain y. In the C-O-M system, the spatial part of the total momen-
tum four-vector is zero; in any other system, the spatial part is McBy. However,
in the laboratory system the spatial part is p;. Hence, by Eq. (7.94) 8 must be
given as

Pic _ Pic
E| + moc? Ty + (my + ma)c?’

B= (7.98)

Because @ is along the z axis, the Lorentz transformation takes (with 8, = 8, =

0) the form given by Eq. (7.11), and the components of pi‘/ in the C-O-M system

are given by
’ 3/ IBEl
Pir=pP1 =V \P1— T
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E/ E
—=p'=y (—1 - ﬂm) . (7.99)

c

After the collision, p’3 is no longer along the z axis, but since the collision is
elastic, its magnitude is the same as that of p}. If ® is the angle between p’ and
the incident direction, as in Section 3.11, then the components of p/3 in the C-O-M
system are

/

/ E
py =pisin®,  pd=plcosO, p =p¥= 71 (7.100)

The transformation back to the laboratory system is the same Lorentz transfor-
mation but with relative velocity — 8. Hence, the components of p3 are

1 1 .
p3 =p3 = p)sin®

3 3/ 0/ ! 'BEi
P3=V(P3 _ﬂp3)=V p1cos® + c

0 o’ 3/ E} /
rp3=v(p3; +Bp3) =y T-Irﬁp]cos@ . (7.101)

IfE i and p/l are substituted in the last of Egs. (7.101), from Egs. (7.99) we obtain,
after a little simplification, an expression for the energy of the scattered particle
in terms of its incident properties:

Es = E1 — y2B(1 — cos ©®)(pic — BE)). (7.102)

In Eq. (7.102), y and 8 must be expressed terms of the incident quantities through
Egs. (7.97) and (7.98), resulting in the relation

2.2
ma pic

2
(pic — BE) = .
Ve = pE 2maEy + (m} + m3)c?

(7.103)

With the help of the relation between p; and E, Eq. (7.38’), this can be written

maTy(Ty + 2myc?)

2
— BE)) = .
v B(pic = BED) 2my Ty + (my + my)3c?

(7.104)

Some further algebraic manipulation then enables us to rewrite Eq. (7.102) as

L, _ 20-&/2

=1- VT (1 cos@®), 7.105
T, 1+ p)?+ Zpé’l( ) ( )
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where p = m/my, as in Section 3.11 for elastic scattering, and & is the kinetic
energy of the incident particle in units of the rest mass energy,

T

mic

& =

5. (7.106)

Equation (7.105) is the relativistic counterpart of Eq. (3.117’). It is easy to see
that Eq. (7.105) reduces to the nonrelativistic case as £ — 0, and that if p = 1
(equal masses), the relativistic corrections cancel completely. Equation (7.105)
implies that the minimum energy after scattering, in units of mc?, is given by

(1 —p)?

Emin =E1————7—=-
(&3) Y+ p)2 + 208

(7.107)

In the nonrelativistic limit, the minimum fractional energy after scattering is

(&3)min I—p 2

g <1 +p) ; & K, (7.108)
which is a well-known result, easily obtained from Eq. (3.117’). Equation (7.108)
says that in the nonrelativistic region a particle of mass m cannot lose much
kinetic energy through scattering from a much heavier particle, that is, when
p < 1, which clearly agrees with common sense. However, in the ultrarelativistic
region, when p&; >> 1, the minimum energy after scattering is independent of £;:

2.2
(my —myp)“c”

(T3)min = ; p&1 > 1. (7.109)

2mo

Since the condition on & is equivalent to requiring 77 > moc?, it follows from
Eq. (7.109) that such a particle can lose a large fraction of its energy even when
scattered by a much heavier particle. This behavior is unexpected, but it should be
remembered that for particles at these energies, traveling very close to the speed
of light, even a slight change in velocity corresponds to a large change in energy.

Finally, we may easily obtain the relation between the scattering angles in the
C-O-M and laboratory system by noting that (first index particle, second compo-
nent)

in®
tang = 2L ST (7.110)

p BE|
By (cos e+ ?Cl)
By Eq. (7.36),

/ /
pic Y

= l—g, 7.111
7= =h (7.111)




7.8 1

7.8 Relativistic Angular Momentum 309

so that tan ¥ can also be written

sin ®
tany = —————r. (7.112)
y(cos © + B/f;)
In terms of initial quantities, Eqs. (7.99) show that
pe; B(E—8p)
— = PR (7.113)
pic p1— =t
This can be further reduced by employing the relations (cf. Eq. (7.98))
1
P = —, (7.114)

21 —@ mac

my(my +ma)c* + mac?Ty
E| — = . 7.115
L= hn (my +mp)c? + Ty ( )

The final expression for tan % can then be written as

tan 9 = sin © (7.116)
Y lcos® + pglp, ENY '

where g(p, £1) is the function

14+ p(1+&)
)= ———, 7.117
g(p, &) A+ &) T p ( )
and y, by Eq. (7.97), takes the form
1+€&
toate (7.118)

(p,&1) = .
Y T o2 + 208

Again, in the nonrelativistic region, y and g tend to unity, and Eq. (7.116)
reduces to Eq. (3.107). The correction function g(p, £1) never really amounts to
much, approaching the constant limit p as £ becomes very large. The important
factor affecting the transformed angle is y, which of course increases indefinitely
as &1 increases. It does not affect the bounds of the angular distribution, when
® = 0 or 7, but its presence means that at other angles ¢ is always smaller than it
would be nonrelativistically. The Lorentz transformation from C-O-M to the labo-
ratory system, which does not affect the transverse component of the momentum,
thus always tends to distort the scattered angular distribution into the forward
direction.

RELATIVISTIC ANGULAR MOMENTUM

In Chapter 1, it was proven that the nonrelativistic angular momentum obeys an
equation of motion much like that for the linear momentum, but with torques
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replacing forces. It was shown that for an isolated system obeying the law of
action and reaction the total angular momentum is conserved, and that in the
C-O-M system it is independent of the point of reference. All of these statements
have their relativistic counterparts, at times involving some additional restrictions.

For a single particle, let us define an antisymmetric tensor of rank ((2)) in
Minkowski space using the formalism of Eq. (7.64)

m=XxAp (7.119)
whose elements would be
m* = x*p¥ — x¥ ph. (7.120)

The 3 x 3 subtensor m'/ clearly corresponds, as was seen in Section 5.1, with
the spatial angular momentum of the particle. An equation of motion for m"¥ can
be found by taking its derivative with respect to the particle’s proper time and
making use of Eq. (7.73) giving

dm
d—:u/\p+x/\K:x/\K, (7.121)
T

where the first term vanishes by the antisymmetry of the wedge product and K is
the Minkowski force. In component notation, Eq. (7.121) becomes

dmM

=K KR (7.122)
T

This suggests we define the relativistic generalization of the torque by
N=xAK, (7.123)
whose components are
N# = x*KY — x"K". (7.124)

Thus, m obeys the equations of motion

d
d—m =N, (7.125)
T
whose component form is
dmM
';' = NP, (7.126)
T

with Eq. (1.11) as the nonrelativistic limiting form.
For a system involving a collection of particles, a total angular momentum
4-tensor can be defined (analogously to the total linear momentum 4-vector) as

M= st (7.127)
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or in component form

M"Y =", (7.128)
S

where the index s denotes the sth particle. It is more difficult to form an equation
of motion for M because each particle has its own proper time. (For the same rea-
son, we did not attempt it even for P.) Nevertheless, plausible arguments can be
given for the conservation of M under certain circumstances. If the system is com-
pletely isolated and the particles do not interact with each other or with the outside
world (including fields), then m for each particle is conserved by Eq. (7.126), and
therefore M is also conserved. Even if the particles interact, but the interaction
takes place only through binary collisions at a point, there still could be conser-
vation as can be seen from the following argument. Instantaneously when the two
particles collide they are traveling together and have the same proper time. In
other words, their world lines cross and they share the same event. One can there-
fore write an equation of motion of the form of Eq. (7.126) for the sum of their
angular momenta. If the impulsive forces of contact are equal and opposite—as
we would expect from conservation of linear momentum in the collision—then
the sum of the impulsive torques cancel. Hence relativistic angular momentum is
also conserved through such collisions. Note that unlike the nonrelativistic case
covariance requires that the interactions are assumed to be instantaneous point
collisions.

The relativistic angular momentum obeys the same kind of theorem regarding
translation of the reference point as does its nonrelativistic counterpart. In the def-
inition, Eq. (7.120) or Eq. (7.128), the reference point (really reference “event”)
is the arbitrary origin of the Lorentz system. With respect to some other reference
event a,, the total angular momentum is

M(a) =) (X — @) A ps (7.129)
= M(0) —a; A P (7.130)

As in the nonrelativistic case, the change in the angular momentum components
is equal to the angular momentum, relative to the origin, that the whole system
would have if it were located at a;,,.

In Chapter 1, one particular reference point played an important role—the cen-
ter of mass. We can find something similar here, at least in one Lorentz frame, by
examining the nature of the mixed time and space components of M*¥, namely,
M% = —MJ% By definition, in some particular Lorentz frame, these components
are given by

MY =" pl = x{ pd) (7.131)
)

- Xl E,
ey (tpg - xc—2> . (7.132)
N
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In the C-O-M frame, the total linear momentum p = 3" p, vanishes, and M%/ in
this frame has the form

. E
MY =y ey (7.133)
C

N

If the system is such that the total angular momentum is conserved, as described
above, then along with other components M is conserved and hence

szj E; = constant.
N

Conservation of total linear momentum means that E = ) E; is also conserved.
It is therefore possible to define a spatial point R,

Z xsj E;
s

Y E
N

Rj = (7.134)

associated with the system, which is stationary in the C-O-M coordinate frame.
In the nonrelativistic limit, where to first approximation E; = mgc?, Eq. (7.134)
reduces to the usual definition, Eq. (1.21). Thus, a meaningful center of mass
(sometimes called center of energy) can be defined in special relativity only in
terms of the angular-momentum tensor, and only for a particular frame of refer-
ence. Finally, it should be noted that by Eq. (7.130) the spatial part of the angular
momentum tensor, M, is independent of reference point in the C-O-M system,
exactly as in the nonrelativistic case.

Except for the special case of point collisions, we have so far carefully skirted
the problem of finding the motion of a relativistic particle given the Minkowski
forces. To this more general problem we address ourselves in the next section,
within the nominal framework of the Lagrangian formulation.

THE LAGRANGIAN FORMULATION OF RELATIVISTIC MECHANICS

Having established the appropriate generalization of Newton’s equation of motion
for special relativity, we can now seek to establish a Lagrangian formulation of the
resulting relativistic mechanics. Generally speaking, there are two ways in which
this has been attempted. One method makes no pretense at a manifestly covariant
formulation and instead concentrates on reproducing, for some particular Lorentz
frame, the spatial part of the equation of motion, Eq. (7.76). The forces F; may
or may not be suitably related to a covariant Minkowski force. The other method
sets out to obtain a covariant Hamilton’s principle and ensuing Lagrange’s equa-
tions in which space and time are treated in common fashion as coordinates in a
four-dimensional configuration space. The basis for the first method is at times
quite shaky, especially when the forces are not relativistically well formulated.
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Most of the time, however, the equations of motion so obtained, while not man-
ifestly covariant, are relativistically correct for some particular Lorentz frame.
The second method, on the other hand, seems clearly to be the proper approach,
but it quickly runs into difficulties that require skillful handling if they are to be
solvable, even for a single particle. For a system of more than one particle, it
breaks down almost from the start. No satisfactory formulation for an interacting
multiparticle system exists in classical relativistic mechanics except for some few
special cases.

This section follows the first method, seeking to find a Lagrangian that leads
to the relativistic equations of motion in terms of the coordinates of some par-
ticular inertial system. Within these limitations there is no great difficulty in
constructing a suitable Lagrangian. It is true that the method of Section (1.4),
deriving the Lagrangian from D’ Alembert’s principle, will not work here. While
the principle itself remains valid in any given Lorentz frame, the derivation there
is based on p; = m;v;, which is no longer valid relativistically. But we may
also approach the Lagrangian formulation from the alternative route of Hamil-
ton’s principle (Section 2.1) and attempt simply to find a function L for which the
Euler—Lagrange equations, as obtained from the variational principle

n
8l = (Sf Ldt =0, (7.135)
n

agree with the known relativistic equations of motion, Eq. (7.76).
A suitable relativistic Lagrangian for a single particle acted on by conservative
forces independent of velocity would be*

L=-mc*J1-p2—V, (7.136)

where V is the potential, depending only upon position, and 82 = v?/c?, with v
the speed of the particle in the Lorentz frame under consideration. That this is the
correct Lagrangian can be shown by demonstrating that the resultant Lagrange

equations,
d (0L oL _0
dr \ dvi axi

agree with Eq. (7.76). Since the potential is velocity independent v; occurs only
in the first term of (7.136) and therefore

aL i .
S (7.137)

vt /1 — B2

*We do not choose L = mcz,/ 1 — /1 — B2 — V because we want / in Eq. (7.139) to be the total

energy.
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The equations of motion derived from the Lagrangian (7.136) are then

d m . 8V_ ;
dt JT—pg2  oxt 7

which agree with (7.76). Note that the Lagrangian is no longer L = T —V but that
the partial derivative of L with velocity is still the momentum. Indeed, it is this
last fact that ensures the correctness of the Lagrange equations, and we could have
worked backward from Eq. (7.137) to supply at least the velocity dependence of
the Lagrangian.

We can readily extend the Lagrangian (7.136) to systems of many particles
and change from Cartesian to any desired set of generalized coordinates g. The
canonical momenta, P, will still be defined by

oL

= 8—41., (7.138)

1
so that the connection between cyclic coordinates and conservation of the corre-
sponding momenta remains just as in the nonrelativistic theory. Further, just as in
Section (2.7), if L does not contain the time explicitly, there exists a constant of
the motion

h=q¢'Pi—L. (7.139)

However, the identification of & with the energy for, say, a Lagrangian of the form
of Eq. (7.136) cannot proceed along the same route as in Section (2.7). Note that
L in Eq. (7.136) is not at all a homogeneous function of the velocity components.
Nonetheless, direct evaluation of Eq. (7.139) from Eq. (7.136) shows that in this
case h is indeed the total energy:

Y
h= Y 1y,
V1= p2

which, on collecting terms, reduces to

mc2

h:—2+V:T+V+mc2:E. (7.140)

Ny

The quantity 4 is thus again seen to be the total energy E, which is therefore a
constant of the motion under these conditions.

The introduction of velocity-dependent potentials produces no particular diffi-
culty here and can be performed in exactly the same manner as in Section 1.5 for
nonrelativistic mechanics. Thus, the Lagrangian for a single particle of charge, ¢,
in an electromagnetic field is

L=—-mc*\J1—B>—qp+qgA-v. (7.141)
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Note that the canonical momentum is no longer mu; there are now additional
terms arising from the velocity dependent part of the potential:

Pl =mu' +qA'. (7.142)

This phenomenon is not a relativistic one of course; exactly the same addi-
tional term was found in the earlier treatment (cf. Eq. (2.47)). The formulation
of Eq. (7.141) is not manifestly covariant. But we can confidently expect that
the results will hold in all Lorentz frames as a consequence of the relativistic
covariance of the Lorentz force derivable from the velocity dependent potential
in Eq. (7.141).

Almost all of the procedures devised previously for the solution of specific
mechanical problems thus can be carried over into relativistic mechanics. A few
simple examples will be considered here by way of illustration.

1. Motion under a constant force; hyperbolic motion. It will be no loss of gener-
ality to take the x axis as the direction of the constant force. The Lagrangian is

therefore
L=-mc*/1— B2 — max, (7.143)

where $ is x/c and a is the constant magnitude of the force per unit mass. Either
from Eq. (7.143) or directly on the basis of Eq. (7.76), the equation of motion is
easily found to be

d B _a
dt /1= 2 T

The first integration leads to

B _atta
JI-p o«
or
at + o

V2 + (at +a)?

where « is a constant of integration. A second integration over ¢ from O to ¢ and
x from xg to x,

' (at' +a)dt’

X—Xxp=c ,
2+ (at' + )2

leads to the complete solution

X —Xxo= [\/Cz+(af+01)2—\/cz+a2]. (7.144)

c
a
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If the particle starts at rest from the origin so that xo = 0 and vp = 0 = «, then
Eq. (7.144) can be written as

2
2 - A
X+ —| —ctt=—,
a a

which is the equation of a hyperbola in the x, ¢ plane. (Under the same conditions
the nonrelativistic motion is of course a parabola in the x, ¢ plane). The nonrela-
tivistic limit is obtained from Eq. (7.144) by considering (af 4 «) small compared
to c¢; the usual freshman-physics formula for x as a function of ¢ is then easily
obtained, recognizing that in this limit « — vy.

The motion described in this example arises in reasonably realistic situations.
It corresponds, for example, to the acceleration of electrons to relativistic speeds
in the laboratory system by means of a constant and uniform electric field. The
illustration considered next is more academic, but is of interest as an example of
the techniques employed.
2. The relativistic one-dimensional harmonic oscillator. The Lagrangian in this
case is of the form of Eq. (7.136) with

V(x) = thx?. (7.145)

Since L is then not explicitly a function of time and V is not velocity depen-
dent, the total energy E is constant. Equation (7.140) may now be solved for the
velocity x as

AR R (7.146)
2 \dt) (E = V)2 '

For the moment, we shall postpone substituting in the particular form of V (x)
and generalize the problem slightly to include any potential sharing the qualita-
tive characteristics of Eq. (7.145). Thus, let us suppose that V (x) is any poten-
tial function symmetric about the origin and possessing a minimum at that point.
Then providing E lies between V (0) and the maximum of V, the motion will be
oscillatory between limits x = —b and x = +b, determined by

V(xb) =E.

The period of the oscillatory motion is, by Eq. (7.146), to be obtained from

4 (b d
. _/ L (7.147)
c Jo 1— m2c*
V' EVW)?

Equation (7.147), when specialized to the particular Hooke’s law form (7.145)
for V (x), can be expressed in terms of elliptic integrals. We shall instead examine
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the first-order relativistic corrections when the potential energy is always small
compared to the rest mass energy mc?. A change of notation is helpful. The energy
E can be written as

E =mc*(1+ &)
so that here
E-V
—(x)=1+£—xx2=1+x(b2—x2), (7.148)
mc?
where
k
= . 7.149
o 2mc? ( )

To the order (kb?)2, the period, Eq. (7.147) then reduces to

- 3—K(b2 - xz)] ) (7.150)

4/’b dx |:
te- | —1
¢ Jo 2k (b? —x?) 4

The intergral in Eq. (7.150) can be evaluated by elementary means, most simply
by changing variable through x = b sin ¢; the final result is

2 1 3, m 3 kb?
T —— (1—zkb? ) =27/ [1-=— ).
N 8 k 16 mc?

Note that the expression in front of the bracket is 7o, the nonrelativistic period of
the harmonic oscillator. In special relativity, the period of the harmonic oscillator
is thus not independent of the amplitude; instead, there is an amplitude dependent
correction given approximately by

Av At 3 kb* 3

= ~ — = 7.151
V0 70 16 me2 8 ( )

3. Motion of a charged particle in a constant magnetic field. In principle, we
should start from a Lagrangian of the form of Eq. (7.141) with the scalar potential
¢ = 0 and A appropriate to a constant magnetic field (Eq. 5.106). But we know
such a Lagrangian corresponds to the Lorentz force on the charged particle of
charge g, given by

F =¢g(vxB) (7.152)

(cf. Eq. 1.60). Hence, the equation of motion must be

d
P _svxB) =-L(pxB). (7.153)
dt my
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The nature of the force, Eq. (7.152), is clearly such that the magnetic field does
no work on the particle: F-v = 0. Hence, £ must be a constant, as also p and
y by Eq. (7.38'). Further, by Eq. (7.152), there is no component of the force
parallel to B, and the momentum component along that direction must remain
constant. It is therefore no loss of generality to consider the motion only in the
plane perpendicular to B and to let p represent the projection of the total linear
momentum on to that plane. Equation (7.153) then says that the vector p (whose
magnitude is constant) is precessing around the direction of the magnetic field
with a frequency

_48
=

Q (7.154)

referred to as the cyclotron frequency. In the nonrelativistic limit y — 1. This
agrees with the cyclotron resonance expression found in solid state physics texts.
Because y is constant, the velocity vector in the plane is also of constant mag-
nitude and rotating with the same frequency. The particle must therefore move
uniformly in a circular orbit in the plane with angular speed 2. Since the centrifu-
gal force, F, equals mu?/r, it follows that the magnitude of the linear momentum
in the plane must be given by

p =myrQ.

Combining this expression with Eq. (7.154) leads to the relation between the
circle radius and the momentum:

F= . (7.155)

The radius of curvature into which the particle motion is bent depends only upon
the particle properties through the ratio p/q (= Br), which is sometimes called
the magnetic rigidity of the particle. Note that while €2 (Eq. (7.154)) shows rela-
tivistic corrections through the presence of y, the relation between r and p is the
same both relativistically and nonrelativistically. Recall that in both Egs. (7.154)
and (7.155) p is the magnitude of the momentum perpendicular to B, but in calcu-
lating ¥ we must use both the perpendicular and parallel components to find 8.*

COVARIANT LAGRANGIAN FORMULATIONS

The Lagrangian procedure as given above certainly predicts the correct relativistic
equations of motion. Yet it is a relativistic formulation only “in a certain sense.”
No effort has been made to keep to the ideal of a covariant four-dimensional form

*The Larmor precession frequency ey, of Eq. (5.104) has an extra factor of 2, and corresponds to the
precession of a magnetic moment in a constant magnetic field. This is a physically different case from
that of the cyclotron resonance of a charged particle moving at a constant speed in a magnetic field.
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for all the laws of mechanics. Thus, the time ¢ has been treated as a parame-
ter entirely distinct from the spatial coordinates, while a covariant formulation
would require that space and time be considered as entirely similar coordinates
in world space. Clearly some invariant parameter should be used, instead of ¢, to
trace the progress of the system point in configuration space. Further, the exam-
ples of Lagrangian functions discussed in the previous section do not have any
particular Lorentz transformation properties. Hamilton’s principle must itself be
manifestly covariant, which can only mean in this case that the action integral
must be a world scalar. If the parameter of integration is a Lorentz invariant, then
the Lagrangian function itself must be a world scalar in any covariant formula-
tion. Finally, instead of being a function of x; and x;, the Lagrangian should be
a function of the coordinates in Minkowski space and of their derivatives with
respect to the invariant parameter.

We shall consider primarily a system of only one particle. The natural choice
of the invariant parameter in such a system would seem to be the particle’s proper
time t. But the various components of the generalized velocity, u#", must then
obey the relation

u-u=uu’ =c?, (7.35)

which shows they are not independent. Therefore, we shall instead assume the
choice of some Lorentz-invariant quantity # with no further specification than that
it be a monotonic function of the progress of the world point along the particle’s
world line. For the purpose of this discussion, a superscript prime will be used to
denote differentiation with respect to 6:

w_ @
0"

while a dot over the letter indicates differentiation with respect to 7. A suitably
covariant Hamilton’s principle must therefore appear as

02
61 =8f A(x™, x™) de, (7.156)
0

1

where the Lagrangian function A must be a world scalar and the (x#, x’*) means
a function of all or any of these. Note that this formulation includes what would
have ordinarily been called “time-dependent Lagrangians,” because A is consid-
ered a function of x°. The Euler-Lagrange equations corresponding to Eq. (7.156)
are

d [ dA A _o (1.157)
do \ ax'H dxr '

The problem is to find the form of A such that Egs. (7.157) are equivalent to the
equations of motion, Eq. (7.73).

One way of seeking A is to transform the action integral from the usual integral
over ¢ to one over 0, and to treat the time ¢ appearing explicitly in the Lagrangian
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not as a parameter but as an additional generalized coordinate. Since 6 must be a
monotonic function of ¢ as measured in some Lorentz frame, we have
dx'  dxi do X"
— = — — =c—. (7.158)
dt de dt x/0

Hence, the action integral is transformed as

t ) . 1 6 ) ’J
1:/ L(xf,t,)'c/)dtz—/ L« e )< as.
f ¢ Jo, x’

It would seem therefore that a recipe for a suitable A is given by the relation
/0 1]
AGH, XMy =21 (x“, cx—0> . (7.159)
c x/

The Lagrangian obtained this way is however a strange creature, unlike any
Lagrangian we have so far met. Note that no matter what the functional form of
L, the new Lagrangian A is a homogeneous function of the generalized velocities
in the first degree:

A*, ax™) = aA(xH, x'M). (7.160)

This is not a phenomenon of relativistic physics per se; it is a mathematical conse-
quence of enlarging configuration space to include ¢ as a dynamical variable and
using some other parameter to mark the system-point’s travel through the space.
A Lagrangian obeying Eq. (7.160) is often called (somewhat misleadingly) a
homogeneous Lagrangian and the corresponding “homogeneous” problem of the
calculus of variations requires special treatment. The most serious of the resulting
difficulties will arise in the Hamiltonian formulation, but we can glimpse some of
them by noting that in consequence the energy function /, according to Eq. (2.53),
is identically zero. It follows from Euler’s theorem on homogeneous functions that
if A is homogeneous to first degree in x'*, then

aA

7
A=x PR

We can then show (cf. Derivation 10 at the end of this chapter) that as a result the
function A identically satisfies the relation

d [ aA 2N 160
do \ox® ) e |t T '

Thus, if any three of the Lagrangian Eqs. (7.157) are satisfied, it will follow, solely
as a consequence of the homogeneous property of A, that the fourth is satisfied
identically.

Being thus forewarned to tread carefully, so to speak, let us carry out this trans-
formation for a free particle. From Eq. (7.136), the “relativistic” but “noncovariant”
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Lagrangian for the free particle is

L = —mcm .
By the transformation of Eq. (7.159), a possible covariant Lagrangian is then

A = —mec, /xl’Lx”‘. (7.162)

With this Lagrangian, the Euler—Lagrange equations are equivalent to

d mex’
do /xmx;/L

The parameter 6 must be a monotonic function of the proper time 7 so that deriva-
tives with respect to 6 are related to those in terms of 7 according to

=0.

, dx drt
X'=—=—u.
do  do

Hence, the Lagrangian equations correspond to

d mcu _d(mu)_O
dt \Vu,u®)  dr

which are Egs. (7.73) for a free particle. As we have seen above, the fourth of
these equations says that the kinetic energy 7 is conserved, which is indeed not
new but can be derived from the other three equations.

We have thus been led to a covariant Lagrangian procedure that works, at least
for a single free particle, but only in a tortuous fashion. The elaborate superstruc-
ture can be greatly simplified however by a few bold pragmatic steps. First of
all, we can avoid using € and work in terms of the proper time t directly by a
procedure introduced in a slightly different context by Dirac. The constraint on
the generalized velocities in terms of 7, Eq. (7.35), is not a true dynamical con-
straint on the motion; rather it is a geometric consequence of the way in which
7 is defined. Equation (7.35) says in effect that we cannot roam over the full
four-dimensional u space; we are confined to a particular three-dimensional sur-
face in the space. Dirac calls relations such as Eq. (7.35) weak equations. We
can with impunity treat " as unconstrained quantities, and only after all differ-
entiation operations have been carried out, need the condition of Eq. (7.35) be
imposed. Certainly the procedure would have worked above for the free particle
Lagrangian. There would have been no difference if 6 were set equal to T from the
start and Eq. (7.35) applied only in the last step. The covariant Lagrange equations
can with this proviso therefore be written directly in terms of t:

d [(9A oA
— — =0. (7.163)
dt \ ouV dxV
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Secondly, it is not a sacrosanct physical law that the action integral in Hamil-
ton’s principle must have the same value whether expressed in terms of ¢ or in
terms of 6 (or 7). It needn’t be given by the prescription of Eq. (7.159). All that
is required is that A be a world scalar (or function of a world scalar) that leads to
the correct equations of motion. It doesn’t have to be homogeneous to first degree
in the generalized velocities. For example, a suitable A for a free particle would
clearly be the quadratic expression

A = Imuyu. (7.164)

Many other possibilities are available.* We shall use Eq. (7.162) for the “kinetic
energy” part of the Lagrangian in all subsequent discussions; many present and
future headaches will thereby be avoided.

If the particle is not free, but is acted on by external forces, then interaction
terms have to be added to the Lagrangian of Eq. (7.164) that would lead to
the corresponding Minkowski forces. Very little can be said at this time about
the additional terms, other than they must be Lorentz-invariant. For example, if
G" were some (external) four-vector, then G ,x* would be suitable interaction
term. If in some particular Lorentz frame G| = ma and all other components
vanish, then we would have an example of a constant force such as discussed
in the previous section. In general, these terms will represent the interaction
of the particle with some external field. The specific form will depend upon
the covariant formulation of the field theory. We have only one example of a
field already expressed in a covariant way—the electromagnetic field—and it is
instructive therefore to examine the Lagrangian for a particle in an electromag-
netic field.

A suitable Lagrangian can easily be seen to be

AGH Uty = muut + quit Ay (x). (7.165)
The corresponding Lagrange’s equations are then

d v qdA’ d M
< - _ A
dt (mu”) dt + axV (qu"Ap).

which are exactly the generalized equations of motion Eq. (7.73), with the
Minkowski force K, on a charged particle, Eq. (7.74). Note that again the
“mechanical momentum” four-vector p* differs from the canonical momentum
*In general, A can have the form mf (u,u"), where f(y) is any function of y such that
af 1
3y [y=c2 2"
In Eq. (7.164), we have used f(uyu") = %uvu". The choice

flupuy) = —cy/uyu?

corresponds to Eq. (7.162).
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PH:
v aA L L
PH =gt PP mu* + gA* = p* + gA* (7.166)
u

by a term linear in the electromagnetic potential. The canonical momentum, P,
conjugate to x? is now

E 1—
c C c

where E is the mechanical energy and E is the total energy of the particle, E +
q¢. Thus, the momentum conjugate to the time coordinate is proportional to the
total energy. A similar conjugate connection between these two quantities will
recur later in nonrelativistic theory. The connection between the magnitude of the
spatial “mechanical” momentum and the energy E is still given by Eq. (7.38").
From Eq. (7.166), it is seen that the canonical momenta conjugate to x form the
components of a spatial Cartesian vector P related to p by

P =p+qA. (7.167)
In terms of P, Eq. (7.100) can be rewritten as
E? = (P — qA)? + m%c*, (7.168)

which is a useful relation between the energy E and the canonical momentum
vector P.

The interaction term in the Lagrangian of Eq. (7.165) is an example of a vec-
tor field interaction (as is also a term of the form G, x#). We could also have a
simple scalar field interaction where the term added to the Lagrangian would be
some world scalar 1 (x*). Or more complicated invariant interaction terms can be
created involving an external tensor field. The nature of such Lagrangians prop-
erly stems from the physical field theory involved and cannot concern us further
here.

So far we have spoken only of systems comprising a single mass particle.
Multiparticle systems introduce new complications. One obvious problem is find-
ing an invariant parameter to describe the evolution of the system—each particle
in the system has its own proper time. With a little thought, however, we could
imagine ways of solving this difficulty. For example, the proper time associated
with the C-O-M system involves a symmetric treatment of all the particles and
might prove suitable. We could also include in the picture interactions of the
particles with external fields very much as was done for a single particle. The
great stumbling block however is the treatment of the type of interaction that is
so natural and common in nonrelativistic mechanics—direct interaction between
particles.

At first sight, it would seem indeed that such interactions are impossible
in relativistic mechanics. To say that the force on a particle depends upon the
positions or velocities of other particles at the same time implies propagation of
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effects with infinite velocity from one particle to another—*‘action at a distance.”
In special relativity, where signals cannot travel faster than the speed of light,
action-at-a-distance seems outlawed. And in a certain sense this seems to be the
correct picture. It has been proven that if we require certain properties of the
system to behave in the normal way (such as conservation of total linear momen-
tum), then there can be no covariant direct interaction between particles except
through contact forces.

There have been many attempts in recent years to get around this “no-
interaction” theorem. After all, we have seen that electromagnetic forces can
be expressed covariantly, and a static electric field gives rise to the Coulomb
law of attraction, which has the same form as the supposedly banned Newtonian
gravitational attraction. Some of these attempts have led to approximately covari-
ant Lagrangians, correct through orders of v?/c2. Others involve formulations of
mechanics at variance with our normal structures; most for example cannot be
stated in terms of a simple Hamilton’s principle.

INTRODUCTION TO THE GENERAL THEORY OF RELATIVITY

Thus far we have been careful to use the term “special theory of relativity” and
not to introduce the term “special relativity,” by which we endeavored to make
clear that it is the theory that is special, not the relativity. The special theory uses
ideal inertial frames that are assumed to exist over all of spacetime. The gen-
eral theory not only removes that requirement, but also has a spacetime whose
nature is part of the solution to the question of motion. To paraphrase John A.
Wheeler: “Matter tells space how to bend, and space returns the compliment
by telling matter how to move.” The general theory is often interpreted in terms
of non-Euclidean geometry, so terms like geodesic (paths of extremal distance)
and curvature of spacetime are often used. In this brief section we can only out-
line the formalism of the general theory to show how the full tensor notation is
used.
Five principles guided Einstein in the development of the general theory:

1. Mach’s principle—the special theory used inertial frames. E. Mach observed
that Newtonian inertial frames were not rotating with respect to the fixed
stars. This suggests Mach’s principle, whereby inertial properties are deter-
mined by the presence of other bodies in the universe.

2. Principle of equivalence—whereby the gravitational mass for each body in
the universe can be consistently and universally chosen to equal its inertial
mass. To the best accuracy of all experiments performed to date, the ratio
of the gravitational mass (the mass that appears in Newton’s force law for
gravity) to the inertial mass (the mass that appears in the second law) of
any object is independent of both the total mass and of the composition
of the object. This means that no local experiments can distinguish nonro-
tating free fall in a gravitational field from uniform motion in the absence
of any gravitational fields. Likewise, local experiments cannot distinguish
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between being at rest in a uniform gravitational field and undergoing
uniform acceleration in the absence of any gravitational field (that is, in a
rocket).

3. Principle of covariance—in the special theory, all inertial observers are
equivalent. The general theory extends this idea by postulating the princi-
ple of covariance. This principle is that all observers, inertial or not, observe
the same laws of physics. That means the laws of physics can be expressed
in terms of tensors, since tensors are geometric objects defined independent
of any coordinate system.

4. Correspondence principle—in weak gravitational fields with velocities
small compared to light, the general theory should make predictions
that approximate the predictions of gravitational behavior in Newtonian
mechanics. As gravitational fields go to zero, the correspondence principle
states the predictions of the general theory should approach those of the
special theory.

5. Principle of minimal gravitational coupling—this principle postulates that
no terms explicitly containing the curvature should be added in making the
transition from the special theory to the general theory.

Newton’s first law tells us that in the absence of external force bodies move
along straight lines without acceleration. The preceding guiding principles sug-
gest that in the general theory, objects will move along the geodesics of space-
time. For example, let us consider a family of geodesics that start out parallel. If
gravitational effects in the region under consideration are uniform, the geodesics
will remain parallel. If there is a nonuniform gravitational field, the geodesics
should start to approach or recede. The change in separation, or geodesic devia-
tion, is the proper measure of the gravitational field. Near Earth’s surface, we often
assume the gravitational field is uniform over small regions. Thus, we assume two
falling bodies released side by side fall parallel. An experiment for larger sepa-
rations or longer fall times measures the nonuniformity of Earth’s gravitational
field.

To illustrate this, let us consider an example of two balls separated horizon-
tally by a distance, d, which are dropped at the same time from the same height
high above Earth. Very close to either ball, and neglecting the gravitational mass
of the balls, local experiments will give results that allow us to treat the local
region as an inertial frame. Locally, gravity can be made to vanish by a choice
of coordinate frame. Let us choose this local free-fall frame for our observa-
tions. Locally this satisfies the conditions for an inertial frame. However, as the
balls fall toward Earth, their separation, d, decreases. This change in separation,
rather than the fall toward Earth, is the local measure of the gravitational effect of
Earth since it can not be eliminated by a choice of frame. This is reflected by the
general theory statement that only the tides (differential effects) are real gravita-
tional effects. Any other gravitational effects can be locally eliminated by freely
falling.

Now consider two geodesics as shown in Figure 7.5. We can define two vector
fields at any point. One field, denoted by u, gives the 4-velocity of motion along
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FIGURE 7.5 Tangent vector, u, and deviation vector, &.

the geodesic, while the other field, denoted by &, gives the separation to the next
geodesic. We assume at some time, 7, there were test particles at the head and tail
of the & vector.

We shall use the proper time at the tail of the deviation vector and have the
head point to where the other test particle is at that time. In general, as the motion
progresses, the proper time of the first test particle will not be the same proper
time for the other test particle. A straightforward calculation, in the Newtonian
limit, for the example of two falling balls, gives for the space components of &
perpendicular to the direction toward Earth’s center,

ﬁ = R (7.169)

dr2 ' '
where R depends upon the distance to Earth’s center and other physical constants.
Equation (7.169) says the acceleration in the separation of two geodesics is pro-
portional to their separation. A two-dimensional example is the geodesics on the
surface of a sphere. Consider two initially parallel geodesics on a sphere. These
geodesics will meet after they have traveled one-quarter of the circumference of
the sphere. For this case, Eq. (7.169) has R = 1 /az, where «a is the radius of the
sphere.

If we analyze this problem in three or more dimensions, the relative accelera-
tion is written as D?&/ds> where ds is the length of the travel along the geodesic
and we use a D for the derivative since our coordinate system is completely arbi-
trary. The twists and turns in the coordinate system can cause changes in the com-
ponents of £ even if its magnitude is not changing. As he developed more of the
theory, Einstein discovered that the mathematicians—in particular, Riemann—
had already developed the mathematical tools needed. The metric serves the role
of potentials and derivatives of the metric give the geometric forces. Since the
derivatives of the metric are not tensors, a combination of the derivatives and the
metric must be used. There are also problems introduced by the freedom of using
any coordinate system. Some of the changes are due to physical forces and others
are due to the choice of the coordinate system in analogy to the Coriolis effect in
arotating coordinate system. The correct expression for the deviation of geodesic
motion is provided by a tensor named Riemann. It is constructed of linear com-
binations of second derivatives of the metric contracted with the metric. Riemann
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has slots for three vectors and one slot for a single one-form. If we put the tangent
vector into the second and fourth slots and the deviation vector into the third slot,
Riemann produces

VaVué + Riemann(...,u, &, u) =0, (7.170)
where V, V,, = %. In component notation, Eq. (7.170) is

d2e dxP _ dx®
—— + R¢ —&Y — =0. 7.171
ds? + Ry dt § dt ( )

If we contract Riemann on slots 1 and 3, we produce a tensor called Ricci,
defined as

Ricci(u, v) = Riemann(w®, u, ey, v), (7.172)
whose components are
Ry = R* jav. (7.173)
Another critical contraction produces the curvature scalar, called R
R = Ricciiw®, ey) = R%,. (7.174)

Of all these possible contractions of Riemann, only one tensor of rank ((2)) retains

all the differential symmetries of Riemann. That tensor is called Einstein (denoted
by G) and is defined as

G = Ricci — 1¢R, (7.175)
with components
Guv = Ruv — 38R, (7.176)

Using T to denote the stress-energy tensor, Einstein’s field equations make
Einstein proportional to T'.

G = kT. (7.177)

These equations for weak gravitational fields and for speeds much less than
light approach Newtonian gravitational theory, and for no gravitational fields
produce the results of the special theory. They also correctly predict all the
measured first- and second-order corrections to the special theory of relativity
in experiments thus far performed. In addition, the theory predicts the exis-
tence of gravitational waves from moving masses. Although these waves have
not, at this writing, been directly observed, measured changes in the periods of



328

Chapter 7 The Classical Mechanics of the Special Theory of Relativity

several binary star systems are consistent with the existence of such radiation
existing.

Soon after Einstein proposed Eqs. (7.177), astronomers pointed out that the
solutions of these equations were not consistent with their observation of a
static universe that was neither expanding nor contracting. Einstein modified
the equations by adding a term that was proportional to the metric tensor. The
constant of proportionality, called the cosmological constant, was denoted by A
giving

G+ Ag = kT. (7.178)

Soon after that, astronomers decided that the observational data showed that
the universe was expanding and the cosmological constant was not needed, and
most physicists dropped the term. Einstein said that the cosmological constant
was his greatest mistake. However, the early 21st century observational data on
distant galaxies suggests that the universe is accelerating as it expands. This would
re-introduce the cosmological constant into the field equations. The current ter-
minology, since this would be a A < 0, is to refer to the cosmological con-
stant as “dark energy,” since it is a positive contribution to the right-hand side of
Eq. (7.178).

DERIVATIONS

1. Consider a mechanical system of n particles, with a conservative potential consist-
ing of terms dependent only upon the scalar distance between pairs of particles.
Show explicitly that the Lagrangian for the system when expressed in coordinates
derived by a Galilean transformation differs in form from the original Lagrangian
only by a term that is a total time derivative of a function of the position vectors.
This is a special case of invariance under a point transformation (cf. Derivation 10,
Chapter 1).

2. Obtain the Lorentz transformation in which the velocity is at an infinitesimal angle d6
counterclockwise from the x axis, by means of a similarity transformation applied to
Eq. (7.16). Show directly that the resulting matrix is orthogonal and that the inverse
matrix is obtained by substituting —v for v.

3. The Einstein addition law can also be obtained by remembering that the second
velocity is related directly to the space components of a four-velocity, which may
then be transformed back to the initial system by a Lorentz transformation. If the
second system is moving with a speed v’ relative to the first in the direction of their z
axes, while a third system is moving relative to the second with an arbitrarily oriented
velocity v”, show by this procedure that the magnitude of the velocity v between the
first and third system is given by

m: /l—ﬂ/2 /1_’3//2

1+ p'BY

’
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10.

and that the components of v are

_BI-87 5 V11— B" g B
Y Y+ pBl S +pp

Here B = v}/ /c, and so forth.

. Show that the magnitude of the velocity of the preceding exercise between the first

and the third systems can be given in general by

_B+BY - B xB)

2
’ (1+p-p)>

. Show that the matrix R defined by Eq. (7.21) has the form of a spatial rotation by doing

the matrix multiplication, and by examining the properties of the 3 x 3 submatrix with
elements R;;. Prove that there cannot be two rotation matrices such that Eq. (7.21) is
satisfied; that is, R is unique. Finally, show that L can similarly be uniquely factored
into a rotation and a pure Lorentz transformation in the form

L=PR.

. Show that to each plane wave there is associated a covariant four-vector involving the

frequency and the wave number. From the consequent transformation equations of the
components of the four-vector, derive the Doppler-effect equations.

. From the transformation properties of the world acceleration, show that the compo-

nents of the acceleration a are given in terms of the transformed acceleration a’ in a
system momentarily at rest with respect to the particle by the formulas

_ ax ’ a’ ’ az

ST agpr YT

the x axis being chosen in the direction of the relative velocity.

. By expanding the equation of motion, Eq. (7.73), with Eq. (7.36) for the momentum

show that the force is parallel to the acceleration only when the velocity is either
parallel or perpendicular to the acceleration. Obtain expressions for the coefficients
of the acceleration in these two cases. In the older literature, these coefficients were
known as the longitudinal and transverse masses, respectively.

. A generalized potential suitable for use in a covariant Lagrangian for a single particle

U=—A, M ulu’

where Ay, stands for a symmetric world tensor of the second rank and u" are the
components of the world velocity. If the Lagrangian is made up of Eq. (7.164) minus
U, obtain the Lagrange equations of motion. What is the Minkowski force? Give the
components of the force as observed in some Lorentz frame.

Show that if A satisfies the Lagrange equations, it identically satisfies Eq. (7.161)
on the basis of the homogeneity of A, by explicitly forming the total derivative with
respect to 6 that occurs in the equation.
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11. In special relativity, it is not necessarily obvious that the velocity of system B as
observed in system A is the negative of the velocity vector of system A observed in
system B. From the orthogonality properties of L, prove that the two vectors have
the same magnitude and are in fact the negative of each other. For simplicity, a pure
Lorentz transformation may be assumed, although this condition is not necessary for
the proof.

12. A set of transformations are said to form the group (see Appendix B) if they possess
the following four characteristics:

e The transformation equivalent to two successive transformations (“product” of
transformations) is a member of the set.

e The product operation obeys the associative law.
e The identity transformation is a member of the set.
e The inverse of each transformation in the set is also a member of the set.

Prove that the sets of full Lorentz transformations and of restricted Lorentz transfor-
mation have (separately) the group property.

EXERCISES

13. Show by direct multiplication of the vector form of the Lorentz transformation,
Egs. (7.9), that

14. Calculate the length of a rod of rest length 2 m, moving at 0.73¢ as observed by an
observer at rest. Also, compute at what speed the length in motion of the rod will be
half the rest length?

15. A beam of particles moving with uniform velocity collides with a collection of target
particles that are at rest in a particular system. Let oq be the collision cross section
observed in this system. In another system, the incident particles have a normalized
velocity 1 and the target particles a normalized velocity B,. If o is the observed
cross section in this system, show that

o =0 [ _ B x B)?
B — B)?

Remember that collision rate must be invariant under a Lorentz transformation.

16. For a “close” satellite of Earth (semimajor axis approximately the radius of Earth)
calculate numerically the value of the Thomas precession rate. Compare the result
with the precession rate induced in the orbit because of the oblate figure of Earth.
Assume the satellite orbital plane is inclined at 30° to the equator.
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17. Two particles with rest masses m| and m, are observed to move along the observer’s

18.

19.

20.

21.

22

23

z axis toward each other with speeds v and v,, respectively. Upon collision, they are
observed to coalesce into one particle of rest mass m3 moving with speed v3 relative
to the observer. Find m3 and v3 in terms of my, my, v, and vo. Would it be possible
for the resultant particle to be a photon, that is, m3 = 0, if neither m| nor m, are
zero?

Calculate the mass of an electron moving at 0.84c. Also, comment whether the
electron can be accelerated to the velocity of light. (Rest mass of an electron is
9.1x 10731 kg.)

A meson of mass my at rest disintegrates into a meson of mass m, and a neutrino of

effectively zero mass. Show that the kinetic energy of motion of the i meson is

(mx — mu)z 62
2my ’

T =

Calculate the mean life of a pion travelling at 0.8¢. (Proper mean lifetime for the pion
is 28 nano second.)

A photon may be described classically as a particle of zero mass possessing never-
theless a momentum A /A = hv/c, and therefore a kinetic energy hv. If the photon
collides with an electron of mass m at rest, it will be scattered at some angle 6 with a
new energy hv’. Show that the change in energy is related to the scattering angle by
the formula

0
A — A = 2Ac sin? 7

where A = h/mec, is known as the Compton wavelength. Show also that the kinetic
energy of the recoil motion of the electron is

Calculate the relativistic mass of the photon of wavelength 6600 A. Sketch the varia-
tion of the relativistic mass of the photon as a function of its wavelength.

The theory of rocket motion developed in Exercise 13, Chapter 1, no longer applies in
the relativistic region, in part because there is no longer conservation of mass. Instead,
all the conservation laws are combined into the conservation of the world momentum;
the change in each component of the rocket’s world momentum in an infinitesimal
time dt must be matched by the value of the same component of p, for the gases
ejected by the rocket in that time interval. Show that if there are no external forces
acting on the rocket, the differential equation for its velocity as a function of the
mass is
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24.

25.

26.

27.

28.

29.

30.

31.

where a is the constant velocity of the exhaust gases relative to the rocket. Verify that
the solution can be put in the form

1 (mﬂ())Za/c

mgq being the initial mass of the rocket. Since mass is not conserved, what happens to
the mass that is lost?

ﬁ:

In a Michelson—Morley experiment, taking the distance between the two mirrors from
the plate to be 12 m and the velocity of Earth as 35 km/s, calculate the fringe shift for
a light of wavelength 5 x 1075 cm.

A particle of rest mass m, charge ¢, and initial velocity vq enters a uniform electric
field E perpendicular to vq. Find the subsequent trajectory of the particle and show
that it reduces to a parabola as the limit ¢ becomes infinite.

Show that the relativistic motion of a particle in an attractive inverse-square law of
force is a precessing ellipse. Compute the precession of the perihelion of Mercury
resulting from this effect. (The answer, about 7" per century, is much smaller than
the actual precession of 43 per century that can be accounted for correctly only by
general relativity. The other planets produce a precession greater than 5,000” per
century.)

Starting from the equation of motion (7.73), derive the relativistic analog of the virial
theorem, which states that for motions bounded in space and such that the velocities
involved do not approach indefinitely close to c, then

Lo+T=-F-r,

where L is the form the Lagrangian takes in the absence of external forces. Note that
although neither L nor T corresponds exactly to the kinetic energy in nonrelativistic
mechanics, their sum, L + T, plays the same role as twice the kinetic energy in the
nonrelativistic virial theorem, Eq. (3.26).

Let e; and e, be the basis vectors for a Cartesian coordinate system in a two-
dimensional Euclidean space that contains a crystal whose lattice vectors are a = e
and b = e + e;. Use the underlying Euclidean geometry to determine that the recip-
rocal lattice vectors are A = e; — ey and B = e;. Using the a, b pair as basis vectors,
determine the metric tensor g necessary for A and B to be the 1-forms as defined by
Egs. (7.34') and (7.49).

An electron has a kinetic energy of 3 MeV. Calculate its speed. The rest mass of the
electron is 9.1 x 10731 kg.

The red-shifted spectral line of 5100 A from a star is observed at 5435 A. Calculate
the velocity on the star.

To show that the word “relativity” in the special theory of relativity does not have its
ordinary meaning, consider a disk rotating in an inertial frame about an axis fixed at
its center and perpendicular to the disk. Mounted on the edge of the disk are mirrors
arranged so that light emitted tangentially from a point on the disk is reflected tan-
gentially around the disk back to the starting location. Compare the behavior of light
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32.

emitted in the direction of rotation (assumed clockwise) to the behavior of light emit-
ted in the opposite direction. Now consider a pulse of light emitted by a source on the
axis and used to synchronize the clocks on the perimeter. Since clocks are commonly
synchronized by light and distance in the special theory (elapsed time = distance/c),
what does this say about the absolute sense of rotation in the special theory?

Show that the space components of Eq. (7.68) are identical to the components in the
equation on the preceding line.
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8.1

The Hamilton Equations
of Motion

The Lagrangian formulation of mechanics was developed largely in the first
two chapters, and most of the subsequent discussion has been in the nature of
application, but still within the framework of the Lagrangian procedure. In this
chapter we resume the formal development of mechanics, turning our attention
to an alternative statement of the structure of the theory known as the Hamilto-
nian formulation. Nothing new is added to the physics involved; we simply gain
another (and more powerful) method of working with the physical principles
already established. The Hamiltonian methods are not particularly superior to
Lagrangian techniques for the direct solution of mechanical problems. Rather, the
usefulness of the Hamiltonian viewpoint lies in providing a framework for theo-
retical extensions in many areas of physics. Within classical mechanics it forms
the basis for further developments, such as Hamilton—Jacobi theory, perturbation
approaches and chaos. Outside classical mechanics, the Hamiltonian formulation
provides much of the language with which present-day statistical mechanics and
quantum mechanics is constructed. We shall assume in the following chapters
that the mechanical systems are holonomic and that the forces are monogenic,
that is, derived either from a potential dependent upon position only, or from
velocity-dependent generalized potentials of the type discussed in Section 1.5.

LEGENDRE TRANSFORMATIONS
AND THE HAMILTON EQUATIONS OF MOTION

In the Lagrangian formulation (nonrelativistic), a system with n degrees of free-
dom possesses n equations of motion of the form

d (oL oL
——]——=0. (8.1)
dt \ 9g; agi

As the equations are of second order, the motion of the system is determined for
all time only when 2n initial values are specified, for example, the n ¢;’s and
n ¢;’s at a particular time ¢, or the n g;’s at two times, #; and t,. We represent
the state of the system by a point in an n-dimensional configuration space whose
coordinates are the n generalized coordinates g; and follow the motion of the sys-
tem point in time as it traverses its path in configuration space. Physically, in the
Lagrangian viewpoint a system with n independent degrees of freedom is a prob-
lem in n independent variables ¢;(¢), and ¢g; appears only as a shorthand for the



8.1 Legendre Transformations and the Hamilton Equations of Motion 335

time derivative of g;. All n coordinates must be independent. In the Hamiltonian
formulation there can be no constraint equations among the coordinates. If the n
coordinates are not independent, a reduced set of m coordinates, with m < n, must
be used for the formulation of the problem before proceeding with the following
steps.

The Hamiltonian formulation is based on a fundamentally different picture.
We seek to describe the motion in terms of first-order equations of motion. Since
the number of initial conditions determining the motion must of course still be 2x,
there must be 2x independent first-order equations expressed in terms of 2n inde-
pendent variables. Hence, the 2n equations of the motion describe the behavior
of the system point in a phase space whose coordinates are the 2n independent
variables. In thus doubling our set of independent quantities, it is natural (though
not inevitable) to choose half of them to be the n generalized coordinates g;. As
we shall see, the formulation is nearly symmetric if we choose the other half of
the set to be the generalized or conjugate momenta p; already introduced by the
definition (cf. Eq. (2.44)):

_ L), 45.1)

- (no sum on j) (8.2)
9q;

Di

where the j index shows the set of ¢’s and ¢’s. The quantities (g, p) are known
as the canonical variables.*

From the mathematical viewpoint, it can however be claimed that the ¢’s and
q’s have been treated as distinct variables. In Lagrange’s equations, Eq. (8.1), the
partial derivative of L with respect to g; means a derivative taken with all other ¢g’s
and all ¢’s constant. Similarly, in the partial derivatives with respect to ¢, the g’s
are kept constant. Treated strictly as a mathematical problem, the transition from
Lagrangian to Hamiltonian formulation corresponds to changing the variables in
our mechanical functions from (q, ¢, t) to (¢, p, t), where p is related to g and
q by Eqgs. (8.2). The procedure for switching variables in this manner is provided
by the Legendre transformation, which is tailored for just this type of change of
variable.

Consider a function of only two variables f(x, y), so that a differential of f
has the form

df =udx +vdy, (8.3)
where
0 0
u= —f, v = —f (8.4)
ax ay

We wish now to change the basis of description from x, y to a new distinct set
of variables u, y, so that differential quantities are expressed in terms of the

*Unless otherwise specified, in this and subsequent chapters the symbol p will be used only for the
conjugate or canonical momentum. When the forces are velocity dependent, the canonical momentum
will differ from the corresponding mechanical momentum (cf. Eq. (2.47)).
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differentials du and dy. Let g be a function of u and y defined by the equation
g=f—ux. (8.5)
A differential of g is then given as
dg=df —udx —xdu,
or, by (8.3), as
dg =vdy — xdu,

which is exactly in the form desired. The quantities x and v are now functions of
the variables u# and y given by the relations

g g
V= —

a0 - ) 8.6
au ay (86)

which are the analogues of Egs. (8.4).

The Legendre transformation so defined is used frequently in thermodynamics.
The first law of thermodynamics relates the differential change in energy, dU, to
the corresponding change in heat content, dQ, and the work done, dW:

dU =dQ —dW. (8.7
For a gas undergoing a reversible process, Eq. (8.7) can be written as
dU=TdS—PdV, (8.8)

where U (S, V) is written as a function of the entropy, S, and the volume, V,
where the temperature, 7', and the gas pressure, P, are given by

U U
= — and P=——. (8.9
Y A%

The enthalpy, H (S, P) is generated by the Legendre transformation

H=U+PV, (8.10)
which gives
dH =TdS+VdP, (8.11)
where
= B_H and V = 8_H
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Additional Legendre transformations,

F=U-TS
(8.12)
G=H-TS,

generate the Helmholtz free energy, F (T, V), and the Gibbs free energy, G(T, P).

The transformation from (q, ¢, t) to (g, p, t) differs from the type considered
in Egs. (8.3) to (8.12) only in that more than one variable is to be transformed.
We begin by writing the differential of the Lagrangian, L(q, g, t), as

dL—aLd -—i—aLd"-i-aLdt (8.13)
T T g T '

The canonical momentum was defined in Eq. (2.44) as p; = dL/dq;; substituting
this into the Lagrange equation (8.1), we obtain

. oL
Di = (8.14)
9q;
so Eq. (8.13) can be written as
. . oL ,
dL = pidgi + pidg; + ——dt. (8.13)

The Hamiltonian H (g, p, t) is generated by the Legendre transformation

H(g, p,t) =qipi — L(q,q,1), (8.15)

which has the differential

. . oL
dH = q;dp; — pi dqi _Edt’ (8.16)

where the term p; dg; is removed by the Legendre transformation. Since d H can
also be written as

0H oH oH
dH = “—dq; + “—dp; + Z—dt, (8.17)
g api or

we obtain the 2n + 1 relations

. oH
qi = —
pi

8.18

_ oH ®19
b= 9gi
JL oH

= (8.19)

o A
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Equations (8.18) are known as the canonical equations of Hamilton; they consti-
tute the desired set of 2n first-order equations of motion replacing the n second-
order Lagrange equations.*

The first half of Hamilton’s equations give the ¢;’s as functions of (g, p, t).
They form therefore the inverse of the constitutive equations (8.2), which define
the momenta p; as functions of (g, ¢, t). It may therefore be said that they provide
no new information. In terms of solving mechanical problems by means of the
canonical equations, the statement is correct. But within the framework of the
Hamiltonian picture, where H (g, p, t) is some given function obtained no matter
how, the two halves of the set of Hamiltonian equations are equally independent
and meaningful. The first half says how ¢ depends on ¢, p, and #; the second says
the same thing for p.

Of course, the Hamiltonian H is constructed in the same manner, and has iden-
tically the same value, as &, the energy function defined in Eq. (2.53). But they
are functions of different variables: Like the Lagrangian, 4 is a function of ¢, ¢
(and possibly 7), while H must always be expressed as a function of g, p (and
possibly ¢). It is to emphasize this difference in functional behavior that differ-
ent symbols have been given to the quantities even though they have the same
numerical values.

Nominally, the Hamiltonian for each problem must be constructed via the
Lagrangian formulation. The formal procedure calls for a lengthy sequence of
steps:

1. With a chosen set of generalized coordinates, g;, the Lagrangian L(g;, g;, t)
=T — V is constructed.

2. The conjugate momenta are defined as functions of ¢;, g;, and t by
Egs. (8.2).

3. Equation (8.15) is used to form the Hamiltonian. At this stage we have some
mixed function of g;, ¢;, pi, and t.

4. Equations (8.2) are then inverted to obtain ¢; as functions of (¢, p, t). Pos-
sible difficulties in the inversion will be discussed below.

5. The results of the previous step are then applied to eliminate ¢ from H so
as to express it solely as a function of (g, p, t).

Now we are ready to use the Hamiltonian in the canonical equations of motion.
For many physical systems it is possible to shorten this drawn-out sequence

quite appreciably. As has been described in Section 2.7, in many problems the La-

grangian is the sum of functions each homogeneous in the generalized velocities

*Canonical is used here presumably in the sense of designating a simple, general set of standard
equations. It appears that the term was first introduced by C. G. J. Jacobi in 1837 (Comptes rendus de
I’Académie des Sciences de Paris, 5, p. 61) but in a slightly different context referring to an application
of Hamilton’s equations of motion to perturbation theory. Although the term rapidly gained common
usage, the reason for its introduction apparently remained obscure even to contemporaries. By 1879,
only 45 years after Hamilton explicitly introduced his equations, Thomson (Lord Kelvin) and Tait
were moved by the adjective “canonical” to exclaim: “Why it has been so called would be hard to

»

say.
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of degree 0, 1, and 2, respectively. In that case, H by the prescription of Eq. (8.15)
is given by (cf. Egs. (2.53) and (2.55))

H=¢gipi—L=gqipi —[Lo(gi,t) + L1(qi, )gx + L2(qi, )qxgm]  (8.20)

(no sum on i in the square brackets) where L is the part of the Lagrangian that is
independent of the generalized velocities, L represents the coefficients of the part
of the Lagrangian that is homogeneous in ¢; in the first degree, and L, is the part
that is homogeneous in ¢; in the second degree. Further, if the equations defining
the generalized coordinates don’t depend on time explicitly, then Logignm = T
(the kinetic energy), and if the forces are derivable from a conservative potential
V (that is, work is independent of the path), then Ly = —V. When both these
conditions are satisfied, the Hamiltonian is automatically the total energy:

H=T+V =E. 8.21)

If either Eq. (8.20) or (8.21) holds, then much of the algebra in steps 3 and 4 above
is eliminated.

We can at times go further. In large classes of problems, it happens that L, is a
quadratic function of the generalized velocities and L is a linear function of the
same variables with the following specific functional dependencies:

L(gi, Gi,t) = Lo(q, 1) + giai(q, 1) + ¢} Ti(q, 1), (8.22)

where the g;’s and the T;’s are functions of the ¢’s and ¢.

The algebraic manipulations required in steps 2—-5 can then be carried out, at
least formally, once and for all. To show this, let us form the ¢;’s into a single
column matrix ¢. Under the given assumptions the Lagrangian can be written as

L(g.4.1) = Lo(g. 1) + Ga + 3qTq, (8.23)

where the single row matrix (i has been written explicitly as the transpose of a
single column matrix, ¢. Here a is a column matrix, and T is a square n X n matrix
(much like the corresponding matrix introduced in Section 6.2). The elements of
both are in general functions of ¢ and 7. To illustrate this formalism, let us consider
the special case where g; = {x, y, z} and T is diagonal. We would then write

" | m 0 0[]
FATa= @ |0 m 011y = 5()&2 ) (8.242)
0 0 2
and
~ ax
qa=(xy2) |ay | =acx +ayy+az=a-k (8.24b)

az
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In this notation the Hamiltonian, H = E{p — L, becomes
H=q(p—a) — 1qTq— Lo. (8.24c)

Since T is symmetric, the conjugate momenta, considered as a column matrix p,
is given by Eq. (8.2)

p=Tq+a, (8.25)
which can be inverted (step 4) to the column vector ¢
qg=T"'(p-a. (8.26a)

This step presupposes that T~! exists, which it normally does by virtue of the
positive definite property of kinetic energy.
The corresponding equation for ¢ is

q=p-aT L (8.26b)

To obtain the correct functional form for the Hamiltonian, Eqgs. (8.26) must be
used to replace q and ¢, yielding the final form for the Hamiltonian:

H(g.p.t)=3p— DT '(p—a)— Lo(q, 1. (8.27)

If the Lagrangian can be written in the form of Eq. (8.23), then we can imme-
diately skip the intervening steps and write the Hamiltonian as Eq. (8.27). The
inverse matrix T~! can usually most easily be obtained straightforwardly as

T,

T 1= £,
T|

(8.28)

where T, is the cofactor matrix whose elements (T.) jx are (— 1)/t% times the
determinant of the matrix obtained by striking out the jth row and the kth column
of T.

In the example Eq. (8.24a), these three matrices are given explicitly by

m 0 0 L0 0
T=(0 m o, T'=|0 L o|. and
1
|10 0 m 0 0
3 m?> 0 0
T.=[0 m? 0],
L0 O m?

and the determinant [T| = m?. It is easy to see that for the usual case when T is
diagonal, then T~ is also diagonal with elements that are just the reciprocals of
the corresponding elements of T.
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A number of exercises in applying this formalism to various mechanical sys-
tems will be found in the problems at the end of the chapter. Two very simple
examples are considered here because they illustrate some important aspects of
the technique. First consider the spatial motion of a particle in a central force
field, using spherical polar coordinates (r, 8, ¢) for the generalized coordinates.
The potential energy is some function V (r) and the kinetic energy is

mv2

T="-= %(ﬂ +r2sin2 092 + r262). (8.28")
Clearly the Hamiltonian has the form of Eq. (8.21) and corresponds to the total

energy T + V. Since T is diagonal the form of H is, by inspection,

1 p P2
H(r, 0, pr. po, pp) = (p, + rg + 9) + V(). (8.29)

Note that the Hamiltonian would have a different functional form if the gener-
alized coordinates were chosen to be the Cartesian coordinates x; of the particle.
If we make that choice, then the kinetic energy has the form

mv mx; X;
T = — = s
2 2
so that the Hamiltonian is now
PiDi
H(xi, pi) = # + V(). (8.30)

It is sometimes convenient to form the canonical momenta p; conjugate to x; into
a vector p such that the Hamiltonian can be written as

H(xlvpl)__+v(\/xl D). (8.31)

We can of course take the components of p relative to any coordinate system
we desire, curvilinear spherical coordinates, for example. But it is important not to
confuse, say, pgp with the &6 component of p, designated as (p)g. The former is the
canonical momentum conjugate to the coordinate 6; the latter is the 6 component
of the momentum vector conjugate to the Cartesian coordinates. Dimensionally,
it is clear they are quite separate quantities; pg is an angular momentum, (p)g is a
linear momentum. Whenever a vector is used from here on to represent canonical
momenta it will refer to the momenta conjugate to Cartesian position coordinates.

For a second example, let us consider a single (nonrelativistic) particle of mass
m and charge ¢ moving in an electromagnetic field. By Eq. (1.63), the Lagrangian
for this system is

L=T—V:%mv2—q¢+qA~v,

where the scalar potential term, —g¢, is the Ly term of the Lagrangian as ex-
pressed in Eq. (8.22) and the vector potential term, gA - v, is the L term.
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Using Cartesian position coordinates as generalized coordinates, the Lagrangian
can also be written as

mxi)&i

2

L= +qAixi —q9, (8.32)
where the potentials ¢ and A are in general functions of x; and the time.

There is now a linear term in the generalized velocities such that the matrix
a has the elements g A;. Because of this linear term in V, the Hamiltonian is not
T + V. However, it is still in this case the total energy since the “potential” energy
in an electromagnetic field is determined by ¢ alone. The canonical momenta,
either by Eq. (8.2) or Eq. (8.25), are

pi = mii + qA;, (8.33)
and the Hamiltonian (cf. Eq. (8.27)) is

(pi —qA)(pi —qA)
+
2m

H =

qo, (8.34)

which is the total energy of the particle. Again, the momenta p; can be formed
into a vector p and H written as

1
H=—(p- qA)* + g9, (8.35)
m

and remembering that p refers only to momenta conjugate to x;.

It is clear that Hamilton’s equations of motion do not treat the coordinates and
momenta in a completely symmetric fashion. The equation for p has a minus sign
that is absent in the equation for g. Considerable ingenuity has been exercised
in devising nomenclature schemes that result in entirely symmetric equations,
or combine the two sets into one. Most of these schemes have only curiosity
value, but one has proved to be an elegant and powerful tool for manipulating the
canonical equations and allied expressions.

For a system of n degrees of freedom, we construct a column matrix n with 2n
elements such that

ni = dqi, Nitn = Di} i <n. (8.36)

Similarly, the column matrix d H /dn has the elements

IH IH OH IH ,
amy ot Yy =2 i<n (8.37)
n); dqi M/ ivn  Opi

Finally, let J be the 2n x 2n square matrix composed of four n x n zero and unit
matrices according to the scheme

0 1
|=[_1 0} (8.382)
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with the following transpose matrix, which is its inverse

) = [? _01] , (8.38b)
which means
N=li=1= [(‘, ﬂ , (8.380)
50
J=—)=)"' (8.38d)
and
)? =1, (8.38¢)
and the determinant is
Jl = +1. (8.38f)

Here 0 is the n x n matrix all of whose elements is zero, and 1 is the standard
n X n unit matrix. Hamilton’s equations of motion can then be written in compact
form as

) oH
n= ]—8 . (8.39)
n

For two coordinate variables, this has the expanded form

Q1 0 0 1 0][-p
@l o o o 1||-p
sl=1-1 0 0 ol|a | (8.40)
P2 0 -1 00 92

where use was made of Egs. (8.37) and (8.18). This method of displaying the
canonical equations of motion will be referred to as Hamilton’s equations in
matrix or symplectic* notation. In subsequent chapters we shall frequently em-
ploy this matrix form of the equations.

CYCLIC COORDINATES AND CONSERVATION THEOREMS

According to the definition given in Section 2.6, a cyclic coordinate g is one that
does not appear explicitly in the Lagrangian; by virtue of Lagrange’s equations

*The term symplectic comes from the Greek for “intertwined,” particularly appropriate for Hamilton’s
equations where ¢ is matched with a derivative with respect to p and p similarly with the negative of
a ¢ derivative. H. Weyl first introduced the term in 1939 in his book The Classical Groups.
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its conjugate momentum p; is then a constant. But comparison of Eq. (8.14) with
Eq. (8.16) has already told us that

. oL oH
P %q; " ba;

A coordinate that is cyclic will thus also be absent from the Hamiltonian.* Con-
versely if a generalized coordinate does not occur in H, the conjugate momentum
is conserved. The momentum conservation theorems of Section 2.6 can thus be
transferred to the Hamiltonian formulation with no more than a substitution of H
for L. In particular, the connection between the invariance or symmetry proper-
ties of the physical system and the constants of the motion can also be derived in
terms of the Hamiltonian. For example, if a system is completely self-contained,
with only internal forces between the particles, then the system can be moved as
a rigid ensemble without affecting the forces or subsequent motion. The system
is said to be invariant under a rigid displacement. Hence, a generalized coordinate
describing such a rigid motion will not appear explicitly in the Hamiltonian, and
the corresponding conjugate momentum will be conserved. If the rigid motion is
a translation along some particular direction, then the conserved momentum is
the corresponding Cartesian component of the total linear (canonical) momentum
of the system. Since the direction is arbitrary, the total vector linear momentum
is conserved. The rigid displacement may be a rotation, from whence it follows
that the total angular momentum vector is conserved. Even if the system inter-
acts with external forces, there may be a symmetry in the situation that leads to
a conserved canonical momentum. Suppose the system is symmetrical about a
given axis so that H is invariant under rotation about that axis. Then H obviously
cannot involve the rotation angle about the axis and the particular angle variable
must be a cyclic coordinate. It follows, as in Section 2.6, that the component of
the angular momentum about that axis is conserved. '

The considerations concerning % in Section 2.7 have already shown that if L
(and in consequence of Eq. (8.15), also H) is not an explicit function of ¢, then
H is a constant of motion. This can also be seen directly from the equations of
motion (8.18) by writing the total time derivative of the Hamiltonian as

dH _0H_  0H = OH
di o T ap P

In consequence of the equations of motion (8.18), the first two sums on the right
cancel each other, and it therefore follows that

dH 9H  dL
— == (8.41)
dt ot ot

*This conclusion also follows from the definition of Eq. (8.15), for H differs from —L only by p;q;,
which does not involve ¢g; explicitly.

TThe relation between conservation laws, symmetry of the Lagrangian, (and the Hamiltonian) of the
system is called Noether’s theorem. The formal proof is given in Section 13.7.
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Thus if ¢ doesn’t appear explicitly in L, it will also not be present in H, and H
will be constant in time.

Further, it was proved in Section 2.7 that if the equations of transformation that
define the generalized coordinates (1.38),

Yy =Tn(q1, ... qn; 1),

do not depend explicitly upon the time, and if the potential is velocity indepen-
dent, then H is the total energy, 7+ V. The identification of H as a constant of the
motion and as the total energy are two separate matters, and the conditions suffi-
cient for the one are not enough for the other. It can happen that the Egs. (1.38)
do involve time explicitly but that H does not. In this case, H is a constant of
the motion but it is not the total energy. As was also emphasized in Section (2.6),
the Hamiltonian is dependent both in magnitude and in functional form upon the
initial choice of generalized coordinates. For the Lagrangian, we have a specific
prescription, L = T — V, and a change of generalized coordinates within that
prescription may change the functional appearance of L but cannot alter its mag-
nitude. On the other hand, use of a different set of generalized coordinates in the
definition for the Hamiltonian, Eq. (8.15), may lead to an entirely different quan-
tity for the Hamiltonian. It may be that for one set of generalized coordinates H
is conserved, but that for another it varies in time.

To illustrate some of these points in a simple example, we may consider a
somewhat artificial one-dimensional system. Suppose a point mass m is attached
to a spring, of force constant k, the other end of which is fixed on a massless cart
that is being moved uniformly by an external device with speed vg (cf. Fig. 8.1).
If we take as generalized coordinate the position x of the mass particle in the
stationary system, then the Lagrangian of the system is obviously

mx*  k )

Lx,x,t) =T -V = —— — —(x — vot)

3 (8.42)

(For simplicity, the origin has been chosen so that the cart passes through it at
t = 0.) The corresponding equation of motion is clearly

mx = —k(x — vot).

1
Uol‘

If_\_—/__-l'—“
Q0O Q0
o—x-‘{

FIGURE 8.1 A harmonic oscillator fixed to a uniformly moving cart.
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An obvious way of solving this equation is to change the unknown to x’(¢)
defined as

x' = x — vot, (8.43)
and noting that X’ = X, the equation of motion becomes
mi' = —kx'. (8.44)

From Eq. (8.43), x’ is the displacement of the particle relative to the cart;
Eq. (8.44) says that to an observer on the cart the particle exhibits simple har-
monic motion, as would be expected on the principle of equivalence in Galilean
relativity.

Having looked at the nature of the motion, let us consider the Hamiltonian
formulation. Since x is the Cartesian coordinate of the particle, and the potential
does not involve generalized velocities, the Hamiltonian relative to x is the sum
of the kinetic and potential energies, that is, the total energy. In functional form
the Hamiltonian is given by

_ _p ok 2
He, pt) =T +V =~ + =~ (x — vor)*. (8.45)
2m 2

The Hamiltonian is the total energy of the system, but since it is explicitly a func-
tion of ¢, it is not conserved. Physically this is understandable; energy must flow
into and out of the “external physical device” to keep the cart moving uniformly
against the reaction of the oscillating particle.*

Suppose now we formulated the Lagrangian from the start in terms of the rel-
ative coordinate x’. The same prescription gives the Lagrangian as

., mx"? . mvg kx'?
L(.X,X)Z B + mx U0+T—T. (846)

In setting up the corresponding Hamiltonian, we note there is now a term linear
in x’, with the single component of a being mvy. The new Hamiltonian is now
x/2 2

/ 2
— k
_ (o muo)”  kxT myy (8.47)

/ !/ /
H p) 2m 2 2
Note that the last term is a constant involving neither x” nor p’; it could, if we
wished, be dropped from H’ without affecting the resultant equations of motion.
Now H’ is not the total energy of the system, but it is conserved. Except for the
last term, it can be easily identified as the total energy of motion of the particle
relative to the moving cart. The two Hamiltonian’s are different in magnitude,

*Put another way, the moving cart constitutes a time-dependent constraint on the particle, and the
force of the constraint does do work in actual (rot virtual) displacement of the system.
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(a) (b)

FIGURE 8.2 Vibrating dumbbell under two conditions: (a) freely oscillating, and (b) os-
cillating with mass m kept at a constant velocity.

time dependence, and functional behavior. But the reader can easily verify that
both lead to the same motion for the particle.

Additional insight into the problem of the mass cart previously discussed can
be gained by considering a dumbbell of two masses connected by a spring of
constant k. We shall consider the case where the center of mass of the dumbbell
is in constant motion at a speed vo along the direction determined by the spring
and allow oscillations of the masses only along this direction. This is shown in
Fig. 8.2, where cm denotes the center of mass.

The dumbbell is made to vibrate while its center of mass has an initial velocity
vo. It will continue with this velocity with uniform translational motion. This
translational motion will have no effect on the oscillations. The motion of the
center of mass and the motion relative to the center of mass separate as they
do in the Kepler problem. Once the motion is started, energy is conserved and
the Hamiltonian is the total conserved energy. The situation is different if the
mass my moves at the constant speed v since a periodic force is applied. The
center of mass and the mass m then oscillate relative to m,. Since a changing
external force must be applied to the system to keep m; at the constant veloc-
ity vg, the Hamiltonian is no longer conserved, nor is the Hamiltonian the total
energy.

ROUTH’S PROCEDURE

It has been remarked that the Hamiltonian formulation is not particularly help-
ful in the direct solution of mechanical problems. Often we can solve the 2n
first-order equations only by eliminating some of the variables, for example, the
p variables, which speedily leads back to the second-order Lagrangian equa-
tions of motion. But an important exception should be noted. The Hamiltonian
procedure is especially adapted to the treatment of problems involving cyclic
coordinates.

Let us consider the situation in Lagrangian formulation when some coordinate,
say ¢y, is cyclic. The Lagrangian as a function of ¢ and ¢ can then be written

L= L(QI,--»,CIn—U 511, ~-'7q.n; t)
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All the generalized velocities still occur in the Lagrangian and in general will be
functions of the time. We still have to solve a problem of n degrees of freedom,
even though one degree of freedom corresponds to a cyclic coordinate. A cyclic
coordinate in the Hamiltonian formulation, on the other hand, truly deserves its
alternative description as “ignorable,” for in the same situation p, is some con-
stant o, and H has the form

H=H(ql""7qn71; p]”“’p}‘l*l; a;t)'

In effect, the Hamiltonian now describes a problem involving only n — 1 coordi-
nates, which may be solved completely ignoring the cyclic coordinate except as
it is manifested in the constant of integration «, to be determined from the initial
conditions. The behavior of the cyclic coordinate itself with time is then found by
integrating the equation of motion

. oH
qn = Py

The advantages of the Hamiltonian formulation in handling cyclic coordinates
may be combined with the Lagrangian conveniences for noncyclic coordinates by
a method devised by Routh. Essentially, we carry out a mathematical transforma-
tion from the ¢, g basis to the g, p basis only for those coordinates that are cyclic,
obtaining their equations of motion in the Hamiltonian form, while the remain-
ing coordinates are governed by Lagrange equations. If the cyclic coordinates are
labeled g5+1, - .., qn, then a new function R (known as the Routhian) may be
introduced, defined as

n
R(qlv~~-»qn; qlv"'vqs; ps+lv"'7pn; t): Z Piéi_L» (84’8)

i=s+1
which is equivalent to writing
R(QI,Herz; q‘]5""qs; pS+l""7p}’l; t) =
Hcycl([)s—i-l, cees Pn) — Lnoncycl(Qla cesdsy 41y -5 s). (8.49)

It is easy to show for the s nonignorable coordinates, the Lagrange equations
d (0R R
—|=—)—=—=0, i=1,...,s, (8.50)
dt \ 9gi aqi

are satisfied, while for the n —s ignorable coordinates, Hamilton’s equations apply
as

oR oR

— =-pi=0, and — =g, i=s+1,...,n. (8.51)
9q; ap;

A simple, almost trivial, example may clarify Routh’s procedure and the
physical significance of the quantities involved. Consider the Kepler problem
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investigated in Section 3.7, that of a single particle moving in a plane under
the influence of the inverse-square central force f(r) derived from the potential
V(r) = —k/r". The Lagrangian is then

L) 242 k
L—E(V +r9)+r—n

As noted before, the ignorable coordinate is 8, and if the constant conjugate
momentum is denoted by pg, the corresponding Routhian (8.49) is

re 1 o Kk

mr .
2mr? 2 rn

R(r. 7, po) =

Physically we see that the Routhian is the equivalent one-dimensional potential
V’(r) minus the kinetic energy of radial motion.

Applying the Lagrange equation (8.50) to the noncyclic radial coordinate r,
we obtain the equation of motion (3.11)

P2 nk

i S
mr3 ot

=0. (8.52)
Applying Hamilton’s equation (8.51) to the cyclic variable 6, we obtain the pair
of equations

Po

5 =9, (8.53)
mr

po =0 and
whose solution is the same as Eq. (3.8),
po = mr?0 = | = constant.

Typically, Routh’s procedure does not add to the physics of the analysis pre-
sented earlier in Chapter 3, but it makes the analysis more automatic. In compli-
cated problems with many degrees of freedom, this feature can be a considerable
advantage. it is not surprising therefore that Routh’s procedure finds its greatest
usefulness in the direct solution of problems relating to engineering applications.
But as a fundamental entity, the Routhian is a sterile hybrid, combining some of
the features of both the Lagrangian and the Hamiltonian pictures. For the devel-
opment of various formalisms of classical mechanics, the complete Hamiltonian
formulation is more fruitful.

THE HAMILTONIAN FORMULATION OF RELATIVISTIC MECHANICS

As with the Lagrangian picture in special relativity, two attitudes can be taken
to the Hamiltonian formulation of relativistic mechanics. The first makes no
pretense at a covariant description but instead works in some specific Lorentz
or inertial frame. Time as measured in the particular Lorentz frame is then not
treated on a common basis with other coordinates but serves, as in nonrelativistic
mechanics, as a parameter describing the evolution of the system. Nonetheless,
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if the Lagrangian that leads to the Hamiltonian is itself based on a relativistically
invariant physical theory (for example, Maxwell’s equations and the Lorentz
force), then the resultant Hamiltonian picture will be relativistically correct. The
second approach of course attempts a fully covariant description of the Hamil-
tonian picture, but the difficulties that plagued the corresponding Lagrangian
approach (cf. Section 7.9) are even fiercer here. We shall consider the noncovari-
ant method first.
For a single-particle Lagrangian of the form of Eq. (7.136),

L=—-mc*J1—B2-V,

we have already shown that the Hamiltonian (in the guise of the energy function
h) is the total energy of the system:

H=T+V.

The energy T can be expressed in terms of the canonical momenta p; (Eq. 7.139)
through Eq. (7.38):*

T2 = p2c + m%c*,

so that a suitable form for the Hamiltonian is

H =./p*c® +m2c* + V. (8.54)

When the system consists of a single particle moving in an electromagnetic
field, the Lagrangian has been given as (cf. Eq. (7.141))

L=-mc*\J1—B2+qA-v—qp.

The term in L linear in the velocities does not appear explicitly in the Hamiltonian
(cf. Eq. (8.54)), as we have seen, whereas the first term leads to the appearance of
T in the Hamiltonian. Thus, the Hamiltonian is again the total particle energy:

H=T+q¢. (8.55)

For this system, the canonical momenta conjugate to the Cartesian coordinates of
the particle are defined by (cf. Eq. (7.142))

p=mut +qAl

so that the relation between T and p' is given by Eq. (7.168), and the Hamiltonian
has the final form

H=/(p— gA)c> + m2c* + g, (8.56)

*In this section we use 7" for the motion energy (pc) plus the rest energy (mc?) to avoid confusing it
with the total energy 7 + V.
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It should be emphasized again that p here is the vector of the canonical momenta
conjugate to the Cartesian position coordinates of the particle. We may also note
that (H — g¢)/c is the zeroth component of the 4-vector

mu’ + gAY’

(cf. Egs. (7.27), (7.38'), and (7.166)). While the Hamiltonian (8.56) is not ex-
pressed in covariant fashion, it does have a definite transformation behavior under
a Lorentz transformation as being, in some Lorentz form, the zeroth component
of a 4-vector.

In a covariant approach to the Hamiltonian formulation, time must be treated in
the same fashion as the space coordinates; that is, time must be taken as one of the
canonical coordinates having an associated conjugate momentum. The founda-
tions of such an extension of the dimensionality of phase space can in fact be con-
structed even in nonrelativistic mechanics. Following the pattern of Section 7.10,
the progress of the system point along its trajectory in phase space can be marked
by some parameter 6, and ¢ “released,” so to speak, to serve as an additional
coordinate. If derivatives with respect to 6 are denoted by a superscript prime, the
Lagrangian in the (g1, ..., gx; t) configuration space is (cf. Eq. (7.159))

/!
A(q,qﬁt,ﬂ)::fll<q,§7,t). (8.57)
The momentum conjugate to ¢ is then

O
T

JL
o'’

/

Pt

If we make explicit use of the connection ¢ = ¢’/t’, this relation becomes

= —q—’{a—L—L—Va—L——H (8.58)
D= T g T T g T '

The momentum conjugate to the time “coordinate” is therefore the negative of the
ordinary Hamiltonian.* While the framework of this derivation is completely non-
relativistic, the result is consistent with the identification of the time component of
the 4-vector momentum with E/c. As can be seen from the definition, Eq. (8.2),
if g is multiplied by a constant «, then the conjugate momentum is divided by «.
Hence, the canonical momentum conjugate to ct is H/c.

Thus, there seems to be a natural route available for constructing a relativis-
tically covariant Hamiltonian. But the route turns out to be mined with booby
traps. It will be recalled that the covariant Lagrangian used to start the process,
Eq. (7.159) or Eq. (8.57), is homogeneous in first degree in the generalized

*The remaining momenta are unchanged by the shift from ¢ to 6, as can be seen by evaluating the

corresponding derivative:
dA , 0L , (0L 1
— = —=='{—=5)=n.
aq; aq; aq t
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velocities ¢’, and for such a Lagrangian the recipe described above for construct-
ing the Hamiltonian formulation breaks down irreparably. If L is of type L1, the
corresponding Hamiltonian, call it H.(q, ¢, p, p:), is identically zero!

Fortunately, there does not seem to be any compelling reason why the covari-
ant Lagrangian has to be homogeneous in the first degree, at least for classical
relativistic mechanics. It has already been seen that for a single free particle the
covariant Lagrangian

Ax™, ut)y = %muuu”

leads to the correct equations of motion. Of course the four-velocity components,
ut, are still not all independent, but the constraint can be treated as a “weak con-
dition” to be imposed only after all the differentiations have been carried through.
There is now no difficulty in obtaining a Hamiltonian from this Lagrangian, by
the same route as in nonrelativistic mechanics; the result is clearly

_ pup"

H. = 8.59
e= (8.59)

For a single particle in an electromagnetic field, a covariant Lagrangian has been
found previously: (cf. Eq. (7.165))*

AGH, uh) = Smuut + qut Ay (x), (7.147)
with the canonical momenta (cf. Eq. (7.167)),
Dy =muy, +qAy,. (7.149)

In the corresponding Hamiltonian, the term linear in u, does not appear
explicitly in the Hamiltonian, and the remaining L, part in terms of the canonical
momenta is

Pu—qAL) (p* — qA®)

(
[
He = 2m

(8.60)
Both Hamiltonians, Egs. (8.59) and (8.60), are constant, with the same value,
—mc? /2, but to obtain the equations of motion it is the functional dependence on
the 4-vectors of position and momenta that is important. With a system of one
particle, the covariant Hamiltonian leads to eight first-order equations of motion

dx*  9H.g*  dp* oH:g""
> _0hs b ST (8.61)
dt apV dt axV

We know that these equations cannot be all independent. The space parts of
Egs. (8.61) obviously lead to the spatial equations of motion. We should expect

*The Legendre transformation process is reversible: Given a Hamiltonian we can obtain the corre-
sponding Lagrangian (cf. Derivation 1). But the difficulties also arise in either direction. If a given
Hamiltonian is postulated to be homogeneous in first degree in the momenta, then it is not possible to
find an equivalent Lagrangian.
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therefore that the remaining two equations tell us nothing new, exactly as in the
Lagrangian case. This can be verified by examining the v = 0 equations in some
particular Lorentz frame. One of them is the constitutive equation for p:

oH, 1
0 c 0 0
! opd  m (p a

or

!

0 1 H c
p=-(T+qp)=—7, (8.62)
c c
a general conclusion that has been noted before. The other can be written as

1 dp° 1 9H,

/1_,327__; ot

or

i _ [T IH, 5.63)
dr ar '

As with the covariant Lagrangian formulation, we have the problem of find-
ing suitable covariant potential terms in the Lagrangian to describe the forces
other than electromagnetic. In multiparticle systems we are confronted in full
measure with the critical difficulties of including interactions other than with
fields. In Hamiltonian language, the “no-interaction” theorem already referred
to in Section 7.10 says that only in the absence of direct particle interactions can
Lorentz invariant systems be described in terms of the usual position coordinates
and corresponding canonical momenta. The scope of the relativistic Hamiltonian
framework is therefore quite limited and so for the most part we shall confine
ourselves to nonrelativistic mechanics.

DERIVATION OF HAMILTON’S EQUATIONS
FROM A VARIATIONAL PRINCIPLE

Lagrange’s equations have been shown to be the consequence of a variational
principle, namely, the Hamilton’s principle of Section 2.1. Indeed, the variational
method is often the preferable one for deriving Lagrange’s equations, for it is
applicable to types of systems not usually included within the scope of mechanics.
It would be similarly advantageous if a variational principle could be found that
leads directly to the Hamilton’s equations of motion. Hamilton’s principle,

[5)
81 = 5/ Ldt =0, (8.64)
4]

lends itself to this purpose, but as formulated originally it refers to paths in con-
figuration space. The first modification therefore is that the integral must be eval-
uated over the trajectory of the system point in phase space, and the varied paths
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must be in the neighborhood of this phase space trajectory. In the spirit of the
Hamiltonian formulation, both ¢ and p must be treated as independent coordi-
nates of phase space, to be varied independently. To this end the integrand in the
action integral, Eq. (8.64), must be expressed as a function of both ¢ and p, and
their time derivatives, through Eq. (8.15). Equation (8.64) then appears as

5]
81 = 5/ (piq'i — H(q, p, t)) dt =0. (8.65)
n

As a variational principle in phase space, Eq. (8.65) is sometimes referred to as
the modified Hamilton’s principle. Although it will be used most frequently in
connection with transformation theory (see Chapter 9), the main interest in it here
is to show that the principle leads to Hamilton’s canonical equations of motion.
The modified Hamilton’s principle is exactly of the form of the variational
problem in a space of 2n dimensions considered in Section 2.3 (cf. Eq. (2.14)):

15}
81 :5/ f(q.q.p, p.t)dt =0, (8.66)
1

for which the 2n Euler-Lagrange equations are

d (0 a

_<_f>__f:o j=1....n (8.67)
dt \9q; aq;

d (9 a

_<_f>__f=o j=1....n. (8.68)
di \op; apj

The integrand f as given in Eq. (8.65) contains g; only through the p;g; term,
and g; only in H. Hence, Egs. (8.67) lead to

pj+— =0. (8.69)

On the other hand, there is no explicit dependence of the integrand in Eq. (8.65)
on p;. Equations (8.68) therefore reduce simply to

oH
=0

- (8.70)
ap;

qj
Equations (8.69) and (8.70) are exactly Hamilton’s equations of motion, Eqs.
(8.18). The Euler-Lagrange equations of the modified Hamilton’s principle are
thus the desired canonical equations of motion.

This derivation of Hamilton’s equations from the variational principle is so
brief as to give the appearance of a sleight-of-hand trick. One wonders whether
something extra has been sneaked in while we were being misdirected by the
magician’s patter. Is the modified Hamilton’s principle equivalent to Hamilton’s
principle, or does it contain some additional physics? The question is largely
irrelevant; the primary justification for the modified Hamilton’s principle is that
it leads to the canonical equations of motion in phase space. After all, no further
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argument was given for the validity of Hamilton’s principle than that it corre-
sponded to the Lagrangian equations of motion. So long as Hamiltonian can be
constructed, the Legendre transformation procedure shows that the Lagrangian
and Hamiltonian formulations, and therefore their respective variational princi-
ples, have the same physical content.

One question that can be raised however is whether the derivation puts limita-
tions on the variation of the trajectory that are not present in Hamilton’s principle.
The variational principle leading to the Euler—Lagrange equations is formulated,
as in Section 2.2, such that the variations of the independent variables vanish at
the end points. In phase space, that would require §q; = 0 and §p; = 0 at the
end points, whereas Hamilton’s principle requires only the vanishing of §¢; under
the same circumstances. A look at the derivation as spelled out in Section 2.2
will show however that the variation is required to be zero at the end points only
in order to get rid of the integrated terms arising from the variations in the time
derivatives of the independent variables. While the f function in Eq. (8.66) that
corresponds to the modified Hamilton’s principle, Eq. (8.65), is indeed a func-
tion of g, there is no explicit appearance of p;. Equations (8.68) and therefore
(8.70) follow from Eq. (8.65) without stipulating the variations of p; at the end
points. The modified Hamilton’s principle, with the integrand L defined in terms
of the Hamiltonian by Eq. (8.19), leads to Hamilton’s equations under the same
variation conditions as those in Hamilton’s principle.*

Nonetheless, there are advantages to requiring that the varied paths in the mod-
ified Hamilton’s principle return to the same end points in both g and p, for we
then have a more generalized condition for Hamilton’s equations of motion. As
with Hamilton’s principle, if there is no variation at the end points we can add a
total time derivative of any arbitrary (twice-differentiable) function F(q, p, ) to
the integrand without affecting the validity of the variational principle. Suppose,
for example, we subtract from the integrand of Eq. (8.65) the quantity

d( i Di)
dr qipi)-

The modified Hamilton’s principle would then read

15}
5/ (—pigi — H(g, p.1) dt = 0. (8.71)
|

Here the f integrand of Eq. (8.66) is a function of p, and it is easily verified that
the Euler—Lagrange equations (8.67) and (8.68) with this f again correspond to
Hamilton’s equations of motion, Egs. (8.18). Yet the integrand in Eq. (8.71) is
not the Lagrangian nor can it in general be simply related to the Lagrangian by a

*It may be objected that ¢ and p cannot be varied independently, because the defining Egs. (8.2) link
p with g and ¢. We could not then have a variation of ¢ (and ¢) without a corresponding variation of
p. But this entire objection is completely at variance with the intent and the spirit of the Hamiltonian
picture. Once the Hamiltonian formulation has been set up, Eqs. (8.2) form no part of it. The momenta
have been elevated to the status of independent variables, on an equal basis with the coordinates and
connected with them and the time only through the medium of the equations of motion themselves and
not by any a priori defining relationship.
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point transformation in configuration space. By restricting the variation of both ¢
and p to be zero at the end points, the modified Hamilton’s principle provides an
independent and general way of setting up Hamilton’s equations of motion with-
out a prior Lagrangian formulation. If you will, it does away with the necessity
of a linkage between the Hamiltonian canonical variables and a corresponding
Lagrangian set of generalized coordinates and velocities. This will be very impor-
tant to us in the next chapter where we examine transformations of phase space
variables that preserve the Hamiltonian form of the equations of motion.

The requirement of independent variation of ¢ and p, so essential for the above
derivation, highlights the fundamental difference between the Lagrangian and
Hamiltonian formulations. Neither the coordinates g; nor the momenta p; are
to be considered there as the more fundamental set of variables; both are equally
independent. Only by broadening the field of independent variables from n to 2n
quantities are we enabled to obtain equations of motion that are of first order. In
a sense, the names “coordinates” and “momenta” are unfortunate, for they bring
to mind pictures of spatial coordinates and linear, or at most, angular momenta. A
wider meaning must now be given to the terms. The division into coordinates and
momenta corresponds to no more than a separation of the independent variables
describing the motion into two groups having an almost symmetrical relationship
to each other through Hamilton’s equations.

THE PRINCIPLE OF LEAST ACTION

Another variational principle associated with the Hamiltonian formulation is
known as the principle of least action. It involves a new type of variation, which
we shall call the A-variation, requiring detailed explanation. In the §-variation
process used in the discussion of Hamilton’s principle in Chapter 2, the varied
path in configuration space always terminated at end points representing the
system configuration at the same time #; and #, as the correct path. To obtain
Lagrange’s equations of motion, we also required that the varied path return to
the same end points in configuration space, that is, 8q;(t;) = &q;(t2) = 0. The
A-variation is less constrained; in general, the varied path over which an integral
is evaluated may end at different times than the correct path, and there may be
a variation in the coordinates at the end points. We can however use the same
parameterization of the varied path as in the §-variation. In the notation of Sec-
tion 2.3, a family of possible varied paths is defined by functions (cf. Eq. (2.15))

qi(t, @) = qi(t,0) + an; (1), (8.72)

where « is an infinitesimal parameter that goes to zero for the correct path. Here
the functions 1; do not necessarily have to vanish at the end points, either the orig-
inal or the varied. All that is required is that they be continuous and differentiable.
Figure 8.3 illustrates the correct and varied path for a A-variation in configuration
space.
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4;

9;

FIGURE 8.3 The A-variation in configuration space.

Let us evaluate the A-variation of the action integral:

1) t+An )
A/ Ldtz/ L(ot)dt—/ L(0)dt, (8.73)

5| H+An 1

where L (o) means the integral is evaluated along the varied path and L(0) corre-
spondingly refers to the actual path of motion. The variation is clearly composed
of two parts. One arises from the change in the limits of the integral; to first-order
infinitesimals, this part is simply the integrand on the actual path times the differ-
ence in the limits in time. The second part is caused by the change in the integrand
on the varied path, but now between the same time limits as the original integral.
We may therefore write the A-variation of the action integral as

15

1%) 2
A/ Ldt = L(t) Aty — L(t)) At +/ SLdt. (8.74)
n

n

Here the variation in the second integral can be carried out through a parame-
terization of the varied path, exactly as for Hamilton’s principle except that the
variation in ¢; does not vanish at the end points. The end point terms arising
in the integration by parts must be retained, and the integral term on the right
appears as

n 2TM9L d (9L aL
SLdt = — — — | =) | 8qidt + — 8¢,
i n Ldgi  dt \9q; 9g;

By Lagrange’s equations the quantities in the square brackets vanish, and the
A-variation therefore takes the form

2

1

n
A/ Ldi = (LAt + pidg)|r. (8.75)
n
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In Eq. (8.75), 8¢; refers to the variation in ¢; at the original end point times #; and
t>. We would like to express the A-variation in terms of the change Ag; between
g; at the end points of the actual path and ¢; at the end points of the varied path,
including the change in end point times. It is clear from Fig. 8.3 that these two
variations are connected by the relation*

Agqi = 8qi + gi At. (8.76)

Hence, Eq. (8.75) can be rewritten as
2 , 2
A/ Ldt = (LAt — pigi At + piAgy)|;
n
or
15 2
A/ Ldt = (piAgi — H An)|]. (8.77)
3l

To obtain the principle of least action, we restrict our further considerations by
three important qualifications:

1. Only systems are considered for which L, and therefore H, are not explicit
functions of time, and in consequence H is conserved.

2. The variation is such that H is conserved on the varied path as well as on
the actual path.

3. The varied paths are further limited by requiring that Ag; vanish at the end
points (but not At).

The nature of the resultant variation may be illustrated by noting that the varied
path satisfying these conditions might very well describe the same curve in con-
figuration space as the actual path. The difference will be the speed with which
the system point traverses this curve; that is, the functions g; (#) will be altered in
the varied path. In order then to preserve the same value of the Hamiltonian at all
points on the varied path, the times of the end points must be changed. With these
three qualifications satisfied, the A-variation of the action integral, Eq. (8.77),
reduces to

n
A/ Ldt = —H(At — An). (8.78)
3|

*Equation (8.76) may be derived formally from the parameter form, Eq. (8.72), of the varied path.
Thus, at the upper end point we have

Agi(2) = qi(th + Aty, @) — qi (12, 0) = gi (17 + Atr, 0) — g; (12, 0) + an; (t + A1),
which to first order in small quantities « and Aty is
Agi(2) = ¢i(2) Aty +84; (),

which is what Eq. (8.76) predicts.
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But under the same conditions, the action integral itself becomes

153 %)
/ Ldt:f pigidt — H(t, — t1),
5] I3l

the A-variation of which is
153 %)
A/ Ldt = A/ piqi dt — H(At, — Aty). (8.79)
11 1

Comparison of Eqgs. (8.78) and (8.79) finally gives the principle of least action:*

n
A / pigi dt = 0. (8.80)
n

By way of caution, note that the modified Hamilton’s principle can be written
in a form with a superficial resemblance to Eq. (8.80). If the trajectory of the sys-
tem point is described by a parameter 6, as in Sections 7.10 and 8.4, the modified
Hamilton’s principle appears as

) (pigi — H)t' do = 0. (8.81)
01

It will be recalled (cf. footnote on p. 351) that the momenta p; do not change
under the shift from # to 0, and that ¢;t’ = ql./ . Further, the momentum conjugate
tot is —H. Hence, Eq. (8.81) can be rewritten as

6, nt1
5/ > pigido =0, (8.82)
0

I =1

where ¢ has been denoted by ¢,+1. There should however be no confusion
between Eq. (8.82) and the principle of least action. Equations (8.82) involve
phase space of (2n + 2) dimensions, as is indicated by the explicit summation
toi = n + 1, whereas Eq. (8.80) is in the usual configuration space. But most
important, the principle of least action is in terms of a A-variation for constant H,
while Eq. (8.82) employs the §-variation, and H in principle could be a function
of time. Equation (8.82) is nothing more than the modified Hamilton’s princi-
ple, and the absence of a Hamiltonian merely reflects the phenomenon that the
Hamiltonian vanishes identically for the “homogeneous problem.”

The least action principle itself can be exhibited in a variety of forms. In non-
relativistic mechanics, if the defining equations for the generalized coordinates do
not involve the time explicitly, then the kinetic energy is a quadratic function of
the ¢;’s (cf. Eq. (1.71)):

T = M) ;d. (8.83)

*The integral in Eq. (8.80) is usually referred to in the older literature as the action, or action integral,
and the first edition of this book followed the same practice. It is now customary to refer to the integral
in Hamilton’s principle as the action, and we have accepted this usage here. Sometimes the integral in
Eq. (8.80) is designated as the abbreviated action.
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When in addition the potential is not velocity dependent, the canonical momenta
are derived from T only, and in consequence

piqi =2T.

The principle of least action for such systems can therefore be written as

15}
A / Tdi =0, (8.84)

I

If, further, there are no external forces on the system, as, for example, a rigid body
with no net applied forces, then T is conserved along with the total energy H. The
least action principle then takes the special form

Aty —t1) = 0. (8.85)

Equation (8.85) states that of all paths possible between two points, consistent
with conservation of energy, the system moves along that particular path for which
the time of transit is the least (more strictly, an extremum). In this form the princi-
ple of least action recalls Fermat’s principle in geometrical optics that a light ray
travels between two points along such a path that the time taken is the least. We
discussed these considerations in Section 10-8 of the Second Edition when we
considered the connection between the Hamiltonian formulation and geometrical
optics.

In Section 7.4 we discussed the infinitesimal interval in a metric space giving
the interval as

ds? = gupdx"dx" (7.32))

where g, was the metric of a possibly curvilinear space and ds? was the interval
traversed for displacements given by dx*. We can do something entirely similar
here whenever T is of the form of Eq. (8.83). A configuration space is therefore
constructed for which the M i coefficients form the metric tensor. In general, the
space will be curvilinear and nonorthogonal. The element of path length in the
space is then defined by (cf. Eq. (7.33))

(dp)* = M dq; dqi (8.86)

so that the kinetic energy has the form

1 (dp\?
T=-(2) (8.87)
2 \ar
or equivalently
dr = 9P (8.88)
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Equation (8.88) enables us to change the variable in the abbreviated action
integral from ¢ to p, and the principle of least action becomes

%) P2
A/ Tdt:O:A/ JT/2dp,
I3l L1

or, finally

A /pz VH = V(g)dp = 0. (8.89)
P

1

Equation (8.89) is often called Jacobi’s form of the least action principle. It now
refers to the path of the system point in a special curvilinear configuration space
characterized by a metric tensor with elements M ;. The system point traverses

the path in this configuration space with a speed given by +/2T. If there are no
forces acting on the body, T is constant, and Jacobi’s principle says the system
point travels along the shortest path length in the configuration space. Equiva-
lently stated, the motion of the system is then such that the system point travels
along the geodesics of the configuration space.

Note that the Jacobi form of the principle of least action is concerned with the
path of the system point rather than with its motion in time. Equation (8.89) is a
statement about the element of path length dp; the time nowhere appears, since
H is a constant and V depends upon ¢; only. Indeed, it is possible to use the
Jacobi form of the principle to furnish the differential equations for the path, by a
procedure somewhat akin to that leading to Lagrange’s equations. In the form of
Fermat’s principle, the Jacobi version of the principle of least action finds many
fruitful applications in geometrical optics and in electron optics. To go into any
detail here would lead us too far afield.

A host of other similar, variational principles for classical mechanics can be
derived in bewildering variety. To give one example out of many, the principle
of least action leads immediately to Hertz’s principle of least curvature, which
states that a particle not under the influence of external forces travels along the
path of least curvature. By Jacobi’s principle such a path must be a geodesic,
and the geometrical property of minimum curvature is one of the well-known
characteristics of a geodesic. It has been pointed out that variational principles in
themselves contain no new physical content, and they rarely simplify the practical
solution of a given mechanical problem. Their value lies chiefly as starting points
for new formulations of the theoretical structure of classical mechanics. For this
purpose, Hamilton’s principle is especially fruitful, and to a lesser extent, so also
is the principle of least action.

DERIVATIONS

1. (a) Reverse the Legendre transformation to derive the properties of L(g;, ¢;, t) from
H(q;, pi,t), treating the ¢; as independent quantities, and show that it leads to
the Lagrangian equations of motion.
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(b) By the same procedure find the equations of motion in terms of the function

L'(p, p.t) = —piqi — H(q, p. ).

. It has been previously noted that the total time derivative of a function of ¢; and ¢

can be added to the Lagrangian without changing the equations of motion. What does
such an addition do to the canonical momenta and the Hamiltonian? Show that the
equations of motion in terms of the new Hamiltonian reduce to the original Hamilton’s
equations of motion.

. A Hamiltonian-like formulation can be set up in which ¢; and p; are the independent

variables with a “Hamiltonian” G(g;, p;, t). [Here p; is defined in terms of ¢;, g; in
the usual manner.] Starting from the Lagrangian formulation, show in detail how to
construct G(g;, p;, t), and derive the corresponding “Hamilton’s equation of motion.”

. Show that if A; are the eigenvalues of a square matrix, then if the reciprocal matrix

exists it has the eigenvalues )\;1.

. Verify that the matrix J has the properties given in Eqs. (8.38c) and (8.38e) and that

its determinant has the value +1.

. Show that Hamilton’s principle can be written as

2
5/ [2H (9, 1) + gnlds = 0.
1

. Verify that both Hamiltonians, Eq. (8.45) and Eq. (8.47), lead to the same motion as

described by Eq. (8.44).

. Show that the modified Hamilton’s principle, in the form of Eq. (8.71), leads to Hamil-

ton’s equations of motion.

. If the canonical variables are not all independent, but are connected by auxiliary con-

ditions of the form

Yi(qi, pi, 1) =0,
show that the canonical equations of motion can be written
oH vy . oH vy .
oD Mo =i o+ o= pi,
op; Z api ' 9g; Z 9g; '

k k

where the A; are the undetermined Lagrange multipliers. The formulation of the
Hamiltonian equations in which ¢ is a canonical variable is a case in point, since a
relation exists between p,, 1 and the other canonical variables:

H(q1, s qnt1s Pls---5> Pn) + Ppt1 = 0.

Show that as a result of these circumstances the 2n 4 2 Hamilton’s equations of this
formulation can be reduced to the 2n ordinary Hamilton’s equations plus Eq. (8.41)
and the relation

_ o dt

S do’

Note that while these results are reminiscent of the relativistic covariant Hamiltonian

formulation, they have been arrived at entirely within the framework of nonrelativistic
mechanics.

A
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10.

Assume that the Lagrangian is a polynomial in g of no higher order than quadratic.
Convert the 2n equations (8.2) and (8.14)

AL AL

Pi—aT?i, Pi—afqiy

into 2n equations for ¢; and p; in terms of ¢ and p, using the matrix form of the
Lagrangian. Show that these are the same equations as would be obtained from
Hamilton’s equations of motion.

EXERCISES

11.

12.

13.

14.

15.

16.

A particle is confined to a one-dimensional box. The ends of the box move slowly
towards the middle. By slowly we mean the speed of the ends is small when compared
to the speed of the particle. Solve the following using Lagrangian formulation and then
using the Hamiltonian.

(a) if the momentum of the particle is pg when the walls are a distance x( apart, find
the momentum of the particle at any later time assuming the collisions with the
wall are perfectly elastic. Also assume the motion is nonrelativistic at all times.

(b) When the walls are a distance x apart, what average external force must be applied
to each wall in order to move it at a constant speed?

Write the problem of central force motion of two mass points in Hamiltonian formu-
lation, eliminating the cyclic variables, and reducing the problem to quadratures.

Formulate the double-pendulum problem illustrated by Fig. 1.4, in terms of the
Hamiltonian and Hamilton’s equations of motion. It is suggested that you find the
Hamiltonian both directly from L and by Eq. (8.27).

The Lagrangian for a system can be written as

L=ai?+ b% T iy + fytaz+ gyt — kyx2 +y2,
where a, b, ¢, f, g, and k are constants. What is the Hamiltonian? What quantities are
conserved?
A dynamical system has the Lagrangian
43
+ bq12

L=ql2+a

+ k1q12 + k29192,

where a, b, k1, and k, are constants. Find the equations of motion in the Hamiltonian
formulation.

A Hamiltonian of one degree of freedom has the form

2
b
H=2" _bgpe= 4+ Z242% % (a + be ") +
2a 2

qu
>
where a, b, a, and k are constants.
(a) Find a Lagrangian corresponding to this Hamiltonian.
(b) Find an equivalent Lagrangian that is not explicitly dependent on time.
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17.

18.

19.

20.

21.

22.

(c) What is the Hamiltonian corresponding to this second Lagrangian, and what is
the relationship between the two Hamiltonians?

Find the Hamiltonian for the system described in Exercise 19 of Chapter 5 and obtain
Hamilton’s equations of motion for the system. Use both the direct and the matrix
approach in finding the Hamiltonian.

Repeat the preceding exercise except this time allow the pendulum to move in three
dimensions, that is, a spring-loaded spherical pendulum. Either the direct or the matrix
approach may be used.

The point of suspension of a simple pendulum of length / and mass m is constrained to
move on a parabola z = ax? in the vertical plane. Derive a Hamiltonian governing the
motion of the pendulum and its point of suspension. Obtain the Hamilton’s equations
of motion.

X

Obtain Hamilton’s equations of motion for a plane pendulum of length / with mass
point m whose radius of suspension rotates uniformly on the circumference of a verti-
cal circle of radius a. Describe physically the nature of the canonical momentum and
the Hamiltonian.

(a) The point of suspension of a plane simple pendulum of mass m and length [/ is
constrained to move along a horizontal track and is connected to a point on the
circumference of a uniform flywheel of mass M and radius a through a mass-
less connecting rod also of length a, as shown in the figure. The flywheel rotates
about a center fixed on the track. Find a Hamiltonian for the combined system and
determine Hamilton’s equations of motion.

(b) Suppose the point of suspension were moved along the track according to some
function of time x = f(¢), where x reverses at x = +2a (relative to the center of
the fly wheel). Again, find a Hamiltonian and Hamilton’s equations of motion.

For the arrangement described in Exercise 21 of Chapter 2, find the Hamiltonian of
the system, first in terms of coordinates in the laboratory system and then in terms
of coordinates in the rotating systems. What are the conservation properties of the
Hamiltonians, and how are they related to the energy of the system?
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23.

24.

25.

26.

(a) A particle of mass m and electric charge e moves in a plane under the influence
of a central force potential V (r) and a constant uniform magnetic field B, perpen-
dicular to the plane, generated by a static vector potential

A=%er.

Find the Hamiltonian using coordinates in the observer’s inertial system.

(b) Repeat part (a) using coordinates rotating relative to the previous coordinate sys-
tem about an axis perpendicular to the plane with an angular rate of rotation:

eB
2m’

A uniform cylinder of radius a and density p is mounted so as to rotate freely around
a vertical axis. On the outside of the cylinder is a rigidly fixed uniform spiral or helical
track along which a mass point m can slide without friction. Suppose a particle starts
at rest at the top of the cylinder and slides down under the influence of gravity. Using
any set of coordinates, arrive at a Hamiltonian for the combined system of particle
and cylinder, and solve for the motion of the system.

Suppose that in the previous exercise the cylinder is constrained to rotate uniformly
with angular frequency w. Set up the Hamiltonian for the particle in an inertial system
of coordinates and also in a system fixed in the rotating cylinder. Identify the physical
nature of the Hamiltonian in each case and indicate whether or not the Hamiltonians
are conserved.

A particle of mass m can move in one dimension under the influence of two springs
connected to fixed points a distance a apart (see figure). The springs obey Hooke’s
law and have zero unstretched lengths and force constants k| and k», respectively.

(a) Using the position of the particle from one fixed point as the generalized co-
ordinate, find the Lagrangian and the corresponding Hamiltonian. Is the energy
conserved? Is the Hamiltonian conserved?

(b) Introduce a new coordinate Q defined by

koa

=¢q — bsinwt, b= —".
C=q ki + ko
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27.

28.

29.

30.

31.

32.

33.

34.

What is the Lagrangian in terms of Q? What is the corresponding Hamiltonian?
Is the energy conserved? Is the Hamiltonian conserved?

(a) The Lagrangian for a system of one degree of freedom can be written as
L= %(42 sin® wt + gqwsin2wt + q2w2 .

What is the corresponding Hamiltonian? Is it conserved?
(b) Introduce a new coordinate defined by

Q =gsinwt.

Find the Lagrangian in terms of the new coordinate and the corresponding
Hamiltonian. Is H conserved?

Consider a system of particles interacting with each other through potentials depend-
ing only on the scalar distances between them and acted upon by conservative central
forces from a fixed point. Obtain the Hamiltonian of the particle with respect to a
set of axes, with origin at the center of force, which is rotating around some axis in
an inertial system with angular velocity . What is the physical significance of the
Hamiltonian in this case? Is it a constant of the motion?

Obtain the Hamiltonian of a heavy symmetrical top with one point fixed, and from it
the Hamilton’s equations of motion. Relate these to the equations of motion discussed
in Section 5.7 and, in particular, show how the solution may be reduced to quadratures.
Also use the Routhian procedure to eliminate the cyclic coordinates.

In Exercise 16 of Chapter 1, there is given the velocity-dependent potential assumed in
Weber’s electrodynamics. What is the Hamiltonian for a single particle moving under
the influence of such a potential?

Treat the nutation of a “fast” top as an example of small oscillations about steady
motion, here precession at constant 6. Find the frequency of nutation.

A symmetrical top is mounted so that it pivots about its center of mass. The pivot in
turn is fixed a distance r from the center of a horizontal disk free to rotate about a
vertical axis. The top is started with an initial rotation about its figure axis, which is
initially at an angle 6 to the vertical. Analyze the possible nutation of the top as a
case of small oscillations about steady motion.

Two mass points, m| and my, are connected by a string that acts as a Hooke’s-law
spring with force constant k. One particle is free to move without friction on a smooth
horizontal plane surface, the other hangs vertically down from the string through a
hole in the surface. Find the condition for steady motion in which the mass point on
the plane rotates uniformly at constant distance from the hole. Investigate the small
oscillations in the radial distance from the hole, and in the vertical height of the second
particle.

A possible covariant Lagrangian for a system of one particle interacting with a field is
1
A = smuyuy + Dyy(xp)myy,

where Dy (x,) is an antisymmetric field tensor and m;,, is the antisymmetric angular
momentum tensor,
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3s.

myy = m(x)uy — XpUy).
What are the canonical momenta? What is the corresponding covariant Hamiltonian?

Consider a Lagrangian of the form
L= %m()&z — ?xH)e?!,

where the particle of mass m moves in one direction. Assume all constants are
positive.

(a) Find the equations of motion.

(b) Interpret the equations by giving a physical interpretation of the forces acting on
the particle.

(¢) Find the canonical momentum and construct the Hamiltonian. Is this Hamiltonian
a constant of the motion?

d

~

If initially x(0) = 0 and dx/dt = 0, what is x(¢) as ¢ approaches large values?
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9.1

Canonical Transformations

When applied in a straightforward manner, the Hamiltonian formulation usu-
ally does not materially decrease the difficulty of solving any given problem in
mechanics. We wind up with practically the same differential equations to be
solved as are provided by the Lagrangian procedure. The advantages of the Hamil-
tonian formulation lie not in its use as a calculational tool, but rather in the deeper
insight it affords into the formal structure of mechanics. The equal status accorded
to coordinates and momenta as independent variables encourages a greater free-
dom in selecting the physical quantities to be designated as “coordinates” and
“momenta.” As a result we are led to newer, more abstract ways of presenting
the physical content of mechanics. While often of considerable help in practical
applications to mechanical problems, these more abstract formulations are primar-
ily of interest to us today because of their essential role in constructing the more
modern theories of matter. Thus, one or another of these formulations of classical
mechanics serves as a point of departure for both statistical mechanics and quan-
tum theory. It is to such formulations, arising as outgrowths of the Hamiltonian
procedure, that this and the next chapter are devoted.

THE EQUATIONS OF CANONICAL TRANSFORMATION

There is one type of problem for which the solution of the Hamilton’s equations is
trivial. Consider a situation in which the Hamiltonian is a constant of the motion,
and where all coordinates g; are cyclic. Under these conditions, the conjugate
momenta p; are all constant:

pi = i,

and since the Hamiltonian cannot be an explicit function of either the time or the
cyclic coordinates, it may be written as

H=H(xi,...,ay).
Consequently, the Hamilton’s equations for g; are simply

)
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where the w;’s are functions of the «;’s only and therefore are also constant in
time. Equations (9.1) have the immediate solutions

qi = wit + B, 9.2)

where the B;’s are constants of integration, determined by the initial conditions.

It would seem that the solution to this type of problem, easy as it is, can only
be of academic interest, for it rarely happens that all the generalized coordinates
are cyclic. But a given system can be described by more than one set of general-
ized coordinates. Thus, to discuss motion of a particle in a plane, we may use as
generalized coordinates either the Cartesian coordinates

q1 =X, q2 =),
or the plane polar coordinates
q1 =r, g2 =6.

Both choices are equally valid, but one of the other set may be more convenient
for the problem under consideration. Note that for central forces neither x nor y
is cyclic, while the second set does contain a cyclic coordinate in the angle 6.
The number of cyclic coordinates can thus depend upon the choice of generalized
coordinates, and for each problem there may be one particular choice for which
all coordinates are cyclic. If we can find this set, the remainder of the job is trivial.
Since the obvious generalized coordinates suggested by the problem will not nor-
mally be cyclic, we must first derive a specific procedure for transforming from
one set of variables to some other set that may be more suitable.

The transformations considered in the previous chapters have involved going
from one set of coordinates ¢; to a new set Q; by transformation equations of the
form

Qi = 0i(g,1). 9.3)

For example, the equations of an orthogonal transformation, or of the change
from Cartesian to plane polar coordinates, have the general form of Egs. (9.3).
As has been previously noted in Derivation 10 of Chapter 1, such transforma-
tions are known as point transformations. But in the Hamiltonian formulation
the momenta are also independent variables on the same level as the general-
ized coordinates. The concept of transformation of coordinates must therefore be
widened to include the simultaneous transformation of the independent coordi-
nates and momenta, q;, p;, to a new set Q;, P;, with (invertible) equations of
transformation:

Qi = 0i(q, p, 1),
P; = Pi(q, p,1). 9.4)

Thus, the new coordinates will be defined not only in terms of the old coordi-
nates but also in terms of the old momenta. Equations (9.3) may be said to define
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a point transformation of configuration space; correspondingly Egs. (9.4) define
a point transformation of phase space.

In developing Hamiltonian mechanics, only those transformations can be of
interest for which the new Q, P are canonical coordinates. This requirement will
be satisfied provided there exists some function K (Q, P, t) such that the equa-
tions of motion in the new set are in the Hamiltonian form

. 0K . 0K
Qi = P =——. 9.5)
aP; 00
The function K plays the role of the Hamiltonian in the new coordinate set.*
It is important for future considerations that the transformations considered be
problem-independent. That is to say, (Q, P) must be canonical coordinates not
only for some specific mechanical systems, but for all systems of the same num-
ber of degrees of freedom. Equations (9.5) must be the form of the equations of
motion in the new coordinates and momenta no matter what the particular initial
form of H. We may indeed be incited to develop a particular transformation from
(g, p) to (Q, P) to handle, say, a plane harmonic oscillator. But the same trans-
formation must then also lead to Hamilton’s equations of motion when applied,
for example, to the two-dimensional Kepler problem.

As was seen in Section 8.5, if Q; and P; are to be canonical coordinates, they
must satisfy a modified Hamilton’s principle that can be put in the form

r
5/2(P,~Qi —K(Q,P,1))dt =0, 9.6)
131

(where summation over the repeated index i is implied). At the same time the old
canonical coordinates of course satisfy a similar principle:

5]
5 / (pidi — H(g. p.1)dt =O0. ©.7)
n

The simultaneous validity of Eqs. (9.6) and (9.7) does not mean of course that the
integrands in both expressions are equal. Since the general form of the modified
Hamilton’s principle has zero variation at the end points, both statements will be
satisfied if the integrands are connected by a relation of the form

. . dF
Apigi — H) = P Qi — K + I 9.8)
Here F is any function of the phase space coordinates with continuous second
derivatives, and A is a constant independent of the canonical coordinates and the
time. The multiplicative constant A is related to a particularly simple type of trans-
formation of canonical coordinates known as a scale transformation.

*It has been remarked in a jocular vein that if H stands for the Hamiltonian, K must stand for the
Kamiltonian! Of course, K is every bit as much a Hamiltonian as H, but the designation is occasionally
a convenient substitute for the longer term “transformed Hamiltonian.”
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Suppose we change the size of the units used to measure the coordinates and
momenta so that in effect we transform them to a set (Q’, P’) defined by

0! = nqi, P/ =vp;. (9.9)

Then it is clear Hamilton’s equations in the form of Egs. (9.5) will be satisfied
for a transformed Hamiltonian K'(Q’, P’) = uvH(q, p). The integrands of the
corresponding modified Hamilton’s principles are, also obviously, related as

wv(pigi — H) = P/ Q} — K/, (9.10)

which is of the form of Eq. (9.8) with A = pv. With the aid of suitable scale trans-
formation, it will always be possible to confine our attention to transformations
of canonical coordinates for which A = 1. Thus, if we have a transformation of
canonical coordinates (g, p) — (Q’, P’) for some A # 1, then we can always
find an intermediate set of canonical coordinates (Q, P) related to (Q’, P’) by a
simple scale transformation of the form (9.9) such that v also has the same value
A. The transformation between the two sets of canonical coordinates (g, p) and
(Q, P) will satisfy Eq. (9.8), but now with A = 1:

. . dF
rigi—H="PQi — K+ —. .11
dt
Since the scale transformation is basically trivial, the significant transformations
to be examined are those for which Eq. (9.11) holds.

A transformation of canonical coordinates for which A 7 1 will be called an
extended canonical transformation. Where A = 1, and Eq. (9.11) holds, we will
speak simply of a canonical transformation. The conclusion of the previous para-
graph may then be stated as saying that any extended canonical transformation
can be made up of a canonical transformation followed by a scale transforma-
tion. Except where otherwise stated, all future considerations of transformations
between canonical coordinates will involve only canonical transformations. It is
also convenient to give a specific name to canonical transformations for which the
equations of transformation Egs. (9.4) do not contain the time explicitly; they will
be called restricted canonical transformations.

The last term on the right in Eq. (9.11) contributes to the variation of the action
integral only at the end points and will therefore vanish if F is a function of
(g, p,t) or (Q, P,t) or any mixture of the phase space coordinates since these
have zero variation at the end points. Further, through the equations of transfor-
mation, Eqgs. (9.4) and their inverses F can be expressed partly in terms of the old
set of variables and partly of the new. Indeed, F is useful for specifying the exact
form of the canonical transformation only when half of the variables (beside the
time) are from the old set and half are from the new. It then acts, as it were, as
a bridge between the two sets of canonical variables and is called the generating
function of the transformation.

To show how the generating function specifies the equations of transforma-
tion, suppose F were given as a function of the old and new generalized space
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coordinates:

F =F(q,Q,1). 9.12)
Equation (9.11) then takes the form

pigi—H=P,Qi =K+ ——

0 F] 0F; . 0F

i+ —0;. 9.13
97 86]1’ qi 90, 0; ( )

Since the old and the new coordinates, g; and Q;, are separate_ly independent,
Eq. (9.13) can hold identically only if the coefficients of ¢; and Q; each vanish:

IF
pi=—, (9.14a)
0qi
dF
p=—1 9.14b
; 20; ( )
leaving finally
IF
K=H+3f (9.14c)

Equations (9.14a) are n relations defining the p; as functions of ¢;, Q;, and t.
Assuming they can be inverted, they could then be solved for the n Q;’s in terms
of gj, pj, and ¢, thus yielding the first half of the transformation equations (9.4).
Once the relations between the Q;’s and the old canonical variables (g, p) have
been established, they can be substituted into Egs. (9.14b) so that they give the
n P;’s as functions of g, p;j, and ¢, that is, the second half of the transforma-
tion equations (9.4). To complete the story, Eq. (9.14c) provides the connection
between the new Hamiltonian, K, and the old one, H. We must be careful to read
Eq. (9.14c) properly. First ¢ and p in H are expressed as functions of Q and P
through the inverses of Egs. (9.4). Then the ¢; in d F1/dt are expressed in terms
of Q, P in a similar manner and the two functions are added to yield K(Q, P, t).

The procedure described shows how, starting from a given generating function
F1, the equations of the canonical transformation can be obtained. We can usu-
ally reverse the process: Given the equations of transformation (9.4), an appro-
priate generating function /| may be derived. Equations (9.4) are first inverted to
express p; and P; as functions of ¢, O, and 7. Equations (9.14a, b) then constitute
a coupled set of partial differential equations than can be integrated, in principle,
to find F; providing the transformation is indeed canonical. Thus, F; is always
uncertain to within an additive arbitrary function of # alone (which doesn’t affect
the equations of transformation), and there may at times be other ambiguities.

It sometimes happens that it is not suitable to describe the canonical transfor-
mation by a generating function of the type Fi(g, Q, t). For example, the trans-
formation may be such that p; cannot be written as functions of ¢, Q, and ¢, but
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rather will be functions of ¢, P, and . We would then seek a generating func-
tion that is a function of the old coordinates g and the new momenta P. Clearly
Eq. (9.13) must then be replaced by an equivalent relation involving P; rather than
Q;. This can be accomplished by writing F' in Eq. (9.11) as

Substituting this F in Eq. (9.11) leads to

. . d
Piqi —H=-0;P; —K—}—EFQ(q,P,t). 9.16)

Again, the total derivative of F, is expanded and the coefficients of ¢; and P;
collected, leading to the equations

IF
pi= 2, 9.172)
9gi
0; = 0F (9.17b)
Y '
with
0F,
K=H+=2. (9.17¢)

As before, Egs. (9.17a) are to be solved for P; as functions of g, p;, and ¢ to cor-
respond to the second half of the transformation equations (9.4). The remaining
half of the transformation equations is then provided by Egs. (9.17b).

The corresponding procedures for the remaining two basic types of generating
functions are obvious, and the general results are displayed in Table 9.1.

It is tempting to look upon the four basic types of generating functions as
being related to each other through Legendre transformations. For example, the

TABLE 9.1 Properties of the Four Basic Canonical Transformations

Generating Function Generating Function Derivatives Trivial Special Case
aF dF
F=Frq Q.1 pi = P =- Fi=qiQi, Qi=pi, Pi=-—gq
9q; 90,
AF, 0F,
F=F(q,P,1)— 0P pi= 5= Qi =— Fr=qiP, Qi=gq, P, = p;
qi P
0F3 dF3
F=F(p, 0.1)+qipi gi =——— P =- F3=piQ;, Qi=-¢qi, Pi=-p
api 90,
0Fy 0Fy
F=Fyp, P,t)+qipi —QiF | g =— 0, = Fy=piP, Q;=p, P; = —gq;
api P
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transition from Fi to F is equivalent to going from the variables ¢, Q to ¢, P
with the relation

0 F
p=21
90;

(9.18)

This is just the form required for a Legendre transformation of the basis variables,
as described in Section 8.1, and in analogy to Eq. (8.5) we would set

Fy(q. P.1) = Fi(q, Q.1) + Pi Qi, 9.19)

which is equivalent to Eq. (9.15) combined with Eq. (9.12). All the other defining
equations for the generating functions can similarly be looked on, in combina-
tion with Eq. (9.12) as Legendre transformations from Fj, with the last entry in
Table 9.1 describing a double Legendre transformation. The only drawback to
this picture is that it might erroneously lead us to believe that any given canoni-
cal transformation can be expressed in terms of the four basic types of Legendre
transformations listed in Table 9.1. This is not always possible. Some transfor-
mations are just not suitable for description in terms of these or other elementary
forms of generating functions, as has been noted above and as will be illustrated
in the next section with specific examples. If we try to apply the Legendre trans-
formation process, we are then led to generating functions that are identically
zero or are indeterminate. For this reason, we have preferred to define each type
of generating function relative to F', which is some unspecified function of 2n
independent coordinates and momenta.

Finally, note that a suitable generating function doesn’t have to conform to
one of the four basic types for all the degrees of freedom of the system. It is
possible, and for some canonical transformations necessary, to use a generating
function that is a mixture of the four types. To take a simple example, it may be
desirable for a particular canonical transformation with two degrees of freedom
to be defined by a generating function of the form

F'(q1, p2, P1, Q2,1). (9.20)

This generating function would be related to F in Eq. (9.11) by the equation

F = F'(q1, p2, P1, Q2,1) — Q1 P1 + q2p2, 9.21)

and the equations of transformation would be obtained from the relations

_ oF’ 0, = oF’
oF’ oF’

- ) P2
op2 00>
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with

oF

K=H .
+8t

(9.23)

Specific illustrations are given in the next section and in the exercises.

EXAMPLES OF CANONICAL TRANSFORMATIONS

The nature of canonical transformations and the role played by the generating
function can best be illustrated by some simple yet important examples. Let us
consider, first, a generating function of the second type with the particular form

F2 = C]i Pi (924)

found in column 3 of Table 9.1. From Egs. (9.17), the transformation equations
are

_on_,
pi = q: = fi,
aF
Qi:a_}’i:qi’
K=H. 9.25)

The new and old coordinates are the same; hence F, merely generates the identity
transformation (cf. Table 9.1). We also note, referring to Table 9.1, that the par-
ticular generating function F3 = p; Q; generates an identity transformation with
negative signs; thatis, Q; = —q;, P; = —p;.

A more general type of transformation is described by the generating function

F=fi(q1,....qu; P (9.26)

where the f; may be any desired set of independent functions. By Egs. (9.17b),
the new coordinates Q; are given by

_ 0F;

0= = fi(qi, ... qu; 1) 9.27)

P
Thus, with this generating function the new coordinates depend only upon the
old coordinates and the time and do not involve the old momenta. Such a trans-
formation is therefore an example of the class of point transformations defined
by Egs. (9.3). In order to define a point transformation, the functions f; must be
independent and invertible, so that the g; can be expressed in terms of the Q;.
Since the f; are otherwise completely arbitrary, we may conclude that all point
transformations are canonical. Equation (9.17¢c) furnishes the new Hamiltonian
in terms of the old and of the time derivatives of the f; functions.
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Note that F» as given by Eq. (9.26) is not the only generating function leading
to the point transformation specified by the f;. Clearly the same point transfor-
mation is implicit in the more general form

Fzzﬁ(qlv"'vqn; I)P1+g(5I1775]n» t)v (928)

where g(qg,t) is any (differentiable) function of the old coordinates and the
time. Equations (9.27), the transformation equations for the coordinates, remain
unaltered for this generating function. But the transformation equations of the
momenta differ for the two forms. From Egs. (9.17a), we have

R 3f; dg

=2 28 (9.29)
dqg; 0gq; ' 0g;

Pj

using the form of F» given by Eq. (9.28). These equations may be inverted to give
P as a function of (g, p), most easily by writing them in matrix notation:

of a
— P+_g

=37 5q° (9.29')

p

Here p, P, and 9g/dq are n-elements of single-column matrices, and 3f/dq is a
square matrix whose #jth element is df;/dg;. In two dimensions, Eq. (9.29") can
be written as

o 9
[m} | 91 8g2 [Pl}jL dq1
p2 afr  df2 Py ag
g1 g2 9q2

It follows that P is a linear function of p given by

p— | - 08 9.30
—[a} [p‘a] 30

In two dimensions, (9.30) becomes

ah anq 98
[PI}Z g1 9q2 |:p1]_ 9q1 _ ©931)
P afr  9fa P2 ag

dq1 I e

Thus, the transformation equations (9.27) for Q are independent of g and depend
only upon the f;(q, t), but the transformation equations (9.29) for P do depend
upon the form of g and are in general functions of both the old coordinates and
momenta. The generating function given by Eq. (9.26) is only a special case of
Eq. (9.28) for which g = 0, with correspondingly specialized transformation
equations for P.
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An instructive transformation is provided by the generating function of the first
kind, F1(q, Q, t), of the form

Fi = qx Q.

The corresponding transformation equations, from (9.14a, b) are

oF;
pi="t=0 (9.32a)
qi
poo 00 (9.32b)
i = 90, = —qi. .

In effect, the transformation interchanges the momenta and the coordinates; the
new coordinates are the old momenta and the new momenta are essentially the old
coordinates. Table 9.1 shows that the particular generating function of type Fy =
pi P; produces the same transformation. These simple examples should emphasize
the independent status of generalized coordinates and momenta. They are both
needed to describe the motion of the system in the Hamiltonian formulation. The
distinction between them is basically one of nomenclature. We can shift the names
around with at most no more than a change in sign. There is no longer present in
the theory any lingering remnant of the concept of g; as a spatial coordinate and
pi as a mass times a velocity. Incidentally, we may see directly from Hamilton’s
equations,

. 0H . oH

p 2 3q, ’ Clz 8p, )

that this exchange transformation is canonical. If g; is substituted for p;, the equa-
tions remain in the canonical form only if — p; is substituted for g;.

A transformation that leaves some of the (g, p) pairs unchanged, and inter-
changes the rest (with a sign change), is obviously a canonical transformation of
a “mixed” form. Thus, in a system of two degrees of freedom, the transformation

01 =qi, Py = py,
0> = p2, P, = —q,

is generated by the function
F=qP1+q0, (9.33)

which is a mixture of the F| and F types.

THE HARMONIC OSCILLATOR

As a final example, let us consider a canonical transformation that can be used to
solve the problem of the simple harmonic oscillator in one dimension. If the force
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constant is k, the Hamiltonian for this problem in terms of the usual coordinates is

2 2
p- | kg
H="+ = 9.34
2m + 2 ( 2)

Designating the ratio k/m by w?, H can also be written as

1
H=—(p*+m*0?¢?). (9.34b)
2m
This form of the Hamiltonian, as the sum of two squares, suggests a transfor-
mation in which H is cyclic in the new coordinate. If we could find a canonical
transformation of the form

p=f(P)cosQ, (9.352)
EAG sin Q, (9.35b)
maw

then the Hamiltonian as a function of Q and P would be simply

2 2
K=H= f < )(cos Q—i—sm 0) = f ;f) (9.36)

so that Q is cyclic. The problem is to find the form of the yet unspecified function
f(P) that makes the transformation canonical. If we use a generating function of
the first kind given by

wq?

F =
! 2

cot Q, (9.37)

Egs. (9.14) then provide the equations of transformation,

0F]
p=——=mwqcotQ, (9.382)
dq
dF 2
p=-1_ T (9.38b)
90 2sin 0

Solving for g and p, we have*

[2P .
qg =, —sinQ, (9.39a)
maw

*It can be argued that F| does not unambiguously specify the canonical transformation, because in
solving Eq. (9.38b) for ¢ we could have taken the negative square root instead of the positive root as
(implied) in Eqgs. (9-39). However, the two canonical transformations thus derived from F] differ only
trivially; a shift in & by 7 corresponds to going from one transformation to the other. Nonetheless, it
should be kept in mind that the transformations derived from a generating function may at times be
double-valued or even have local singularities.
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p = ~2Pmawcos O, (9.39b)
and comparison with Eq. (9.35a) evaluates f(P):
f(P) =vV2moP. (9.40)
It follows then that the Hamiltonian in the transformed variables is
H=wP. 9.41)

Since the Hamiltonian is cyclic in Q, the conjugate momentum P is a constant. It
is seen from Eq. (9.41) that P is in fact equal to the constant energy divided by w:

P=—.
w

The equation of motion for Q reduces to the simple form

Q _0H
Tap
with the immediate solution
0=owt+a, (9.42)

where « is a constant of integration fixed by the initial conditions. From Eqs. (9.39),
the solutions for ¢ and p are

2F .
q = — sin(or + a), (9.43a)
mo

p = ~2mE cos(wt + o). (9.43b)

It is instructive to plot the time dependence of the old and new variables as is
shown in Fig. 9.1. We see that g and p oscillate (Fig. 9.1a, b) whereas Q and P
are linear plots (Fig. 9.1d, e). The figure also shows the phase space plots for p
versus g (Fig. 9.1c) and for P versus Q (Fig. 9.1f). Fig. 9.1c is an ellipse with the
following semimajor axes (for the ¢ and p directions, respectively):

a=,—s and b=~2mE,

where m is the mass of the oscillator, w its frequency, and E the oscillator’s
energy. The area, A, of this ellipse in phase space is

_ 2 E

w

A=mab
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FIGURE 9.1 The harmonic oscillator in two canonical coordinate systems. Draw-
ings (a)—(c) show the g, p system and (d)—(f) show the P, Q system.

When we invoke quantum mechanics, we write E = hw, where A = h /2w, and h
is Planck’s constant. The coordinate and momentum g and p can be normalized as

(]
’ mw ’ P
R — and = ,
q 2E q 14 OmE

to make the phase space plot of p’ versus ¢’ a circle of area 7. This normalized
form will be useful in Section 11.1 on chaos.
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It would seem that the use of canonical transformations to solve the harmonic
oscillator problem is similar to “cracking a peanut with a sledge hammer.” We
have here however a simple example of how the Hamiltonian can be reduced to a
form cyclic in all coordinates by means of canonical transformations. Discussion
of general schemes for the solution of mechanical problems by this technique will
be reserved for the next chapter. For the present, we shall continue to examine the
formal properties of canonical transformations.

THE SYMPLECTIC APPROACH TO CANONICAL TRANSFORMATIONS

Another method of treating canonical transformations, seemingly unrelated to the
generator formalism, can be expressed in terms of the matrix or symplectic for-
mulation of Hamilton’s equations. By way of introduction to this approach, let us
consider a restricted canonical transformation, that is, one in which time does not
appear in the equations of transformation:

0i =0i(q, p),
P; = Pi(q, p). (9.44)

We know that the Hamiltonian function does not change in such a transformation.
The time derivative of Q;, on the basis of Egs. (9.44), is to be found as

. 00; 00; 0Q; 0H 0Q; 0H
o, =29, 00, Qi 0H _00i0H (9.45)
ey ap;j dgqj dpj  9pj 9q;
On the other hand, the inverses of Egs. (9.44),
q; =q;(Q, P),
pj =p;(Q, P), (9.46)

enables us to consider H (g, p, t) as a function of Q and P and to form the partial
derivative

0H 0Hdp; 0H dq;
9% _2nop ST (9.47)
3Pl' 3pj 8P,' 36]] 3P,'

Comparing Eqgs. (9.45) and (9.47), it can be concluded that

oH

Qi:a_P,-;

that is, the transformation is canonical, only if

. op i g
(o) =() o (22) — (M) eas
39 /4. IPi [ o p ;) g.p P/ o.p
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The subscripts on the derivatives are to remind us that on the left-hand side of
these equations Q; is considered as a function of (g, p) (cf. Egs. (9.44)), while
on the right-hand side the derivatives are for ¢; and p; as functions of (Q, P) (cf.
Egs. (9.46)). A similar comparison of P; with the partial of H with respectto Q;
leads to the conditions

oP; op; oP; 0q;
@), ()G, oo
a‘h’ q.p 00; 0.,P 817/‘ q.p 00, 0.P

The sets of Egs. (9.48) together are sometimes known as the “direct conditions”
for a (restricted) canonical transformation.

The algebraic manipulation that leads to Eqgs. (9.48) can be performed in a
compact and elegant manner if we make use of the symplectic notation for the
Hamiltonian formulation introduced above at the end of Section 8.1. If n is a
column matrix with the 2n elements ¢;, p;, then Hamilton’s equations can be
written, it will be remembered, as Eq. (8.39)

where ] is the antisymmetric matrix defined in Eq. (8.38a). Similarly the new set
of coordinates Q;, P; define a 2n-element column matrix £, and for a restricted
canonical transformation the equations of transformation (9.44) take the form

=), (9.49)

Analogously to Eq. (9.45) we can seek the equations of motion for the new vari-
ables by looking at the time derivative of a typical element of {:

. g .
= —7;, i, ji=1,...,2n.
Gi 877]_77, ] n

In matrix notation, this time derivative can be written as

{ =M, (9.50)
where M is the Jacobian matrix of the transformation with elements
a .
= o (9.51)
an;
Making use of the equations of motion for i, Eq. (9.50) becomes
. oH
{=M]—. (9.52)
an

Now, by the inverse transformation H can be considered as a function of £, and
the derivative with respect to »; evaluated as

OH _ 9H 0L
omi ¢ on;’
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or, in matrix notation*

0H ~0H
—=M—. (9.53)
on al

The combination of Egs. (9.52) and (9.53) leads to the form of the equations
of motion for any set of variables { transforming, independently of time, from the
canonical set 7:

f=mm 22 (9.54)
= a )
We have the advantage of knowing from the generator formalism that for a
restricted canonical transformation the old Hamiltonian expressed in terms of the
new variables serves as the new Hamiltonian:

oH

73 (9.54)

¢=)
The transformation, Eq. (9.49), will therefore be canonical if M satisfies the
condition

MIM = ). (9.55)

That Eq. (9.55) is also a necessary condition for a restricted canonical transforma-
tion is easily shown directly by reversing the order of the steps of the proof. Note
that for an extended time-independent canonical transformation, where K = AH,
the condition of Eq. (9.55) would be replaced by

MIM = 3. (9.56)

Equation (9.55) may be expressed in various forms. Multiplying from the right
by the matrix inverse to M leads to

M) =ML, (9.57)

(since the transpose of the inverse is the inverse of the transpose). The elements
of the matrix equation (9.57) will be found to be identical with Egs. (9.48a) and
(9.48b). If Eq. (9.57) is multiplied by ] from the left and —) from the right, then
by virtue of Eq. (8.38¢) we have

IM=M"),

*Readers of Section 7.5 will have recognized that Eq. (9.50) is the statement that ) transforms con-
travariantly (as a vector) under the transformation, and Eq. (9.53) says that the partial derivative of H
with respect to the elements of 1 transforms covariantly (or as a 1-form) (cf. Egs. (7.50) and (7.54)).
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or
MM = J. (9.58)

Equation (9.55), or its equivalent version, Eq. (9.58), is spoken of as the sym-
plectic condition for a canonical transformation, and the matrix M satisfying the
condition is said to be a symplectic matrix.

These concepts may become more obvious if we display the details of the J and
M matrices corresponding to the mixed generating function F = F>(q1, P1) +
F1(q2, O2) of Eq. (9.33). The variables i and £ are column vectors given by

q1 01
q2 ()
= and =
n )4 ¢ P
P2 P

The transformation (,’ = M7 (cf. Eq. (9.50)) is made by the following M matrix:

01 I 0 0 0)|q1 q1

Q2| _ |0 0 O 1Lf|gf_|p

Py 0O 0 1 0 D1 p1 |’
P, 0 -1 0 0] [p2 —q2

in agreement with the expressions obtained by differentiating the results of the
generating function with respect to time (cf. Column 3, Table 9.1). Hamilton’s
equations for the transformed variables ¢ = ]33—1; (Eq. (9.54)) are expressed as

follows independent of the generating function F

01 0 0 1 0][-PA
O |0 0 0 1||-P
Pl |-1 0 0 o0f]| 0
P, 0 -1 0 0|| 0,

where —P; = dH /d¢; for ¢1 and & and 0; = 0H /3¢ for ¢3 and &4. Note
that M depends on F whereas J does not (cf. Eq. (8.38a)). This formalism is not
applicable to all cases. For example, a simple M matrix cannot be written for the
harmonic oscillator example discussed in Section 9.3.

For a canonical transformation that contains the time as a parameter, the simple
derivation given for the symplectic condition no longer holds. Nonetheless, the
symplectic condition remains a necessary and sufficient condition for a canonical
transformation even if it involves the time. It is possible to prove the general
validity of the symplectic conditions for all canonical transformations by straight-
forward, albeit lengthy, procedures resembling those employed for restricted
canonical transformations. Instead we shall take a different tack, one that takes
advantage of the parametric form of the canonical transformations involving time.
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A canonical transformation of the form

{=Lm.n 9.59)

evolves continuously as time increases from some initial value 7. It is a single-
parameter instance of the family of continuous transformations first studied sys-
tematically by the mathematician Sophus Lie and as such plays a distinctive role
in the transformation theory of classical mechanics.

If the transformation

n— @) (9.60a)

is canonical, then so obviously is the transformation

n — {(o). (9.60b)

It follows then from the definition of canonical transformation that the transfor-
mation characterized by

{(10) — (1) (9.60c)

is also canonical. Since f( in Eq. (9.60b) is a fixed constant, this canonical trans-
formation satisfies the symplectic condition (9.58). If now the transformation of
Eq. (9.60c) obeys the symplectic condition, it is easy to show (cf. Derivation 13)
that the general transformation Eq. (9.60a) will also.

To demonstrate that the symplectic condition does indeed hold for canonical
transformations of the type of Eq. (9.60c), we introduce the notion of an infinites-
imal canonical transformation (abbreviated 1.C.T.), a concept that will prove to
be widely useful. As in the case of infinitesimal rotations, such a transformation
is one in which the new variables differ from the old only by infinitesimals. Only
first-order terms in these infinitesimals are to be retained in all calculations. The
transformation equations can then be written as

Qi =qi +4qi, (9.61a)
P; = p; +p;, (9.61b)

or in matrix form
=mn+6n. (9.61¢c)

(Here 8¢q; and 8p; do not represent virtual displacements but are simply the in-
finitesimal changes in the coordinates and momenta.) An infinitesimal canonical
transformation thus differs only infinitesimally from the identity transformation
discussed in Section 9.1. In the generator formalism, a suitable generating func-
tion for an I.C.T. would therefore be

Fr=¢qiPi+€G(q, P, 1), (9.62)
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where € is some infinitesimal parameter of the transformation, and G is any (dif-
ferentiable) function of its 2n + 1 arguments. By Eq. (9.17a), the transformation
equations for the momenta are to be found from

0F,
Pi= g = Pj+e %,
or
Spj=Pj —pj=—¢€ E (9.63a)
g

Similarly, by Eq. (9.17b), the transformation equations for Q ; are determined by
the relations

0 _ . 0G
= —— =qj+€—.
1= T VTGP,

Since the second term is already linear in €, and P differs from p only by an
infinitesimal, it is consistent to first order to replace P; in the derivative function
by p;. We may then consider G as a function of ¢, p only (and possibly ). Fol-
lowing the usual practice, we will refer to G(q, p) as the generating function of
the infinitesimal canonical transformation, although strictly speaking that desig-
nation belongs only to F. The transformation equation for Q; can therefore be
written as

G
dqj =€ —. (9.63b)
Both transformation equations can be combined into one matrix equation
G
n=¢€¢)—. (9.63¢)
an

An obvious example of an infinitesimal canonical transformation would be the
transformation of Eq. (9.60c) when ¢ differs from 7y by an infinitesimal #:

{(to) — Lo + dr), (9.64)

with dt as the infinitesimal parameter €. The continuous evolution of the trans-
formation {(n, t) from &(n, t9) means that the transformation {(#9) — {(¢) can
be built up as a succession of such I.C.T.’s in steps of d¢. It will therefore suffice
to show that the infinitesimal transformation, Eq. (9.64), satisfies the symplectic
condition (9.58). But it follows from the transformation equations (9.63) that the
Jacobian matrix of any I.C.T. is a symplectic matrix. By definition the Jacobian
matrix (9.51) for an infinitesimal transformation is

9 95
M= _q 4 %m

on on’
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or by Eq. (9.63¢c)

2

0
M=1+¢)

. 9.65
Snom (9.65)

The second derivative in Eq. (9.65) is a square, symmetric matrix with elements

PG\ 3G
omom )~ midn;’

Because of the antisymmetrical property of ], the transpose of M is

392G
anon

M=1-¢

J. (9.66)

The symplectic condition involves the value of the matrix product

~ 9%G 392G
MM = (1 +6]8n3n>] (1 —€ 311%') )

Consistent to first order in this product is

~ 92G 92G
MM =] + €] J—1Je
aman anaon

)
=),

thus demonstrating that the symplectic condition holds for any infinitesimal
canonical transformation. By the chain of reasoning we have spun out, it there-
fore follows that any canonical transformation, whether or not it involves time as
a parameter, obeys the symplectic conditions, Eqs. (9.55) and (9.58).

The symplectic approach, for the most part, has been developed independently
of the generating function method, except in the treatment of infinitesimal canon-
ical transformations. They are of course connected. We shall sketch later, for
example, a proof that the symplectic condition implies the existence of a gen-
erating function. But the connection is largely irrelevant. Both are valid ways of
looking at canonical transformations, and both encompass all of the needed prop-
erties of the transformations. For example, either the symplectic or the generator
formalisms can be used to prove that canonical transformations have the four
properties that characterize a group (cf. Appendix B).

1. The identity transformation is canonical.
2. If a transformation is canonical, so is its inverse.

3. Two successive canonical transformations (the group “product” operation)
define a transformation that is also canonical.

4. The product operation is associative.
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We shall therefore be free to use either the generator or the symplectic approach
at will, depending on which leads to the simplest treatment at the moment.

POISSON BRACKETS AND OTHER CANONICAL INVARIANTS

The Poisson bracket of two functions u, v with respect to the canonical variables
(g, p) is defined as

s = — = — . 9.67
e, vla.p dg; 0p;  dp; 9g; (.67

In this bilinear expression we have a typical symplectic structure, as in Hamilton’s
equations, where g is coupled with p, and p with —q. The Poisson bracket thus
lends itself readily to being written in matrix form, where it appears as

[, vl = —) —. (9.68)

The transpose sign is used on the first matrix on the right-hand side to indicate
explicitly that this matrix must be treated as a single-row matrix in the multi-
plication. On most occasions this specific reminder will not be needed and the
transpose sign may be omitted.

Suppose we choose the functions u#, v out of the set of canonical variables
(g, p) themselves. Then it follows trivially from the definition, either as Eq. (9.67)
or (9.68), that these Poisson brackets have the values

[(’Ija ‘Zk]q,p =0= [Pj, pk]q,p’ (9.69a)

and

9/, Pilg.p =8k = —[Pj. arlq.p- (9.69b)

We can summarize the relations of Eqgs. (9.69) in one equation by introducing
a square matrix Poisson bracket, [, @], whose [m element is [n;, 1,,]. Equa-
tions (9.69) can then be written as

(0, ]y =] (9.70)

Now let us take for u, v the members of the transformed variables (Q, P), or
¢, defined in terms of (g, p) by the transformation equations (9.59). The set of
all the Poisson brackets that can be formed out of (Q, P) comprise the matrix
Poisson bracket defined as

. o
[.i;v.i;]‘n: 8_1{]]%'
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But we recognize the partial derivatives as defining the square Jacobian matrix of
the transformation, so that the Poisson bracket relation is equivalent to

(£ Oy = MIM. 9.71)

If the transformation 1 — {is canonical, then the symplectic condition holds and
Eq. (9.71) reduces to (cf. Eq. (9.58))

(£ 8y =), 9.72)

and conversely, if Eq. (9.72) is valid, then the transformation is canonical.

Poisson brackets of the canonical variables themselves, such as Egs. (9.70)
or (9.72), are referred to as the fundamental Poisson brackets. Since we have
from Eq. (9.70) that

& ¢e=1, (9.73)

Eq. (9.72) states that the fundamental Poisson brackets of the ¢ variables have the
same value when evaluated with respect to any canonical coordinate set. In other
words, the fundamental Poisson brackets are invariant under canonical transfor-
mation. We have seen from Eq. (9.71) that the invariance is a necessary and suffi-
cient condition for the transformation matrix to be symplectic. The invariance of
the fundamental Poisson brackets is thus in all ways equivalent to the symplectic
condition for a canonical transformation.

It does not take many more steps to show that all Poisson brackets are invariant
under canonical transformation. Consider the Poisson bracket of two functions
u, v with respect to the 7 set of coordinates, Eq. (9.68). In analogy to Eq. (9.53),
the partial derivative of v with respect to n can be expressed in terms of partial
derivatives with respect to { as

v _gv
on ol
(that is, the partial derivative transforms as a 1-form). In a similar fashion,
du o~ ou  du
am 9L Al
Hence the Poisson bracket Eq. (9.68) can be written

ATV
¢

If the transformation is canonical, the symplectic condition in the form of
Eq. (9.55) holds, and we then have

du
—J

ot = ) T

du . v

3_§] 8_4' = [u, vlg. 9.74)

[u,v]y =
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Thus, the Poisson bracket has the same value when evaluated with respect to any
canonical set of variables—all Poisson brackets are canonical invariants. In writ-
ing the symbol for the Poisson bracket, we have so far been careful to indicate by
the subscript the set of variables in terms of which the brackets are defined. So
long as we use only canonical variables that practice is now seen to be unneces-
sary, and we shall in general drop the subscript.*

The hallmark of the canonical transformation is that Hamilton’s equations of
motion are invariant in form under the transformation. Similarly, the canonical in-
variance of Poisson brackets implies that equations expressed in terms of Poisson
brackets are invariant in form under canonical transformation. As we shall see, we
can develop a structure of classical mechanics, paralleling the Hamiltonian for-
mulation, expressed solely in terms of Poisson brackets. Historically this Poisson
bracket formulation, which has the same form in all canonical coordinates, was
especially useful for carrying out the original transition from classical to quantum
mechanics. There is a simple “correspondence principle” that says that the clas-
sical Poisson bracket is to be replaced by a suitably defined commutator of the
corresponding quantum operators.

The algebraic properties of the Poisson bracket are therefore of considerable
interest. We have already used the obvious properties

[u,u] =0, (9.75a)
[u, v] = —[v, u]. (antisymmetry) (9.75b)

Almost equally obvious are the characteristics
[au + bv, w] = alu, w] + b[v, w], (linearity) (9.75¢)
where a and b are constants, and
[uv, w] = [u, wlv + ulv, w]. (9.75d)

One other property is far from obvious, but is very important in defining the
nature of the Poisson bracket. It is usually given in the form of Jacobi’s iden-
tity, which states that if u, v, and w are three functions with continuous second
derivatives, then

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0; (9.75¢e)

that is, the sum of the cyclic permutations of the double Poisson bracket of three
functions is zero. There seems to be no simple way of proving Jacobi’s identity for
the Poisson bracket without lengthy algebra. However, it is possible to mitigate
the complexity of the manipulations by introducing a special nomenclature. We

*Note that for a scale transformation, or an extended canonical transformation, where the symplectic
condition takes on the form of Eq. (9.56), then Poisson brackets do not have the same values in all
coordinate systems. That is one of the reasons scale transformations are excluded from the class of
canonical transformations that are useful to consider.
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shall use subscripts on u, v, w (or functions of them) to denote partial derivatives
by the corresponding canonical variable. Thus,

ou ov
U = —, and vij = .
an; 0n;

In this notation the Poisson bracket of # and v can be expressed as
[u,v] = u;iJijvj.

Here J;;, as usual, is simply the ijth element of J. In the proof, the only property
of J that we shall need is its antisymmetry.
Now let us consider the first double Poisson bracket in Eq. (9.75¢):

[u, [v, w]] = u; Jij[v, w); = u; Jij (Ve Jwy) ;.

Because the elements Ji; are constants, the derivative with resect to n doesn’t act
on them, and we have

[u, [v, w]] = u; Jij (Vg Jrwij + vij Jwy). (9.76)

The other double Poisson brackets can be obtained from Eq. (9.76) by cyclic
permutation of u, v, w. There are thus six terms in all, each being a fourfold sum
over dummy indices i, j, k, and /. Consider the term in Eq. (9.76) involving a
second derivative of w:

Jij Jrrui vewy; -

The only other second derivative of w will appear in evaluating the second double
Poisson bracket in (Eq. 9.75e):

(v, [w, u]] = veJ (W Jjiu;);.
Here the term in the second derivative in w is
JiiJhuivgwj;.

Since the order of differentiation is immaterial, w;; = wj;, and the sum of the
two terms is given by

(Jij + Jji)Juiviw; =0,

by virtue of the antisymmetry of J. The remaining four terms are cyclic permuta-
tions and can similarly be divided in two pairs, one involving second derivatives
of u and the other of v. By the same reasoning, each of these pairs sums to zero,
and Jacobi’s identity is thus verified.

If the Poisson bracket of u, v is looked on as defining a “product” operation of
the two functions, then Jacobi’s identity is the replacement for the associative law
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of multiplication. Recall that the ordinary multiplication of arithmetic is associa-
tive; that is, the order of a sequence of multiplications is immaterial:

a(bc) = (ab)c.

Jacobi’s identity says that the bracket “product” is not associative and gives
the effect of changing the sequence of “multiplications.” Brackets that satisfy
Eqgs. (9.75), together with the expression

i ujl = cfux. 9.77)
k

constitute a generally noncommunitive algebra called a Lie algebra. For Poisson
brackets in three-dimensional space, either the structure constants cf.‘. are all zero
or only one term in the right-hand side of Eq. (9.77) exists for any pair of indices.
Examples of this will be given later, and a more detailed discussion of Lie algebras
is given in Appendix B.

The Poisson bracket operation is not the only type of “product” familiar to
physicists that satisfies the conditions for a Lie algebra. It will be left to the exer-
cises to show that that vector product of two vectors,

v[A,B] — A x B, (9.78a)
and the commutator of two matrices,
MmIA, B] — AB — BA, (9.78b)

satisfy the same Lie algebra conditions as the Poisson bracket. It is this last that
makes it feasible to replace the classical Poisson bracket by the commutator of the
quantum mechanical operators. In other words, the “correspondence principle”
can work only because both the Poisson bracket and commutator are representa-
tions of a Lie algebra “product.”*

There are other canonical invariants besides the Poisson bracket. One, mainly
of historical interest now, is the Lagrange bracket, denoted by {u, v}. Suppose u
and v are two functions out of a set of 2n independent functions of the canonical
variables. By inversion, the canonical variables can then be considered as func-
tions of the set of 2n functions. On this basis, the Lagrange bracket of u and v
with respect to the (g, p) variables is defined as

*Of course, we must not mistake the mathematical acceptability of this version of the correspondence
principle with its physical necessity. The introduction of the quantum commutation relations was a
great act of physical discovery by the pioneers of quantum mechanics. All we show here is that there
is a similarity in the mathematical structure of the Poisson bracket formulation of classical mechanics
and the commutation relation version of quantum mechanics. The formal correspondence is that

1
[u, v] — E(uv — vu)

where on the left u, v are classical functions and on the right they are quantum operators.
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9qi 9pi_ 9pi 34i

, = —— , 9.79
s Vg.p ou ov ou ov ( )
or, in matrix notation,
Eﬁ) an
, = —]—. 9.80
vk =3 55 ©-80)

Proof of the canonical invariance of the Lagrange bracket parallels that for the
Poisson bracket.

If for u and v we take two members of the set of canonical variables, then we
obtain the fundamental Lagrange brackets:

{qi’qj}qp:O:{pispj}qp {qi’pj}qp=8ij’ (9.81)

or, in matrix notation,

{n.n =) (9.82)

The Lagrange and Poisson brackets clearly stand in some kind of inverse rela-
tionship to each other, but the precise form of this relation is somewhat compli-
cated to express. Let u;, i = 1,...,2n, be a set of 2n independent functions of
the canonical variables, to be represented by a column (or row) matrix u. Then
{u, u} is the 2n x 2n matrix whose ijth element is {u;, u ;}, with a similar descrip-
tion for [u, u]. The reciprocal character of the two brackets manifests itself in the
relation

{u, u}[u,u] = 1. (9.83)

If for u we choose the canonical set itself, 1, then Eq. (9.83) obviously fol-
lows from the fundamental bracket formulas, Eqs. (9.70) and (9.82), and the
properties of J. The proof for arbitrary u is not difficult if written in terms of
the matrix definitions of the brackets and is reserved for the exercises. While
the properties of the Lagrange and Poisson brackets parallel each other in
many aspects, note that the Lagrange brackets do not obey Jacobi’s identity.
Lagrange brackets therefore do not qualify as a “product” operation in a Lie
algebra.

Another important canonical invariant is the magnitude of a volume element in
phase space. A canonical transformation 1 — ¢ transforms the 2n-dimensional
phase space with coordinates 1; to another phase space with coordinates ¢;. The
volume element

(dn) =dqdqy ...dqydp: ...dp,
transforms to a new volume element

dt)=d01dQ>...dQ,dP,...dP,.
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As is well known, the sizes of the two volume elements are related by the
absolute value of the Jacobian determinant |[M||;

(d¢) = [MIl(dn).

For example, in the two-dimensional transformation fromn; =g, pto¢; = Q, P,
this expression becomes

dg g
a0 odP
dQdPpP = dgdp =lq, pl; dq dp. (9.84)
op  dp
aQ OJP

But, by taking the determinant of both sides of the symplectic condition, Eq. (9.58),
we have

IMI2))] = [)]. (9.85)

Thus, in a real canonical transformation the Jacobian determinant is 1, and the
absolute value is always unity, proving the canonical invariance of the volume
element in phase space. It follows, also, that the volume of any arbitrary region in

phase space,
Jn =/---/(dr;), (9.86)

is a canonical invariant. In our two-dimensional example, the invariant is dn =
dgdp and J, = [dqdp.

The volume integral in Eq. (9.86) is the final member of a sequence of canon-
ical invariants known as the integral invariants of Poincaré, comprising integrals
over subspaces of phase space of different dimensions. The other members of the
sequence cannot be stated as simply as J,, and because they are not needed for
the further development of the theory, they will not be discussed here.

Finally, the invariance of the fundamental Poisson brackets now enables us to
outline a proof that the symplectic condition implies the existence of a generating
function, as mentioned at the conclusion of the previous section. To simplify con-
siderations, we shall examine only a system with one degree of freedom; the gen-
eral method of the proof can be directly extended to systems with many degrees
of freedom.* We suppose that the first of the equations of transformation,

0=20(@4q.p), P =P(q, p),

*In the literature, the connection between the symplectic approach and the generator formalism is
sometimes referred to as the Carathéodory theorem.
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is invertable so as to give p as a function ¢ and Q, say

p=¢q. Q). 9.87)

Substitution in the second equation of transformation gives P as some function
of g and Q, say

P =1, Q). (9.88)

In such a case, we would expect the transformation to be generated by a generating
function of the first kind,* Fj, with Egs. (9.87) and (9.88) appearing as

_9F@. Q) _ R
p="0 P50 O (9.89)

If Eq. (9.89) holds, then it must be true that

9 _ —%. (9.90)
00 dq

Conversely, if we can show that Eq. (9.90) is valid, then there must exist a function
F1 such that p and P are given by Egs. (9.89).

To demonstrate the validity of Eq. (9.90), we try to look on all quantities as
functions of ¢ and Q. Thus, we of course have the identity

2y
90

but if Eq. (9.87) be substituted in the first transformation equation,

9

Q=0(q.94.Q2), 9.91)
the partial derivative can also be written

90 30 3¢
90~ 0p 90’

so that we have the relation

000 _
ap a0

In the same spirit we evaluate the Poisson bracket

(9.92)

909P 3P
(0. py= 280F _APIC

*Of course, if the Q transformation equation is not invertable, as in the identity transformation, then
we would invert the P equation and be led to a generating function of the second kind.
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The derivatives of P are derivatives of ¥ from Eq. (9.88) considered as a function
of ¢ and Q(g, p). Hence, the Poisson bracket can be written

_i0sse _to (1, 1y s0)

[Q’P]_aanap ap \dg 00 dg

or, consolidating terms, as

[0 p]_%<Q%_@@>_%%
00 \dg ap  0p g ap 0q’
and therefore
1= Q3 (9.93)
dp dq

Combining Eqgs. (9.92) and (9.93), we have

90 3¢ 003y
9p 00 op g

Since the partial derivative of Q with respect to p is the same on both sides of the
equation, that is, the other variable being held constant is ¢ in both cases, and since
the derivative doesn’t vanish (else the Q equation could not be inverted), it follows
that Eq. (9.90) must be true. Thus, from the value of the fundamental Poisson
bracket [Q, P], which we have seen is equivalent to the symplectic condition, we
are led to the existence of a generating function. The two approaches to canonical
transformations, though arrived at independently, are fully equivalent.

EQUATIONS OF MOTION, INFINITESIMAL CANONICAL
TRANSFORMATIONS, AND CONSERVATION THEOREMS
IN THE POISSON BRACKET FORMULATION

Almost the entire framework of Hamiltonian mechanics can be restated in terms
of Poisson brackets. As a result of the canonical invariance of the Poisson brack-
ets, the relations so obtained will also be invariant in form under a canonical
transformation. Suppose, for example, we look for the total time derivative of
some function of the canonical variables and time, u(q, p, t), by use of Hamil-
ton’s equations of motion:

du_au,'_i_au ,'+8u_8u8H 8u8H+8u
dt  0g T op P T o8 T aqi opr opi 0qi | ot

or

— =[u, H]| + —. (9.94)
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In terms of the symplectic notation, the derivation of Eq. (9.94) would run

du u . ou ou oH du

E—W’"’l‘i‘ o1 =%]%+§,
from whence Eq. (9.94) follows, by virtue of (9.68). Equation (9.94) may be
looked on as the generalized equation of motion for an arbitrary function u in
the Poisson bracket formulation. It contains Hamilton’s equations as a special
case when for u we substitute one of the canonical variables

gi = lgi, H], pi = [pi, H], (9.95a)
or, in symplectic notation,
n=[n, H] (9.95b)

That Eq. (9.95b) is identical with Hamilton’s equations of motion may be seen
directly from the observation that by the definition of the Poisson bracket,
Eq. (8.39), we have

oH
(n. H] =) T (9.96)
]

so that Eq. (9.95b) is simply another way of writing Eq. (8.31). Another familiar
property may be obtained from Eq. (9.94) by taking u as H itself. Equation (9.94)
then says that

dH _9H
dr ~ o’

as was obtained previously in Eq. (8.41).

Note that the generalized equation of motion is canonically invariant; it is valid
in whatever set of canonical variables g, p is used to express the function u or to
evaluate the Poisson bracket. However, the Hamiltonian used must be appropriate
to the particular set of canonical variables. Upon transforming to another set of
variables by a time-dependent canonical transformation, we must also change to
the transformed Hamiltonian K.

If u is a constant of the motion, then Eq. (9.94) says it must have the property

ou
[H,u] = o (9.97)

All functions that obey Eq. (9.97) are constants of the motion, and conversely the
Poisson bracket of H with any constant of the motion must be equal to the explicit
time derivative of the constant function. We thus have a general test for seeking
and identifying the constants of the system. For those constants of the motion not
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involving the time explicitly, the test of Eq. (9.97) reduces to requiring that their
Poisson brackets with the Hamiltonian vanish, that is, [H, u] = 0.*

If two constants of the motion are known, the Jacobi identity provides a possi-
ble way for obtaining further constants. Suppose u and v are two constants of the
motion not explicitly functions of time. Then if w in Eq. (9.75¢) is taken to be H,
the Jacobi identity says

[H, [u, v]] = 0;

that is, the Poisson bracket of u and v is also a constant in time. Even when
the conserved quantities depend upon time explicitly, it can be shown with a bit
more algebra (cf. Exercise 30) that the Poisson bracket of any two constants of the
motion is also a constant of the motion (Poisson’s theorem). Repeated application
of the Jacobi identity in this manner can in principle lead to a complete sequence
of constants of the motion. Quite often, however, the process is disappointing.
The Poisson bracket of u and v frequently turns out to be a trivial function of u
and v themselves, or even identically zero. Still, the possibility of generating new
independent constants of motion by Poisson’s theorem should be kept in mind.

The Poisson bracket notation can also be used to reformulate the basic equa-
tions of an infinitesimal canonical transformation. As discussed above (Sec-
tion 9.4), such a transformation is a special case of a transformation that is a
continuous function of a parameter, starting from the identity transformation at
some initial value of the parameter (which may, for convenience, be set equal
to zero). If the parameter is small enough to be treated as a first-order infinitesi-
mal, then the transformed canonical variables differ only infinitesimally from the
initial coordinates:

L=m+68n (9.98)
with the change being given in terms of the generator G through Eq. (9.63c):

oG
dn =€) 85]1’)'

Now, by the definition (9.68) of the Poisson bracket, it follows that
ou
[0 ul=)— 9.99)
on

(cf. Eq. (9.96)), a relation that remains valid when the Poisson bracket is evaluated
in terms of any other canonical variables. If u is taken to be G, it is seen that the
equations of transformation for an infinitesimal canonical transformation can be

*In view of the “correspondence principle” between the classical Poisson bracket and the quantum
commutator, it is seen that this statement corresponds to the well-known quantum theorem that con-
served quantities commute with the Hamiltonian.
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written as
én =¢€[n, G]. (9.100)

Consider now an infinitesimal canonical transformation in which the contin-
uous parameter is ¢ (as was done in proving the symplectic condition) so that
€ = dt, and let the generating function G be the Hamiltonian. Then the equations
of transformation for this I.C.T. become, by Eq. (9.100),

$q = dt[n, H] = qdt = dn. (9.101)

These equations state that the transformation changes the coordinates and
momenta at the time ¢ to the values they have at the time ¢ + dr. Thus, the
motion of the system in a time interval dr can be described by an infinitesimal
contact transformation generated by the Hamiltonian. Correspondingly, the sys-
tem motion in a finite time interval from #( to ¢ is represented by a succession of
infinitesimal contact transformations, which, as we have seen, is equivalent to a
single finite canonical transformation. Thus, the values of ¢ and p at any time
t can be obtained from their initial values by a canonical transformation that is a
continuous function of time. According to this view, the motion of a mechanical
system corresponds to the continuous evolution or unfolding of a canonical trans-
formation. In a very literal sense, the Hamiltonian is the generator of the system
motion with time.

Conversely, there must exist a canonical transformation from the values of
the coordinates and momenta at any time ¢ to their constant initial values.
Obtaining such a transformation is obviously equivalent to solving the prob-
lem of the system motion. At the beginning of the chapter it was pointed out
that a mechanical problem could be reduced to finding the canonical transfor-
mation for which all momenta are constants of the motion. The present con-
siderations indicate the possibility of an alternative solution by means of the
canonical transformation for which both the momenta and coordinates are con-
stants of the motion. These two suggestions will be elaborated in the next chapter
in order to show how formal solutions may be obtained for any mechanical
problem.

Implicit to this discussion has been an altered way of looking at a canonical
transformation and the effect it produces. The notion of a canonical transforma-
tion was introduced as a change of the coordinates used to characterize phase
space. In effect, we switched from one phase space n with coordinates (g, p) to
another, ¢, with coordinates (Q, P). If the state of the system at a given time
was described by a point .4 in one system, it could also be described equally
well by the transformed point A" (cf. Fig. 9.2). Any function of the system vari-
ables would have the same value for a given system configuration whether it was
described by the (g, p) set or by the (Q, P) set. In other words, the function would
have the same value at A" as at .A. In analogy to the corresponding description
of orthogonal transformations, we may call this the passive view of a canonical
transformation.
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n ¢
Phase Phase Ay ©Q, P
space space
A @, p) -

FIGURE 9.2 The passive view of a canonical transformation.

In contrast, we have spoken of the canonical transformation generated by the
Hamiltonian as relating the coordinates of one point in phase space to those of
another point in the same phase space. From this viewpoint, the canonical trans-
formation accomplishes, in the mathematician’s language, a mapping of the points
of phase space onto themselves. In effect, we have an active interpretation of the
canonical transformation as “moving” the system point from one position, with
coordinates (g, p), to another point, (Q, P), in phase space (cf. Fig. 9.3). Of
course, the canonical transformation in itself cannot move or change the system
configuration. What it does is express one configuration of the system in terms of
another. With some classes of canonical transformation, the active viewpoint is
not helpful. For example, the point transformation from Cartesian coordinates to
spherical polar coordinates is a canonical transformation of the passive type, and
an “active” interpretation of it would border on the ludicrous.

The active viewpoint is particularly useful for transformations depending con-
tinuously on a single parameter. On the active interpretation, the effect of the
transformation is to “move” the system point continuously on a curve in phase
space as the parameter changes continuously. When the generator of the associ-
ated I.C.T. is the Hamiltonian, the curve on which the system point moves is the
trajectory of the system in phase space.

B
Phase (@, P)

space

Adq,p)

FIGURE 9.3 The active view of a canonical transformation.
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If we pose the question, How does a function change under a canonical trans-
formation? the answer depends on whether we should take an active or a passive
point of view. From the passive point of view, the function changes in form, or in
functional dependence, but it does not change in value. This is because in general
the function, call it U, has a different functional dependence on (Q, P) than it
does on (g, p). Its value however remains the same at the corresponding points
U(qo, po) and U(Qo, Po) since Qo = Q(qo, po) and Py = P(qo, po), so both
sets of coordinates refer to the same physical location in phase space but use dif-
ferent coordinates to describe the phase space.

In contrast to this, if we consider the canonical transformation from an active
point of view, then we are talking about a translation of the system from point .4
to point B, from position (g 4, p4) to position (g5, pg). From this point of view,
the function U(g, p) does not change its functional dependence upon position
and momentum, rather it changes its values as a result of replacing the values
(g4, p4) by (g, pp) in the function U (g, p), There are then two distinct phase
spaces, one using (g, p) and the other using (Q, P). The transformation for-
malism uses the notation (g, p) for the variables at point .4 and (Q, P) for the
variables at point . This is analogous to a passive rotation in coordinate space
corresponding to the rotation of the coordinate axes relative to a stationary object,
and an active rotation corresponding to rotating an object relative to a fixed coor-
dinate system.

We shall use the symbol 9 to denote a change in the value of a function under
an “active” infinitesimal canonical transformation:

du = u(B) — u(A), (9.102)

where of course A and B will be infinitesimally close. Using the matrix notation
for the canonical variables, the change in the function value under an I.C.T. would
be defined as

du=um+4n) —u(n).

Expanding in a Taylor series and retaining terms in first-order infinitesimals, we
have, by virtue of Eq. (9.63c),

du du_ 9G
ou=—=nm=€e—J)—.
an an” an

Recalling the definition of the Poisson bracket, Eq. (9.68), we see that the change
can be written as

du = elu, G). (9.103)

An immediate application of Eq. (9.103) is to take for u one of the phase space
coordinates themselves (or the matrix of the coordinates). We then have, by
Eq. (9.100),

an=c¢€[n, G] =én.
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Of course, this result is obvious from the definition of the point 5 in relation to
Aj; the “change” in the coordinates from A to B is just the infinitesimal difference
between the old and new coordinates.

These considerations must be generalized somewhat in talking about the
“change in the Hamiltonian.” Recall that the designation ‘“Hamiltonian” does not
mean a specific function, the same in all coordinate systems. Rather it refers to
that function which in the given phase space defines the canonical equations of
motion. Where the canonical transformation depends upon the time, the very
meaning of “Hamiltonian” is also transformed. Thus, H(.A) goes over not into
H(A) but into K (A’), and H(A) will not necessarily have the same value as
K (A’). In such a case, we shall mean by 3 H in effect the difference in the value
of the Hamiltonian under the two interpretations:

IH = H(B) — K (A). (9.104)

Where the function itself does not change under the canonical transformation the
two forms for the change, Egs. (9.102) and (9.104), are identical since u(A’) =
u(A). In general, K is related to H by the equation

oF
K=H+ —,
at
where for an I.C.T. the generating function is given by Eq. (9.62) in terms of G.
Since only G in that equation can be an explicit function of time, the value of the
new Hamiltonian is given by

G G
KA)=HWA)+e—=HA) +e€—,
dt ot
and the change in the Hamiltonian is
0G
8H=H(B)—H(A)—e¥. (9.105)

Following along the path that led from Eq. (9.103), we see that d H is given by

0G
0H = €[H, G]—GW. (9.106)
From the generalized equation of motion, Eq. (9.106), with G as u, it follows
finally that the change in H is

dG
0H = —e —. 9.107
7 ( )
If G is a constant of the motion, Eq. (9.107) says that it generates an infinites-
imal canonical transformation that does not change the value of the Hamiltonian.
Equivalently, the constants of the motion are the generating functions of those
infinitesimal canonical transformations that leave the Hamiltonian invariant.
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Implied in this conclusion is a connection between the symmetry properties of
the system and conserved quantities, a connection that is simplest to see for
constants of the motion not explicitly depending upon time. The change in the
Hamiltonian under the transformation is then simply the change in the value of
the Hamiltonian as the system is moved from configuration .4 to configuration
B. If the system is symmetrical under the operation that produces this change of
configuration, then the Hamiltonian will obviously remain unaffected under the
corresponding transformation. To take a simple example, if the system is sym-
metrical about a given direction, then the Hamiltonian will not change in value
if the system as a whole is rotated about that direction. It follows then that the
quantity that generates (through an I.C.T.) such a rotation of the system must be
conserved. The rotational symmetry of the system implies a particular constant of
the motion. This is not the first instance of a connection between constants of the
motion and symmetry characteristics. We encountered it previously (Sections 2.6,
8.2) in connection with the conservation of generalized momenta. Here, however,
the theorem is more elegant, and more complete, for it embraces all independent
constants of the motion and not merely the conserved generalized momenta.

The momentum conservation theorems appear now as a special case of the
general statement: If a coordinate ¢; is cyclic, the Hamiltonian is independent
of g; and will certainly be invariant under an infinitesimal transformation that
involves a displacement of g; alone. Consider, now, a transformation generated
by the generalized momentum conjugate to g;:

G(q, p) = pi- (9.108)
By Eqgs. (9.63a and b), the resultant infinitesimal canonical transformation is

8q;j = €8ij,
dpi =0, (9.109)

that is, exactly the required infinitesimal displacement of ¢; and only ¢;. We read-
ily recognize this as the familiar momentum theorem: If a coordinate is cyclic, its
conjugate momentum is a constant of the motion. The observation that a displace-
ment of one coordinate alone is generated by the conjugate momentum may be
put in a slightly expanded form. If the generating function of an I.C.T. is given by

G = (mi = Jirnr, (9.110)
then the equations of transformation as obtained from Eq. (9.63c) appear as

G

d
I = €Jis 3 = €Jis Jirbrs = €Jis Jis.

Ns

By virtue of the orthogonality of }, these reduce finally to

Sk = €8i; (9.111)
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that is, a displacement of any canonical variables n; alone is generated in terms of
the conjugate variable in the form given by Eq. (9.110). Of course, if n; is ¢;, G
from Eq. (9.110) is just p;, and if n; is p;, G is then —g;.

As a specific illustration of these concepts, let us consider again the infinites-
imal contact transformation of the dynamical variables that produces a rotation
of the system as a whole by an angle d6. The physical significance of the corre-
sponding generating function cannot depend upon the choice of initial canonical
coordinates,* and it is convenient to use for this purpose the Cartesian coordinates
of all particles in the system. Nor will there be any loss in generality if the axes are
so oriented that the infinitesimal rotation is along the z axis. For an infinitesimal
counterclockwise rotation of each particle, the change in the position vectors is to
be found from the infinitesimal rotation matrix of Eq. (4.69). With a rotation only
about the z axis, the changes in the particle coordinates are

ox; = —Vi do, Sy,- =x;df, 6z;i =0. (9.1128.)

The effect of the transformation on the components of the Cartesian vectors
formed by the momenta conjugate to the particle coordinates is similarly given
by

dpix = —piyd8, dpiy = pixd0, &pi; =0. (9.112b)

Comparing these transformation equations with Eqgs. (9.63a and b), it is seen that
the corresponding generating function is

G = x; piy — YiDix> (9.113)

with d6 as the infinitesimal parameter €. For a direct check, note that

G G
3)6,' =db ==V d@, 8p,‘x =—df — = —Diy d@,
Pix 0x;
G G
dy; =dO — = x; do, Spiy = —df — = p;ix do,
Diy ay;

agreeing with Eqgs. (9.112). The generating function (9.113) in addition has the
physical significance of being the z-component of the total canonical angular
momentum:

G=0L,=(r; % pi). 9.114)

Since the z axis was arbitrarily chosen, we can state that the generating function
corresponding to an infinitesimal rotation about an axis denoted by the unit vector

*This can most easily be seen from the canonically invariant Eq. (9.100). The change in the canonical
variable n; remains the same no matter in what set of canonical variables G is expressed.
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nis
G=L-n. (9.115)

Note that the canonical angular momentum as defined here may differ from
the mechanical angular momentum. If the forces on the system are derivable from
velocity-dependent potentials, then the canonical momentum vectors p; are not
necessarily the same as the linear momentum vectors, and L in Egs. (9.114) and
(9.115) may not be the same as the mechanical angular momentum. The result
obtained here is therefore a generalization of the conclusion given in Section 2.6
that the momentum conjugate to a rotation coordinate is the corresponding com-
ponent of the total angular momentum. The proof presented there was restricted
to systems with velocity-independent potentials. By virtue of Eqs. (9.108) and
(9.109), we can now conclude that the momentum conjugate to a generalized
coordinate that measures the rotation of the system as a whole about an axis n is
the component of the total canonical angular momentum along the same axis. Just
as the Hamiltonian is the generator of a displacement of the system in time, so the
angular momentum is the generator of the spatial rotations of the system.

It has already been noted that on the “active” interpretation a canonical trans-
formation depending upon a parameter “moves” the system point along a con-
tinuous trajectory in phase space. Since the finite transformation can be looked
on as the sum of an infinite succession of infinitesimal canonical transformations,
each corresponding to an infinitesimal displacement along the curve, it should
therefore be possible formally to obtain the finite transformation by integrating
the expression for the infinitesimal displacements. We can do this by noting that
each point on the trajectory in phase space corresponds to a particular value of
the parameter, which we shall call «, starting from the initial system configura-
tion denoted by o = 0. If u is some function of the system configuration, then u
will be a continuous function of « along the trajectory , u(«), with initial value
uo = u(0). (For simplicity, we shall consider u as not depending explicitly upon
time.) Equation (9.103) for the infinitesimal change of u on the trajectory can be
written as

ou =dolu, G,
or as a differential equation in the variable «:

du
== [u, G]. (9.116)

We can get u(«), and therefore the effect of the finite canonical transformation,
by integrating this differential equation. A formal solution may be obtained by
expanding u(«) in a Taylor series about the initial conditions:

@) n ‘ +a2d2u‘ +a3d3u‘ n
@) =ug+ao— —— —_——
" 0T alo ™ 2 da2lo T 3 dadlo
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By Eq. (9.116), we have

du (1. G]
= u’ 9
do 10 0

the zero subscript meaning that the value of the Poisson bracket is to be taken at
the initial point, « = 0. Repeated application of Eq. (9.116), taking [u, G] itself
as a function of the system configuration, gives

d*u

“3 =1 G1.G

and the process can be repeated to give the third derivative of u and so on. The
Taylor series for u () thus leads to the formal series solution

2 3
u(@) =uo+alu, Glp + O%[[u, Gl.Glo+ %[[[u, Gl Gl Glp+---. 9.117)

If for u we take any of the canonical variables ¢;, with uq the starting set of vari-
ables n;, then Eq. (9.115) is a prescription for finding the transformation equations
of the finite canonical transformation generated by G.

It is not difficult to find specific examples showing that this procedure actu-
ally works. Suppose for G we take L, so that the final canonical transformation
should correspond to a finite rotation about the z axis. The natural parameter to
use for « is the rotation angle. For u, let us take the x-coordinate of the ith particle
in the system. Either by direct evaluation of the Poisson brackets or by inference
from Eqs. (9.112a), it is easy to see that

[Xi, L] =-Y;, [Yi, L] = Xi, (9.118)
where capital letters have been used to denote the coordinates after some rotation

0, that is, the final coordinate. The initial coordinates, that is, before rotation, are
as usual represented by lowercase letters. It follows then that

[Xi, L:]Jo = —yi,
[[X:, L;], L;]Jo = —[Yi, L;Jo = —x;,
[[[Xi, L1, L;], L;]o = —[X:, L;]o = yi,

and so on. The series representation for X; thus becomes

62 93 6%
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The two series will be recognized as the expansion for the cosine and sine,
respectively. Hence, the equation for the finite transformation of X; is

X; = xjcosf — y; sin0,

which is exactly what we would expect for the finite rotation of a vector counter-
clockwise about the z axis.

For another example, let us consider the situation when G = H and the
parameter is the time. Equation (9.116) then reduces to the equation of motion
for u:

du (. H]
— = lUu, )
dt
with the formal solution
12 3
u(t) =uo+tu, Hlp + E[[u’ H], H]y + g[[[u, H], H],Hlp+---. (9.119)

Here the subscript zero refers to the initial conditions at ¢ = 0.
Let us apply this prescription to the simple problem of one-dimensional motion
with a constant acceleration a, for which the Hamiltonian is

2
H=— —max,
2m
with u as the position coordinate x. The Poisson brackets needed in Eq. (9.119)
are easy to evaluate directly or from the fundamental brackets:
P

[-xa H] =
m

1
[lx, H], H] = —[p, H] = a.
m

Because this last Poisson bracket is a constant, all higher-order brackets vanish
identically and the series terminates, with the complete solution being given by

2
X =Xx0+ p_ot + ﬂ.
m 2
Remembering that pg/m = vy, this will be recognized as the familiar elementary
solution to the problem.

It may be felt that what we have done here is a tour de force, a mere vir-
tuoso performance. There is force to the objection. We would not propose the
formal series solution, Eq. (9.119), as the preferred method for solving realis-
tic problems in mechanics. It is surely one of the most recondite procedures we
can conceive of for solving the easiest of freshman physics problems! Nonethe-
less, the technique provides insights into the structure of classical mechanics as
based on canonical transformation theory. The series expansion shows directly
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that infinitesimal canonical transformations can generate finite canonical trans-
formations, depending on a parameter, and thus lead to solutions to the equations
of motion. Of particular interest for the relation between classical and quantum
mechanics is the observation that the series in Egs. (9.117) or (9.119) bear a fam-
ily resemblance to the series for an exponential. The nest of Poisson brackets in
the nth term can be considered as the nth repeated application (from the right!)
of the operator [ , G], or the nth power of the operator. Equation (9.119), for
example, could symbolically be written as

ut) = uett . (9.120)

The exponential here means no more than its series representations and the
symbol H is used to indicate the operator [ , H]. What we have here is very rem-
iniscent of the Heisenberg picture in quantum mechanics where the u(#) become
time-varying operators, whose time dependence is given in terms of exp[i Ht/h]
in such a manner as to lead to the same equation of motion, Eq. (9.94). (The
additional factor i /A arises out of the correspondence between the classical Pois-
son bracket and the quantum commutator.) The Poisson bracket formulation of
mechanics is thus the classical analog of the Heisenberg picture of quantum
mechanics.

THE ANGULAR MOMENTUM POISSON BRACKET RELATIONS

The identification of the canonical angular momentum as the generator of a
rigid rotation of the system leads to a number of interesting and important
Poisson bracket relations. Equations (9.103) for the change of a function u
under an infinitesimal canonical transformation (on the “active” view) is also
valid if u is taken as the component of a vector along a fixed axis in ordinary
space. Thus, if F is a vector function of the system configuration, then (cf. Eq.
9.116))

0F; =dulF;, G].

Note that the direction along which the component is taken must be fixed, that is,
not affected by the canonical transformation. If the direction itself is determined
in terms of the system variables, then the transformation changes not only the
value of the function but the nature of the function, just as with the Hamiltonian.
With this understanding the change in a vector F under a rotation of the system
about a fixed axis n, generated by L - n, can be written in vector notation (cf. Eq.
(9.115))

oF = dO[F,L-n]. (9.121)

To put it in other words, Eq. (9.121) implies that the unit vectors i, j, k that form
the basis set for F are not themselves rotated by L - n.
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The words describing what is meant by Eq. (9.121) must be chosen carefully
for another reason. What is spoken of is the rotation of the system under the
I.C.T., not necessarily the rotation of the vector F. The generator L - n induces a
spatial rotation of the system variables, not for example of some external vector
such as a magnetic field or the vector of the acceleration of gravity. Under what
conditions then does L - n generate a spatial rotation of F? The answer is clear—
when F is a function only of the system variables (g, p) and does not involve any
external quantities or vectors not affected by the I.C.T. Only under these condi-
tions does a spatial rotation imply a corresponding rotation of F. We shall des-
ignate such vectors as system vectors. The change in a vector under infinitesimal
rotation about an axis n has been given several times before (cf. Eq. (2.50) and
Eq. (4.75)):

dF =ndf xF.

For a system vector F, the change induced under an I.C.T. generated by L - n can
therefore be written as

JF =dO[F,L-n] =nd6 xF. (9.122)

Equation (9.122) implies an important Poisson bracket identity obeyed by all sys-
tem vectors:

[F,L-n]=nxF. (9.123)

Note that in Eq. (9.123) there is no longer any reference to a canonical transfor-
mation or even to a spatial rotation. It is simply a statement about the value of
certain Poisson brackets for a specific class of vectors and, as such, can be veri-
fied by direct evaluation in any given case. Suppose, for example, we had a system
of an unconstrained particle and used the Cartesian coordinates as the canonical
space coordinates. Then the Cartesian vector p is certainly a suitable system vec-
tor. If n is taken as a unit vector in the z direction, then by direct evaluation we
have

[Pxs Xpy — ypx] = —py,
[Py, Xpy — YDx] = Px,
[Pz, xpy — ypx] = 0.

The right-hand sides of these identities is clearly the same as the components of
n x p, as predicted by Eq. (9.123).

On the other hand, suppose that in the same problem we tried to use for F
the vector A = %(r x B) where B = Bi is a fixed vector along the x axis.
The vector A will be recognized as the vector potential corresponding to a uni-
form magnetic field B in the x-direction. As A depends upon a vector external
to the system, we would expect it not to fit the characteristics of a system vector
and Eq. (9.123) should not hold for it. Indeed, we see that the Poisson brackets
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involved are here
[0, xpy — ypx] =0,

[%zB, xpy — ypx] =0,

[—%yB, xpy — ypx] = —%Bx,

whereas the vector n x A has instead the components (—%Bz, 0, 0).

The relation (9.123) may be expressed in various notations. Perhaps the most
advantageous is a form using the Levi—Civita density to express the cross product
(cf. Eq. (4.77")). The ith component of Eq. (9.123) for arbitrary n then can be
written

[Fi, Ljn;] = €jxn;Fy, (9.124)
which implies the simple result
[Fi, Lj] = €ijiFy. (9.125)

An alternative statement of Eq. (9.125) is to note that if [, m, n are three indices
in cyclic order, then

[F;, Ly] = F,, [, m,nincyclic order. (9.125)

Another consequence of Eq. (9.123) relates to the dot product of two system
vectors: F - G. Being a scalar, such a dot product should be invariant under rota-
tion, and indeed the Poisson bracket of the dot product with L - n is easily shown
to vanish:

[F-G,L:n]=F-[G,L-n]+G-[F,L-n]
=F-nxG+G:nxF
=F.nxG+F-Gxn
=0. (9.126)

The magnitude of any system vector therefore has a vanishing Poisson bracket
with any component of L.

Perhaps the most frequent application of these results arises from taking F to
be the vector L itself. We then have

[L,L-n]=nxL, 9.127)
[Li, L;] = €ijk Lk, (9.128)

and

(L%, L-n] = 0. (9.129)
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A number of interesting consequences follow from Eqgs. (9.127)

[p,L-n]=nxp

[pi, Lj] = €ijkpr.

If Ly and Ly are constants of the motion, Poisson’s theorem then states that
[Lx, Ly] = L; is also a constant of the motion. Thus, if any two components of
the angular momentum are constant, the total angular momentum vector is con-
served. As a further instance, let us assume that in addition to L, and L, being
conserved there is a Cartesian vector of canonical momentum p with p, a con-
stant of the motion. Not only is L, conserved but we have two further constants
of the motion:

[Pz, Lx] = Py
and
[pz, Lyl = —px,
that is, both L and p are conserved. We have here an instance in which Poisson’s

theorem does yield new constants of the motion. Note, however, that if py, py,
and L, were the given constants of the motion, then their Poisson brackets are

[px, py] =0,
[px, L] = —Py>
[Py, L.]= px.

Here no new constants can be obtained from Poisson’s theorem.

Recall from the fundamental Poisson brackets, Eqgs. (9.69), that the Pois-
son bracket of any two canonical momenta must always be zero. But, from
Eq. (9.128), L; does not have a vanishing Poisson bracket with any of the other
components of L. Thus, while we have described L as the total canonical angu-
lar momentum by virtue of its definition as r; x p; (summed over all particles),
no two components of L. can simultaneously be canonical variables. However,
Eq. (9.129) shows that any one of the components of L, and its magnitude L, can
be chosen to be canonical variables at the same time.*

*It has been remarked previously that the correspondence between quantum and classical mechanics is
such that the quantum mechanical commutator goes over essentially into the classical Poisson bracket
as h — 0. Much of the formal structure of quantum mechanics appears as a close copy of the Poisson
bracket formulation of classical mechanics. All the results of this section therefore have close quantum
analogs. For example, the fact that two components of L cannot be simultaneous canonical momenta
appears as the well-known statement that L; and L ; cannot have simultaneous eigenvalues. But L?
and any L; can be quantized together. Indeed, most of these relations are known far better in their
quantum form than as classical theorems.
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SYMMETRY GROUPS OF MECHANICAL SYSTEMS

It has already been pointed out that canonical transformations form a group.
Canonical transformations that are analytic functions of continuous parameters
form groups that are Lie groups. A Lie group with continuous parameters, 6;,
has associated with it a flat vector space whose basis vectors, u;, constitute a Lie
algebra satisfying the previously given condition on the Poisson bracket

i ujl = cij*ur. 9.77)
k

The elements, Q(#;), of the associated Lie group are related to the elements of
the Lie algebra by

0(6;) = exp (%Zeiu,->. (9.130)

The definitions of Lie groups and Lie algebras are considered in more detail in
Appendix B.

In Chapter 4 of the first two editions of this text, an extensive discussion was
given of the Pauli matrix representation of the rotational group in three dimensions
where the Pauli matrices that form the basis,

0 1 0 —i 1 0
%=\1 o) Y=\ o) 2=\o -1

are both hermitian (the matrix is equal to its own transpose complex conjugate)
and unitary (the transpose complex conjugate of the matrix is the inverse). These
matrices have the properties*

[oi, 0] = 2ioy

fori, j, and k a cyclic permutation of x, y, and z. The structure constants are thus
o jk = 2i€;jx and 01.2 = 1, the unit 2 x 2 matrix. The Euler angles can be used
as the parameters that generate the group elements. For a rotation in the y-z plane
we have, for example,

P COSE isinz
Q(G):lcos§+iaxsin§: ol 0
isin= cos—

2 2

*Some physicists define a Lie algebra with the expression [uj, u;] = i) ;¢ jk“k instead of
Eq. (9.77). This makes the structure constants in the following discussion real. Many mathematicians
omit the i = +/—1 in the definition. The present text follows the latter convention.
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In this formalism, vectors are represented by 2 x 2 matrices of the form

v, Ve —iV,
v — ap
(o) Ve+iVy, -V

and a rotation is performed by a similarity transformation

Viery 2y = QO0)Vix,y, QT (0),

where Q7 is the adjoint, or complex conjugate transpose of the matrix Q.

The 2 x 2 matrices Q are unitary with determinant +1, so they constitute a
representation of the special unitary group in two dimensions, SU(2). The set
of unitary 2 x 2 matrices with determinant either +1 or —1 has twice as many
elements (both infinite in number), which form the full unitary group U(2) in two
dimensions. This group of 2 x 2 rotatation matrices has the same properties as
the group of the associated infinitesimal canonical transformations (I.C.T.). It is
customary to work primarily with the I.C.T.’s as they are easier to handle. The
Lie groups of I.C.T.’s whose generators are the constants of the motion of the
system are known as the symmetry groups of the system for, as we have seen, such
transformations leave the Hamiltonian invariant. Finding the symmetry groups of
a system goes a long way toward solving the problem of its classical motion and
is even closer to a solution of the quantum-mechanical problem.

A system with spherical symmetry is invariant under rotation about any axis, so
it can be represented by the group SU(2) as discussed above. Of more practical use
is the set of the usual 3 x 3 rotation matrices with determinant 41, which represent
the special rotation group in three dimensions R(3) = SO(3). The vector L is
conserved in such a system in accord with our identification of the components of
L as the generators of spatial rotations. For the group of transformations generated
by L;, Eq. (9.128) shows that the structure constants are c; jk = €;jk, and it is this
relationship that stamps the group as being the rotation group in three dimensions.
Thus, the matrix generators M; of infinitesimal rotations, Egs. (4.79), have been
seen to obey the commutation relations, Eq. (4.80),

[Mi, M;] = €xMg, (4.80)

that is, with the same structure constants as for L;. The quantities L; and M;
are different physically; the brackets in Eqgs. (9.125) and (4.80) refer to different
operations (although they share the same significant algebraic properties). But
the identity of the structure constants for L; and M; (cf. Egs. (9.128) and (4.80))
shows that they have the same group structure, that of SO(3).

For the bound Kepler problem, we have seen (Section 3.9) that there exists
in addition to L another conserved vector quantity, A, the Laplace-Runge-Lenz
vector defined by Eq. (3.82)

k
A=pxL-"1L (3.82)
r
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The Poisson bracket relations of the components of A with themselves and with
the components of LL can be obtained in a straightforward manner. Since A clearly
qualifies as a system vector, we immediately have the bracket relations

[Ai, L;] = €ijk Ak (9.131)

The Poisson brackets of the components of A among themselves cannot be
obtained by any such simple stratagem, but after a fair amount of tedious manip-
ulation it is found that*

[A],A2]=—<p2—2r:l—k) Ls. (9.132)

The quantity on the right in the parentheses will be recognized as 2m H, which
has the conserved value 2m E. If we therefore introduce a new constant vector D
defined as

A A
 J=2mE  2m|E]

(9.133)

(note that E is negative for bound motion!), then the components of D satisfy the
Poisson bracket relation

[D1, D2] = Ls.
By cyclically permuting the indices, the complete set of Poisson brackets follows

immediately. Thus, the components of L and D together form a Lie algebra for the
bound Kepler problem, with structure constants to be obtained from the identities.

[Li, Lj]=€ijiL, (9.128)

[D;, L;] = €;ji Dy, (9.134)
and

[Di, Dj] = €k Ly. (9.135)

An examination of the fundamental matrices for rotation will show that the
symmetry group for the bound Kepler problem is to be identified with the group
of four-dimensional real proper rotations, called the special orthogonal group of
dimension 4, which is usually designated as SO(4) or R(4). Such a transforma-
tion preserves the value of the scalar quadratic form x,,x,,, where all the x, are
real. An orthogonal transformation in four dimensions has 10 conditions on the
16 elements of the matrix with determinant 1, so only 6 are independent. By

*Some reduction in the length of the derivation is obtained by identifying p x L as a system vector C,
and first evaluating the Poisson brackets [Cy, (p x L)2] and [Cy, r/r] making use of the fundamental
Poisson brackets and Egs. (9.125) to the utmost.
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looking on the infinitesimal transformation as being made up of a sequence of
rotations in the various planes, we can easily obtain the corresponding six gen-
erators. Three of them are rotations in the three distinct x;-x; planes and so cor-
respond to the M; generators of Eqs. (4.79), except that there are added zeros in
the zeroth row and column. The remaining three generate infinitesimal rotations
in the xo-x1 planes. Thus, the generator matrix for an infinitesimal rotation in the
Xo-Xx1 plane would be

Ny = (9.136)

[=Nel o)
[N eNell
SO OO
(=Rl )

with N and N3 given in corresponding fashion. Direct matrix multiplication
shows that these six matrices satisfy the commutator (or Lie bracket) relations

Mi, M;] = €My,
[N;, M;] =€t Ng,
[Ni, Nj] = €k My,

with structure constants c; jk = ¢;j. Since these are the same as the Poisson
bracket relations, Eqs. (9.128), (9.134), and (9.135), the identification of the sym-
metry group of the bound Kepler problem with R(4) is thus proven.

Note that for the Kepler problem with positive energy (that is, scattering) A is
still a constant of the motion,* but the appropriate reduced real vector, instead of
D, is C defined as

C= , (9.137)

and the Poisson bracket relations for L. and C are now

[Li, L;]=€ijkLy,
[Ci, L;] = €jkCk, (9.138)
[Ci, Cj] = —€ijiLk.

These structure constants are the same as for the restricted Lorentz group, which
must therefore be the symmetry group for the positive energy Kepler problem—in
nonrelativistic mechanics. We must not read any kinship of physical ideas into this
happenstance. The Kepler problem does not contain in it the seed of the basic con-
ceptions of special relativity; it is purely a problem of nonrelativistic Newtonian
mechanics. That the symmetry group may involve a space of higher dimension
than ordinary space is connected with the fact that the symmetry we seek here

*The arguments of Section 3.9 are independent of the sign of either E or the force constant k.



416

Chapter 9 Canonical Transformations

is one in the six-dimensional phase space. The symmetry group consists of the
canonical transformations in this space that leave the Hamiltonian unchanged. It
should not be surprising therefore that the group can be interpreted in terms of
transformations of spaces of more than three dimensions.

The two-dimensional isotropic harmonic oscillator is another mechanical sys-
tem for which a symmetry group is easily identified. In Cartesian coordinates, the
Hamiltonian for this system may be written as

| 1
H = —(p; + m*0’x?) + —(p; + m*w’y?). (9.139)
2m 2m Y

As it doesn’t depend on time explicitly, the Hamiltonian is constant and is equal
to the total energy of the system. The z axis is an axis of symmetry for the system,
and hence the angular momentum along that axis (which is in fact the total angular
momentum) is also a constant of motion:

L =xpy — ypx. (9.140)

Further constants of the motion exist for this problem that can be written as com-
ponents of a symmetrical two-dimensional tensor A defined as

1
Aij =5 (pipj + m*w’xixj). (9.141)

Of the three distinct elements of the tensor, the diagonal terms may be identified
as the energies associated with the separate one-dimensional motions along the
x and y axes, respectively. Physically, as there is no coupling between the two
motions, the two energies must separately be constant. A little more formally, it
is obvious from the way in which H has been written in Eq. (9.139) that Ay
and Ajj each have a vanishing Poisson bracket with H. The off-diagonal element
of A,

1
Aip = Agi = = (pepy +mP’xy), (9.142)

is a little more difficult to recognize. That it is a constant of the motion may easily
be seen by evaluating the Poisson bracket with H. In relation to the separate x and
y motions, A1; and Ay, are related to the amplitudes of the oscillations, whereas
A7 is determined by the phase difference between the two vibrations. Thus, the
solutions for the motion can be written as

2411 .

X = 5 sin(wt + 61),
maw
2A

v =2 sin(wr + 62),
maow
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and it then follows from Eq. (9.142) that

A1p =/ A114A2; cos(6y — 67). (9.143)

The trace of the A tensor is the total energy of the harmonic oscillator. Out of
the elements of the matrix, we can form two other distinct constants of the motion,
which it is convenient to write in the form

A+ Ay 1

S1= = (pxpy +m2a)2xy), (9.144)
2w 2mw
A2 —An 1 2 2 2 2.2 2
2= 20 dmo [Py—Px+mw(y —x)]. (9.145)

To these we may add a third constant of the motion from Eq. (9.140):

1
S3=—= E(xpy — YDx)- (9.146)

The quantities S; plus the total energy H form four algebraic constants of the
motion not involving time explicitly. It is clear that not all of them can be inde-
pendent, because in a system of two degrees of freedom there can at most be only
three such constants. We know that the orbit for the isotropic harmonic oscillator
is an ellipse and three constants of the motion are needed to describe the param-
eters of the orbit in the plane—say, the semimajor axis, the eccentricity, and the
orientation of the ellipse. The fourth constant of motion relates to the passage of
the particle through a specific point at a given time and would therefore be explic-
itly time dependent. Hence, there must exist a single relation connecting S; and
H. By direct evaluation it is easy to show that*

H2

24+ 82+ 87 =—"—.
i +55+53 102

(9.147)

By straight forward manipulation of the Poisson brackets, we can verify that
the three S; quantities satisfy the relations

[Si, Sj] = Eiijk- (9.148)

These are the same relations as for the three-dimensional angular momentum vec-
tor, or for the generators of rotation in a three-dimensional space. The group of
transformations generated by S; may therefore be identified with R(3) or SO(3).
Actually, there is some ambiguity in the identification.

*An equivalent form of the condition Eq. (9.147) is that the determinant of A is L2w? /4. It will be
recalled that similarly in the case of the Kepler problem, the components of the new vector constant
of motion A were not all independent of the other constants of the motion. There exist indeed two
relations linking A, L, and H, Eqs. (3.83) and (3.87).
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There is a homomorphism (in this case, a 2 to 1 mapping) between the
orthogonal unimodular group SO(3) also called the rotation group R(3) in three
dimensions and the unitary unimodular group* SU(2) in two dimensions. It turns
out that SU(2) is here more appropriate. To glimpse at the circumstances jus-
tifying this choice, note that Eq. (9.147) suggests there is a three-dimensional
space, each point of which corresponds to a particular set of orbital parameters.
For a given system energy, Eq. (9.147) says the orbit “points” in this space lie on
a sphere. The constants S; generate three-dimensional rotations on this sphere;
that is, they change one orbit into another orbit having the same energy. It may
be shown that S| generates a transformation that changes the eccentricity of the
orbit and that for any given final eccentricity we can find two transformations
leading to it. It is this double-valued quality of the transformation that indicates
SU(2) rather than SO(3) is the correct symmetry group for the two-dimensional
harmonic oscillator.

For higher dimensions, the structure constants of the Lie algebras of the SO(n)
rotation groups and the SU(n) unitary groups are no longer identical, and a clear-
cut separation between the two can be made. For the three-dimensional isotropic
harmonic oscillator, there is again a tensor constant of the motion defined by
Eq. (9.141), except that the indices now run from 1 to 3. The distinct components
of this tensor, together with the components of L now satisfy Poisson bracket rela-
tions with the rather complicated structure constants that belong to SU(3). Indeed,
it is possible to show that for the n-dimensional isotropic harmonic oscillator the
symmetry group is SU(n).

It has previously been pointed out in Section 3.9 that there exists a connection
between the existence of additional algebraic constants of the motion—and there-
fore of higher-symmetry groups—and degeneracy in the motions of the system.
In the case of the Kepler and isotropic harmonic oscillator problems, the addi-
tional constants of the motion are related to parameters of the orbit. Unless the
orbit is closed, that is, the motion is confined to a single curve, we can hardly
talk of such orbital parameters. Only when the various components of the motion
have commensurate periods will the orbit be closed. The classic example is the
two-dimensional anisotropic oscillator. When the frequencies in the x and y direc-
tions are rational fractions of each other, the particle traverses a closed Lissajous
figure. But if the frequencies are incommensurate, the motion of the particle is
space-filling or ergodic, eventually coming as close as desired to any specific point
in the rectangle defined by the energies of motion in the two directions (ergotic
hypothesis). Attempts at finding complicated (and perhaps complex) symmetry
groups for incommensurate systems, applicable to all problems of the same num-
ber of degrees of freedom, have not yet proved fruitful. We shall have occasion
in Section 13.7 to consider further the relation between symmetry and invariance
when we discuss Noether’s theorem which gives a formal proof of the relation
between invariance and conserved quantities.

*A matrix is unitary if its inverse is its transpose complex conjugate, and a unimodular matrix is one
whose determinant is 41.
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LIOUVILLFE'S THEOREM

As a final application of the Poisson bracket formalism, we shall briefly discuss
a fundamental theorem of statistical mechanics known as Liouville’s theorem.
While the exact motion of any system is completely determined in classical
mechanics by the initial conditions, it is often impracticable to calculate an exact
solution for complex systems. It would be obviously hopeless, for example, to
calculate completely the motion of some 10?> molecules in a volume of gas.
In addition, the initial conditions are often only incompletely known. We may
be able to state that at time 7y a given mass of gas has a certain energy, but
we cannot determine the initial coordinates and velocities of each molecule.
Statistical mechanics therefore makes no attempt to obtain a complete solution
for systems containing many particles. Its aim, instead, is to make predictions
about certain average properties by examining the motion of a large number
of identical systems. The values of the desired quantities are then computed
by forming averages over all the systems in the ensemble. All the members
of the ensemble are as like the actual systems as our imperfect knowledge
permits, but they may have any of the initial conditions that are consistent
with this incomplete information. Since each system is represented by a sin-
gle point in phase space, the ensemble of systems corresponds to a swarm of
points in phase space. Liouville’s theorem states that the density of systems
in the neighborhood of some given system in phase space remains constant in
time.

The density, D, as defined above can vary with time through two separate
mechanisms. Since it is the density in the neighborhood of a given system point,
there will be an implicit dependence as the coordinates of the system (g;, p;) vary
with time, and the system point wanders through phase space. There may also be
an explicit dependence upon time. The density may still vary with time even when
evaluated at a fixed point in phase space. By Eq. (9.94), the total time derivative
of D, due to both types of variation with time, can be written as

dD aD
D, HI+ =

) 9.149
dt ot ( )

where the Poisson bracket arises from the implicit dependence, and the last term
from the explicit dependence.

The ensemble of system points moving through phase space behaves much like
a fluid in a multidimensional space, and there are numerous similarities between
our discussion of the ensemble and the well-known notions of fluid dynamics.
In Eq. (9.149), the total derivative is a derivative of the density as we follow
the motion of a particular bit of the ensemble “fluid” in time. It is sometimes
referred to as the material or hydrodynamic derivative. On the other hand, the
partial derivative is at fixed (g, p); it is as if we station ourselves at a partic-
ular spot in phase space and measure the time variation of the density as the
ensemble of system points flows by us. These two derivatives correspond to two
viewpoints frequently used in considering fluid flow. The partial derivative at a
fixed point in phase space is in line with the Eulerian viewpoint that looks on
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the coordinates solely as identifying a point in space. The total derivative fits in
with the Lagrangian picture in which individual particles are followed in time; the
coordinates in effect rather identify a particle than a point in space. Basically, our
consideration of phase space has been more like the Lagrangian viewpoint; the
collection of quantities (g, p) identifies a system and its changing configuration
with time.

Consider an infinitesimal volume in phase space surrounding a given system
point, with the boundary of the volume formed by some surface of neighboring
system points at the time + = 0. Note that the surface of the volume is one-
dimension less than the volume. In the course of time, the system points defin-
ing the volume move about in phase space, and the volume contained by them
will take on different shapes as time progresses. The dashed curve in Fig. 9.4
indicates the evolution of the infinitesimal volume with time. It is clear that the
number of systems within the volume remains constant, for a system initially in-
side can never get out. If some system point were to cross the border, it would
occupy at some time the same position in phase space as one of the system
points defining the boundary surface. Since the subsequent motion of a system
is uniquely determined by its location in phase space at a particular time, the two
systems would travel together from there on. Hence, the system can never leave
the volume. By the same token, a system initially outside can never enter the
volume.

It has been shown that on the active picture of a canonical transformation, the
motion of a system point in time is simply the evolution of a canonical transfor-
mation generated by the Hamiltonian. The canonical variables (g, p) at time t2, as
shown in Fig. 9.4, are related to the variables at time #; by a particular canonical
transformation. The change in the infinitesimal volume element about the system
point over the time interval is given by the same canonical transformation. Now,
Poincaré’s integral invariant, Eq. (9.86), says that a volume element in phase space
is invariant under a canonical transformation. Therefore, the size of the volume
element about the system point cannot vary with time.

P. ——

\\
7

—— Q(IQ), [’(tz) \
7 .

q;

FIGURE 9.4 Motion of a volume in two-dimensional phase space.
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Thus, both the number of systems in the infinitesimal region, d N, and the
volume, dV, are constants, and consequently the density

dN
D=—
dv

must also be constant in time, that is,

dD

dt

which proves Liouville’s theorem. An alternative statement of the theorem follows
from Eq. (9.149) as

aD
—— =—I[D, H]. (9.150)
ot
When the ensemble of systems is in statistical equilibrium, the number of sys-
tems in a given state must be constant in time, which is to say that the density
of system points at a given spot in phase space does not change with time. The
variation of D with time at a fixed point corresponds to the partial derivative with
respect to ¢, which therefore must vanish in statistical equilibrium. By Eq. (9.150),
it follows that the equilibrium condition can be expressed as

[D,H] =0.

We can ensure equilibrium therefore by choosing the density D to be a function
of those constants of the motion of the system not involving time explicitly, for
then the Poisson bracket with H must vanish. Thus, for conservative systems D
can be any function of the energy, and the equilibrium condition is automatically
satisfied. The characteristics of the ensemble will be determined by the choice of
function for D. As an example, one well-known ensemble, the microcanonical
ensemble, occurs if D is constant for systems having a given narrow energy range
and zero outside the range.

The considerations have been presented here to illustrate the usefulness of the
Poisson bracket formulation in classical statistical mechanics. Further discussion
of these points would carry us far outside our field.

DERIVATIONS

1. One of the attempts at combining the two sets of Hamilton’s equations into one tries to
take g and p as forming a complex quantity. Show directly from Hamilton’s equations
of motion that for a system of one degree of freedom the transformation

Q=q+ip, P =Q"

is not canonical if the Hamiltonian is left unaltered. Can you find another set of coordi-
nates Q’, P’ that are related to Q, P by a change of scale only, and that are canonical?
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2.

Show that the transformation for a system of one degree of freedom,
Q =gqgcosa — psina,
P =gsina + pcosa,

satisfies the symplectic condition for any value of the parameter «. Find a generating
function for the transformation. What is the physical significance of the transformation
for @« = 0? For « = 7 /2? Does your generating function work for both of these cases.

In Section 8.4 some of the problems of treating time as one of the canonical variables
are discussed. If we are able to sidestep these difficulties, show that the equations of
transformation in which ¢ is considered a canonical variable reduce to Egs. (9.14) if
in fact the transformation does not affect the time scale.

Show directly that the transformation

1
Q=10g<fsinp>, P =gcotp
q

is canonical.

. Show directly that for a system of one degree of freedom the transformation

2 2
oq oq 14
=arctan—, P=— |14 —S—
0 S 5 ( +a2q2)

is canonical, where « is an arbitrary constant of suitable dimensions.

. The transformation equations between two sets of coordinates are

Q = log(1 +¢'/* cos p),

172

P =201 +q1/2 cos p)q /< sin p.

(a) Show directly from these transformation equations that Q, P are canonical vari-
ables if g and p are.

(b) Show that the function that generates this transformation is

F3=—(2 - 1)%tanp.

. (a) If each of the four types of generating functions exist for a given canonical trans-

formation, use the Legendre transformation to derive relations between them.

(b) Find a generating function of the Fy4 type for the identify transformation and of
the F3 type for the exchange transformation.

(c) For an orthogonal point transformation of ¢ in a system of n degrees of freedom,
show that the new momenta are likewise given by the orthogonal transformation
of an n-dimensional vector whose components are the old momenta plus a gradi-
ent in configuration space.

. Prove directly that the transformation

O1=q1, Pi=p1—-2pa,
Or=py, Ph=-2q—q

is canonical and find a generating function.
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9.

10.

11.

12.

13.

14.

15.

(a) For a single particle show directly (that is, by direct evaluation of the Poisson
brackets), that if u is a scalar function only of r2, p2, and r - p, then

[u,L] =0.
(b) Similarly show directly that if F is a vector function,
F =ur+vp+ w(r x p),
where u, v, and w are scalar functions of the same type as in part (a), then
[Fi, Lj]l=¢€ijiFx.

Find under what conditions

where o and § are constants, represents a canonical transformation for a system of
one degree of freedom, and obtain a suitable generating function. Apply the transfor-
mation to the solution of the linear harmonic oscillator.

Determine whether the transformation

P1— D2
92 —q1
q2p2 — q1D1
02=9q1+q, Py=————"——(q2+q1)
92 —q1

is canonical.

Show that the direct conditions for a canonical condition are given immediately by
the symplectic condition expressed in the form

IM=M"1J.

The set of restricted canonical transformations forms a group (Appendix B). Ver-
ify this statement once using the invariance of Hamilton’s principle under canonical
transformation (cf. Eq. (9.11)), and again using the symplectic condition.

Prove that the transformation

2
01=4, 02 = qa sec py,

_ P1cospy —2q;

Py
241 cos po

P, =sin pp — 2¢q

is canonical, by any method you choose. Find a suitable generating function that will
lead to this transformation.

(a) Using the fundamental Poisson brackets find the values of o and § for which the
equations

Q=q%cosfBp, P =q%sinBp

represent a canonical transformation.
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(b) For what values of o and 8 do these equations represent an extended canonical
transformation? Find a generating function of the F3 form for the transformation.

(c) On the basis of part (b), can the transformation equations be modified so that they
describe a canonical transformation for all values of 5?

16. For a symmetric rigid body, obtain formulas for evaluating the Poisson brackets

[, £O, 0, 9], [V, f(0,¢,¥)]

where 6, ¢, and Y are the Euler angles, and f is any arbitrary function of the Euler
angles.

17. Show that the Jacobi identity is satisfied if the Poisson bracket sign stands for the
commutator of two square matrices:

[A, B] = AB — BA.
Show also that for the same representation of the Poisson bracket that
[A, BC] = [A, B]C + B[A, C].

18. Prove Eq. (9.83) using the symplectic matrix notation for the Lagrange and Poisson
brackets.
19. Verity the analog of the Jacobi identity for Lagrange brackets,

ofu, v} d{v,w} I w,u}
ow + ou + w

where u, v, and w are three functions in terms of which the (g, p) set can be specified.

20. (a) Verify that the components of the two-dimensional matrix A, defined by Eq.
(9.141), are constants of the motion for the two-dimensional isotropic harmonic
oscillator problem.

(b) Verify that the quantities S;, i = 1, 2, 3, defined by Egs. (9.144), (9.145), (9.146),
have the properties stated in Eqs. (9.147) and (9.148).

EXERCISES

21. (a) For a one-dimensional system with the Hamiltonian

2
1
wo? L
2 242
show that there is a constant of the motion
p="%_p;
2

(b) As a generalization of part (a), for motion in a plane with the Hamiltonian

n

H=p/"—ar™",
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22.

23.

24.

25.

26.

27.

where p is the vector of the momenta conjugate to the Cartesian coordinates, show
that there is a constant of the motion

p-r
n

D= — Ht.

(c) The transformation Q = Ag, p = AP is obviously canonical. However, the same
transformation with ¢ time dilatation, Q = Ag, p = AP, t = )th, is not. Show
that, however, the equations of motion for ¢ and p for the Hamiltonian in part (a)
are invariant under this transformation. The constant of the motion D is said to be
associated with this invariance.

Show that the following transformation is canonical by using Poisson bracket:

0 =+/2ge*cosp and P =./2ge “sinp.

Prove that the following transformation from (g, p) to (Q, P) basis is canonical using
Poisson bracket

Q=+2-g-tanp and P =+/2-log(sin p).

Show that the transformation defined by Q = 1/p and P = qp2 is canonical using
Poisson bracket.

(a) The Hamiltonian for a system has the form

Ll 24
H=-\|— .
2 <q2 T )
Find the equation of motion for g.

(b) Find a canonical transformation that reduces H to the form of a harmonic oscilla-
tor. Show that the solution for the transformed variables is such that the equation
of motion found in part (a) is satisfied.

A system of n particles moves in a plane under the influence of interaction forces
derived from potential terms depending only upon the scalar distances between
particles.

(a) Using plane polar coordinates for each particle (relative to a common origin),
identify the form of the Hamiltonian for the system.

(b) Find a generating function for the canonical transformation that corresponds to a
transformation to coordinates rotating in the plane counterclockwise with a uni-
form angular rate w (the same for all particles). What are the transformation equa-
tions for the momenta?

(¢) What is the new Hamiltonian? What physical significance can you give to the
difference between the old and the new Hamiltonians?

(a) In the problem of small oscillations about steady motion, show that at the point
of steady motion all the Hamiltonian variables i are constant. If the values
for steady motion are 7q so that n = ng + & show that to the lowest non-
vanishing approximation the effective Hamiltonian for small oscillation can be
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expressed as

H(no, §) = 5 €8¢,

where S is a square matrix with components that are functions of 1 only.

(b) Assuming all frequencies of small oscillation are distinct, let M be a square
2n x 2n matrix formed by the components of a possible set of eigenvectors (for
both positive and negative frequencies). Only the directions of the eigenvectors
are fixed, not their magnitudes. Show that it is possible to apply conditions to the
eigenvectors (in effect fixing their magnitudes) that make M the Jacobian matrix
of a canonical transformation.

(¢) Show that the canonical transformation so found transforms the effective Hamil-
tonian to the form

H=iwjqjpj,

where w; is the magnitude of the normal frequencies. What are the equations of
motion in this set of canonical coordinates?

(d) Finally, show that

p2 .
Fy=q;P;+ A iw~q2

27T Y T %
leads to a canonical transformation that decomposes H into the Hamiltonians
for a set of uncoupled linear harmonic oscillators that oscillate in the normal

modes.

28. A charged particle moves in space with a constant magnetic field B such that the

29

vector potential, A, is
A= %(B Xr)

(a) If v; are the Cartesian components of the velocity of the particle, evaluate the
Poisson brackets

[vi,vjl, i#j=123.

(b) If p; is the canonical momentum conjugate to x;, also evaluate the Poisson
brackets

x;i, vl Lpisvjl,
[xi, pjl,  [pis Pyl

The semimajor axis a of the elliptical Kepler orbit and the eccentricity e are functions
of first integrals of the motion, and therefore of the canonical variables. Similarly, the
mean anomaly

dp=wt—T)=v —esiny

is a function of r, 6, and the conjugate momenta. Here T is the time of periapsis
passage and is a constant of the motion. Evaluate the Poisson brackets that can be
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30.

31.

32

33

34.

35.

formed of a, e, ¢, w, and T. There are in fact only nine nonvanishing distinct Poisson
brackets out of these quantities.

(a) Prove that the Poisson bracket of two constants of the motion is itself a constant
of the motion even when the constants depend upon time explicitly.

(b) Show that if the Hamiltonian and a quantity F are constants of the motion, then
the nth partial derivative of F' with respect to + must also be a constant of the
motion.

(c) As an illustration of this result, consider the uniform motion of a free particle of
mass m. The Hamiltonian is certainly conserved, and there exists a constant of the
motion

pt
P

F=x

Show by direct computation that the partial derivative of F with ¢, which is a
constant of the motion, agrees with [H, F].

Show by the use of Poisson brackets that for a one-dimensional harmonic oscillator
there is a constant of the motion u defined as

k
u(lg,p,t) =In(p+imwq) —iot, o=, —.
m

‘What is the physical significance of this constant of the motion?

A system of two degrees of freedom is described by the Hamiltonian

H=q1p1 —qp2— aqlz + bq%-
Show that

P1 —aqi
Fr="1"00 and B =g

q92

are constants of the motion. Are there any other independent algebraic constants of
the motion? Can any be constructed from Jacobi’s identity?

Set up the magnetic monopole described in Exercise 28 (Chapter 3) in Hamilto-
nian formulation (you may want to use spherical polar coordinates). By means of
the Poisson bracket formulation, show that the quantity D defined in that exercise is
conserved.

Obtain the motion in time of a linear harmonic oscillator by means of the formal
solution for the Poisson bracket version of the equation of motion as derived from
Eq. (9.116). Assume that at time ¢ = 0 the initial values are xo and pg.

A particle moves in one dimension under a potential

Find x as a function of time, by using the symbolic solution of the Poisson bracket
form for the equation of motion for the quantity y = x2. Initial conditions are that at
t=0,x =xg9,and v =0.
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36.

37.

38.

39.

40.

41.

(a) Using the theorem concerning Poisson brackets of vector functions and compo-
nents of the angular momentum, show that if F and G are two vector functions of
the coordinates and momenta only, then

[F-L,G-L]=L-(GxF) + L;L;[F;, G].

(b) Let L be the total angular momentum of a rigid body with one point fixed and
let L, be its component along a set of Cartesian axes fixed in the rigid body. By
means of part (a) find a general expression for

[Lp,aLv]y M,V = 1,2, 3.

(Hint: Choose for F and G unit vectors along the p and v axes.)

(¢) From the Poisson bracket equations of motion for L, derive Euler’s equations of
motion for a rigid body.

Set up the problem of the spherical pendulum in the Hamiltonian formulation, using
spherical polar coordinates for the ¢;. Evaluate directly in terms of these canonical
variables the following Poisson brackets:

[Lx, Lyl [Ly, L], [Lz, L],

showing that they have the values predicted by Eq. (9.128). Why is it that py and py,
can be used as canonical momenta, although they are perpendicular components of
the angular momentum?

In Section 9.7, it is shown that if any two components of the angular momentum
are conserved, then the total angular momentum is conserved. If two of the compo-
nents are identically zero, the third must be conserved. From this it would appear to
follow that in any motion confined to a plane, so that the components of the angu-
lar momentum in the plane are zero, the total angular momentum is constant. There
appear to be a number of obvious contradictions to this prediction; for example, the
angular momentum of an oscillating spring in a watch, or the angular momentum of
a plane disk rolling down an inclined plane all in the same vertical plane. Discuss
the force of these objections and whether the statement of the theorem requires any
restrictions.

(a) Show from the Poisson bracket condition for conserved quantities that the
Laplace-Runge-Lenz vector A,

k
A—pxL_ T
r

is a constant of the motion for the Kepler problem.
(b) Verify the Poisson bracket relations for the components of A as given by
Eq. (9.131).

Consider a system that consists of a rigid body in three-space with one point fixed.
Using cylindrical coordinates find the canonical transformation corresponding to new
axes rotating about the z-axis with an arbitrary time-dependent angular velocity. Ver-
ify that your proposed solution is canonical.

We start with a time independent Hamiltonian H, (g, p) and impose an external oscil-
lating field making the Hamiltonian

H = H,(q, p) — esinwt
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where ¢ and w are given constants.
(a) How are the canonical equations modified?

(b) Find a canonical transformation that restores the canonical form of the equations
of motion and determine the “new” Hamiltonian.

(c) Give a possible physical interpretation of the imposed field.
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10.1 W

Hamilton-Jacobi Theory and
Action-Angle Variables

It has already been mentioned that canonical transformations may be used to pro-
vide a general procedure for solving mechanical problems. Two methods have
been suggested. If the Hamiltonian is conserved, then a solution could be obtained
by transforming to new canonical coordinates that are all cyclic, thereby provid-
ing new equations of motion with trivial solutions. An alternative technique is to
seek a canonical transformation from the coordinates and momenta, (g, p), at the
time ¢, to a new set of constant quantities, which may be the 2n initial values,
(g0, po), at t = 0. With such a transformation, the equations of transformation
relating the old and new canonical variables are exactly the desired solution of the
mechanical problem:

q = q(qo, po, 1),
p = p(qo, po, t).

They give the coordinates and momenta as a function of their initial values and the
time. This last procedure is the more general one, especially as it is applicable, in
principle at least, even when the Hamiltonian involves the time. We shall therefore
begin our discussion by considering how such a transformation may be found.

THE HAMILTON-JACOBI EQUATION
FOR HAMILTON’S PRINCIPAL FUNCTION

We can automatically ensure that the new variables are constant in time by requir-
ing that the transformed Hamiltonian, K, shall be identically zero, for then the
equations of motion are

aK .
9P =Q; =0,

_oK P =0. (10.1)
00,

As we have seen, K must be related to the old Hamiltonian and to the generating
function by the equation

or
K=H+_’
ot
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and hence will be zero if F satisfies the equation

aF
H(g. p.0)+ - =0. (10.2)

It is convenient to take F as a function of the old coordinates g;, the new constant
momenta P;, and the time; in the notation of the previous chapter we would desig-
nate the generating function as F>(q, P, t). To write the Hamiltonian in Eq. (10.2)
as a function of the same variables, use may be made of the equations of transfor-
mation (cf. Eq. (9.17a)),

_ 0F

pPi = 3’

so that Eq. (10.2) becomes
JaF, oF JoF
2 2. > 272 o, (10.3)

— ., ==t
aqi aqn Jat

H (fh,n-’%;
Equation (10.3), known as the Hamilton—Jacobi equation, constitutes a partial
differential equation in (n 4 1) variables, q1, . .., qn; t, for the desired generating
function. It is customary to denote the solution F» of Eq. (10.3) by S and to call
it Hamilton’s principal function.

Of course, the integration of Eq. (10.3) only provides the dependence on the
old coordinates and time; it would not appear to tell how the new momenta are
contained in S. Indeed, the new momenta have not yet been specified except that
we know they must be constants. However, the nature of the solution indicates
how the new P;’s are to be selected.

Mathematically Eq. (10.3) has the form of a first-order partial differential equa-
tion in n + 1 variables. Suppose there exists a solution to Eq. (10.3) of the form

FHL=S=S0q1,...,qn; o1,...,0041;1), (10.4)

where the quantities «q, .. ., &, 4+ are n + 1 independent constants of integration.
Such solutions are known as complete solutions of the first-order partial differen-
tial equation.* One of the constants of integration, however, is in fact irrelevant to
the solution, for it will be noted that S itself does not appear in Eq. (10.3); only its
partial derivatives with respect to ¢ or ¢ are involved. Hence, if S is some solution
of the differential equation, then S + «, where « is any constant, must also be
a solution. One of the n 4 1 constants of integration in Eq. (10.4) must there-
fore appear only as an additive constant tacked on to S. But by the same token,
an additive constant has no importance in a generating function, since only par-
tial derivatives of the generating function occur in the transformation equations.

*Equation (10.4) is not the only type of solution possible for Eq. (10.3). The most general form
of the solution involves one or more arbitrary functions rather than arbitrary constants. Nor is there
necessarily a unique solution of the form (10.4). There may be several complete solutions for the given
equation. But all that is important for the subsequent argument is that there exist a complete solution.
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Hence, for our purposes a complete solution to Eq. (10.3) can be written in the
form

S=S(q1,~-7Qn; al""val‘l;t)7 (10’5)

where none of the n independent constants is solely additive. In this mathematical
garb, S tallies exactly with the desired form for an F» type of generating func-
tion, for Eq. (10.5) presents S as a function of N coordinates, the time ¢, and n
independent quantities ;. We are therefore at liberty to take the n constants of
integration to be the new (constant) momenta:

P; = q;. (10.6)

Such a choice does not contradict the original assertion that the new momenta
are connected with the initial values of ¢ and p at time #y. The n transformation
equations (9.17a) can now be written as

_08(q,a,1)

10.7
oa (10.7)

Pi

where ¢, a stand for the complete set of quantities. At the time #(, these constitute
n equations relating the n «’s with the initial g and p values, thus enabling us to
evaluate the constants of integration in terms of the specific initial conditions of
the problem. The other half of the equations of transformation, which provide the
new constant coordinates, appear as

(10.8)

The constant B’s can be similarly obtained from the initial conditions, simply by
calculating the value of the right side of Eq. (10.8) at # = 7y with the known initial
values of g;. Equations (10.8) can then be “turned inside out” to furnish g; in
terms of «, B, and t:

q; =qj(a, B, 1), (10.9)

which solves the problem of giving the coordinates as functions of time and the
initial conditions.* After the differentiation in Eqs. (10.7) has been performed,

*As a mathematical point, it may be questioned whether the process of “turning inside out” is feasible
for Egs. (10.7) and (10.8), that is, whether they can be solved for «; and g;, respectively. The question
hinges on whether the equations in each set are independent, for otherwise they are obviously not
sufficient to determine the n independent quantities «; or g; as the case may be. To simplify the
notation, let Sy symbolize members of the set of partial derivatives of S with respect to «;, so that
Eq. (10.8) is represented by B = S,. That the derivatives Sy in (10.8) form independent functions
of the g’s follows directly from the nature of a complete solution to the Hamilton—Jacobi equation;
indeed this is what we mean by saying the n constants of integration are independent. Consequently,
the Jacobian of S, with respect to g; cannot vanish. Since the order of differentiation is immaterial,
this is equivalent to saying that the Jacobian of S; with respect to «; cannot vanish, which proves the
independence of Egs. (10.7).
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Egs. (10.9) may be substituted for the ¢’s, thus giving the momenta p; as functions
of the «, B, and ¢:

pi = pi(a, B, 1). (10.10)

Equations (10.9) and (10.10) thus constitute the desired complete solution of
Hamilton’s equations of motion.

Hamilton’s principal function is thus the generator of a canonical transforma-
tion to constant coordinates and momenta; when solving the Hamilton—Jacobi
equation, we are at the same time obtaining a solution to the mechanical prob-
lem. Mathematically speaking, we have established an equivalence between the
2n canonical equations of motion, which are first-order differential equations,
to the first-order partial differential Hamilton—Jacobi equation. This correspon-
dence is not restricted to equations governed by the Hamiltonian; indeed, the gen-
eral theory of first-order partial differential equations is largely concerned with
the properties of the equivalent set of first-order ordinary differential equations.
Essentially, the connection can be traced to the fact that both the partial differen-
tial equation and its canonical equations stem from a common variational princi-
ple, in this case Hamilton’s modified principle.

To a certain extent, the choice of the ¢;’s as the new momenta is arbitrary. We
could just as well choose any n quantities, y;, which are independent functions of
the o; constants of integration:

Vi = Vi(ti, ..., ap). (10.11)

By means of these defining relations, Hamilton’s principal function can be written
as a function of g;, y;, and ¢, and the rest of the derivation then goes through
unchanged. It often proves convenient to take some particular set of y;’s as the
new momenta, rather than the constants of integration that appear naturally in
integrating the Hamilton—Jacobi equation.

Further insight into the physical significance of Hamilton’s principal function
S is furnished by an examination of its total time derivative, which can be com-
puted from the formula

ds _9s._ 3S
dt_aq,-q’ ot

’

since the P;’s are constant in time. By Eqs. (10.7) and (10.3), this relation can also
be written

ds .
7 = Pidi —H=1L, (10.12)

so that Hamilton’s principal function differs at most from the indefinite time inte-
gral of the Lagrangian only by a constant:

S = / L dt + constant. (10.13)
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Now, Hamilton’s principle is a statement about the definite integral of L, and from
it we obtained the solution of the problem via the Lagrange equations. Here the
same action integral, in an indefinite form, furnishes another way of solving the
problem. In actual calculations, the result expressed by Eq. (10.13) is of no help,
because we cannot integrate the Lagrangian with respect to time until g; and p;
are known as functions of time, that is, until the problem is solved.

When the Hamiltonian does not depend explicitly upon the time, Hamilton’s
principal function can be written in the form

S(g,a,t) =W(g,a) —at, (10.14)

where W(q, «) is called Hamilton’s characteristic function. The physical signifi-
cance of W can be understood by writing its total time derivative

aw _ aw
dt 0q;

qi-

Comparing this expression to the results of substituting Eq. (10.14) into Eq. (10.7),
it is clear that

ow
pi=—_—">, (10.15)
0q;
and hence,
dw )
dar = Piqi- (10.16)
This can be integrated to give
W=/piqf dt=/pi dqi, (10.17)

which is just the abbreviated action defined by Eq. (8.80).

THE HARMONIC OSCILLATOR PROBLEM AS AN EXAMPLE

OF THE HAMILTON-JACOBI METHOD

To illustrate the Hamilton—Jacobi technique for solving the motion of mechanical
systems, we shall work out in detail the simple problem of a one-dimensional

harmonic oscillator. The Hamiltonian is

1
H=—p>+m’0w’q>) = E, (10.18)
2m

k
w=,/—, (10.19)
m

where
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k being the force constant. We obtain the Hamilton—Jacobi equations for S by
setting p equal to dS5/dqg and substituting in the Hamiltonian; the requirement
that the new Hamiltonian vanishes becomes

L2 2+ 2022+ 85 2o (10.20)
— — m-w — =0. .
2m |\ og TN

Since the explicit dependence of S on ¢ is present only in the last term, Eq. (10.14)
can be used to eliminate the time from the Hamilton—Jacobi equation (10.20)

1 [ /aw\?
— —_— +m2a)2q2 = . (1021)
2m aq

The integration constant « is thus to be identified with the total energy E. This
can also be recognized directly from Eq. (10.14) and the relation (cf. Eq. (10.3))

— +H =0,
ot

which then reduces to
H=oq.

Equation (10.21) can be integrated immediately to

2.2
W= «/2ma/dq1/1 — ”“2" a (10.22)
104
ma?q?
S=+2ma | dg,/1— 3 — oft. (10.23)
o

While the integration involved in Eq. (10.23) is not particularly difficult, there
is no reason to carry it out at this stage, for what is desired is not S but its partial
derivatives. The solution for ¢ arises out of the transformation equation (10.8):

so that

ﬁ’=§=,/ﬁ/—dq —1
Ja 20 l_ma)zq2 ’
V 2

which can be integrated without trouble to give

1 2
t+ 8 = - arcsin g, | %. (10.24)
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Equation (10.24) can be immediately “turned inside out” to furnish g as a
function of 7 and the two constants of integration « and 8 = ' w:

200 .
q =,/ —5 sin(wt + B), (10.25)
maw

which is the familiar solution for a harmonic oscillator. Formally, the solution
for the momentum comes from the transformation equation (10.7), which, using
Eq. (10.22), can be written

oS oW
p=—=— =./2ma — m?w?q?. (10.26)
dg  9q

In conjunction with the solution for g, Eq. (10.25), this becomes

p= \/Zma(l — sin®(wt + B)),
or
p = V2ma cos(wt + B). (10.27)

Of course, this result checks with the simple identification of p as mq.

To complete the story, the constants & and § must be connected with the initial
conditions gg and pg at time t+ = 0. By squaring Eqgs. (10.25) and (10.27), it is
clearly seen that « is given in terms of gg and pg by the equation

2ma = pi +m*w’qq. (10.28)

The same result follows immediately of course from the previous identification of
o as the conserved total energy E. Finally, the phase constant g is related to go
and pg by

tan f = mw 22 (10.29)

Po

The choice gp = 0 and hence § = 0 corresponds to starting the motion with the
oscillator at its equilibrium position ¢ = 0.

Thus, Hamilton’s principle function is the generator of a canonical transforma-
tion to a new coordinate that measures the phase angle of the oscillation and to a
new canonical momentum identified as the total energy.

If the solution for ¢ is substituted into Eq. (10.23), Hamilton’s principal func-
tion can be written as

S =2« / cos® (ot + B)dt —at =2« /(cosz(a)t + B8) — %)dl. (10.30)
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Now, the Lagrangian is
1
L= —(p* —m’w’q?)
2m

= a(cos>(wt + B) — sin’(wt + B))
= 2a(cos®(wt + B) — 1),
so that S is the time integral of the Lagrangian, in agreement with the general
relation (10.13). Note that the identity could not be proved until after the solution
to the problem had been obtained.
As another illustration for the Hamilton—Jacobi method, it is instructive to
consider the two-dimensional anisotropic harmonic oscillator. If we let m be the

mass of the oscillating body and &, and k, be the spring constants in the x- and
y-directions, respectively, the Hamiltonian is

1 2 2 2.2.2 2,22
E:ﬂ(px—}—py—}—m wex” +miwyy”),

where

kx k
wy =./— and w, =, 2.
m )

Since the coordinates and momenta separate into two distinct sets, the princi-
pal function can be written as a sum of the characteristic function for each pair.
Assuming that we solve the y-functional dependency first, this means

S, y,a,ay,1) = Fx(x,a) + Fy(y, ay) —at, (10.31)

and the Hamilton—Jacobi equation assumes the form

1| /aw)\? IW\?
%KW) +m2w§x2+<§> +m2w§y2i|=oz (10.32)

in analogy with Eq. (10.18). Since the variables are separated, the y-part of the
Eq. (10.32) must be equal to a constant, which we call ay, so

1 /aWw\? 1
7 <§> + Ema)ﬁy? = ay, (10.33)

and we replace the y-term in (10.32) with «, from (10.33), yielding

1 (ow\? 1
%<¥) +omold =, (10.34)

where we write & — oy, = a, showing the symmetry of Egs. (10.33) and (10.34).
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Each equation has a solution analogous to Egs. (10.25) and (10.27), so

20y
5= |22 it + B,
mw?

Px = v/2may cos(wxt + By),

2ay
y = | —5 sin(wyt + By),
mows

Py = +/2may cos(wyt + By),

where the B;’s are phase constants and the total energy is given by

(10.35)

E=oay+ay=a.

As a third example of Hamilton—Jacobi theory, we again consider the two-
dimensional harmonic oscillator; only we will assume the oscillator is isotropic,
SO

ky=ky=k and Wy = wy = w,

and use polar coordinates to write

x =rcosf, r=4/x2+4y%,

y =rsiné, 9=tan_lz,
* (10.36)
Px = mx, pr = mr,
py =my, Do = mr’6.
The Hamiltonian now written as
1 p2
E=_ pr+ r—g +m?w?r? (10.37)

is cyclic in the angular coordinate 6. The principal function can then be written as

Sr,0,a,ag) = W,(r,a) + Wy(0, ag) — at
= W, (r,a) + 0ag — at, (10.38)

where, as we show later, a cyclic coordinate g; always has the characteristic func-
tion component W,, = g;a;. The canonical momentum py associated with the
cyclic coordinate, 6, is calculated from the generating function

d0Fy

Po = 30

= Uy

and has its expected constant value.
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When this pyg is substituted into Eqs. (10.37) and (10.38), W, (r, o) satisfies

T A 2
__( r)+ % Lot —a (10.39)
2m or

Rather than solving this equation directly for W,, we shall write the Cartesian
coordinate solution for these conditions as

[ 2
x = _a2 sin(wt + B), Px = v 2ma cos(wt + B),
mw

(10.35)
200 .
y =4/ — sinot, Py = V2ma cos wt,
mo
and use these to get the polar counterparts,
[ 2
r= —az\/sinzwt~|—sin2(wt+,3), pr = mr,
mw
and (10.40)
_ sin wt 24
6 = tan |, po = mr-6.
sin(wt 4 B)

There are two limiting cases. The linear case is when 8 = 0, for which

do .
r= sin wt, Pr = V2mo cos wt,
mw?

and (10.41)

g=" =0
—47 pe— .

The motion in an x-y plot will be an oscillation along a diagonal line as shown
in Fig. 10.1a. The other limiting case is when 8 = 7 /2, for which

r=rg=,/—jy pr=0,
mew (10.42)

0 = wt, po = mriw.

The motion in an x-y plot for this limiting case is a circle of radius r( as is shown
in Figure 10.1b. For other values of 8 (0 < B < m/2), the orbit in coordinate
space is an ellipse. The case for 8 = /4 is shown in Fig. 10.1c. The plots shown
in Fig. 10.1 are further examples of Lissajous figures.
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FIGURE 10.1 The two limiting cases (a) and (b) for the harmonic oscillator and an
intermediate example (c).

10.3 ® THE HAMILTON-JACOBI EQUATION FOR
HAMILTON’S CHARACTERISTIC FUNCTION

It was possible to integrate the Hamilton—Jacobi equation for the simple harmonic
oscillator primarily because S could be separated into two parts, one involving ¢
only and the other only time. Such a separation of variables using Hamilton’s
characteristic function W (q, ) (Eq. (10.14)) is always possible whenever the old
Hamiltonian does not involve time explicitly. This provides us with the restricted
Hamilton—Jacobi equation

oW
H (%’» —) = aj, (10.43)
agi

which no longer involves the time. One of the constants of integration, namely
a1, is thus equal to the constant value of H. (Normally H will be the energy, but
remember that this need not always be the case, cf. Section 8.2.)

The time-independent function, Hamilton’s characteristic function W, appears
here merely as a part of the generating function S when H is constant. It can
also be shown that W separately generates its own contact transformation with
properties quite different from that generated by S. Let us consider a canonical
transformation in which the new momenta are all constants of the motion «;, and
where « in particular is the constant of motion H. If the generating function
for this transformation be denoted by W (g, P), then the equations of transforma-
tion are

)

oW oW
ag;i

= — = — 10.44
Qi 0P = 9o, ( )

pi
While these equations resemble Egs. (10.7) and (10.8) respectively for Hamil-
ton’s principal function S, the condition now determining W is that H is the new

canonical momentum o :

H(gi, pi) = ai.
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Using Eqgs. (10.44), this requirement becomes the partial differential equation:

ow
H qlv_ =,
g

which is seen to be identical with Eq. (10.43). Since W does not involve the time,
the new and old Hamiltonians are equal, and it follows that K = «;.

Hamilton’s characteristic function W thus generates a canonical transforma-
tion in which all the new coordinates are cyclic. It was noted in the introduction
to this chapter that when H is a constant of the motion, a transformation of this
nature in effect solves the mechanical problem involved, for the integration of the
new equations of motion is then trivial. The canonical equations for P;, in fact,
merely repeat the statement that the momenta conjugate to the cyclic coordinates
are all constant:

. oK
Pp=——+=0, P, = «;. (10.45)
00i

Because the new Hamiltonian depends upon only one of the momenta «;, the
equations of motion for Q; are

0 0K | !
= — = , I = y
! 80[,'
=0, i#1,
with the immediate solutions
ow
Or=t+p1=—,
do|
(10.46)
ow
Qi= Bi=— i#l
aOli

The only coordinate that is not simply a constant of the motion is Q1, which is
equal to the time plus a constant. We have here another instance of the conjugate
relationship between the time as a coordinate and the Hamiltonian as its conjugate
momentum.

The dependence of W on the old coordinates ¢g; is determined by the par-
tial differential equation (10.43), which, like Eq. (10.3), is also referred to as the
Hamilton—Jacobi equation. There will now be n constants of integration in a com-
plete solution, but again one of them must be merely an additive constant. The
n — 1 remaining independent constants, a», . . ., &, together with &1 may then be
taken as the new constant canonical momenta. When evaluated at ¢ the first half
of Eqs. (10.44) serve to relate the n constants «; with the initial values of ¢; and
pi. Finally, Egs. (10.45) and (10.46) can be solved for the g; as a function of ¢;,
Bi, and the time 7, thus completing the solution of the problem. It will be noted
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that (n — 1) of the Egs. (10.46) do not involve the time at all. One of the g;’s can
be chosen as an independent variable, and the remaining coordinates can then be
expressed in terms of it by solving only these time-independent equations. We are
thus led directly to the orbit equations of the motion. In central force motion, for
example, this technique would furnish » as a function of 6, without the need for
separately finding r and 6 as functions of time.

It is not always necessary to take «; and the constants of integration in W as
the new constant canonical momenta. Occasionally it is desirable rather to use
some particular set of n independent functions of the ¢;’s as the transformed
momenta. Designating these constants by y; the characteristic function W can
then be expressed in terms of ¢; and y; as the independent variables. The Hamil-
tonian will in general depend upon more than one of the y;’s and the equations of
motion for Q; become

Qi =— =,
Vi
where the v;’s are functions of y;. In this case, all the new coordinates are linear

functions of time:
Qi =vit + Bi. (10.47)

The form of W cannot be found a priori without obtaining a complete integral of
the Hamilton—Jacobi equation. The procedures involved in solving a mechanical
problem by either Hamilton’s principal or characteristic function may now by
summarized in the following tabular form:

The two methods of solution are applicable when the Hamiltonian

is conserved:
H(q, p) = constant.

is any general function of g, p, t:
H(g, p,1).

We seek canonical transformations to new variables such that

all the coordinates and momenta
Q;, P; are constants of the motion.

all the momenta P; are constants.

To meet these requirements it is sufficient to demand that the new Hamiltonian

shall vanish identically: shall be cyclic in all the coordi-
K =0. nates:
K=H(P)=oa.

Under these conditions, the new equations of motion become

Q_aK_O Q._BK_
l—api—» l—api—vta
0K . 0K

=50, =0,

)
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with the immediate solutions

which satisfy the stipulated requirements.
The generating function producing the desired transformation is Hamilton’s

Principal Function: Characteristic Function:
S(q. P, 1), Wi(q, P),

satisfying the Hamilton—Jacobi partial differential equation:

oS 08 ow
H(q,—,t)]+—=0. H{qg,— ) —a1 =0.
aq at aq

A complete solution to the equation contains

n nontrivial constants of integra- | n — 1 nontrivial constants of in-
tion oy, ..., Q. tegration, which together with o
form a set of n independent con-
stants oy, ..., y.

The new constant momenta, P; = y;, can be chosen as any n independent func-
tions of the n constants of integration:

P =vyi(ay, ..., a,),

P =vyi(ag, ..., o),

so that the complete solutions to the Hamilton—Jacobi equation may be considered
as functions of the new momenta:

S =8, Vi, ). W = W(qi,yi).

In particular, the y;’s may be chosen to be the «;’s themselves. One-half of the
transformations equations,

L) 0w

pl_ 8ql7 pl_ 8qls

are fulfilled automatically, since they have been used in constructing the Hamilton—
Jacobi equation. The other half,

as ow
Qi =—=048, Qi = — =vi(y)t + B,
oyi Ay

can be solved for g; in terms of ¢ and the 2n constants §;, y;. The solution to the
problem is then completed by evaluating these 2n constants in terms of the initial
values, (g0, pio), of the coordinates and momenta.
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When the Hamiltonian does not involve time explicitly, both methods are suit-
able, and the generating functions are then related to each other according to the
formula

S(g, P,t) =W(q, P) — agt.

SEPARATION OF VARIABLES IN THE HAMILTON-JACOBI EQUATION

It might appear from the preceding section that little practical advantage has been
gained through the introduction of the Hamilton—Jacobi procedure. Instead of
solving the 2n ordinary differential equations that make up the canonical equa-
tions of motion, we now must solve the partial differential Hamilton—Jacobi equa-
tion, and partial differential equations can be notoriously complicated to solve.
Under certain conditions, however, it is possible to separate the variables in the
Hamilton—Jacobi equation, and the solution can then always be reduced to quadra-
tures. In practice, the Hamilton—Jacobi technique becomes a useful computational
tool only when such a separation can be effected.

A coordinate g is said to be separable in the Hamilton—Jacobi equation when
(say) Hamilton’s principal function can be split into two additive parts, one of
which depends only on the coordinate g; and the other is entirely independent of
q;- Thus, if g; is taken as a separable coordinate, then the Hamiltonian must be
such that one can write

S(q1, - qns a1, oy 1) = S1(qrs a1, .. s 1)
+8(q2s s qns @1, s 1), (10.48)
and the Hamilton—Jacobi equation can be split into two equations—one separately
for S and the other for . Similarly the Hamilton—Jacobi equation is described as

completely separable (or simply, separable) if all the coordinates in the problem
are separable. A solution for Hamilton’s principal function of the form

S=7 S o, i D) (10.49)
i

will then split the Hamilton—Jacobi equation into n equations of the type

3S; 3S;
Hi | q;; g;m,---,an;t +WZO' (10.50)
J

If the Hamiltonian does not explicitly depend upon the time, then, for each S; we
have

Si(gj; ar,...,an;t) = Wilg); ai,...,au;t) —ajt, (10.51)
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which provide n restricted Hamilton—Jacobi equations,

aW;

H; (q,-; —ag, ..., Otn> = ;. (10.52)
3gi

(No summation in Egs. (10.50) to (10.52)!)

The functions H; in Egs. (10.50) and (10.52) may or may not be Hamiltonians,
and the «; may be an energy, an angular momentum squared, or some other quan-
tity depending on the nature of g;. We shall show this by example in the Kepler
problem in the next section.

The constants «; are referred to now as the separation constants. Each of the
Egs. (10.52) involves only one of the coordinates g; and the corresponding partial
derivative of W; with respect to g;. They are therefore a set of ordinary differential
equations of a particularly simple form. Since the equations are only of first order,
it is always possible to reduce them to quadratures; we have only to solve for the
partial derivative of W; with respect to ¢; and then integrate over ¢;. In practice,
each H; will only contain one or at most a few of the «’s. There will also be
cases where a subset of r variables can be separated in this fashion, leaving n — r
variables, which will not separate. We shall also examine this eventuality in the
next section.

It is possible to find examples in which the Hamilton—Jacobi equation can be
solved without separating the time variable (cf. Exercise 8). Nonetheless, almost
all useful applications of the Hamilton—Jacobi method involve Hamiltonians not
explicitly dependent upon time, for which 7 is therefore a separable variable. The
subsequent discussion on separability is thus restricted to such systems where H
is a constant of motion, and Hamilton’s characteristic function W will be used
exclusively.

IGNORABLE COORDINATES AND THE KEPLER PROBLEM

We can easily show that any cyclic or ignorable coordinate is separable. Suppose
that the cyclic coordinate is g1; the conjugate momentum pg is a constant, say y.
The Hamilton—Jacobi equation for W is then

ow Iw
H(qz,-..,qn; Vi —,...,—):oq. (10.53)
0g2 g

If we try a separated solution of the form
W =Wi(q.e)+ Wi(g,....qn ), (10.54)

then it is obvious that Eq. (10.53) involves only the separate function W', while
W1 is the solution of the equation

_ oWy

pPL=Yy = e (10.55)
q1
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The constant y is thus the separation constant, and the obvious solution for W
(to within a trivial additive constant) is

Wi=vyaq,
and W is given by
W=W +yq. (10.56)

There is an obvious resemblance between Eq. (10.56) and the form S assumes
when H is not an explicit function of time, Eq. (10.43). Indeed, both equations
can be considered as arising under similar circumstances. We have seen that  may
be considered in some sense as a generalized coordinate with — H as its canonical
momentum (cf. Eq. (8.58)). If H is conserved, then ¢ may be treated as a cyclic
coordinate.

If s of the n coordinates are noncyclic (that is, they appear explicitly in the
Hamiltonian), then the Hamiltonian is of the form H(q1, ..., gs; &1, ..., 0,5 t).
The characteristic function can then be written as

N n
Wqr, ... gsian,...on) =Y Wilgis a1, ...,a) + Y iy, (10.56))
i=1 i=s+1

and there are s Hamilton—Jacobi equations to be solved:

oW
H(qu—l;az,-.-,an) = 0. (10.57)
9q1

Since these are ordinary first-order differential equations in the independent vari-
able g1, they can be immediately reduced to quadratures, and the complete solu-
tions for W can be obtained.

In general, a coordinate g; is separable if ¢; and the conjugate momentum p;
can be segregated in the Hamiltonian into some function f(g;, p;) that does not
contain any of the other variables. If we then seek a trial solution of the form

W =W a)+ Wi(g, ),
where g; represents the set of all ¢’s except g j, then the Hamilton-Jacobi equation
appears as
ow’ oW,
H(qi,—,f<qj,—’>> =aj. (10.58)

ag; 9q;

In principle, at least, Eq. (10.58) can be inverted so as to solve for f:

oW, ow’
f (611, —J> =g (qi, —, a1> . (10.59)
dq; agi
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The argument used previously in connection with Eq. (10.51) holds here in
slightly varied guise; f is not a function of any of the ¢’s except ¢;; g on the
other hand is independent of ¢;. Hence, Eq. (10.59) can hold only if both sides
are equal to the same constant, independent of all ¢’s:

f( 8Wj>
qgj, — | = «j,
J aqj J

AW’
g <qi, Y ) =aj, (10.60)
1

and the separation of the variable has been accomplished.

Note that the separability of the Hamilton—Jacobi equation depends not only
on the physical problem involved but also on the choice of the system of general-
ized coordinates employed. Thus, the one-body central force problem is separable
in polar coordinates, but not in Cartesian coordinates. For some problems, it is not
possible to completely separate the Hamilton—Jacobi equation, the famous three-
body problem being one illustration. On the other hand, in many of the basic prob-
lems of mechanics and atomic physics, separation is possible in more than one set
of coordinates. In general, it is feasible to solve the Hamilton—Jacobi equation in
closed form only when the variables are completely separable. Considerable inge-
nuity has therefore been devoted to finding the separable systems of coordinates
appropriate to each problem.

No simple criterion can be given to indicate what coordinate systems lead to
separable Hamilton—Jacobi equations for any particular problem. In the case of
orthogonal coordinate systems, the so-called Staeckel conditions have proved use-
ful. They provide necessary and sufficient conditions for separability under certain
circumstances. A proof of the sufficiency of the conditions and references will be
found in Appendix D of the second edition of this text.

The Staeckel conditions for the separation of the Hamilton—Jacobi equations
are:

1. The Hamiltonian is conserved.

2. The Lagrangian is no more than a quadratic function of the generalized
velocities, so the Hamiltonian takes the form:

H=3p-aT '(p—a)+ V(). (8.27)

3. The vector a has elements a; that are functions only of the corresponding
coordinate, that is a; = a;(g;)-

4. the potential function can be written as a sum of the form
Vi(gi)

V(g) = Z — (10.61)
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5. Consider the matrix ¢>’1, with an inverse ¢ whose elements are

1
Sijqb[;l =7 (no summation on i) (10.62)
124

where

IW;
2w ) =28 by
( i a,) ikPrj Vi

with y a constant unspecified vector. If the diagonal elements of both ¢
and ¢~! depend only upon the associated coordinate, that is, ¢~!;; and
¢i; are constants or a function of g; only, then provided 14 are true, the
Hamiltonian—Jacobi equations separate.

Since we have assumed that the generalized coordinates ¢; form an orthogonal
coordinate system, the matrix T (introduced in Section 8.1) is diagonal. It follows
that the inverse matrix T~! is also diagonal and, if we are dealing with a particle
in an external force field, the diagonal elements are:

1 1
¢;1 = —=—, (no summation) (10.63)
T;; m
so the fifth Staeckel condition is satisfied.
If the Staeckel conditions are satisfied, then Hamilton’s characteristic function

is completely separable:
Wig) =) Wi(a),
i
with the W; satisfying equations of the form

2
<% - ai) = —2Vi(qi) + 2¢ijv;, (10.64)
9gi

where y; are constants of integration (and there is summation only over the
index j).

While these conditions appear mysterious and complicated, their application
usually is fairly straightforward. As an illustration of some of the ideas developed
here about separability, the Hamilton—Jacobi equation for a particle moving in
a central force will be discussed in polar coordinates. The problem will then be
generalized to arbitrary potential laws, to furnish an application of the Staeckel
conditions.

Let us first consider the central force problem in terms of the polar coordinates
(r, ¥) in the plane of the orbit. The motion then involves only two degrees of
freedom and the Hamiltonian has the form

1 P
H=— (,93 + —f> + V@), (10.65)
2m r
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which is cyclic in ¥. Consequently, Hamilton’s characteristic function appears as
W =Wi(r)+ oy, (10.66)

where oy is the constant angular momentum py, conjugate to 1. The Hamilton—
Jacobi equation then becomes

aWi\2 o
L) + 22 L omvr) = 2may, (10.67)
or r2

where « is the constant identified physically as the total energy of the system.
Solving Eq. (10.66) for the partial derivative of W; we obtain

2
ow o
L _ \/Zm(ozl -v)--2,
ar r

so that W is

2
W= fdr\/Zm(al -V)- a—;” +ay . (10.68)
r

With this form for the characteristic function, the transformation equations
(10.46) appear as

oW mdr
t+Bi=—= / , (10.69a)
3051 a2
\/Zm(al -V)- r—‘zﬁ
and
oW oy dr
fr=— =— v s (10.69b)
dary

az
r2/2m(a; — V) — r—‘é’

Equation (10.69a) furnishes r as a function of ¢ and agreees with the correspond-
ing solution, Eq. (3.18), found in Chapter 3, with oy and oy, written explicitly as E
and /, respectively. It has been remarked previously that the remaining transforma-
tion equations for Q;, here only Eq. (10.69b), should provide the orbit equation.
If the variable of integration in Eq. (10.69b) is changed to u = 1/r, the equation
reduces to

d
1/f=,32—/ -
\/2—'2’(041 - V) —u?
oy

which agrees with Eq. (3.37) previously found for the orbit, identifying ¢ as 6
and f; as 6.
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As a further example of separation of variables, we shall examine the same
central force problem, but in spherical polar coordinates, that is, ignoring our
a priori knowledge that the orbit lies in a plane. The appropriate Hamiltonian has
been shown to be (cf. Eq. (8.29)):

1 p3 Pé
H=—|p?+2+ + V(). 10.70
2m (p, r2 " r2sin’0 « (10.70)

If the variables in the corresponding Hamilton—Jacobi equation are separable, then
Hamilton’s characteristic function must have the form

W =W,.(r) + Wo(0) + Wy (). (10.71)
The coordinate ¢ is cyclic in the Hamiltonian and hence
Wy = ago (10.72)

where « is a constant of integration. In terms of this form for W, the Hamilton—
Jacobi equation reduces to

oW 2+1 oWe 2+ “ +2mV(r) = 2mE (10.73)
|| — mV(r) =2mE, .
or r2 a6 sin? @

where we have explicitly identified the constant Hamiltonian with the total
energy E. Note that all dependence on 6, and on 6 alone, has been segregated into
the expression within the square brackets. The Hamilton—Jacobi equation then
conforms to the appearance of Eq. (10.58), and following the argument given
there we see that the quantity in the square brackets must be a constant:

2
IWg\2 «
<_ae > + Sinﬁe = o2 (10.74)

Finally the dependence of W on r is given by the remainder of the Hamilton—
Jacobi equation:

2 2
(aWr> " “_g =2m(E — V(r)). (10.75)
ar r

The variables in the Hamilton—Jacobi equation are thus completely separated.
Equations (10.74) and (10.75) may be easily reduced to quadratures providing
at least a formal solution for Wy (0) and W, (r), respectively.

Note that the constants of integration o, ag, oy all have directly recognizable
physical meanings. The quantity oy is of course the constant value of the angular
momentum about the polar axis (cf. Eq. (10.44)):

W,
ap = py = an. (10.76)
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To identify ag we use Eq. (10.44) to rewrite Eq. (10.74) as

2
2 Py
Py

sin? 0

al, (10.74')

so that the Hamiltonian, Eq. (10.70) appears as
1 2 Oég /
H=—|p;+—=]+VQ©). (10.70")
2m r2

Comparison with Eq. (10.65) for the Hamiltonian as expressed in terms of polar
coordinates in the plane of the orbit shows that ayg is the same as py, the magni-
tude of the total angular momentum:

ag =py =1. (10.77)

Lastly, «; is of course the total energy E. Indeed, the three differential equations
for the component parts of W can be looked on as statements of conservation the-
orems. Equation (10.75) says the z-component of the angular momentum vector,
L, is conserved, while Eq. (10.74) states the conservation of the magnitude, /,
of the angular momentum. And Eq. (10.75) is a form of the energy conservation
theorem.

In this simple example, some of the power and elegance of the Hamilton—
Jacobi method begins to be apparent. A few short steps suffice to obtain the
dependence of r on ¢ and the orbit equation, Eqs. (10.69a and b), results derived
earlier only with considerable labor. The conserved quantities of the central force
problem also appear automatically. Separation of variables for the purely central
force problem can also be performed in other coordinate systems, for example,
parabolic coordinates, and the conserved quantities appear there in forms appro-
priate to the particular coordinates.

Finally, we can employ the Staeckel conditions to find the most general form of
a scalar potential V for a single particle for which the Hamilton—Jacobi equation
is separable in spherical polar coordinates. The matrix ¢p of the Staeckel condi-
tions depends only on the coordinate system and not on the potential. Since the
Hamilton—Jacobi equation is separable in spherical polar coordinates for at least
one potential, that is, the central force potential, it follows that the matrix ¢ does
exist. The specific form of ¢ is not needed to answer our question. Further, since a
by hypothesis is zero, all we need do is apply Eq. (10.62) to find the most general
separable form of V. From the Kinetic energy (Eq. 8.28'), the diagonal elements
of T are

Trr =m, ng =mr2, T¢¢ =I’I’ll"2 sin20.
By Eq. (10.62) it follows that the desired potential must have the form

Vo) | V(@)

Vv =V, + .
(CI) r(r) }’2 r2 Sin2 6

(10.78)
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It is easy to verify directly that with this potential the Hamilton—Jacobi equation
is still completely separable in spherical polar coordinates.

ACTION-ANGLE VARIABLES IN
SYSTEMS OF ONE DEGREE OF FREEDOM

Of especial importance in many branches of physics are systems in which the
motion is periodic. Very often we are interested not so much in the details of the
orbit as in the frequencies of the motion. An elegant and powerful method of han-
dling such systems is provided by a variation of the Hamilton—Jacobi procedure.
In this technique, the integration constants «; appearing directly in the solution of
the Hamilton—Jacobi equation are not themselves chosen to be the new momenta.
Instead, we use suitably defined constants J;, which form a set of n independent
functions of the «;’s, and which are known as the action variables.

For simplicity, we shall first consider in this section systems of one degree of
freedom. It is assumed the system is conservative so that the Hamiltonian can be
written as

H(gq, p) = ay.

Solving for the momentum, we have that

p = p(q,ai), (10.79)

which can be looked on as the equation of the orbit traced out by the system
point in the two-dimensional phase space, p, g when the Hamiltonian has the
constant value «1. What is meant by the term “periodic motion” is determined by
the characteristics of the phase space orbit. Two types of periodic motion may be
distinguished:

1. In the first type, the orbit is closed, as shown in Fig. 10.2(a), and the system
point retraces its steps periodically. Both g and p are then periodic functions
of the time with the same frequency. Periodic motion of this nature will be
found when the initial position lies between two zeros of the kinetic energy.
It is often designated by the astronomical name [libration, although to a
physicist it is more likely to call to mind the common oscillatory systems,
such as the one-dimensional harmonic oscillator.

2. In the second type of periodic motion, the orbit in phase space is such that p
is some periodic function of g, with period g, as illustrated in Fig. 10.2(b).
Equivalently, this kind of motion implies that when a is increased by gy,
the configuration of the system remains essentially unchanged. The most
familiar example is that of a rigid body constrained to rotate about a given
axis, with g as the angle of rotation. Increasing ¢ by 27 then produces no
essential change in the state of the system. Indeed, the position coordinate
in this type of periodicity is invariably an angle of rotation, and the motion
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(a) Libration (b) Rotation

FIGURE 10.2 Orbit of the system point in phase space for periodic motion of one-
dimensional systems.

will be referred to simply as rotation, in contrast to libration. The values of
q are no longer bounded but can increase indefinitely.

It may serve to clarify these ideas to note that both types of periodicity may
occur in the same physical system. The classic example is the simple pendulum
where ¢ is the angle of deflection 6. If the length of the pendulum is / and the
potential energy is taken as zero at the point of suspension, then the constant
energy of the system is given by

P

=S mgl cos 6. (10.80)

Solving Eq. (10.64) for pg, the equation of the path of the system point in phase
space is

Po = j:\/Zmlz(E + mgl cos 0). (10.81)

If E is less than mgl, then physical motion of the system can only occur for ||
less than a bound, 6’, defined by the equation

, E
cosf = ———.
mgl
Under these conditions, the pendulum oscillates between —8’ and +6’, which is a
periodic motion of the libration type. The system point then traverses some such
path in phase space as the curve 1 of Fig. 10.3. However, if E > mgl, all values
of 6 correspond to physical motion and 6 can increase without limit to produce a
periodic motion of the rotation type. What happens physically in this case is that
the pendulum has so much energy that it can swing through the vertical position
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FIGURE 10.3 Phase space orbits for the simple pendulum.
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6 = m and therefore continues rotating. Curve 3 in Fig. 10.3 corresponds to the
rotation motion of the pendulum. The limiting case when E = mgl is illustrated
by curves 2 and 2’ in Fig. 10.3. At this energy, the pendulum arrives at 6 = 7, the
vertical position, with zero kinetic energy, that is, pg = 0. It is then in unstable
equilibrium and could in principle remain there indefinitely. However, if there
is the slightest perturbation, it could continue its motion either along curve 2 or
switch to curve 2'—it could fall down either way. The point 6 = 7w, pg = 0
is a saddle point of the Hamiltonian function H = E(py, 6) and there are two
paths of constant E in phase space that intersect at the saddle point. We have here
an instance of what is called a bifurcation, a phenomenon that will be discussed
extensively in the next chapter. (See also Section 6.6.)

For either type of periodic motion, we can introduce a new variable J designed
to replace o as the transformed (constant) momentum. The so-called action vari-
able J is defined as (cf. Eq. (8.80))

szp@, (10.82)

where the integration is to be carried over a complete period of libration or of
rotation, as the case may be. (The designation as action variable stems from the
resemblance of Eq. (10.82) to the abbreviated action of Section 8.6. Note that J
always has the dimensions of an angular momentum.) From Eq. (10.79), it follows
that J is always some function of «; alone:

ar=H=H(U). (10.83)
Hence, Hamilton’s characteristic function can be written as

W =W(gq,J). (10.84)



10.6 Action-Angle Variables in Systems of One Degree of Freedom 455

The generalized coordinate conjugate to J, known as the angle variable w, is
defined by the transformation equation:

ow
w=—-. (10.85)
oJ
Correspondingly, the equation of motion for w is
. 0H(J))
= =v(J), 10.86
w 57 v(J) ( )

where v is a constant function of J only. Equation (10.86) has the immediate
solution

w = vt + B, (10.87)

so that w is a linear function of time, exactly as in Eq. (10.47).

So far the action-angle variables appear as no more than a particular set of the
general class of transformed coordinates to which the Hamilton—Jacobi equation
leads. Equation (10.85) could be solved for ¢ as a function of w and J, which,
in combination with Eq. (10.87), would give the desired solution for g as a func-
tion of time. But when employed in this fashion the variables have no signifi-
cant advantage over any other set of coordinates generated by W. Their particular
merit rises rather from the physical interpretation that can be given to v. Consider
the change in w as g goes through a complete cycle of libration or rotation, as
given by

0
Aw=¢ L ag. (10.88)
dq
By Eq. (10.85), this can also be written
*w
w = % dq. (10.89)
aqaJ

Because J is a constant, the derivative with respect to J can be taken outside the
integral sign:

d ow

A = — _ = —
YEarY ag T au

pdg =1, (10.90)

where the last step follows from the definition for J, Eq. (10.82).

Equation (10.90) states that w changes by unity as g goes through a complete
period. But from Eq. (10.87), it follows that if 7 is the period for a complete cycle
of g, then
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Hence, the constant v can be identified as the reciprocal of the period,
1
v=—, (10.91)
T

and is therefore the frequency associated with the periodic motion of q. The use
of action-angle variables thus provides a powerful technique for obtaining the fre-
quency of periodic motion without finding a complete solution to the motion of the
system. If it is known a priori that a system of one degree of freedom is periodic
according to the definitions given above, then the frequency can be found once
H is determined as a function of J. The derivative of H with respect to J, by
Eq. (10.86), then directly gives the frequency v of the motion. The designation of
w as an angle variable becomes obvious from the identification of v in Eq. (10.87)
as a frequency. Since J has the dimensions of an angular momentum, the coordi-
nate w conjugate to it is an angle.*

As an illustration of the application of action-angle variables to find frequen-
cies, let us again consider the familiar linear harmonic oscillator problem. From
Egs. (10.26) and the defining equation (10.82), the constant action variable J is

given by
J = %pdq = % 2mo — m2w?q?dq, (10.92)

where « is the constant total energy and w? = k/m. The substitution (10.25)

200
q =4/ —5sin0
mo

reduces the integral to
2 2
J= —“/ cos2 0 do, (10.93)
o Jo

where the limits are such as to correspond to a complete cycle in g. This integrates
to

or, solving for «,

_Jw

H=—.
2

o (10.94)

*For some applications the action variable is defined in the literature of celestial mechanics as @m)~!
times the value given in Eq. (10.82). By Eq. (10.90), the corresponding angle variable is 27 times our
definition and in place of v we have w, the angular frequency. However, we shall stick throughout to
the familiar definitions used in physics, as given above.
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The frequency of oscillation is therefore

oH 1) 1 |k 10.95
A AL (10.95)
which is the customary formula for the frequency of a linear harmonic oscillator.
Although it is entirely unnecessary for obtaining the frequencies, it is nevertheless
instructive (and useful for future applications) to write the solutions, Egs. (10.25)
and (10.27), in terms of J and w. It will be recognized first that the combination
(wt 4+ B) is by Egs. (10.95) and (10.87) the same as 2w w, with the constant
of integration suitably redefined. Hence, the solutions for ¢, Eq. (10.25), and p,
Eq. (10.27), take on the form

g = sin 2w, (10.96)
Tmw
mJw
p= cos2mw. (10.97)
T

Note that Egs. (10.96) and (10.97) can also be looked on as the transformation
equations from the (w, J) set of canonical variables to the (¢, p) canonical set.

ACTION-ANGLE VARIABLES FOR COMPLETELY
SEPARABLE SYSTEMS*

Action-angle variables can also be introduced for certain types of motion of sys-
tems with many degrees of freedom, providing there exists one or more sets of
coordinates in which the Hamilton—Jacobi equation is completely separable. As
before, only conservative systems will be considered, so that Hamilton’s charac-
teristic function will be used. Complete separability means that the equations of
canonical transformation have the form

_ OWilgi; ai, ..., op)
9q;

: (10.98)

i
which provides each p; as a function of the g; and the n integration constants c:

pi = pi(gi; a1, ..., an). (10.99)

Equation (10.99) is the counterpart of Eq. (10.79), which applied to systems of
one degree of freedom. It will be recognized that Eq. (10.99) here represents
the orbit equation of the projection of the system point on the (g;, p;) plane in
phase space. We can define action-angle variables for the system when the orbit
equations for all of the (g;, p;) pairs describe either closed orbits (libration, as in
Fig. 10.2(a)) or periodic functions of ¢g; (rotation, as in Fig. 10.2(b)).

Note that this characterization of the motion does not mean that each ¢; and
pi will necessarily be periodic functions of the time, that is, that they repeat their

*Unless otherwise stated, the summation convention will not be used in this section.
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values at fixed time intervals. Even when each of the separated (g;, p;) sets are
indeed periodic in this sense, the overall system motion need not be periodic.
Thus, in a three-dimensional harmonic oscillator the frequencies of motion along
the three Cartesian axes may all be different. In such an example, it is clear the
complete motion of the particle may not be periodic. If the separate frequencies
are not rational fractions of each other, the particle will not traverse a closed
curve in space but will describe an open “Lissajous figure.” Such motion will
be described as multiply periodic. It is the advantage of the action-angle variables
that they lead to an evaluation of all the frequencies involved in multiply periodic
motion without requiring a complete solution of the motion.

In analogy to Eq. (10.82), the action variables J; are defined in terms of line
integrals over complete periods of the orbit in the (g;, p;) plane:

]i = %pi dql-. (10.100)

If one of the separation coordinates is cyclic, its conjugate momentum is constant.
The corresponding orbit in the (g;, p;) plane of phase space is then a horizontal
straight line, which would not appear to be in the nature of a periodic motion.
Actually the motion can be considered as a limiting case of the rotation type of
periodicity, in which g; may be assigned any arbitrary period. Since the coordinate
in a rotation periodicity is invariably an angle, such a cyclic ¢g; always has a natural
period of 2m. Accordingly, the integral in the definition of the action variable
corresponding to a cyclic angle coordinate is to be evaluated from O to 27, and
hence

Ji = 27pi (10.101)

for all cyclic variables.
By Eq. (10.98), J; can also be written as

J_7§3Wi(61i; oL, ..., 0p)
9gi

dg;. (10.102)

Since ¢g; is here merely a variable of integration, each action variable J; is a
function only of the n constants of integration appearing in the solution of the
Hamilton—Jacobi equation. Further, it follows from the independence of the sep-
arate variable pairs (g;, p;) that the J;’s form n independent functions of the «;’s
and hence are suitable for use as a set of new constant momenta. Expressing the
«;’s as functions of the action variables, the characteristic function W can be writ-
ten in the form

W:W(qh'-'aqn; Jlsv‘ln)zzwj(q]a ]ls'-'v‘]f'l)’
J

while the Hamiltonian appears as a function of the J;’s only:

H=ay=HU,...,Jy. (10.103)
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As in the system of one degree of freedom, we can define conjugate angle
variables w; by the equations of transformation that here appear as

BW ~ aW](Q]v Jls"'a']n)
=2 . 10.104
Y=, 12_; 97 ( )

Note in general w; could be a function of several or all of the g;; that is, w; =
wi(qis .- qn; Jis ..., Jy). The w;’s satisfy equations of motion given by

COHW, ... )

a7, =vi(J1, ..., Jn). (10.105)

wi

Because the v;’s are constants, functions of the action variables only, the angle
variables are all linear functions of time

w; = vt + B;. (10.106)

Note that in general the separate w;’s increase in time at different rates.

The constants v; can be identified with the frequencies of the multiply peri-
odic motion, but the argument to demonstrate the relation is more subtle than for
periodic systems of one degree of freedom. The transformation equations to the
(w, J) set of variables implies that each g; (and p;) is a function of the constants
J; and the variables w;. What we want to find is what sort of mathematical func-
tion the ¢’s are of the w’s. To do this, we examine the change in a particular w;
when each of the variables g; is taken through an integral number, m ;, of cycles
of libration or rotation. In carrying out this purely mathematical procedure, we
are clearly nor following the motion of the system in time. It is as if the flow
of time were suspended and each of the ¢’s were moved, manually as it were,
independently through a number of cycles of their motion. In effect, we are deal-
ing with analogues of the virtual displacements of Chapter 1, and accordingly the
infinitesimal change in w; as the g;’s are changed infinitesimally will be denoted
by dw; and is given by

dw; 2w
Sw; = —dg; = ——dgq;,
Wi ; aqj i Z 3./,'36[]' 4

where use has been made of Eq. (10.104). The derivative with respect to ¢; van-
ishes except for the W; constituent of W, so that by Eq. (10.98) dw; reduces to

d
dw; = 37 E pilgj, J)dg;. (10.107)
1 .
J

Equation (10.107) represents dw; as the sum of independent contributions
each involving the g; motion. The total change in w; as a result of the specified
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maneuver is therefore

)
Aw; = Z VA 7§ pilq;, ) dgq;. (10.108)
j

mj

The differential operator with respect to J; can be kept outside the integral signs
because throughout the cyclic motion of ¢; all the J’s are of course constant. Be-
low each integral sign, the symbol m ; indicates the integration is over m ; cycles
of g;. But each of the integrals is, by the definition of the action variables, exactly
m jJ;. Since the J’s are independent, it follows that

Aw,’ =m;. (10109)

Further, note that if any ¢; does not go through a complete number of cycles, then
in the integration over ¢; there will be a remainder of an integral over a fraction
of a cycle and Aw; will not have an integral value. If the sets of w’s and m’s are
treated as vectors w and m, respectively, Eq. (10.109) can be written as

Aw =m. (10.109")

Suppose, first, that the separable motions are all of the libration type so that
each g;, as well as p;, returns to its initial value on completion of a complete
cycle. The result described by Eq. (10.109’) could now be expressed somewhat
as follows: n (the vector of ¢’s and p’s) is such a function of w that a change
Am = 0 corresponds to a change Aw = m, a vector of integer values. Since the
number of cycles in the chosen motions of ¢ ; are arbitrary, m can be taken as zero
except for m; = 1, and all the components of 7 remain unchanged or return to
their original values. Hence, in the most general case the components of 1 must
be periodic functions of each w; with period unity; that is, the ¢’s and p’s are
multiply periodic functions of the w’s with unit periods. Such a multiply periodic
function can always be represented by a multiple Fourier expansion, which for gy,
say, would appear as

o o o
_ () L2mi(rwi+pwatj3wst A jawn) (15 .
gk = Z Z N Z a; ' -e i ntn) " (libration)
j1:—00 jZZ_OO jn:—OO
(10.110)
where the j’s are n integer indices running from —oo to co. By treating the set of
Jj’s also as a vector in the same n-dimensional space with w, the expansion can be
written more compactly as

gk = Zaj(")az”"j“, (libration). (10.110')
i

If we similarly write Eq. (10.109’) as a vector equation,

w=vt+f, (10.106")
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then the time dependence of g appears in the form

G (t) = Zaj(">e2”"j'<V’+ﬁ>, (libration). (10.111)
j

Note that in general g (¢) is not a periodic function of . Unless the various v;’s
are commensurate (that is, rational multiples of each other), g; will not repeat its
values at regular intervals of time. Considered as a function of #, gy is designated
as a quasi-periodic function. Finally it should be remembered that the coefficients
a® can be found by the standard procedure for Fourier coefficients; that is, they
are given by the multiple integral over the unit cell in w space:

1 1
a}’”:/ / Ge(Wye Y (dw). (10.112)
0 0

Here (dw) stands for the volume element in the n-dimensional space of the w;’s.

When the motion is in the nature of a rotation, then in a complete cycle of the
separated variable pair (qx, pr) the coordinate gx does not return to its original
value, but instead increases by the value of its period gox. Such a rotation coordi-
nate is therefore not itself even multiply periodic. However, during the cycle we
have seen that wy increases by unity. Hence, the function gx — wyqox does return
to its initial value and, like the librational coordinates, is a multiply periodic func-
tion of all the w’s with unit periods. We can therefore expand the function in a
multiple Fourier series analogous to Eq. (10.110)

Gk — Weqok = Zaj(k)ez”ij'w, (rotation) (10.113)
i

or

qr = qok (vt + Br) + Z aj(k)ezmj'(wrﬂ), (rotation). (10.114)
J

Thus, it is always possible to derive a multiply periodic function from a rotation
coordinate, which can then be handled exactly like a libration coordinate. To sim-
plify the further discussion, we shall therefore confine ourselves primarily to the
libration type of motion.

The separable momentum coordinates, py, are by the nature of the assumed
motion also multiply periodic functions of the w’s and can be expanded in a mul-
tiple Fourier series similar to Eq. (10.110). It follows then that any function of the
several variable pairs (g, px) will also be multiply periodic functions of the w’s
and can be written in the form

f(g. p) =) b IV = 3" 2R, (10.115)
j j

For example, where the Cartesian coordinate of particles in the system are not
themselves the separation coordinates, they can still be written as functions of
time in the fashion of Eq. (10.115).
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While Egs. (10.110) and (10.111) represent the most general type of motion
consistent with the assumed nature of the problem, not all systems will exhibit
this full generality. In particular, for most problems simple enough to be used as
illustrations of the application of action-angle variables, Eq. (10.104) simplifies to

o Bwi

= W I, 10.116
AR (10.116)

wi

and each separation coordinate ¢; is a function only of its corresponding wy.
When this happens, gy is then a periodic function of wy (and therefore of time),
and the multiple Fourier series reduces to a single Fourier series:

g = Za;.k)ezmjwk = Zaﬁ.’%%fﬂvk’*ﬂ”. (10.117)
j j

In the language of Chapter 6, in such problems the g;’s are in effect the
normal coordinates of the system. However, even when the motion in the g’s
can be so simplified, it frequently happens that functions of all the ¢’s, such as
Cartesian coordinates, remain multiply periodic functions of the w’s and must be
represented as in Eq. (10.115). If the various frequencies v; are incommensurate,
then such functions are not periodic functions of time. The motion of a two-
dimensional anisotropic harmonic oscillator provides a convenient and familiar
example of these considerations.

Suppose that in a particular set of Cartesian coordinates the Hamiltonian is
given by

1
H= %[(pﬁ +4mPm*vix?) + (p} + 4nPm*vy?)].

These Cartesian coordinates are therefore suitable separation variables, and each
will exhibit simple harmonic motion with frequencies vy and vy, respectively.
Thus, the solutions for x and y are particularly simple forms of the single Fourier
expansions of Eq. (10.117). Suppose now that the coordinates are rotated 45°
about the z axis; the components of the motion along the new x’, y” axes will be

=L

x' = ﬁ[xo cos 2 (vyt + By) + yo cos 2 (vyt + By)l,
/

y = %[yo €08 27 (vyt + By) — x0 €08 27 (vxt + By)]. (10.118)

If vy /vy is a rational number, these two expressions will be commensurate, corre-
sponding to closed Lissajous figures of the type shown in Fig. 10.4. But if v, and
vy are incommensurable, the Lissajous figure never exactly retraces its steps and
Egs. (10.118) provide simple examples of multiply periodic series expansions of
the form (10.117).

Even when ¢y is a multiply periodic function of all the w’s, we intuitively feel
there must be a special relationship between g and its corresponding wy (and
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FIGURE 10.4 Lissajous figures for Eq. (10.118). (a) fx = By = 1, ¥ = L) B =1,
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therefore vy ). After all, the argument culminating in Eq. (10.109) says that when
qr alone goes through its complete cycle, wy increases by unity, while the other
w’s return to their initial values. It was only in 1961 that J. Vinti succeeded in
expressing this intuitive feeling in a precise and rigorous statement.*

Suppose that the time interval 7 contains m complete cycles of g plus a frac-
tion of a cycle. In general, the times required for each successive cycle will be
different, since g; will not be a periodic function of ¢. Then Vinti showed, on the
basis of a theorem in number theory, that as 7" increases indefinitely,

m
Lim — = . (10.119)

t—-oo T

The mean frequency of the motion of gi is therefore always given by v, even
when the entire motion is more complicated than a periodic function with fre-
quency vk.

Barring commensurability of all the frequencies, a multiply periodic function
can always be formed from the generating function W. The defining equation
for J;, Eq. (10.102), in effect states that when ¢; goes through a complete cycle;
that is, when w; changes by unity, the characteristic function increases by J;. It
follows that the function

W=W=> w (10.120)
k

remains unchanged when each wy is increased by unity, all the other angle vari-
ables remaining constant. Equation (10.120) therefore represents a multiply peri-
odic function that can be expanded in terms of the w; (or of the frequencies v;)
by a series of the form of Eq. (10.115). Since the transformation equations for the

*J. Vinti, J. Res. Nat. Bur. Standards, 65B, 131 (1961).
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angle variables are

aw
Wk = 7>

0Jx
it will be recognized that Eq. (10.120) defines a Legendre transformation from
the g, J basis to the g, w basis. Indeed, comparison with Eq. (9.15) in combina-
tion with Eq. (9.12) shows that if W (g, J) is a generating function of the form
F»(q, P), then W/(q, w) is the corresponding generating function of the type
F1(g, Q), transforming in both cases from the (g, p) variables to the (w, J) vari-
ables. While W’ thus generates the same transformation as W, it is of course not
a solution of the Hamilton-Jacobi equation.

It has been emphasized that the system configuration is multiply periodic only
if the frequencies v; are not rational fractions of each other. Otherwise, the con-
figuration repeats after a sufficiently long time and would therefore be simply
periodic. The formal condition for the commensurability of two frequencies v;
and v; is that they satisfy the relation j;v; = jjv; (no sum) where j; and j; are
nonzero positive integers. For complete commensurability, all pairs of frequencies
must satisfy relations of the form

Jivi = Jxvk, (nosum) (10.121)

where the j; and ji are nonzero positive integers.

When we can express any v; as a rational fraction of any of the other frequen-
cies, the system is said to be completely commensurate. If only m + 1 of the n
frequencies satisfy Eq. (10.121), the system is said to be m-fold commensurate.
For example, consider the set of seven frequencies vi = 3 MHz, v, = 5 MHz,
v3 = 7 MHz, v4 = 2+/2 MHz, vs = 3+/2 MHz, v = +/3 MHz, v; = +/7 MHz.
The first three vy, vy, and v3 are triply commensurate, the next two v4 and vs are
doubly commensurate.

There is an interesting connection between commensurability and the coordi-
nates in which the Hamilton—Jacobi equation is separable. It can be shown that the
path of the system point for a noncommensurate system completely fills a limited
region of both configuration and phase space. This can be seen in the Lissajous
figures of incommensurate frequencies.

Suppose the problem is such that the motion in any one of the separation coor-
dinates is simply periodic and has therefore been shown to be independent of the
motion of the other coordinates. Hence, the path of the system point as a whole
must be limited by the surfaces of constant ¢; and p; that mark the bounds of the
oscillatory motion of the separation variables. (The argument is easily extended
to rotation by limiting all angles to the region 0 to 27.) These surfaces there-
fore define the volume in space that is densely filled by the system point orbit.
It follows that the separation of variables in noncommensurate systems must be
unique; the Hamilton—Jacobi equation cannot be separated in two different coor-
dinate systems (aside from trivial variations such as change of scale). The possi-
bility of separating the motion in more than one set of coordinates thus normally
provides evidence that the system is commensurate.
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The simplest example of being commensurate is degeneracy which occurs
when two or more of the frequencies are equal. If two of the force constants
in a three-dimensional harmonic oscillator are equal, then the corresponding fre-
quencies are identical and the system is singly degenerate. In an isotropic linear
oscillator, the force constants are the same along all directions, all frequencies are
equal, and the system is completely degenerate.

Whenever this simple degeneracy is present, the fundamental frequencies are
no longer independent, and the periodic motion of the system can be described
by less than the full complement of n frequencies. Indeed, the m conditions of
degeneracy can be used to reduce the number of frequencies to n — m + 1. The
reduction of the frequencies may be most elegantly performed by means of a point
transformation of the action-angle variables. The m degeneracy conditions may be
written (where ji; are positive or negative integers)

n
D gkivi=0, k=1,....m. (10.122)
i=1

Consider now a point transformation from (w, J) to (w’, J') defined by the
generating function (cf. Eq. (9.26) where the summation convention is used):

m n n
Fy=Y "3 "Jjuwi+ Y Jw. (10.123)

k=1 i=1 k=m+1

The transformed coordinates are

n
u)]/(:ijh k=1,...,m,
i=1
. k=m+1,....n (10.124)

Correspondingly, the new frequencies are

n

/ ./ .

vkzwkzg Jkivi =0 k=1,...,m,
i=1

= v k=m+1,...,n. (10.125)

Thus in the transformed coordinates, m of the frequencies are zero, and we are left
with a set of n — m independent frequencies plus the zero frequency. It is obvious
that the new w;_may also be termed as angle variables in the sense that the system
configuration is multiply periodic in the w; coordinates with the fundamental
period unity. The corresponding constant action variables are given as the solution
of the n equations of transformation

m n
T=Y i+ Y. Jidu. (10.126)
k=1 k=m+1
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The zero frequencies correspond to constant factors in the Fourier expansion.
These are of course also present in the original Fourier series in terms of the
v’s, Eq. (10.110), occurring whenever the indices j; are such that degeneracy
conditions are satisfied. Since

oH

/ —

1 8][/’

the Hamiltonian must be independent of the action variables J/ whose corre-
sponding frequencies vanish. In a completely degenerate system, the Hamiltonian
can therefore be made to depend upon only one of the action variables.

Note that Hamilton’s characteristic function W also serves as the generating
function for the transformation from the (g, p) set to the (w’, J') set. Since the J'
quantities are n independent constants, the original constants of integration may
be expressed in terms of the J’ set, and W given as W (g, J'). In this form, it is a
generating function to a new set of canonical variables for which the J' quantities
are the canonical momenta. But by virtue of the point transformation generated
by the F, of Eq. (10.123), we know that w’ is conjugate to J’. Hence, it follows
that the new coordinates generated by W (g, J') must be the angle variable w’ set,
with equations of transformation given by

Y
wl:ﬁ

l

(10.127)

(For a more formal proof of Eq. (10.127) based on the algebraic structure of
Eq. (10.123), see Derivation 3.)

The problem of the bound motion of a particle in an inverse-square law central
force illustrates many of the phenomena involved in degeneracy. A discussion of
this problem also affords an opportunity to show how the action-angle technique is
applied to specific systems, and to indicate the connections with Bohr’s quantum
mechanics and with celestial mechanics. Accordingly, the next section is devoted
to a detailed treatment of the Kepler problem in terms of action-angle variables.

THE KEPLER PROBLEM IN ACTION-ANGLE VARIABLES*

To exhibit all of the properties of the solution, we shall examine the motion in
three dimensional space, rather than make use of our a priori knowledge that the
orbit lies in a plane. In terms of spherical polar coordinates, the Kepler problem
becomes a special case of the general treatment given above in Section 10.5 for
central force motion in space. Equations (10.70) through (10.77) can be taken
over here immediately, replacing V () wherever it occurs by its specific form

Vr) = _I;c. (10.128)

*The summation convention will be resumed from here on.
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Since the potential V (r) depends only upon one of the three coordinates, it fol-
lows that the Hamilton—Jacobi equation is completely separable in spherical polar
coordinates. We shall confine our discussion to the bound case, that is, £ < 0.
Hence, the motion in each of the coordinates will be periodic—Ilibration in r and
6, and rotation in ¢. The conditions for the application of action-angle variables
are thus satisfied, and we can proceed to construct the action variables on the basis
of the defining equation (10.102). From Eq. (10.72), it follows that

Jy = 55 % dp = ?{% de. (10.129a)

Similarly, on the basis of Eq. (10.74), Jy is given by

Jo = —d9 —7§ (10.129b)
sin? 9

Finally the integral for J, from Eq. (10.75), is

2mk o
J,— —dr—jﬁ\/z E+ 2= 20y (10.1290)
r r

The first integral is trivial; ¢ goes through 27 radians in a complete revolution
and therefore

Jp =2may = 27 py. (10.130)

This result could have been predicted beforehand, for ¢ is a cyclic coordinate
in H, and Eq. (10.130) is merely a special case of Eq. (10.101) for the action
variables corresponding to cyclic coordinates. Integration of Eq. (10.129b) can
be performed in various ways; a procedure involving only elementary rules of
integration will be sketched here. If the polar angle of the total angular momentum
vector is denoted by i, so that

cosi = 22, (10.131)
g

then Eq. (10.129b) can also be written as
Jo =ag¢‘\/l —cosZicsc20de. (10.132)

The complete circuital path of integration is for 8 going from a limit —6y to +6y
and back again, where sinfy = cosi, or 6§y = (;/2) — i. Hence, the circuital
integral can be written as 4 times the integral over from 0 to 6y, or after some

manipulation,
)
Jy = 4oy / cscOy/sin?i — cos2 6 d6.
0
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The substitution
cosf = sini sin Y

transforms the integral to

/2 20 d
Ty = dag sinzi/ % (10.133)
0 1 — sin“i sin“ ¢

Finally, with the substitution

u = tany,
the integral becomes

J, 4ap sin’ 'foo du

= i
o o o (1+ud)(1+ucosti)

o 1 cos? i
=4 d - . 10.134
ag/(; u(1+u2 1+u2coszi) ( )

This last form involves only well-known integrals, and the final result* is
Jo =2mag(l —cosi) = 2m(ag — ag). (10.135)

The last integral (Eq. (10.129c¢)), for J,, can now be written as

dmk  (Jp + Jp)>
J,:y{ omE + 2k _ Lo+ Te)” (10.136)
r 472r?

After performing the integration, this equation can be solved for the energy E =
H in terms of the three action variables Jy, Jg, J,-. Note that J4 and Jy can occur
in E only in the combination Jy + Jy, and hence the corresponding frequencies
vg and vg must be equal, indicating a degeneracy. This result has not involved the
inverse-square law nature of the central force; any motion produced by a central
force is at least singly degenerate. The degeneracy is of course a consequence
of the fact that the motion is confined to a plane normal to the constant angular
momentum vector L. Motion in this plane implies that 6 and ¢ are related to
each other such that as ¢ goes through a complete 27 period, 6 varies through a
complete cycle between the limits (7r/2) & i. Hence, the frequencies in 6 and ¢
are necessarily equal.

*In evaluating the integral of the second term in the final integrand of Eq. (10.134), it has been assumed
that cos i is positive. This is always possible, since there is no preferred direction for the z axis in the
problem and it may be chosen at will. If cosi were negative, the sign of o in Eq. (10.135) would be
positive. For changes in the subsequent formulas, see Exercise 23.
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The integral involved in Eq. (10.136) can be evaluated by elementary means,
but the integration is most elegantly and quickly performed using the complex
contour integration method of residues. For the benefit of those familiar with this
technique, we shall outline the steps involved in integrating Eq. (10.136). Bound
motion can occur only when E is negative (cf. Section 3.3), and since the inte-
grand is equal to p, = mr, the limits of the motion are defined by the roots | and
ro of the expression in the square root sign. If 71 is the inner bound, as in Fig. 3.6,
a complete cycle of r involves going from r to r; and then back again to r1. On
the outward half of the journey, from rj to rp, p, is positive and we must take
the positive square root. However, on the return trip to rq, p, is negative and the
square root must likewise be negative. The integration thus involves both branches
of a double-valued function, with r; and r; as the branch points. Consequently,
the complex plane can be represented as one of the sheets of a Riemann surface,
slit along the real axis from r; to > (as indicated in Fig. 10.5).

Since the path of integration encloses the line between the branch points rq
and r;, the method of residues cannot be applied directly. However, we may also
consider the path as enclosing all the rest of the complex plane, the direction of
integration now being in the reverse (clockwise) direction. The integrand is single-
valued in this region, and there is now no bar to the application of the method of
residues. Only two singular points are present, namely, the origin and infinity, and
the integration path can be distorted into two clockwise circles enclosing these
two points. Now, the sign in front of the square root in the integrand must be
negative for the region along the real axis below 1, as can be seen by examin-
ing the behavior of the function in the neighborhood of ry. If the integrand is

represented as
2B C
— /A + — = _21
r r

Ry =—-+—-C.

Above rp, the sign of the square root on the real axis is found to be positive,

and the residue is obtained by the standard technique of changing the variable of

integration to z = r

the residue at the origin is

1
—f —vA+2Bz - C? dz. (10.137)
Z

\?/ square root \rl ¥+ + + r2/ square root W

FIGURE 10.5 The complex r plane in the neighborhood of the real axis; showing the
paths of integration occurring in the evaluation of J.
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Expansion about z = 0 now furnishes the residue

R — B
oo = \/Z
The total integral is —27i times the sum of the residues:
Jr =2mi (v—C + i) (10.138)
r «/Z s .

or, upon substituting the coefficients A, B, and C:

2m
Jr = —(Jg—i—J(p)—i—rrk,/—E. (10.139)

Equation (10.139) supplies the functional dependence of H upon the action
variables; for solving for E, we have

2m2mk?

H=E=-——" "
(Jr + Jo + Jg)?

(10.140)

Note that, as predicted, Jo and Jy occur only in the combination Jy + Jy. More
than that, all three of the action variables appear only in the form J, + Jy +
Jy. Hence, all of the frequencies are equal; the motion is completely degenerate.
This result could also have been predicted beforehand, for we know that with
an inverse-square law of force the orbit is closed for negative energies. With a
closed orbit, the motion is simply periodic and therefore, in this case, completely
degenerate. If the central force contained an > term, such as is provided by first-
order relativistic corrections, then the orbit is no longer closed but is in the form
of a precessing ellipse. One of the degeneracies will be removed in this case, but
the motion is still singly degenerate, since vg = vy for all central forces. The one
frequency for the motion here is given by

_O0H 9H _0H _ 4mw’mk?
A A Ay (e Ja+ Jp)d

(10.141)

If we evaluate the sum of the J’s in terms of the energy from Eq. (10.140) the

period of the orbit is
m

This formula for the period agrees with Kepler’s third law, Eq. (3.71), if it is
remembered that the semimajor axis a is equal to —k/2E.

The degenerate frequencies may be eliminated by canonical transformation
to a new set of action-angle variables, following the procedure outlined in the
previous section. Expressing the degeneracy conditions as

vy —vg =0, vg — v =0,
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the appropriate generating function is

F = (wy —wy)J1 + (wg — w;)J2 + w, J3. (10.143)
The new angle variables are

W] = Wy — Wy,
w2 = Wy — Wy,
w3 = wy, (10.144)

and, as planned, two of the new frequencies, v; and v,, are zero. We can obtain
the new action variables from the transformation equations

Jp = J1,
Jo=Jo— J1,
Jr=J3—
which yields the relations
Ji=Jy,
Jr=Jy + Jo, (10.145)

Js=Jy+ Jo + Jp.
In terms of these transformed variables the Hamiltonian appears as

2m2mk?
H=-— 5 (10.146)
J3

a form involving only that action variable for which the corresponding frequency
is different from zero.

If we are willing to use, from the start, our a priori knowledge that the motion
for the bound K